The present invention relates to an image recording device and an image recording system having a plurality of laser beams (multi-laser beam).
An image-recording device using a laser beam has been widely used because it runs faster with a higher resolution than image-recording devices based on other technologies.
A conventional printer using one laser beam (laser printer) is disclosed in Japanese patent application laid-open publication No. Hei 8-310057 (1996). The printer utilizes features of continuously modulating laser intensities in the main scanning direction and controlling the quantity of attached toner by controlling laser intensities for high-resolution printing. These features eliminate and reduce the irregularities in slanted outlines of characters and images, which makes the printout images and characters smooth.
To run the laser beam printer faster, it is required to make the laser beam (the light beam of a laser) scan at a high speed in both the main scanning direction (horizontally) and in a subsidiary scanning direction (vertically).
These requirements may be accomplished by rotating a photosensitive drum (for vertical scanning) and a rotary polygon mirror (for horizontal scanning) at high speeds. However, the rotational speed of the polygon mirror of the fastest conventional laser beam printer using one laser beam has almost reached its limit. Therefore, a multi-beam method of causing two or more laser beams to scan simultaneously is used instead of increasing the rotational speed of the polygon mirror.
Most laser beam printers (particularly printing systems that may be easily affected by the environmental conditions such as in electrophotography) frequently employ a method of varying the pulse duration (width) of a laser drive signal by modulation (PWM), thus controlling the quantity of light (that is, controlling the print dot sizes by light control) for assurance of picture qualities and stability when they print out multi-level images having pixels whose dot sizes (image data) are multi-leveled (gradated).
There are two methods of generating this pulse-width-modulated laser drive signal (pulses): an Analog method of generating a device signal by comparing a triangular wave created in synchronism with image data by a D/A converter output of the image data, for example, as disclosed in Japanese patent application laid-open publication No. Sho 62-39972 (1987); and a Digital method of generating a drive signal logically (by frequency-division) from a fast clock whose frequency is 4 to 8 times as high as the image clock, as disclosed in Japanese application patent laid-open publication No. Hei 5-6438 (1993).
As described above, a fast printer system for printing multi-level images typically employs a multi-beam method using a pulse-width modulation technique.
Although a laser printer using a multi-beam method is disclosed in Japanese application patent laid-open publication No. Hei 8-15623 (1996), this method may reduce the image accuracy according to uneven dot sizes if the light quantities of the laser sources are not equal. To solve such a problem, a technique is proposed for correcting the light quantities of the laser sources.
For example, Japanese application patent laid-open publication No. Hei 5-212904 (1993) discloses a method of applying a driving signal of an identical pulse width to the driving circuit of each laser source which emits illuminating dots, measuring the intensity of each illuminating dot, and calculating light correction values from the measured intensities of light (light dispersion). This example calculates the ratio of the maximum value Xmax of the light quantity data to the minimum value Xmin, multiplies the image data L by the ratio, multiplies the product by a correction factor Xmin/X for each illuminating dot calculated from the light quantity data X and the minimum value Xmin, and thus obtains the corrected image data L.
There is disclosed another embodiment in Japanese application patent laid-open publication No. Hei 7-199096 (1995). The embodiment detects the quantity of laser light emitted from each laser source using a sensor, compares it to a preset target value, and controls the current of each laser source so that the quantities of laser lights from the laser sources become identical.
An image recording device using two or more laser beams has the following two problems:
One problem is that the positional accuracy of beam spots in the subsidiary scanning direction is low. This may be mainly caused by the following:
These factors cause uneven intervals of beam spots. In other words, the scanning lines are dense in some places and thin in other places. This scanning line trouble is called a scanning unevenness. The scanning unevenness causes exposure unevenness. When developed and visualized, the unevenness may be recognized as a visual unevenness.
The period of generation of this unevenness is dependent upon the product of the number of laser beams by the number of faces of the polygon mirror. This unevenness occurs depending upon said product and the subsidiary scanning period of a tone dither pattern to represent an area gradation and exerts an influence on a low-frequency area which is more sensitive to the visual characteristics of the human eye. This problem also occurs due to the uneven light quantities of laser beams.
The other problem is that the positional accuracy of beam spots in the main scanning direction is low. The position of a beam spot in the main scanning direction is usually detected by a beam detector at the beginning of each scanning line. In a laser beam printer system using a single laser beam, the exact position of a beam spot can be detected because the intensity of the beam spot, the intensity distribution and the position relative to the beam detector are fixed. On the other hand, in a laser beam printer system using two or more laser beams, the beam spot positions in the main scanning direction cannot be exact because the intensity of the beam spot, the intensity distribution and the position relative to the beam detector are not fixed. This problem is called scanning jitter.
These problems are specific to laser beam printer devices using two or more laser beams and rarely occur in laser beam printer devices using a single laser beam.
In a laser beam image recording device using a single laser beam, the positional accuracy of spot beams in the subsidiary direction is within the allowable visual characteristic range, and so such a problem will not occur in the main scanning direction.
An object of the present invention is to obtain high-quality, high-resolution recording images without scanning unevenness and scanning jitters in a laser beam image recording device using two or more laser beams.
To attain the above-stated object, the image recording device according to the present invention is equipped with a plurality of light sources and a photosensitive drum which is exposed by said light sources. The device is further equipped with a unit for setting the quantity of interfered lights of a plurality of image signals corresponding to said light sources, a unit for interfering only said set light quantity component of said image signal, a unit for setting delays of a plurality of image clocks corresponding to said light sources, a unit for delaying said image clocks by said set time period, a memory unit for storing interference data output from said interference block in synchronism with said image clocks and for outputting said interference data in the order the data was stored by delay data output from said delay unit, and a unit for varying the pulse duration (width) of interference data output from said memory unit by modulation.
The interference light quantity setting unit detects a positional error of beam spots in the subsidiary scanning. Its light quantity component is interfered by the interference unit and its pulse width is modulated by the pulse-width modulating unit. With this, the positional error in the subsidiary scanning is corrected. The delay time setting unit detects a positional error of beam spots in the main scanning direction and sets a time period required to correct the error. The delay unit delays the image clocks by a preset time period and the pulse width is modulated by the pulse width modulating unit. With this, the positional error in the main scanning is corrected. The resulting recorded images are high-quality and high-resolution images without scanning unevenness and scanning jitters even when two or more light sources are used.
Further, an image recording device equipped with a plurality of pulse-width modulators for modulating the pulse widths of a plurality of laser driving signals according to the image data and a plurality of laser light sources for outputting a plurality of laser beams whose light quantities are controlled by these laser driving signals to record images by scanning these plurality of laser beams has a unit for detecting unevenness in pulse-width modulation of said plurality of laser driving signals and for correcting said plurality of laser driving signals according to the degrees of unevenness.
When the pulse widths (modulated values) of laser the driving signals for the laser driving circuits are not identical due to unevenness of the circuit characteristics, such as may occur in the pulse width modulators in said image recording device employing a multi-beam method and pulse-width modulation, the aforesaid configuration corrects the laser driving signals according to the unevenness of the pulse widths (pulse-width modulation values) so as not to exert any influence due to the unevenness of the pulse width modulation on the images (print dot sizes) formed by the laser beams.
This configuration is also designed to correct the widths of pulses output from the pulse generating units by causing the pulse generating units to generate pulses in synchronism, comparing the width of pulses output from each pulse generating unit with a reference pulse width, and controlling the pulse generating units to eliminate any difference between them.
Correction of the pulse widths of each pulse generating unit according to the present invention is accomplished by selecting a preset number of serially-connected delay elements in a pulse width controlling unit.
It is preferable to use pulses of one of the pulse generating units as reference pulses and to supply an identical image clock in common to the pulse generating units when causing the pulse generating units to generate pulses in synchronism.
Since the configuration operates to equalize the widths of pulses output from the pulse width modulators which operate to set the light quantities of laser beams, their print dot sizes can be equalized, and consequentially the image data can be recorded at a high resolution.
The image recording device according to the present invention is equipped with a plurality of light sources and a plurality of beam detecting blocks, and further is equipped with a unit for recording an image, a unit for outputting a beam position control signal to control the position of each laser beam between scanning lines according to a plurality of beam detection signals output from said image recording unit and a controller for controlling said image recording unit according to said beam position control signals.
The beam signal controlling unit provided as described above can correct positional deviations of said laser beams, and thus enables the image recording device to record high-quality images.
a) and 6(b) are graphs of the output characteristics of the beam detector.
a) and 7(b) are diagrams illustrating scanning unevenness.
a) and 15(b) are diagrams showing the principle of correcting the scanning line pitch in the correction method according to the present invention.
a) and 19(b) are schematic diagrams of optical density sensors.
a) and 22(b) are diagrams illustrating scanning line unevenness and spot light unevenness.
a) and 26(b) are diagrams which show the result of operation of the pulse-width modulation circuit of
a) is a perspective view of the configuration of the laser array of
a) is a signal timing diagram and
a) is a signal timing diagram and
a) is a signal timing diagram and
a) is a signal timing diagram and
Referring to
In
This embodiment assumes that image data 207 is printed on a monochromatic binary laser printer and one piece of binary data is related to one bit of one pixel. After expansion of image data 207 is completed, the printer controller 203 starts the engine 205 of the image recording device 200 and sends image data 207 as a video signal 204 to the engine 205 according to synchronization signals 206 received from the engine 205. The engine 205 records actual images on a recording medium according to the video signals 204.
As disclosed in Japanese application patent laid-open publication No. Hei 8-15623 (1996), four laser beams 301 are provided by either providing four laser sources or by dividing one laser beam into four beams, which are emitted onto a rotary polygon mirror 302. In this example, four laser sources 310 are provided to produce the four laser beams, as shown in
Each of the laser sources 310 usually consists of semiconductor laser and its driver.
Video signals VD1, VD2, VD3, and VD4 are applied to the laser sources 310. When one laser beam is divided into four beams, the laser beams are modulated by AO modulators which are not illustrated in the drawing. As illustrated in
One scanning forms four scanning lines 304 at a time as four laser beams are applied to the mirror. Therefore, the photosensitive drum rotates by four scanning lines for each scanning. The direction opposite to the direction of rotation of the photosensitive drum 303 is termed a subsidiary scanning direction. The subsidiary scanning direction is perpendicular to the main scanning direction. Laser beam spots formed on the surface of photosensitive drum 303 are numbered 1, 2, 3, and 4 from the upperstream side in the subsidiary scanning direction. In
Problems that the present invention is going to solve will be explained in detail below. One problem is that the positional accuracy of the beam spots in the subsidiary scanning direction is low. When a plurality of light sources are used, the positional accuracy of the beam spots in the subsidiary scanning direction is dependent upon a combination of the structural accuracy of the light sources and the scanning faces of the rotary polygon mirror.
