This application claims priority under 35 U.S.C. ยง 119 to Korean Patent Application No. 10-2018-0004618, filed on Jan. 12, 2018 in the Korean Intellectual Property Office, the disclosure of which is incorporated by reference herein in its entirety.
Exemplary embodiments of the present inventive concept relate to an image sensor, and more particularly, to an image sensor with reduced noise.
An image sensor converts optical images into electric signals. Due to recent developments in the computer and communication industries, demands for image sensors with improved performance have increased for various devices, such as digital cameras, video cameras, Personal Communication Systems (PCS), gaming devices, security cameras, medical microcontrollers, robots, etc.
In a pixel having a structure using multiple photodiodes, an output voltage of a first channel tends to be relatively high. This is due to a Random Telegraph Signal (RTS) noise generated by an electronic trap/de-trap of a source follower transistor.
According to an exemplary embodiment of the present inventive concept, an image sensor includes a photoelectric conversion unit configured to receive light to generate an electric charge and provide the electric charge to a first node, a transfer transistor configured to provide a voltage level of the first node to a floating diffusion node in response to a first signal, a booster configured to increase a voltage level of the floating diffusion node in response to a second signal, a source follower transistor configured to provide the voltage level of the floating diffusion node to a second node, and a selection transistor configured to provide a voltage level of the second node to a pixel output terminal in response to a third signal. After the selection transistor is turned on, the booster is enabled, and before the transfer transistor is turned on, the booster is disabled.
According to an exemplary embodiment of the present inventive concept, an image sensor includes a photoelectric conversion unit configured to receive light to generate an electric charge and provide the electric charge to a first node, a transfer transistor configured to provide a voltage level of the first node to a floating diffusion node in response to a first signal, a booster configured to increase a voltage level of the floating diffusion node in response to a second signal, a source follower transistor configured to provide the voltage level of the floating diffusion node to a second node, and a selection transistor configured to provide a voltage level of the second node to a pixel output terminal in response to a third signal. After the selection transistor is turned on, the booster is enabled, and before the transfer transistor is turned on, the booster is disabled. The image sensor may include a reset transistor configured to reset the floating diffusion node to a reference voltage level in response to a fourth signal, wherein the fourth signal is reduced earlier than a time point at which the third signal increases. The image sensor may be configured wherein the selection transistor is gated to a selection line, and the fourth signal is provided to the selection line.
According to an exemplary embodiment of the present inventive concept, an image sensor includes a first pixel which includes a first photoelectric conversion unit, a first floating diffusion node, and a first booster configured to boost the first floating diffusion node, a second pixel which includes a second photoelectric conversion unit, a second floating diffusion node, and a second booster configured to boost the second floating diffusion node, a correlated double sampler, and a pixel selection unit configured to select a pixel among one of the first and second pixels to provide an output voltage of the selected pixel to the correlated double sampler. If the selected pixel is the first pixel and before an output voltage of the first pixel is provided to the correlated double sampler, the first booster pre-boosts the first floating diffusion node. If the selected pixel is the second pixel and before an output voltage of the second pixel is provided to the correlated double sampler, the second booster pre-boosts the second floating diffusion node.
The above and other features of the present inventive concept will become apparent and more readily appreciated by describing in detail exemplary embodiments thereof with reference to the accompanying drawings.
Exemplary embodiments of the present inventive concept provide an image sensor with reduced noise.
Exemplary embodiments of the present inventive concept will be described more fully hereinafter with reference to the accompanying drawings. Like reference numerals may refer to like elements throughout this application.
Referring to
The pixel array 110 may include a plurality of unit pixels 112. The plurality of unit pixels 112 may be arranged in a matrix form.
The unit pixel 112 may be classified into a three-transistor structure, a four-transistor structure, a five-transistor structure, or a six-transistor structure, depending on the number of transistors included in a signal generation circuit.
The pixel array 110 may have a row selection line wired for each row, and a column selection line wired for each column. For example, when the pixel array includes M*N (where M and N are integers greater than 1) pixels, M row selection lines and N column selection lines may be wired in the pixel array 110.