For example, when four semiconductor laser elements are molded into a unit, it is very hard to exactly line up four light emitting points at equal intervals. Similarly when one laser beam is divided into four beams, it is very hard to exactly generate four laser beams.
In addition to this, irregular mirror face tilting makes the positional accuracy of beam spots worse. When the four laser beams pass through a common scanning optical system, their axes are finely changed by these structural irregularities. Consequently, the laser beams have different intensities and intensity distributions, which causes positional errors of beam spots in the subsidiary scanning direction on the photosensitive drum 303 and finally makes scanning line pitches irregular.
a) and 7(b) show examples of positional errors of beam spots (irregular scanning line pitches) in the subsidiary scanning direction due to structural irregularities. Numbers 1, 2, 3, and 4 represent beam spot numbers. These irregular pitches of scanning lines 304 are caused by positional errors due to the structural irregularity of the optical system. In
In
a) and 22(b) show the uneven dot densities caused by irregular scanning line pitches. This example shows a brighter part of a half-tone image made by dots. Usually smaller dots are used to represent a brighter part. It is assumed in
If the scanning lines are irregularly pitched as shown in
The problem may be also caused by a structural irregularity (a face tilting) of the rotary polygon mirror 302.
As laser beams are usually applied to the scanning surface of the mirror at a certain angle to the optical axis, which is illustrated in
Recently for purpose of simplification of an optical system, there has been an increase in the number of image recording devices using an incomplete correction optical system without a conjugate system. However, the aforesaid trouble may be more serious in such systems. This pitch irregularity δ is caused by a lens correction astigmatism affected by both the structural irregularity of laser beams and the structural irregularity of the rotary polygon mirror 302. Accordingly, the degree of its influence (irregular scanning line pitches) varies according to the tilting of each mirror face.
The irregular scanning line pitches cause uneven exposures. When such an image is developed and visualized, the unevenness is recognized as visual patches in the image. Similar problems may occur also due to irregular light quantities of the laser beams.
The other problem is that the positional accuracy of beam spots in the main scanning direction is low. Referring again to
Usually, beam spot scanning positions 306 to 309 are significantly deviated from each other in the main scanning direction to make the scanning line pitch 304 smaller. In this embodiment, beam spot 1 is positioned right most and beam spots 2 to 4 follows to the left of beam spot 1 at predetermined intervals. Therefore, the beam detector 305 first generates a pulse signal BD1 by a laser beam 1 and then generates the other pulse signals BD2, BD3, and BD4 in this sequence in a short time period. Referring
However, in the multi-beam image recording device, intensities and intensity distributions of beam spots may be different. The position of each beam spot relative to the center of the beam detector 305 may different. (In a 4-beam system, the inner two beam spots are necessarily closer to the center of the beam detector than the outer two beam spots.)
Further, each beam spot has a different relationship between the position of each beam detection signal BD and the actual position of a beam spot in the main scanning direction, because the positions of beam spots in the subsidiary scanning direction are different, as described above. Finally, a positional error occurs in the main scanning direction.
a) shows the inputs to the beam detector 305 of a beam spot having a wide intensity distribution (a) and a beam spot having a narrow intensity distribution (b). The difference in intensity distributions is dependent upon spot diameters and light emitting powers (light intensities). The beam detector 305 receives each laser beam at a photo diode or the like, converts its intensity into an analog electric signal, digitizes it at a certain level (threshold), and outputs a binary digital value, as seen in
Even when two beam spots have an identical center position, the analog output of a beam spot having a narrow intensity distribution (b) rises more sharply than the analog output of a beam spot having a wide intensity distribution (a). When the analog outputs are digitized at a threshold value, as shown in
In the following, examples of several preferred embodiments of this invention for solving the aforesaid problems will be described.
Immediately before development, the surface potentiometer 803 measures the surface potential on the photosensitive drum 303. The surface potentiometer 803 requires an area of 1 cm square for measurement and measures the average potential of the area.
For purpose of simplification, the following example assumes that printing is not affected by face tilting of the rotary polygon mirror.
Next, the surface potentiometer 803 measures the surface potential on the exposed photosensitive drum 303. Since the mean surface potential of beam spots, whose distance in the subsidiary scanning direction is narrow, is not equal to the mean surface potential of beam spots whose distance in the subsidiary scanning direction is wide, the positional error of beam spots in the subsidiary scanning direction can be calculated from the difference between the aforesaid mean surface potentials.
By adding a video signal to or subtracting it from the light quantity of an adjoining beam according to the result of calculation, the position of beam spots in the subsidiary scanning direction can be corrected.
The light quantity of a beam to be added or subtracted is termed the interference light quantity.
The exposure optical system 802 exposes a test pattern for measuring positional errors of adjoining beam spots in the main scanning direction spot by spot on the surface of the photosensitive drum 303. Next, the surface potentiometer 803 measures the surface potential on the exposed photosensitive drum 303.
In the same manner as described above, the difference between the aforesaid mean surface potentials is calculated to determine the positional errors of beam spots in the main scanning direction. By adding a video signal to or subtracting it from the light quantity of an adjoining beam according to the result of calculation, the position of beam spots in the main scanning direction can be corrected.
With these operations positional errors in the main and subsidiary scanning directions are eliminated and consequently high-quality high-resolution images can be obtained. In the following, details of each step of the procedure shown in
The second column of the table of
When this test pattern is recorded on a 1 cm-square area of the photosensitive drum surface, the surface potentiometer 803 (see
When the charged photosensitive drum is exposed to a laser beam, the potential of the exposed areas on the charged surface goes down. However the quantity of a voltage drop to the quantity of exposure is apt to be saturated and the quantity of exposure for beam spots is strong enough for saturation.
Therefore the elliptic areas of test patterns (in the second column of the table of
The first column of
As seen from this table, the mean surface potential goes lower (that is, the absolute value of the negative potential increases) as the line pitch becomes smaller. This is dependent upon the ratio of the exposed area whose potential is reduced to −50 volts (elliptic area in
The fourth column of the table in
The mean surface voltages in the third column of the table are examples. Their magnitudes are dependent upon charging and exposing conditions. However, the relationship between scanning line pitches and mean surface potentials which are measured under an identical condition remains unchanged. In other words, scanning line pitches are always identical as far as mean surface potentials are identical. This characteristic can be used for correction of irregular scanning line pitches.
Although
Example (1) of
This example shows that the distance between beam spots 2 and 3 is wide and that between beam spots 4 and 1 is narrow. When a correction is made to make all these surface potentials V12, V23, V34, and V41 identical, as shown in Example (2) of
The correction circuit 1201 corrects the video signals VD1, VD2, VD3, and VD4 to produce corrected video signals VDe1, VDe2, VDe3, and VDe4 and outputs the corrected video signals to the engine 205. The correction circuit can be placed in the output part of the printer controller 203 or in the input part of the engine 205. These signals already have been explained with reference to
The configuration of the correction circuit 1201 of the present invention is illustrated in
These signals are sent to the inputs of 2-bit FIFO (First-In First-Out) memory 103 and are written there in synchronism with the pixel clock DCLK1. On the other hand, pixel clocks DCLK1, DCLK2, DCLK3, and DCLK4 are sent from the printer controller 203 to the delay circuit 104. The delay circuit delays each pixel clock by a time period set by a means 105 which determines a delay time period for each pixel clock and outputs the resulting pixel clocks DCLKd1, DCLKd2, DCLKd3, and DCLKd4 to the outputs of a 2-bit FIFO (First-In First-Out) memory 103.
These pixel clocks are used to read signals VDd1, VDd2, VDd3, and VDd4. The signals VDd1, VDd2, VDd3, and VDd4 from FIFO memory 103 are fed to the pulse modulation circuit 106, modulated there into video signals VDe1, VDe2, VDe3, and VDe4, and output to the engine 205. The interference circuit 101 and FIFO memory 103 work to correct positions of beam spots in the subsidiary scanning direction and the delay circuit 104 and FIFO memory 103 work to correct positions of beam spots in the main scanning direction.
Substantially, in
a) and 15(b) show a principle of correction for determining coefficients of the matrix A of
In
a) shows the distribution of light exposed in a conventional technique and the position of a pixel 1503 which is developed by the developer 804. Assuming that a position whose exposure quantity is over a preset threshold value 1502 (indicated by a dotted line) is developed by the developer 804, the position of a pixel 1503 to be developed necessarily moves toward the scanning line 3 as the exposure distribution part 1501 over the threshold level 1502 is developed.
To move the pixel made by the scanning line 2 left, the image recording device of the present invention adds one part of the component of the video signal VD2 for the scanning line 2 to the component of the video signal VD1 for the scanning line 1 and subtracts the component of the video signal VD2 for the scanning line 2.
In the matrix A of
First the means 102 corrects the distance between the scanning lines 2 and 3. This example assumes that the quantity of correction “d23” is Va−V23. The interference coefficients “a23” and “a32” are respectively obtained by adding the product of “k1 “by “d23”, to the old coefficients “a23” and “a32.” For the first correction, coefficients “a23” and “a32” are respectively 0. The interference coefficients “a22” and “a33” are respectively obtained by subtracting the product of “k2” by “d2” from the old coefficients “a22” and “a33”.
For the first correction, it is assumed that coefficients “a22” and “a33” were respectively 1. Constants “k1” and “k2” are experimentally determined according to frequency of correction, stability, and so on. With this correction, the pixel to be developed by the video signal VD2 gets closer to the scanning line 3 from the scanning line 2 and the pixel to be developed by the video signal VD3 gets closer to the scanning line 2 from the scanning line 3. Thus, the distance between the scanning lines becomes smaller.
Next the means 102 corrects the distance between the scanning lines 4 and 1. This example assumes that the quantity of correction “d41” is V41−Va. The interference coefficients “a43” and “a12” are respectively obtained by adding the product of “k1” by “d41” to the old coefficients “a43” and “a12.” For the first correction, coefficients “a43” and “a12” are respectively 0. The interference coefficients “a44” and “a11” are respectively obtained by subtracting the product of “k2” by “d41” from the old coefficients “a44” and “al 1.” For the first correction, it is assumed that coefficients “a44” and “a11” were respectively 1.
Constants “k1” and “k2”, are experimentally determined according to frequency of correction, stability, and so on. With this correction, the pixel to be developed by the video signal VD4 gets closer to the scanning line 3 from the scanning line 4 and the pixel to be developed by the video signal VD1 gets closer to the scanning line 2 from the scanning line 1. Thus, the distance between the scanning lines becomes greater.
ROM 1401 multiplies said 1-bit video signals VD1, VD2, VD3, and VD4 which are fed to the address inputs of the ROM by said matrix A and outputs the resulting 2-bit signals VDd1, VDd2, VDd3, and VDd4 as data. The ROM 1401 stores the results of calculations of all possible combinations of the signals (V12, V23, V34, and V41) and the video signals (VD1, VD2, VD3, and VD4) in advance.
The 2-bit signals VDd1, VDd2, VDd3, and VDd4 are fed to the 2-bit FIFO (First-In First-Out) memory 103 and are output with delays given by the pixel clocks DCLKd1, DCLKd2, DCLKd3, and DCLKd4.
The details of FIFO 103 will be explained later in the description of positional correction of beam spots in the main scanning direction. The signals VDd1, VDd2, VDd3, and VDd4 output from FIFO 103 are fed to the pulse modulation circuit 106 and are output from there as binary modulated video signals VDe1, VDe2, VDe3, and VDe4.
The comparator 2503 compares the saw-tooth wave 2505 with the analog signal 2504. The comparator 2503 outputs a binary signal VDe1 of” 1” when the analog signal 2504 is greater than the saw-tooth wave 2505 or a binary signal VDe1 of “0” when the analog signal 2504 is not greater than the saw-tooth wave 2505.
a) shows the result of modulation by said pulse modulation circuit 106. It shows a pixel clock DCLK1, an analog signal 2504, a saw-tooth wave 2505, and a signal VDe1, and
This is effective when the response of the laser light sources 310 is not enough. If the response of the laser light sources 310 is high enough, it is possible to generate two or more pulses and modulate their widths. In such a case, horizontal lines can be recorded smoothly. When the laser light source 310 can input analog signals, the analog signal 2504 can be directly output as VDe1.
In this way, the image recording device according to the present invention can form high-quality high-resolution images without any irregularity of scanning line pitches (without positional errors of beam spots 1, 2, 3, and 4 in the subsidiary scanning direction).
After correcting the positional errors of beam spots in the subsidiary scanning direction, the image recording device of the present invention corrects the positional errors of beam spots in the main scanning direction.
The image recording device of the present invention exposes the test pattern for measuring the positional errors in the main scanning direction spot by spot on the photosensitive drum 303.
The second column of the table of
When this test pattern is recorded on a 1 cm-square area of the photosensitive drum surface, the surface potentiometer 803 (see
Therefore, the elliptic areas of test patterns (in the second column of the table of
The first column of
This is dependent upon the ratio of the exposed area whose potential is reduced to −50 volts (elliptical area in the second column of
The mean surface voltages in the third column of the table of
In other words, the distances between beam spots 2 and 1 in the main scanning direction are always identical so long as the mean surface potentials are identical. This characteristic can be used for correction of deviations of beam spot in the main scanning direction.
Although
When a correction is made to make all these surface potentials V12, V23, V34, and V41 identical as shown in Example (2) of
In this example, as the surface potential V23 is lower than the average voltage Va, the beam spot 3 is moved right away from the beam spot 2. Similarly, as the surface potential V41 is higher than the average voltage Va, the beam spot 1 is moved left away from the beam spot 4. For correction of these deviations, the means 105 determines delay time periods as shown in
First the means 105 corrects the positional relationship between beam spots 2 and 3 in the main scanning direction. This example assumes that the quantity of correction “d23” is Va−V23. The delay time periods “t2” and “t3” are respectively obtained by adding the product of “k1” by “d23” to the old delay time period “t2” and subtracting the product from “t3.”
For the first correction, delay time periods “t2” and “t3” are respectively 0. The correction constant “k1” is experimentally determined according to frequency of correction, stability, and so on. This correction eliminates the unwanted distance between a pixel developed by the video signal VD2 and a pixel developed by the video signal VD3 in the main scanning direction.
Next the means 105 corrects the positional relationship between beam spots 2 and 3 in the main scanning direction. This example assumes that the quantity of correction “d41” is V41−Va. The delay time periods “t4” and “t1” are respectively obtained by subtracting the product of “k1” by “d41” from the old delay time period “t4” and adding the product to “t1.” For the first correction, delay time periods “t4” and “t1” are respectively 0.
The correction constant “k1” is experimentally determined according to frequency of correction, stability, and so on. This correction eliminates the unwanted distance between a pixel developed by the video signal VD4 and a pixel developed by the video signal VD1 in the main scanning direction.
Then, the means 105 makes the delay time periods positive. As actual delay elements cannot generate negative delay time periods, the means 105 performs a simple operation to make them positive. The means 105 subtracts the minimum delay time period “tm” from each of said delay time periods “t1,” “t2,” “t3,” and “t4.” The resulting differences “T1,” “T2,” “T3,” and “T4” are positive values.
For actual delay elements, the minimum delay times usually are greater than 0. In this case, the delay time periods “T1,” “T2,” “T3,” and “T4” can be made greater by making “tm” smaller. Although the whole image moves by a time period “tm” along the main scanning direction in this operation, this deviation usually is one pixel or less and can be ignored unless the image is corrected during recording.
The resolution in this embodiment of the present invention is 600 dots per inch (dpi) and 1 pixel is 42 μm. The pixels are scanned at a rate of 50 nsec. The delay time periods “T1=28,” “T2=28,” “T3=8,” and “T4=8” are set for the result of measurement shown in
ROM 1801 determines the delay time periods “T1,” “T2,” “T3,” and “T4” by said calculation and outputs them as 4-bit signals respectively to the delay circuits 104. The ROM 1401 stores the results of calculations of all possible combinations of the signals (V12, V23, V34, and V41) in advance. The means 105 for determining delay time periods consists of delay lines with 16 normal taps and a selector for selecting one of 16 delay signals output from the taps by 4-bit delay time signals “T1,” “T2,” “T3,” and “T4.”
This embodiment uses delay circuits 104, each of which can select 8, 12, 16, 20, . . . , 68 nsec. With these, the pixel clocks DCLK1, DCLK2, DCLK3, and DCLK4 are delayed respectively by “T1,” “T2,” “T3,” and “T4” into DCLKd1, DCLKd2, DCLKd3, and DCLKd4. The resulting pixel clocks control the output of FIFO 103.
On the other hand, the read address counter 2804 is cleared to zero by a synchronization signal BDi and is incremented by a pixel clock DCLKdi. As a result, the video signal VDdi which has been stored in the address pointed to by the read address counter 2804 in memory 2803 is set in the temporary output buffer 2805 and is output from there in synchronism with the pixel clock DCLKdi.
In FIFO 103, the write pixel clock DCLK1 and the read pixel clock DCLKdi work completely independently. Therefore, after FIFO 103, the video signals VDe1, VDe2, VDe3, and VDe4 that were in synchronism with the pixel clock DCLKI are in synchronism with the pixel clocks DCLKd1, DCLKd2, DCLKd3, and DCLKd4 for each beam spot whose positional error in the main scanning direction is corrected.
When printed by the engine 205, the recorded image is a high-quality and high-resolution image without jitters caused by positional errors of beam spots in the main scanning direction.
The aforesaid explanation does not include any influence by face tilting of the rotary polygon mirror 302. Although the aforesaid control can average the influences of scanning faces and the image quality can be increased, it is also possible to make the control more accurately by controlling the scanning faces individually as this control can be done in real time. Substantially the same circuit configuration as
In actual practice, the same number of interference circuits 101 as there are scanning faces are provided and control is switched for each face. This repetitive control can effectively reduce influences by the circumferential dispersion or flaws on the photosensitive drum which cannot be removed by a single controlling operation, using data of each face which has been stored in advance. This control sequence, which is illustrated in
Now we must consider that scanning lines may be deviated on scanning faces because of face tilting, although the scanning pitches of beams are well controlled on a single face. For example, let's assume that the rotary polygon mirror has four faces for purpose of simplicity. In this example, we can easily recognize that the same test patterns and control circuits can be used to determine the quantity of correction by handling four beams (on one face) as one unit and by replacing the above-explained beams by a scanning face.
One embodiment of the control sequence is illustrated in
However, the present and advanced control will be more complicated and higher accuracy of control is required because it contains low-frequency components which are sensitive to visual characteristics of persons (the number of beams by the number of scanning faces or the number of beams by the number of scanning faces by a dithering pattern pitch (when considering a dithering pattern pitch)).
With this, the correcting procedure of the present invention is completed. Now, it is possible to produce high-quality and high-resolution images without any positional error of beam spots in main and subsidiary scanning directions.
This correcting procedure first performs correction of positional errors in the subsidiary scanning direction and then correction of positional errors in the main scanning direction. However, this order cannot be reversed because the test pattern for measuring positional errors in the main scanning direction is not available if there exists a positional error in the subsidiary scanning direction, although the test pattern for measuring positional errors in the subsidiary scanning direction is available even when there exists a positional error in the main scanning direction. Only one correcting procedure is enough, but it is recommended to repeat this correcting procedure a number of times for higher accuracy.
For example, it is desirable to print out some pages after correction, then repeat this correcting procedure once more. It is possible to also correct positional errors due to environmental changes, etc. Further, this correcting procedure simply measures potentials of exposed surfaces on the photosensitive drum and requires no recording medium, such as toner and paper, because images need not be developed and transferred. Further the engine 205 need not be modified, because surface potentiometers are found in almost all conventional image recording devices.
With this, the explanation of control-related features has been completed. Next, items on optical system hardware to support the aforesaid control will be considered.
As for light sources, semiconductor laser arrays are preferred judging from their easy installation, compactness, and easy control.
When the semiconductor laser array is designed to form beam spots of about 50 μm on the surface of the photosensitive drum 303, the light-emitting points of the laser array must be spaced at intervals of about 1 mm considering the optical magnification, fan-out angle of the beam emission. The subsidiary scanning pitch of 1 mm is too large, although there is a skip-scanning technique. Therefore, the semiconductor laser array is tilted about 90 degrees as shown in
b) shows a scanning example of 600 dpi in which the scanning lines are spaced at intervals of 42 μm. In this example, positional errors of beam spots may be generated, but they can be eliminated by setting offset times of 1 mm, 2 mm, and 3 mm by the delay circuits 104 in
In other words, the pitch irregularity δ of beams in the subsidiary scanning direction (using a semiconductor laser array shown in
When said semiconductor laser array is used in combination with the particular control called for by the present invention, higher control can be accomplished. When this control is considered differently, the feedback control using by test patterns according to this example can be used for initial fine control and further provides for easier adjustment.
For example, as shown in
Another technique can be considered in which the light quantity is fed back in a time-division manner. However, it is extremely difficult to cause an identical percentage of laser beam to be applied to the monitor PD3301. The last possible technique is to judge the efficiency of use of laser beams to the monitor PD3301 by feedback from a surface potential detector over the photosensitive drum. As the difference of laser powers is very sensitive to the rise characteristics of the above-mentioned line synchronization sensor, exact control is required.