In an exemplary embodiment of the present inventive concept, if the image sensor 100 adopts a Bayer pattern, the pixels in the pixel array 110 may be configured to receive red (R) light, green (G) light, and blue light (B). Alternatively, the pixels may be configured to receive magenta (M) light, yellow (Y) light, cyan (C) light, and/or white (W) light. However, the present inventive concept is not limited thereto.
The CDS 120 may include a number of analog to digital converters (ADC), including a comparator, a counter, and a latch.
The CDS 120 may be controlled by the timing control circuit 150. The operation of the CDS 120 may be performed for each cycle during which the row scanning circuit 140 selects the row selection line of the pixel array 110, e.g., for each low scan cycle.
The row scanning circuit 140 may receive a control signal from the timing control circuit 150. The row scanning circuit 140 may control the row addressing and the row scanning of the pixel array 110, in response to the received control signal. At this time, to select a row selection line among the row selection lines, the row scanning circuit 140 may apply a signal that activates the selected row selection line to the pixel array 110. The row scanning circuit 140 may include a row decoder which selects the row selection line in the pixel array 110, and a row driver that provides the signal for activating the selected row selection line.
The column scanning circuit 130 may receive the control signal from the timing control circuit 150. The column scanning circuit 130 may control the column addressing and the column scanning of the pixel array 110, in response to the received control signal. At this time, the column scanning circuit 130 may output a digital output signal, which is output from the CDS 120, to a Digital Signal Processor (DSP), an Image Signal Processor (ISP), or an external host.
For example, the column scanning circuit 130 may sequentially select a number of ADCs in the CDS 120, by outputting a horizontal scan control signal to the CDS 120. In an exemplary embodiment of the present inventive concept, the column scanning circuit 130 may include a column decoder which selects one of the ADCs, and a column driver which induces the output of the selected unit ADC to a horizontal transfer line. The horizontal transfer line may have a bit width for outputting the digital output signal.
The timing control circuit 150 controls the column scanning circuit 130 and the row scanning circuit 140, and may supply control signals such as a clock signal and a timing control signal required for different operations. The timing control circuit 150 may include a logic control circuit, a phase lock loop (PLL) circuit, a timing control circuit, and a communication interface circuit.
Referring to
According to an exemplary embodiment of the present inventive concept, one end of the photoelectric conversion unit (PD) may be connected to the first node (N1), and the other end may be, for example, connected to ground.
The photoelectric conversion unit (PD) may generate photoelectric charges by receiving a light which are incident from the outside. In other words, the photoelectric conversion unit (PD) receives the light and may convert an optical signal into an electric signal. The photoelectric conversion unit (PD) may provide the converted electric signal to the first node (N1). When the amount of light received from the outside is relatively large, the photoelectric conversion unit (PD) may generate a relatively large amount of charges.
In an exemplary embodiment of the present inventive concept, the photoelectric conversion unit (PD) may generate electrons, using the light incident from the outside. The generated electrons may be provided to the first node (N1). In other words, when the photoelectric conversion unit (PD) receives light from the outside, the voltage level of the first node (N1) may be lowered. For example, when the photoelectric conversion unit (PD) receives a relatively large amount of light, the voltage level of the first node (N1) may decrease relatively greatly.
In
According to an exemplary embodiment of the present inventive concept, a source/drain terminal of the transfer transistor (TG) may be connected to the first node (N1) and a floating diffusion node (FD). A gate terminal of the transfer transistor (TG) may be connected to a transfer line.
In an exemplary embodiment of the present inventive concept, a transfer signal (TX) may be provided to the transfer line. In other words, the transfer signal (TX) may be provided to the gate terminal of the transfer transistor (TG). The transfer signal (TX) may control turning on/off of the transfer transistor (TG). The voltage level of the transfer signal (TX) may include, for example, a high level and a low level.
When the voltage level of the transfer signal (TX) is the high level, the transfer transistor (TG) may be turned on. When the voltage level of the transfer signal (TX) is the low level, the transfer transistor (TG) may be turned off.