This is very dependent upon the performances and dispositions of the laser array, the monitor PD, the rotary polygon mirror, the optical scanning lens, and the BD sensor. A method of measuring actual latent images and controlling by feedback or by quantity of exposure is extremely effective as a method of easily bringing the total system closer to the optimum values.
Next,
It is effective to apply a test pattern repeatedly by changing its light quantity levels and perform feedback control until the influence by the environmental changes (e.g. temperature changes) is eliminated and the values become fixed.
Recently, there have been developed various plane-illumination laser units having small beam fan-out angles and small laser emitting pitches (about 10 μm) as the laser manufacturing technique improves. The latest laser light source can give a beam spot pitch of about 60 μm (equivalent to 400 dots per inch) on the surface of a photosensitive drum. With this laser light source, a high-resolution optical system can be accomplished by means of a skip scanning technique without tilting the semiconductor laser array.
It is assumed that the present correcting method depending upon design performance is not enough for the future image recording devices which require higher resolutions. In contrast, the light quantity controlling method capable of adjusting the scanning line pitches in the subsidiary scanning direction according to the present invention is believed to be extremely effective to increase the image resolution.
Further, the image resolution is affected by the number of laser beams, the number of faces of the rotary polygon mirror, and the number of pixels in the subsidiary scanning direction in a cell on which area half-toning is performed. It is impossible to completely eliminate irregularities in the subsidiary scanning direction by various corrections. The least common multiple of the aforesaid three factors will cause irregularities in images. Judging from the visual transfer function of the human eye, the aforesaid least common multiple must not be a low frequency.
Now returning to the consideration of influences by major factors (the number of laser beams, the number of faces of the rotary polygon mirror, and the number of pixels in the subsidiary scanning direction in a cell on which area half-toning is performed), the resolution is less affected as the least common multiple of these factors becomes smaller.
For example, a rotary polygon mirror of a fast image recording device generally has eight faces, considering the scanning angle. Accordingly, the use of four laser beams and 4 or 8 pixels in the subsidiary scanning direction in a cell on which area half-toning is performed is standard. If the rotary polygon mirror has six faces, using 3 or 6 laser beams and 3 or 6 pixels in the subsidiary scanning direction is standard.
In other words, it is significant that any other values than the three maximum values are divided by integers without a remainder. In such a case, the maximum is equal to the least common multiple. The number of mirror faces and the least common multiple can be reduced by increasing the number of laser beams.
At the same time, increasing the number of laser beams means that the positional error of a laser beam becomes greater. Thus, judging from this, the above-explained exposure quantity control is extremely effective. It is needless to say that the method of freely changing scanning positions has a greater degree of freedom of design than any other methods.
One cause of irregularity that has not been explained may be an irregular scanning speed in the subsidiary scanning direction, that is the irregular rotational speed of the photosensitive drum. The long-span moving errors caused by an environmental condition (temperature, relative humidity, etc.) can be absorbed by the above-explained methods.
However, the short-span moving errors caused by vibrations, etc. are represented by a function of the number of mirror faces and the number of laser beams and can be reduced greatly by the correction control according to the present invention. To make the system resistant to shocks and vibrations, the basic clock source for driving the mechanism should be provided separately from the clock source for driving the rotary polygon mirror (to make them out of synchronization).
Below will be explained the BD signal generating means of the beam detector 305 which is related to the irregularities in the main scanning direction. The conventional BD signal generating means has digitized analog outputs at a threshold level as shown in
To avoid this a peak hold circuit is effectively used instead of a circuit for digitizing the rises of BD signals. The peak-hold circuit raises the binary outputs at peak-power timing. Saturation of analog outputs (if any) can be effectively prevented by a light-quality filter placed before the sensor. Raising the binary output at peak power timing can prevent expansion of laser spots, eliminate power errors, and further improve the accuracy and logical load of the correcting method.
Referring to
The optical density sensor 805 senses the density of toner on the surface of the photosensitive drum. In this case, the surface potentiometer 803 and the optical density sensor 805 may be easily covered with toner, which may cause measurement errors. Accordingly it is hard to effect fine control over an extended lifetime. Therefore, it may be recommended to mount the surface potentiometer 803 and the optical density sensor 805 in a unit on the developer or toner cartridge and replace them together with the cartridge periodically (at a preset print-out count).
a) shows an example of an optical density sensor. The light-emitting unit 1901 usually is a light emitting diode (LED) having a narrow directivity. The light receiving units 1902 and 1903 are photo diodes or photo transistors PD1 and PD2 having a narrow directivity. The light receiving unit 1902 receives a diffused and reflected light component and the light receiving unit 1903 receives a regular reflected light component.
The positions of these units are determined according to the reflection characteristics of the toner and the surface of the photosensitive drum 303, the directivities of the light emitting and receiving units, etc. Namely, the units are placed at positions which have the greatest signal changes. As shown in
The “Optical density” fields of
Unlike the method which involves measuring the mean surface potentials of the photosensitive drum, this method (of measuring the mean optical densities of toner on the photosensitive drum) requires the application of toner (to develop test patterns) and the wiping away of toner from the surface of the photosensitive drum after measurement. This imposes a load on the engine 205, but the measurement is very exact. The reason for this will be explained below.
The developing characteristic (surface potential vs. quantity of attached toner) of the developer 804 has a more striking saturation characteristic than the exposure characteristic (quantity of exposure vs. surface potential) of the photosensitive drum 303. Further, the optical characteristic (quantity of attached toner vs. optical reflection factor) of the optical density sensor 805 also has a saturation characteristic.
When the light from the exposed part of the test pattern (see “Test Pattern” fields of
The binary characteristics make the measurement resistant to noises, such as density fluctuations. This phenomenon is common in most electronic photographic processes. The densities of a toner image formed on the photosensitive drum can be easily checked by taking a picture of the toner image using a camera and measuring the densities of the picture image on film by means of a microscopic densitometer.
Accordingly, the mean optical density values in the “Optical Density” fields of
Referring to
For example, this image recording device has a resolution of 600 dots per inch which is equivalent to a standard scanning line pitch of 42.3 μm. This embodiment changes this scanning line pitch to 52.9 μm (equivalent to a resolution of 480 dots per inch). The scanning lines which have been changed from standard scanning lines are termed virtual scanning lines.
For convenience, a set of four virtual scanning lines are numbered 1, 2, 3, and 4 from the top. The virtual scanning lines are equally spaced at an interval of 52.9 μm. The dotted lines are shown at intervals of 5.3 μm to clarify the positional relationship between the standard and virtual scanning lines. Standard lines at a resolution of 600 dots per inch are drawn for every eight dotted lines and virtual lines at a resolution of 480 dots per inch are drawn for every ten lines.
As seen from
Similarly, the virtual scanning line 2 is between standard scanning lines 2 and 3. To get a virtual scanning line 2, the standard scanning line 2 is moved downward (toward the standard scanning line 3) by +15.9 μm. This is accomplished by dividing the signal VD2 into VDd2 and VDd3 using the interference circuit 101 of
Also, similarly, the virtual scanning line 3 is between standard scanning lines 3 and 4. To get a virtual scanning line 3, the standard scanning line 4 is moved upward (toward the standard scanning line 3) by +15.9 μm. This is accomplished by dividing the signal VD4 into VDd3 and VDd4 by the interference circuit 101 of
Further, the virtual scanning line 4 is between standard scanning lines 4 and 5. To get a virtual scanning line 4, the standard scanning line 5 is moved upward (toward the standard scanning line 4) by +5.3 μm. This is accomplished by dividing the signal VD5 into VDd4 and VDd5 by the interference circuit 101 of
In this case, no signal is applied to VD3, but the signal VDd3 has interference light quantity components “a23” and “a43” of signals VD2 and VD4. Therefore, the beam spot on the standard scanning line also illuminates.
In this embodiment (to change resolutions to 480 dots per inch), the video signal VD3 of VD1 to VD5 sent from the printer controller is always off. Thus, only the video signals VD1, VD2, VD4, and VD5 are fed to the ROM. The ROM stores the results of calculations (output signals VDd1, VDd2, VDd3, and VDd4) of all possible combinations of the video signals (VD1, VD2, VD3, and VD4) and the RES signal in advance. Further, coefficients of the matrix A are also determined experimentally in a manner similar to the above-mentioned embodiment.
This embodiment can record image data 207 at a resolution of 480 dots per inch directly on a 600-dpi engine 205. Here the resolution in the main scanning direction will not be explained because it is well known that the resolution in the main scanning direction can be changed simply by changing the frequency of the pixel clock DCLK (in case of a laser printer).
In comparison to a method of changing resolutions (480 dpi to 600 dpi) of image data 207 by calculation, this method has various advantages, such as correct line width, no moire pattern in half-tone images made by dots, and high-quality recorded images. It is also possible to combine this embodiment with the aforesaid embodiment for correcting scanning line pitches by rewriting the data of the ROM of
Other embodiments will be explained below with reference to the drawings.
Usually, most image data 4004 is page description data representing the content of a recorded page, but part of image data can be raster data that can be directly fed to the laser printer 4003. This embodiment assumes that most of the image data 4004 is page description data.
When printing starts, the image data 4004 is sent from the host computer 4001 to the printer controller 4002 through a network and the like, is read page by page by the printer controller 4002 and is expanded into a raster image represented as an array of 2-dimensional image data on the bit-map memory.
When creation of a raster image is completed, the printer controller 4002 outputs a print request signal 4005 to the laser printer 4003 to start the printer. In response to a BD (Beam Detection) signal 4008 from the laser printer 4003, the printer controller 4002 sends print data (print dot size data) 4006 to the laser printer 4003. The laser printer 4003 forms an electrostatic latent image on the photosensitive drum according to the print data 4006, develops it with toner and transfers the toner image to a recording medium.
The RIP expansion unit 4009 receives image data 4004 which is page description data from the host computer 4001, expands it into a raster image and outputs it as multi-level image data 4013 which can be represented with halftones.
The beam synchronizer 4030 receives multi-level image data 4013 and outputs multi-level image data 4031 to the pulse-width modulator 4010 in synchronism with the BD signals 4008 for the laser beams.
The pulse-width modulator 4010 converts multi-level image data 4031 into multi-level print data (dot size data) 4006 by modulating the widths of binary pulses (having high and low levels) according to dot sizes (beam sizes) and outputs the print data 4006 to the laser printer 4003. The pulse-width modulator 4010 requires as many pulse generators (pulse-width modulating units) as the number of laser beams which the laser printer 4003 uses. Accordingly, there should be as many print data lines as the number of laser beams.
The printer interface 4012 sends a print request signal 4005 to the laser printer 4003. It also receives BD signals 4008 and generates pixel clocks 4015.
The printer interface 4012 outputs a beam error correction command 4017 to the signal corrector to correct the dispersion of image forming laser beams when the correction mode is set. This beam error correction will be explained below with reference to
When receiving the aforesaid “Dispersion Correction” command 4017 output from the printer interface 4012, PWM4048 through PWM4051 outputs laser driving signals 4014-1 through 4014-4 for monitoring on the basis of identical image data (monitoring image data). These monitoring laser driving signals 4014-1 through 4014-4 are equivalent to a kind of print data 4006-1 through 4006-4 and are used to determine the dispersion in the result of the pulse-width modulation. In this point, this kind of print data is different from the normal print data.
The laser driving signals 4014-1 through 4014-4 for monitoring are fed to the laser driving circuits (LD) 4040 through 4043 and to the corrector 4011. The corrector 4011 calculates the dispersion in the pulse-width modulation of the laser driving signals 4014-1 through 4014-4 and corrects the laser driving signals 4006-1 through 4006-4 (to be used for image generation) according to this dispersion in pulse-width modulation.
The print data (laser driving signals) 4006-1 through 4006-4 and the light-quantity correction data 4007-1 through 4007-4, which is output by the corrector 4011, are respectively output to the LD drivers 4040 through 4043 to supply currents I1 through I4 respectively to the LD light sources (laser light sources) 4044 through 4047. The LD light sources 4044 through 4047 illuminate at intensities determined by the driving current I1 through I4.
As for the relationship of the inputs to the LD drivers LD4040 through 4043 (the laser driving signals 4006-1 through 4006-4 and the light-quantity correction data 4007-1 through 4007-4) and the outputs from the LD drivers LD4040 through 4043 (the currents I1 through 14 to the LD light sources 4044 through 4047), the light-quantity correction data 4007-1 through 4007-4 controls the magnitudes of the currents I1 through I4 (peak values of pulse currents) to be supplied to the LD light sources 4044 through 4047. The print data 4006-1 through 4006-4 determines the continuity periods (pulse widths) of currents I1 through I4 supplied to the LD light sources 4044 through 4047.
The target value setting unit 4020 selects one of the monitoring laser driving signals (pulses) 4014-1 through 4014-4 sent from PWM4048 through PWM4051 in the pulse-width modulator 4010 as a reference value used for calculation of dispersions in the pulse-width modulation of these driving signals and outputs it as a target modulation value (reference pulse-width modulation value) 4027 to the subtraction unit 4021. Although this example uses a laser driving signal having the greatest pulse width among signals 4014-1 through 4014-4 as a target value, the user can select a laser driving signal having any pulse width.
The subtraction unit 4021 takes a pulse-width difference between the target value and each monitoring laser driving signal (4014-1 through 4014-4) and outputs the result (4023-1 to 4023-4) to the light-quantity correction data converter.
The minimum value detection unit 4029 detects a monitoring laser driving signal having a minimum pulse width among the signals (4014-1 through 4014-4) sent from the pulse-width modulator 4010 and outputs it as a minimum reference modulation value 4028. This value 4028 is used as a base of a triangular wave generation signal for generation of light-quantity correction data (to be explained with reference to
The light-quantity correction data converter 4022 receives the results of subtraction 4023-1 through 4023-4 and the minimum reference modulation value 4028 and converts them into light-quantity correction data 4007-1 through 4007-4.
Referring to
When the printer interface 4012 (illustrated in
The corrector 4011 fetches pulse-width modulation values (sometimes assigned codes-4014-1 through 4014-4 for explanation) of the laser driving signals 4014-1 through 4014-4 based on the monitoring image data which is output from the PWMs in the pulse-width modulator 4010.
Next, the target value setting unit 4020 selects one of monitoring pulse-width modulation values 4014-1 through 4014-4 as a target value, takes a pulse-width difference between the target value 4027 and each pulse-width modulation value 4014-1 through 4014-4, and then outputs light-quantity correction data 4007-1 through 400-4 corresponding to the result of subtraction. The result of the subtractions represents the dispersion of pulse widths created by PWMs (4048 to 4051) in the pulse-width modulator 40101. This dispersion is corrected by the light-quantity correction data 4007-1 through 4007-4, which equalizes the light power energy (for print dots) that the LD light sources 4044 through 4047 emit.
Referring to
In this example, it is assumed that identical multi-level image data 4013-1 and 4013-2 is fed to PWM4048 and PWM4049 (illustrated in
Since the amplitudes I02 (peak values) of the driving currents of the light sources 4044 and 4045 are identical, the LD light sources 4044 and 4045 have different light emission energies if their pulse widths are not equal (having a pulse difference Δt=pw2−pw1). Consequently, the print dots have different sizes (dot size difference Δw=w2−w1).
To correct the dot size difference Δt, namely to correct the print dot size of the LD light source 4044 to “w2” in
Referring to
When identical image data SD is fed as multi-level image data (4013-1 through 4013-4) to PWM4048 through PWM4051 (as shown in line (a) of
The output of the latch 4065 in line (f) is QO=1 (least significant bit), Q1=0, and Q2=1 (most significant bit) as the monitoring driving signals (pulse width modulation values) 4014-2 to 4014-4 are sampled at the fall of the first monitoring laser driving signal (pulse width modulation value). This binary output value “101” is equivalent to “5” in decimal notation.
Similarly, the output values of latches 4066 in line (g) through 4068 in line (i) are respectively “4,” “5,” and “6” in decimal notation. When the output of a latch has a value of “O” in decimal notation, that is when QO through Q2 are all zeros, the output of a composite gate that entered this code “O” is determined as a target modulation value 4027. Accordingly, in
When identical image data SD is fed as multi-level image data (4013-1 through 4013-4) to PWM4048 through PWM4051 (as shown in line (a) of
The target modulation value 4027 that the target value setting unit 4020 outputs (illustrated in
Referring
The triangular wave generators 4080-1 through 4080-4 generate triangular waves 4110-1 through 4110-4 at the rises of subtraction values 4023-1 through 4023-4 periodically at intervals of the minimum reference modulation value 4028 as seen in line (e).
The sampling switches 4085 through 4088 send the triangular signals 4110-1 through 4110-4 to the hold capacitors 4089 through 4092 to charge them by the sampling gate signals 4111 in line (j) through 4114 in line (m). In other words, the sampling switches 4085 through 4088 allow triangular signals 4110-1 through 4110-4 to pass while the sampling gate signals 4111 through 4114 are high.
The charge voltages of the hold capacitors 4089 through 4092 are impedance-converted into light-quantity correction data 4007-1 of line (n) through 4007-4 of line (q). The correction values by the light-quantity correction data 4007-1 of line (n) through 4007-4 of line (q) are respectively V1, V2, V3, and 0 in that order.
In this way, the magnitudes of the results of subtraction, that is, the magnitudes of differences of pulse widths between the monitoring driving signals 4014-1 through 4014-4 and the target modulation value 4027 are added to the light-quantity correction data 4007-1 through 4007-4, that is, the amplitudes (peak values) of the laser driving signals 4006-1 to 4006-4 are converted into the magnitudes of light-quantity correction voltages.
The operation of detecting a minimum modulation value 4028 among pulse modulation values of the monitoring driving signals 4014-1 through 4014-4 is not explained here because it is the same as that of detecting a target modulation value 4027, as explained with reference to
Referring to
The delay clock generator 4201 generates a plurality of delay clocks 4207 having different delay time periods (line (b) to (i) of
The delay time measuring unit 4202 measures delay time periods of delay clocks 4207 by the input of a delay time measuring signal periodically or non-periodically, such as at the startup of the device or just before image formation. Namely, the delay time measuring unit 4202 selects a delay clock 4207 to obtain a delay time equivalent to time “t0” of one pixel at the rise (time T1) of the reference clock 4215 as a sampling clock 4234.
In the example, the delay time measuring unit 4202 detects a delay clock 4207-11 in line (t6) and a delay clock 4207-13 in line (t7) which change their signal states (from “0” to “1”) just before or after time T1. With this, the delay time measuring block 4202 judges that the delay clock 4207-11 of line (t6) is a delay clock to obtain a delay time equivalent to “t0” and outputs “11” (in decimal) as a delay time measuring value 4208.
The delay clock selector 4203 selects a desired number of delay clocks (among 16 delay clocks 4207 generated) which are within the delay time measurement value 4208. This number of delay clocks is determined according to the maximum tones (resolution) of the input image information or half-tones required by output images.
The example illustrated in the drawing selects and outputs six delay clocks 4209 from the odd-numbered buffer gates among delay clocks 4207-1 through 4207-11 which are in the delay time measurement value 4208 so that the differences of pulse widths of the generated pulses 4210 may be approximately equal to each other (strictly different judging from the characteristics of said buffer gates). To select delay clocks 4209, the user can select so that the ratio of pulse widths of the generated pulses 4210 may be constant in addition to the above method of selection.
The pulse generator 4204 performs logical operations on the reference clock 4215 and the six selected delay clocks 4209 and generates six pulse signals 4210 (lines (j) to (O) in
The pulse selector 4205 receives multi-level (8-level) image data 4013-1, selects one of the six generated pulse signals, an all-white pulse signal (of all zeros) and an all-black pulse signal (of all ones) and outputs it as print data 4006-1 which is modulated (pulse-width modulated) along the time base.
In
This embodiment can obtain a dispersion of laser drive signals (pulse width modulation values) corresponding to multi-level image data in a multi-beam system from the dispersion of pulse-width modulation values of the monitoring laser driving signals which a plurality of PWM4048 through PWM4051 output by a Dispersion Correction signal and can generate light-quantity correction data to correct the dispersion.
With this, the energies of laser beams for print dots become equal to each other and the dispersion of print dot sizes is eliminated according to the image data. Consequently, high-quality multi-level images can be recorded in a multi-beam system.
Although this embodiment eliminates the dispersion in pulse-width modulation of the laser driving signals in a multi-beam image recording system by level correction of pulse peak values of the laser driving signals, the user can correct the dispersion of pulse-width modulation values by equalizing the pulse widths.
Referring to
The difference between
The pulse-width modulator 4300 is controlled by the light-quantity correction data which is output from the corrector 4301 so as to correct the dispersion of pulse widths and converts the multi-level image data 4013 into print data (laser driving signal) 4006 by pulse-width modulation. This correction is done to equalize the pulse widths.