When the transfer transistor (TG) is turned on, the first node (N1) and the floating diffusion node (FD) may be electrically connected to each other. In other words, when the transfer transistor (TG) is turned on, the voltage level of the first node (N1) may be applied to the floating diffusion node (FD). Therefore, when the transfer transistor (TG) is turned on, the voltage level of the first node (N1) changed by the photoelectric conversion unit (PD) may be applied to the floating diffusion node (FD).
For example, if there is no light received from the outside, the voltage level of the floating diffusion node (FD) may not decrease even if the transmit transistor (TG) is turned on. In a case where the light received by the photoelectric conversion unit (PD) is relatively small, when the transfer transistor (TG) is turned on, the voltage level of the floating diffusion node (FD) may decrease relatively slightly. On the other hand, in a case where the photoelectric conversion unit (PD) receives a relatively large amount of light, when the transfer transistor (TG) is turned on, the voltage level of the floating diffusion node (FD) may decrease relatively greatly.
The transfer transistor (TG) may be provided as an NMOS transistor, a PMOS transistor, or a CMOS transistor, but the present inventive concept is not limited thereto.
According to an exemplary embodiment of the present inventive concept, the reset transistor (RG) may be connected to the floating diffusion node (FD) and a first voltage source (VDD). The gate terminal of the reset transistor (RG) may receive a reset signal (RX).
The voltage level of the reset signal (RX) may include, for example, a high level and a low level. When the voltage level of the reset signal (RX) is the high level, the reset transistor (RG) may be turned on. When the voltage level of the reset signal (RX) is the low level, the reset transistor (RG) may be turned off.
When the reset transistor (RG) is turned on, the first voltage source (VDD) and the floating diffusion node (FD) may be electrically connected to each other. When the reset transistor (RG) is turned off, the first voltage source (VDD) and the floating diffusion node (FD) may be electrically separated from each other. In other words, when the reset transistor (RG) is turned on, the voltage level of the first voltage source (VDD) may be applied to the voltage level of the floating diffusion node (FD). Hereinafter, the voltage level of the first voltage source (VDD) is referred to a reference voltage level (VDD), and the same reference numeral as that of the first voltage source (VDD) is used.
When the reset transistor (RG) is turned on, the floating diffusion node (FD) may be reset to the reference voltage level (VDD). In an exemplary embodiment of the present inventive concept, the voltage level of the first node (N1) may be lowered depending on the amount of light received by the photoelectric conversion unit (PD). At this time, when the transfer transistor (TG) is turned on, the voltage level of the floating diffusion node (FD) may be lowered. When the reset transistor (RG) is turned on, the voltage level of the floating diffusion node (FD) may be increased again to the reference voltage level (VDD).
The reset transistor (RG) may be provided as an NMOS transistor, a PMOS transistor, or a CMOS transistor, but the present inventive concept is not limited thereto.
According to an exemplary embodiment of the present inventive concept, the source follower transistor (SF) may be connected to a second node (N2) and the first voltage source (VDD). The source follower transistor (SF) may be gated to the floating diffusion node (FD).
In an exemplary embodiment of the present inventive concept, the source follower transistor (SF) may provide a specific voltage level to the second node (N2), depending on the voltage level of the floating diffusion node (FD).
In an exemplary embodiment of the present inventive concept, the range of voltage level of the floating diffusion node (FD) may be within the range of a saturation region of the source follower transistor (SF). In other words, the source follower transistor (SF) may always be turned on. Additionally, the drain-source current of the source follower transistor (SF) may always be constant.
In an exemplary embodiment of the present inventive concept, the source follower transistor (SF) may operate as a common drain amplifier. In other words, the source follower transistor (SF) may operate as a voltage buffer. In an exemplary embodiment of the present inventive concept, the voltage level of the floating diffusion node (FD) may be transmitted to the second node (N2) as is.