To know the dispersion in pulse-width modulation of print data 4006 (laser driving signals) which are output from PWMs in the pulse-width modulator 4300, the corrector 4301 fetches a plurality of monitoring pulse-width modulation values 4014 (monitoring laser driving signals) and converts them into a plurality of light-quantity correction data 4302 (pulse-width correction data).
The pulse-width modulator 4300 has as many PWMs as laser beams. They are the first PWM 4303, the second PWM 4304, the third PWM 4305, and the fourth PWM 4306. The PWM4303 through PWM4306 respectively convert multi-level image data (4013-1 through 4013-4) into print data (laser driving signals 4006-1 through 4006-4).
The monitoring pulse-width modulation values (monitoring laser driving signals) 4014-1 through 4014-4 which are sent to the corrector 4301 are functionally the same as print data 4006-1 to 4006-4, but are used for monitoring to obtain the dispersion of the pulse widths.
Print data 4006-1 through 4006-4 are sent to the corrector 4301 and at the same time to the LD drivers 4040 through 4043. The light-quantity correction data 4302-1 through 4302-4 output from the corrector 4301 are respectively sent to PWM4303 through PWM4306.
The light-quantity correction data converter 4400 converts the fine clock 4430 and the results of subtraction 4023-1 through 4023-4 into light-quantity correction data 4302-1 through 4302-4 by a Dispersion Correction command 4017.
Referring to
When receiving a Dispersion Correct command 4017 from the printer interface of
The other light-quantity correction data converting units 4402 through 4404 perform the same function.
Referring to
The inverter 4465 inverts the reference clock 4215 of line (a) into an inverted reference clock 4466 of line (p). The delay time selecting unit 4420 delays the inversion reference clock 4466 of line (p) by a time period “t10” according to the light-quantity correction data 4302 and generates a correction reference clock 4470.
This function is executed by the selector 4495 of
This embodiment also gets a dispersion in the laser driving signals (pulse-width modulation values) according to multi-level image data in the multi-beam system and generates light-quantity correction data (pulse-width correction values) to correct this dispersion. With this, the power energies of beams for print dots are equalized and, consequently, the sizes of print dots are corrected and formed according to the image data. Thus, high-quality multi-level images can be obtained in the multi-beam image recording system.
Another embodiment of the present invention is illustrated in
In
The RIP expansion unit 4009 receives image data D1 which is page description data from the host computer 4001, expands it page by page into a raster image which is a 2-dimensional image data array and outputs it as multi-level image data D2 which can be expressed with half tones to the beam synchronizer 4030.
The beam synchronizer 4030 synchronizes the multi-level image data D2 with the beam detection signals BD (BD-1 through BD-4) of the four laser beams and outputs the resulting signals (multi-level image data D3-1 through D3-4) to the pulse-width modulator 4010. The pulse-width modulator 4010 modulates the pulse-widths of the image data D3-1 through D3-4 and outputs the resulting pulses as print data D4-1 through D4-4 to the laser printer 4003. The pulse-width modulator 4010 requires as many pulse generators (pulse-width modulating blocks 4048 through 4051) as the number of laser beams which the laser printer 4003 uses.
When receiving a Dispersion Correction command BC, the corrector 4011 gets light-quantity correction data (pulse width correction values) of PWM4048 through PWM4051 (as will be explained later) and outputs the resulting signals to the pulse-width modulator 4010. When receiving a Dispersion Correction command BC, the image clock selector 5001 selects one of the image clocks PCK1 through PCK4 sent from the printer interface 4012 and outputs the resulting signals as the selected image clocks SPCK to the beam synchronizer 4030 and to the pulse-width modulator 4010. The Dispersion Correction command generator 5002 outputs a Dispersion Correction command BC when the device is powered on or when a Dispersion Correction command requesting signal BCREQ is entered from the outside.
The printer interface 4012 sends a print request signal PREQ to the laser printer 4003. Simultaneously, when receiving a beam detection signal BD, the printer interface 4012 isolates beam synchronization signals BD-1 through BD-4 from the beam detection signal BD and generates image clocks PCK in synchronism with the beam synchronization signals BD-1 through BD-4. The laser printer 4003 receives the modulated print data D4-1 to D4-4 from the pulse-width modulator 4010 (as illustrated in
When receiving a Measure Delay Time command signal MES, the delay time measuring unit 4202 measures the delay time of each delay clock DCK periodically or non-periodically when the device starts up or just before image formation. The delay clock selector 4203 generates a selected delay clock SDCK depending upon the result of measurement DLT from the delay clocks DCK. The pulse generator 4204 performs logical operations on the reference clock and a plurality of selected delay clocks SDCK and generates a plurality of pulses GPW.
The pulse selector 4205 receives multi-level image data D3-1, selects one of a plurality of generated pulses GPW, an all-white pulse signal (of all zeros) and an all-black pulse signal (of all ones) and outputs it as print data APW which is modulated (pulse-width modulated) along the time base.
The pulse-width adjuster 5003 consists of ten serially-connected buffer gates (delay elements) 4471 through 4480 as illustrated in
The target value setting unit 4020 selects (sets), as a reference pulse width, one of the print data D4-1 through D4-4 sent from PWM4303 through PWM4306 in the pulse-width modulator 4010 and outputs it as a target modulation value TPW to the subtraction unit 4021 and to the light-quantity correction data converting unit 4400. Although this example sets print data having the greatest pulse width among print data D4-1 through D4-4 as a target value, the user can select print data having any pulse width. The subtraction unit 4021 takes a pulse-width difference between the target modulation value and print data D4-1 through D4-4 and outputs the result (DPW-L through DPW-4) to the light-quantity correction data converter.
Upon receipt of a Dispersion Correction command BC, the light-quantity correction data converter 4400 converts the results of subtraction DPW-1 through DPW4 into light-quantity correction data PC-1 through PC4. In this way, the corrector 4011 fetches print data D4-1 through D4-4 from PWM4303 through PWM4306 in the pulse-width modulator 4010 and gets a plurality of light-quantity correction data PC-1 through PC-4 (pulse-width correction data).
First signal operations for normal printing will be explained with reference to
The image data D1 created by the host computer 4001 is sent to the RIP expansion unit 4009 through a network or the like. The RIP expansion unit 4009 receives image data D1, which is page description data, expands it page by page into a raster image, which is an array of 2-dimensional image data, and stores it as multi-level image data D2 which can be expressed with half-tones. When the multi-level image data D2 is stored in the RIP expansion unit 4009, the printer interface 4012 sends a print-request signal PREQ to the laser printer. When receiving this signal PREQ, the laser printer 4003 outputs a beam detection signal BD (illustrated in
When receiving a beam detection signal BD, the printer interface 4012 separates beam detection signals BD-1 through BD-4 as illustrated in
The printer interface 4012 generates the first pixel clock PCK-1 with a delay “t” after the first beam detection signal BD-1 which is separated from the beam detection signal BD and generates the first image data D4-1 in synchronism with the first pixel clock PCK-1. Similarly, the printer interface 4012 generates the second image data D4-2 in synchronism with the second beam detection signal BD-2, the third image data D4-3 in synchronism with the third beam detection signal BD-3, and the fourth image data D4-4 in synchronism with the fourth beam detection signal BD-4. The synchronism of beam detection signals BD-1 through BD-4 with image data D4-1 through D4-4 assumes that the delay “t” can be ignored substantially.
Usually during normal printing, the Dispersion Correction command BC of the Dispersion Correction command unit 5002 is at level “0” and the pixel clock selector 5001 outputs pixel clocks PCK-1 through PCK-4 in synchronism with the beam detection signals BD-1 through BD-4 as the selected pixel clocks SPCK-1 through SPCK-4.
The beam synchronizer 4030 receives multi-level image data D2 from the RIP expansion unit 4009, causes the image data to be in synchronism with beam detection signals BD-1 through BD-4 by the selected pixel clocks SPCK-1 through SPCK-4, and outputs the resulting signals (multi-level image signals D3-1 through D3-4) to the pulse-width modulator 4010.
As the pulse-width dispersion is corrected by the corrector 4011, the pulse-width modulator 4010 converts the multi-level image data D3-1 through D3-4 into the pulse-width-modulated print data D4-1 through D4-4 and outputs the resulting signals to the laser printer 4003. With the print data D4-1 through D4-4 having no dispersion in pulse-width, the laser printer 4003 can print with uniform print dot sizes.
Referring to
For correction of a pulse-width dispersion, the Dispersion Correction command unit 5002 submits a Dispersion Correction command BC of “1. “The Dispersion Correction command generator 5002 outputs a Dispersion Correction command BC when the device is powered on or when a Dispersion Correction command requesting signal BCREQ is received from the outside.
When the Dispersion Correction command BC is fed to the laser printer, the laser printer 4003 sends a beam detection signal BD to the printer interface 4012. The printer interface generates pixel clocks PCK-1 through PCK-4 as well as in the normal printing operation.
When the pulse-width dispersion is corrected, the Dispersion Correction command BC is at level “1” and consequently all selected pixel clocks SPCK-1 through SPCK-4 from the pixel clock selector 5001 are equal to the first pixel clock PCK-1 as illustrated in
The correction data D6 generated by the correction data generating block 5000 in response to the Dispersion Correction command BC is output to the beam synchronizer 4030 to stop the multi-level image data D2 from the RIP expansion unit 4009.
The beam synchronizer 4030 outputs multi-level image data D3 (correction data D6) in synchronism with the first pixel clock PCK-1, as illustrated in
As explained above, the pulse-width dispersion can be corrected by print data D4-1 through D4-4 output from PWM4303 through PWM4306 in synchronism with any of the pixel clocks PCK-1 through PCK-4.
Although print data D4 is output also when the pulse-width dispersion is corrected, printing is not performed as the Print Request signal PREQ is not fed to the laser printer 4003.
As illustrated in
As the number of PWMs in the pulse-width modulator increases, the relationship between the multi-level image data D3 and the print data D4 changes as illustrated in
For example, when monitor image data SDI is entered as multi-level image data D3, the pulse-width modulation values (print data) D4-1 through D4-4 output from PWM4303 through PWM4306 have pulse-widths pw1 through pw4. As a result, the print sizes are W1 through W4.
According to the present invention, the pulse-width pw4 of the pulse-width modulation value D4-1 output from PWM4306 is set to a target modulation value (reference pulse-width) TPW and light-quantity correction data PC-1 through PC-4 are generated according to the differences “pw4−pw1,” “pw4−pw2,” and “pw4−pw3.” In other words, the print dot size W4 can be set for any laser beam by generating the light-quantity correction data PC so that the differences “pw4−pw1,” “pw4−pw2,” and “pw4−pw3” may be 0 (by equalizing the pulse widths pw1, pw2, pw3, and pw4).