In an exemplary embodiment of the present inventive concept, the unit pixel 112_1 may further include a shutter transistor connected to the first node (N1) and the first voltage source (VDD).
In an exemplary embodiment of the present inventive concept, the reset transistor (RG) and the source follower transistor (SF) have been described as being connected to the first voltage source (VDD), but the present inventive concept is not limited thereto. For example, the reset transistor (RG) and the source follower transistor (SF) may be connected to different voltage sources from each other.
According to an exemplary embodiment of the present inventive concept, the selection transistor (SG) may be connected to an output terminal (OUT) of the unit pixel 112_1 and the second node (N2). The selection transistor (SG) may be gated by a selection signal (SX).
The voltage level of the selection signal (SX) may include, for example, a high level and a low level. If the voltage level of the selection signal (SX) is the high level, the selection transistor (SG) may be turned on. If the voltage level of the selection signal (SX) is the low level, the selection transistor (SG) may be turned off.
When the selection transistor (SG) is turned on, the second node (N2) and the output terminal (OUT) of the unit pixel 112_1 may be electrically connected to each other. In other words, when the selection transistor (SG) is turned on, the voltage level of the second node (N2) may be applied to the output terminal (OUT) of the unit pixel 112_1.
The output terminal of the booster 210 may be connected to the floating diffusion node (FD). The input terminal of the booster 210 may receive a boosting signal (FDB).
The voltage level of the boosting signal (FDB) may include, for example, a high level and a low level. When the voltage level of the boosting signal (FDB) is the high level, the voltage level of the floating diffusion node (FD) may temporarily increase. This will be described in detail with reference to
Referring to
Random Telegraph Signal (RTS) noise of the image sensor will be described with reference to
Referring to
Subsequently, the reset transistor (RG) may be turned off. In other words, the voltage level of the reset signal (RX) changes from the high level to the low level. At this time, the voltage level of the floating diffusion node (FD) may be provided to the CDS 120 by the output of the unit pixel 112_1. The voltage level of the floating diffusion node (FD) provided to the CDS 120 may be a first reference voltage (1st Reference).
Subsequently, the transfer transistor (TG) may be turned on. In other words, the voltage level of the transfer signal (TX) changes from the low level to the high level. At this time, the first node (N1) and the floating diffusion node (FD) may be electrically connected to each other. Therefore, the voltage level of the first node (N1) may be applied to the floating diffusion node (FD). At this time, the booster 210 may operate. In other words, the boosting signal (FDB) may be changed from the low level to the high level. In an exemplary embodiment of the present inventive concept, the booster 210 may boost the voltage of the floating diffusion node (FD). When the voltage level of the floating diffusion node (FD) increases, more charges accumulated at the first node (N1) may be provided to the floating diffusion node (FD). In other words, the booster 210 may help the voltage level of the first node (N1) to be well provided to the floating diffusion node (FD).
At this time, the voltage level of the floating diffusion node (FD) may be provided to the CDS 120 by the output of the unit pixel 112_1. The voltage level of the floating diffusion node (FD) provided to the CDS 120 may be a first signal voltage (1st Signal). The CDS 120 compares the first reference voltage (1st Reference) with the first signal voltage (1st Signal) and may output it as a digital code. The output of each of the unit pixels 112_1 included in the pixel array 110 may be plotted with a first result value (1st RESULT of
Subsequently, the reset transistor (RG) may be turned on. At this time, the voltage level of the floating diffusion node (FD) may be reset to the reference voltage level (VDD). The above process may be repeated again. In other words, the CDS 120 compares a second reference voltage (2nd Reference) with a second signal voltage (2nd Signal), and may output it as a digital code. This may be plotted with a second result value of
In an exemplary embodiment of the present inventive concept, a pulse width (W1) of the transfer signal (TX) may be smaller than a pulse width (W2) of the boosting signal, but the present inventive concept is not limited thereto.