Although
The above-mentioned pulse-width dispersion correction will be explained in detail with reference to
When a Dispersion Correction command BC is generated, the pulse-width modulator receives multi-level image data D3 (illustrated in
The target value setting unit 4020 selects one of the print data (pulse data) D4-1 through D4-4 output from PWM4048 through PWM4051 in the pulse-width modulator 4010 as a reference value used for calculation of dispersions in the pulse-width modulation and outputs this as a target modulation value TPW (reference pulse-width modulation value) to the subtraction unit 4021 and to the light-quantity correction data converting unit 4400.
The subtracting block 4021 takes a pulse-width difference between the target value TPW and each value of print data D4-1 through D4-4 and outputs the result (DPW-1 to DPW-4 (illustrated in
The operation of PWM4303 for correcting print data D4-1 using this light-quantity correction data PC-1 will be explained with reference to
The delay time measuring block 4202 measures delay time periods of delay clocks DCK by the input of a delay time measuring command signal MES periodically or non-periodically, such as at the startup of the device or just before image formation. Namely, the delay time measuring unit 4202 selects a delay clock DCK to obtain a delay time equivalent to time “t0” of one pixel at the rise (time T1) of reference clock 4215 as a sampling clock 4234.
In the example, the delay time measuring unit 4202 detects a delay clock DCK-11 (t6) and a delay clock DCK-13 (t7) which change their signal states (from “1” to “0”) just before or after time T1. With this, the delay time measuring unit 4202 judges that the delay clock DCK-11 (t6) is a delay clock which will provide a delay time equivalent to “t0” and outputs “11” (in decimal) as a delay time measuring value 4208.
The delay clock selector 4203 selects a desired number of delay clocks (among 16 delay clocks DCK generated) which are within the delay time measurement value DLT. This number of delay clocks is determined according to the maximum tones (resolution) of the input image information or half-tones required by output images.
The example illustrated in the drawing selects and outputs six delay clocks SDCK from the odd-numbered buffer gates among delay clocks DCK-1 through DCK-11 which are in the delay time measurement value DLT so that the differences of pulse widths of the generated pulses GPW may be approximately equal to each other (as illustrated in
To select delay clocks SDCK, the user can make a selection so that the ratio of pulse widths of the generated pulses GPW may be constant in addition to the above method of selection.
The pulse generator 4204 performs logical operations on the reference clock SCK and the six selected delay clocks SDCK and generates six pulse signals GPW-1 through GPW-6 (lines (p) to (u) in
The pulse selector 4205 receives multi-level (8-level) image data D3-1, selects one of the six generated pulse signals 4210, an all-white pulse signal (of all zeros) and an all-black pulse signal (of all ones) and outputs it as print data APW which is modulated (pulse-width modulated) along the time base.
In
The pulse width adjusting block 5003 delays print data APW-1 (line (c) in
Accordingly, as the time differences “t11” and “t12” between the print data APW (line (c) in
In this way, the pulse-width correction is performed in a multi-beam image recording device by modulating pulse widths in synchronism with outputs of the PWM pulse generating block, obtaining their dispersion, and correcting the pulse-widths according to this dispersion. This equalizes the energies of the laser beams forming print dots and consequently enables high-quality image printing. Further, as this method uses the pulse-width of one of the pulse signals (print data) output from the PWMs as the reference pulse width, the user need not provide an extra unit to set a reference pulse-width. Further, the user can cause a plurality of PWMs to perform pulse-width modulation in synchronism, that is, to restrict pulse-width modulation just by selecting a pixel clock.
Another embodiment of the present invention will be explained below with reference to the drawings.
The main storage 6002 stores data of a test chart having basic areas in which a basic pattern 6101 is repeated an arbitrary number of times in the main and subsidiary scanning directions. The basic pattern is characterized in that a pattern having “n×m” dots (where “n” and “m” are integers) in the subsidiary scanning direction and any number of dots in the main scanning line is repeated twice or more in succession, in that their boundary is moved one dot leftward, rigtward, and both leftward and rightward in the main scanning direction, and in that the upper and lower beams on the boundary are made up by all possible combinations of beams.
A line 6105 in
b) shows a printout example of the basic pattern 6101 made by repeating beam detection signals A and B while the beam detection signal B 6008-2 is delayed by A tbd (relative to the preset timing “tbd”). As illustrated in
This printout image 6108 is not symmetrical, although the basic pattern is symmetrical about the vertical line. Although it is hard to estimate the deviation, the user can recognize it easily because the left side of the pattern looks smooth, but the other side of the pattern looks jagged.
a) shows the waveforms of beam detection signals A 6008-1 and B 6008-2 in which the beam detection signal B 6008-2 rises earlier by A tbd than the preset rise timing tbd. As illustrated in
This printout image 6109 is not symmetrical although the basic pattern is symmetrical about the vertical line. Although it is hard to estimate the deviation, the user can recognize it easily because the right side of the pattern looks smooth, but the other side of the pattern looks jagged.
Judging from which side of the pattern is jagged, the user can easily tell a direction to which the pattern is moved. For example, when the left side of the pattern is more jagged, it is assumed that the beam detection signal B 6008-2 rises earlier. To correct this, the beam detection signal B 6008-2 should be delayed. On the other hand, when the right side of the pattern is more jagged, it is assumed that the beam detection signal A 6008-1 rises earlier. To correct this, the beam detection signal A 6008-1 should be delayed.
As explained above, the deviation and the direction of deviation of beam detection signals 6008 can be known simply from printouts of basic patterns 6101.
The test chart used by the present invention consists of a plurality of basic areas each of which contains 20 basic patterns 6101 in the main scanning direction. The number of basic patterns 6101 in the basic area need not be 20. The basic area can contain as many basic patterns as the basic area can contain. Since said basic pattern 6101 occupies ten dots in the subsidiary scanning direction, the basic area is made up by sixteen lines including upper and lower margins and the basic pattern 6101. Basic areas 6103 of the test chart are respectively given serial numbers called identifiers 6104 for identification. An identifier 6104 is placed before each basic area 6103.
Since the basic area of this example is made up by a total of sixteen lines, either the beam detection signal A 6008-1 or beam detection signal B 6008-2 should be delayed in sequence for every sixteen lines to test line deviations. Let's assume that the minimum delay is “d. “This example delays the beam detection signals as will be explained below.
For the first basic area (sixteen lines) 6110, neither beam detection signal A 6008-1 nor beam detection signal B 6008-2 is delayed. For the second basic area (sixteen lines) 6111, the beam detection signal A 6008-1 is delayed by “d”, but the beam detection signal B 6008-2 is not delayed. For the third basic area 6112, the beam detection signal A 6008-1 is delayed by “2d”, but the beam detection signal B 6008-2 is not delayed.
In this way, for each of the succeeding basic areas (6113, 6114, . . . ), the beam detection signal A 6008-1 is delayed by “n×d” (wherein “n” is 3, 4, 5, . . . ), but the beam detection signal B 6008-2 is not delayed. This is repeated until the beam detection signal A 6008-1 is delayed fully. Then, the above steps are repeated while reversing the beam detection signals. Namely, the beam detection signal B 6008-2 is delayed by “n×d”, but the beam detection signal A 6008-1 is not delayed.
This example assumes that the cycle of the pixel clock is 32 ns and that the permissible scanning start position error is 1/6 dot. In this case, 1/6 dot is equivalent to about 5.3 ns. Therefore, the minimum delay “d” must be smaller than 5.3 ns. This example uses “d=2 ns” and deviates the lines by the cycle (T) of one pixel clock under this condition. As T/d is 16, this example provides sixteen different positions for one beam detection signal.
Therefore, this example has sixteen cases in which the beam detection signal A 6008-1 is in advance of the beam detection signal B 6008-2 and another sixteen cases in which the beam detection signal B 6008-2 is in advance of the beam detection signal A 6008-1. This is the reason why the test chart has thirty-two basic areas.
In other words, basic areas of identifiers (6104) 1 to 16 are for cases in which the beam detection signal A 6008-1 is in advance of the beam detection signal B 6008-2. For each of these cases, the beam detection signal A 6008-1 is delayed by a multiple of 2 ns with the beam detection signal B 6008-2 left unchanged (until the beam detection signal A 6008-1 is delayed by the cycle of one pixel clock).
Similarly, basic areas of identifiers (6104) 17 to 32 are for cases in which the beam detection signal B 6008-2 is in advance of the beam detection signal A 6008-1. For each of these cases, the beam detection signal B 6008-2 is delayed by a multiple of 2 ns with the beam detection signal A 6008-1 left unchanged (until the beam detection signal B 6008-2 is delayed by the cycle of one pixel clock).
The user can always find an optimum case in which the amount of positional deviation is 2 ns or less in the above thirty-two cases.
The circuit configuration and the operation of the laser beam detection position controller 6004 will be explained below with reference to
The delay time controller A 6034 sends a position determining signal A 6017 to the beam detection signal delay circuit A 6030 according to the position controller control signal 6011 and the user-set position control signal 6012. The beam detection signal delay circuit A 6030 delays one of the beam detection signals (A 6008-1 in this example) by a preset time period according to the entered position determining signal A 6017 and outputs a controlled laser beam detection signal A 6009-1.
Similarly, the delay time controller B 6068 sends a position determining signal B 6026 to the beam detection signal delay circuit B 6031 according to the position controller control signal 6011 and the user set position control signal 6012.
The beam detection signal delay circuit B 6031 delays the other beam detection signal (B 6008-2 in this example) by a preset time period according to the entered position determining signal B 6026 and outputs a controlled laser beam detection signal B 6009-2.
Basically, the circuits A and B in the laser beam detection position controller 6004 are functionally the same. Accordingly, only circuits A in the controller 6004 will be explained as a representative example.
Referring to
The operation of these circuits will be explained.
A signal 6011-1 is one of the Position Controller Control signal 6011 and a binary Position Test On signal which is “1”, in the Position Test mode. A signal 6011-2 is a binary signal indicating a print area in the subsidiary scanning direction.
The Variable Position signal generator A 6035 generates a Variable Position signal A 6015 whose rise position is changed at a preset timing and outputs this signal to the position signal selector A 6050. The Fixed Position signal generator A 6036 generates a Fixed Position signal A 6016 in response to a user-set position control signal 6012.
The position signal selector A 6050 outputs the Fixed Position signal A 6016 as a position determining signal A 6017 when the Position Test On signal 6011-1 is “O” (Normal Printing) or the Variable Position signal A 6015 as a position determining signal A 6017 when the Position Test On signal 6011-1 is “1” (Positional Test Printing).
The Variable Position signal generator A 6035 consists of a basic area counter A 6014 which is an 8-bit binary counter, the higher 5-bit output 6013 of the basic area counter, inverters 6037 through 6040, and AND gates 6041 through 6044.