In theory, since light of the same light quantity is irradiated to the plurality of unit pixels 112_1; each unit pixel 112_1 should output the same value (REF). However, noise (e.g., thermal noise, RTS noise, etc.) may occur due to various external factors. Therefore, the output values of the plurality of unit pixels 112_2 may conform to the normal distribution as illustrated in
Referring to
In an exemplary embodiment of the present inventive concept, the Random Telegraph Signal (RTS) noise may be a phenomenon in which electrons in the channel region of the transistor are trapped or de-trapped in the dielectric layer of the transistor and the voltage level of the channel region fluctuates. A more detailed explanation will be provided with reference to
Referring to
Since the reset transistor (RG) is in the turned-on state, a voltage level (VFD) of a gate region 620 of the source follower transistor (SF) may be substantially the same as the reference voltage level (VDD).
A first source/drain region 630 of the source follower transistor (SF) may be connected to the first voltage source (VDD). Therefore, a voltage level (VD) of the first source/drain region 630 may be substantially the same as the reference voltage level (VDD).
Since the source follower transistor (SF) always operates in a stable region (saturation region) as described above, the voltage level (VFD) of the gate region 620 of the source follower transistor (SF) may form a channel region 650 between the first source/drain region 630 and a second source/drain region 640. When the channel region 650 is formed, the first source/drain region 630 and the second source/drain region 640 may be electrically connected to each other. Since the selection transistor (SG) is turned off, voltage levels (VS, VC) of the second source/drain region 640 and the channel region 650, respectively, may be substantially the same as the reference voltage level (VDD).
Therefore, the voltage level (VFD) of the gate region 620, the voltage levels (VD, VS) of the first and second source/drain regions 630 and 640, and the voltage level (VC) of the channel region 650 may be substantially the same as the reference voltage level (VDD). Therefore, it may be considered that a high voltage is applied to the voltage level (VFD) of the gate region 620, the voltage levels (VD, VS) of the first and second source/drain regions 630 and 640, and the voltage level (VC) of the channel region 650. As such, there may be almost no potential difference in the voltage level (VFD) of the gate region 620, the voltage levels (VD, VS) of the first and second source/drain regions 630 and 640, and the voltage level (VC) of the channel region 650. Therefore, a dielectric layer 610 (or dielectric film) of the source follower transistor (SF) may be in a state in which an electron 612 (illustrated in
Referring to
Since the reset transistor (RG) is turned off, the gate region 620 of the source follower transistor (SF) may be floated. At this time, the voltage level (VFD) of the gate region 620 may be similar to the reference voltage level (VDD).
Since the first source/drain region 630 of the source follower transistor (SF) is connected to the first voltage source (VDD), the voltage level (VD) of the first source/drain region 630 may be substantially the same as the reference voltage level (VDD).
Since the selection transistor (SG) is turned on, the second source/drain region 640 may be connected to the output terminal (OUT) of the unit pixel 112_1. Therefore, a voltage drop may occur in the direction from the first source/drain region 630 to the second source/drain region 640. In other words, the voltage level (VC) of the channel region 650 may be smaller than the voltage level (VD) of the first source/drain region 630. In addition, the voltage level (VS) of the second source/drain region 640 may be smaller than the voltage level (VC) of the channel region 650. However, at this time, a potential difference in the voltage level (VFD) of the gate region 620, the voltage levels (VD, VS) of the first and second source/drain regions 630 and 640, and the voltage level (VC) of the channel region 650 may be relatively small. In this state, the probability that electrons 612 in the channel region 650 are trapped in the dielectric layer 610 may be, for example, 50%.
Referring to
Referring to
At this time, the voltage level (VFD) of the gate region 620 may be substantially the same as the reference voltage level (VDD). Further, the voltage level (VD) of the first source/drain region 630 may be substantially the same as the reference voltage level (VDD).
A voltage drop may occur in the direction from the first source/drain region 630 to the second source/drain region 640. In other words, the voltage level (VC) of the channel region 650 may be smaller than the voltage level (VD) of the first source/drain region 630. In addition, the voltage level (VS) of the second source/drain region 640 may be smaller than the voltage level (VC) of the channel region 650. However, at this time, the potential difference in the voltage level (VFD) of the gate region 620, the voltage levels (VD, VS) of the first and second source/drain regions 630 and 640, and the voltage level (VC) of the channel region 650 may be relatively small. In this state, the probability that electrons 612 in the channel region 650 are trapped in the dielectric layer 610 may be, for example, 50%.