As this embodiment uses two laser beams and a test pattern whose basic area consists of sixteen lines, the delay time is changed when one beam scans eight lines (assuming that one basic area is scanned). Using the higher five bits of the eight output bits of the basic area counter A 6014, the output 6013 of the basic area counter A is incremented by one each time eight beam detection signals A 6008-1 are counted.
The Variable Position signals A 6015-1 through 6015-4 are incremented in sequence while the output 6013 of the basic area counter A 6014 is 0 to 15 (for basic areas of identifiers 1 through 16) but they remain 0 while the output 6013 of the basic area counter A 6014 is 16 to 31 (for basic areas of identifiers 17 through 32).
The Variable Position signal generator B in the delay time controller B 6068 is the same as the Variable Position signal generator A, but the Variable Position signal generator B does not have any inverter 6037 through 6040.
The Fixed Position signal generator A 6036 outputs a Fixed Position signal A 6016 in response to a User-Set Position Control signal 6012. The Fixed Position signal A 6016-1 through 6016-4 has the same value as the User-Set Position Control signal 6012 when the User-Set Position Control signal 6012 has a decimal value in the range of 0 to 15, or 0 when the User-Set Position Control signal 6012 has a decimal value in the range of 16 to 31.
The position signal selector A 6050 outputs the Variable Position signal A 6015-1 through 6015-4 as a position determining signal A 6017-1 through 6017-4 when the Position Test on signal 6011-1 is “1”, (Positional Test Printing), or outputs the Fixed Position signal A 6016-1 through 6016-4 as a position determining signal A 6017-1 through 6017-4 when the Position Test on signal 6011-1 is “0” (Normal Printing).
The beam detection signal delay circuit A 6030 delays the beam detection signals A 6008-1 in sequence using the delay elements 6052 through 6066 and generates delayed beam detection signals A 6019 (6019-1 through 6019-16) having different positions.
The beam detection signal delay circuit A 6030 selects one of the delayed beam detection signals A 6019-1 through 6019-16 according to the position determining signal A 6017 (6017-1 through 6017-4) and outputs it as a controlled beam detection signal A 6009-1.
The waveforms relating to the operation of the delay time controller A 6034 in the Position Test mode are illustrated in
At the rise of the Subsidiary Scanning Direction Print Area signal 6011-2, the basic area counter A 6014 has a count of 31 (in decimal) and starts to 10, count the beam detection signal A 6008-1 from 00. In this example, as each basic area 6103 is made up of sixteen lines and two laser beams are used, the output 6013 of the basic area counter A 6014 is incremented by one for every eight beam detection signals A 6008-1. The basic area counter A 6014 will keep on counting until the counter is cleared by the Subsidiary Scanning Direction Print Area signal 6011-2 of “O.”
The Variable Position signal A 6015 is counted up in sequence while the output 6013 of the basic area counter A 6014 is 0 to 15 and the controlled beam detection signal A 6009-1 is delayed (in relation to the beam detection signal A 6008-1) for each basic area 6103.
When the output 6013 of the basic area counter A 6014 is 16 to 31 (for basic areas of identifiers (6104) 17 to 32), the Variable Position signal A 6015 remains “0” and the beam detection signal A 6008-1 is output as the controlled beam detection signal A 60091.
The part which stores the positional information in the main storage block is a storage unit, such as a floppy disk, hard disk, and the like, which can keep on holding the information after the system is powered off. The positional information is kept in the storage unit until a new User-Set Position Control signal 6012 is set by another positional test.
When a means which can retain a setting status such as a DIP switch is used as the input of the User-Set Position Control signal 6012 on the operation unit 6005, the status of the User-Set Position Control signal 6012 is held until the user changes it and the positional information need not be stored in the main storage unit 6002.
It is possible to always keep and use the beam detection signals 6008 in good alignment by storing positional information of the well-aligned laser beams after the positional test in a storing means of the main storage unit 6002 of the controller 6001, which can retain the information even after the system is powered off and by building up so that the positional information may be automatically loaded when the system is powered on again.
Even when the beam detection signals 6008 greatly deviate by an external factor (such as a great impact) or a secular change, the user can quickly correct the deviation by performing a positional test and setting an optimum position of the beam detection signals 6008.
It is also possible to prevent deterioration of images due to increasing deviation of beam detection signals 6008 by building the system so that the positional test may be automatically performed each time the system is powered on.
This embodiment is basically applicable to image recording devices of three or more laser beams. However, the beam position correcting steps for image recording devices of three or more laser beams are quite complicated. For example, consider the following steps to correct beam positions in the 3-beam image recording device.
The main storage 6002 stores data in the form of a test chart having basic areas in which a basic pattern (3 dots in the subsidiary scanning direction and 2 dots in the main scanning direction) is repeated four times in an adjoining manner in the subsidiary scanning direction with the basic pattern being deviated by one dot left, right, and both left and right in the main scanning direction each time the basic pattern is formed. The upper and lower beams on the boundary are made up by all possible combinations of beams.
The basic pattern is repeated ten times in the main scanning direction. The number of basic patterns in the basic area need not be ten. The basic area can include as many basic patterns as the basic area can contain. Further, the basic pattern is repeated once in the subsidiary scanning direction. The test chart contains thirty-two basic areas.
The micro computer 6128 outputs the controlled beam detection signals A (6009-1), B (6009-2), and C (6009-3) according to the Position Control Block Control signal (6011) and the User-Set Position Control signal (6012).
The patterns made by upper and lower adjoining beams (beams 1 and 2, 2 and 3, and 3 and 1) represents all possible combination of patterns. These basic patterns are separated into three patterns 6121-1 through 6121-3 according to the combinations of adjoining upper and lower beams. Identifiers (6122) are given to the separated basic patterns for identification.
In
Let's assume that the waveforms of the beam detection signals A, B, and C are as illustrated in
Taking the beam detection signal A (6008-1) as a reference signal, the positional difference between beam detection signals A (6008-1) and B (6008-2) is Δ tbd1 and the positional difference between beam detection signals A (6008-1) and C (6008-3) is Δ tbd2. The positional difference between beam detection signals B (6008-2) and C (6008-3) is Δ tbd2 minus Δtbd1.
Reference numeral 6127 in
Further, if there is no laser beam detection signal position control block 6004, the sub-basic pattern 6127-3 corresponding to the sub-identifier 6122 is apparently furthest from bilateral symmetry. Its right side is smooth, but its left side is extremely jagged. The user enters “C” from the operation block 6005. With this, the micro computer 6128 judges that the difference between the beam detection signals B (6008-2) and C (6008-3) is the greatest.
To eliminate this difference between the beam detection signals B (6008-2) and C (6008-3), the micro computer 6128 changes the positions of the beam detection signals B (6008-2) and C (6008-3) in sequence while the beam detection signal A (6008-1) is left unchanged.
Then, the test chart data (in the same manner as in the 2-beam image recording device) is printed with the positions of the beam detection signals B (6008-2) and C (6008-3) changed in sequence.
The identifier 6129 of the optimum basic pattern is entered from the operation unit 6005. With this, the micro computer 6128 corrects the difference between the beam detection signals B (6008-2) and C (6008-3).
If the sub-identifier (6122) A is entered from the operation unit 6005, the micro computer 6128 judges that the difference between the beam detection signals A (6008-1) and C (6008-3) is the greatest and fixes the position of the beam detection signal B (6008-2).
If the sub-identifier (6122) B is entered from the operation unit 6005, the micro computer 6128 judges that the difference between the beam detection signals A (6008-1) and B (6008-2) is the greatest and fixes the position of the beam detection signal C (6008-3).
With these operations, the difference between the beam detection signals B (6008-2) and C (6008-3) is eliminated. Next, the Position Test mode is set to eliminate the difference between the beam detection signals A (6008-1) and B (6008-2) with the positional relationship between beam detection signals B (6008-2) and C (6008-3) fixed. (When the position of the beam detection signal B (6008-2) is changed, the position of the beam detection signal C (6008-3) must be changed by the same amount.)
The user selects a basic pattern having the best bilateral symmetry in the printed test chart and enters its identifier (6132) from the operation block 6005. The micro computer 6128 corrects the positional relationship between the beam detection signals A (6008-1) and B (6008-2). With this, the correction of the positional relationship of the beam detection signals A (6008-1), B (6008-2) and C (6008-3) is completed.
The above-explained procedure is easily applicable to image recording devices having n laser beams even when the device uses more laser beams and their positional relationship is more complicated.
The user can perform the positional test completely independently from the controller 6002 by providing a storage unit 6151 and an image processing/scanning unit in the image signal position control unit 6145 and by moving the storage unit (which stores test chart data and positional information) from controller 6001 into the storage unit 6151. This means that application of the present invention to the conventional printer system does not require any modification of the controller 6001.
Further, the conventional printer systems typically have an image processor.
As such an image processor 6152 already possesses image signals 6006 and engine control signals 6007, it is very easy to add a function of the image signal position controller 6145 to the image processor 6152. Therefore, the user can get images without positional deviations. Also, in this case, it is apparent that the controller 6001 of a conventional printer system for which the present invention does not require any modification only if the image processor having the function of the image signal position controller 6145 contains a storage unit 6151 and an image processor operation unit 6150.
As explained above, the image recording device according to the present invention can record high-quality high-resolution images and is available as a multi-beam image recording device having a plurality of light sources (laser beams).
Number | Date | Country | Kind |
---|---|---|---|
10-217554 | Jul 1998 | JP | national |
10-262697 | Sep 1998 | JP | national |
11-064350 | Mar 1999 | JP | national |
11-088686 | Mar 1999 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4864326 | Kawamura et al. | Sep 1989 | A |
4978976 | Okino | Dec 1990 | A |
5270827 | Kobayashi et al. | Dec 1993 | A |
5371608 | Muto et al. | Dec 1994 | A |
5481340 | Nagao et al. | Jan 1996 | A |
5576852 | Sawada et al. | Nov 1996 | A |
5694637 | Yoshino et al. | Dec 1997 | A |
5703860 | Fukunaga et al. | Dec 1997 | A |
5880766 | Murakami et al. | Mar 1999 | A |
5963242 | Nakayama et al. | Oct 1999 | A |
6002506 | Suzuki et al. | Dec 1999 | A |
6038243 | Mogi | Mar 2000 | A |
Number | Date | Country |
---|---|---|
195 44 372 | Sep 1996 | DE |
197 03 693 | Aug 1997 | DE |
61-212818 | Sep 1986 | JP |
10-058746 | Mar 1998 | JP |
10-073777 | Mar 1998 | JP |
10-153742 | Jun 1998 | JP |