Therefore, after the second measurement, the potential difference in the voltage level (VFD) of the gate region 620, the voltage levels (VD, VS) of the first and second source/drain regions 630 and 640, and the voltage level (VC) of the channel region 650 may be relatively small. As such, the probability that electrons 612 in the channel region 650 are trapped or de-trapped in the dielectric layer 610 may be, for example, 50%.
In an exemplary embodiment of the present inventive concept, when electrons 612 of the channel region 650 are trapped in the dielectric layer 610, the voltage level (VC) of the channel region 650 may increase. Since the voltage level (VC) of the channel region 650 increases, the voltage level (VS) of the second source/drain region 640 eventually increases, and the voltage level transmitted to the output terminal (OUT) of the unit pixel 112_1 may increase.
On the other hand, when the electrons 612 of the channel region 650 are de-trapped in the dielectric layer 610, the voltage level (VC) of the channel region 650 may decrease. Since the voltage level (VC) of the channel region 650 decreases, the voltage level (VS) of the second source/drain region 640 eventually decreases, and the voltage level transmitted to the output terminal (OUT) of the unit pixel 112_1 may decrease.
In an exemplary embodiment of the present inventive concept, after the second measurement, the probabilities that the electrons 612 are trapped/de-trapped in the dielectric layer 610 may be 50%. Therefore, the second result value (2nd RESULT) and the third result value (3rd RESULT) may be similar. However, as described above, in the first measurement, since the selection transistor (SG) is in a turned-off state, there is high probability that the electrons 612 are de-trapped. Therefore, when the transfer transistor (TG) is turned on, while electrons 612 are trapped in the dielectric layer 610, the voltage of the output stage (OUT) may decrease. Therefore, the first result value (1st RESULT) may be biased in the + direction as compared to the second and third result values (2nd RESULT, 3rd RESULT).
Referring to
Referring to
Referring to
Referring to
According to an exemplary embodiment of the present inventive concept, the first measurement may be treated as a dummy. In other words, by turning on the transfer transistor (TG) without executing the pre-boosting pulse 710, the electron 612 may be trapped in the dielectric layer 610. Thereafter, by turning on the reset transistor (RG), the voltage level of the floating diffusion node (FD) may be reset to the reference voltage level (VDD). At this time, the CDS 120 may receive the voltage level of the floating diffusion node (FD) as the first reference voltage (1st Reference). Thereafter, the transfer transistor (TG) may be turned on again. At this time, the CDS 120 may receive the voltage level of the floating diffusion node (FD) as the first signal voltage (1st Signal).
Referring to
One end of the first to fourth photoelectric conversion units (PD1 to PD4) may be connected to the first to fourth nodes (N1 to N4), respectively. The other end of the first to fourth photoelectric conversion units (PD1 to PD4) may, for example, be grounded. The first to fourth transfer transistors (TG1 to TG4) may be connected between the first to fourth nodes (N1 to N4), respectively, and the floating diffusion node (FD).
For the sake of convenience, the first photoelectric conversion unit (PD1) and the first transfer transistor (TG1) are referred to as a first channel (CH1). The second photoelectric conversion unit (PD2) and the second transfer transistor (TG2) are referred to as a second channel (CH2). The third photoelectric conversion unit (PD3) and the third transfer transistor (TG3) are referred to as a third channel (CH3). The fourth photoelectric conversion unit (PD4) and the fourth transfer transistor (TG4) are referred to as a fourth channel (CH4).
Although
Although
In an exemplary embodiment of the present inventive concept, the first photoelectric conversion unit (PD1) may receive red (R) light. The second and third photoelectric conversion units (PD2, PD3) may receive green (G) light. The fourth photoelectric conversion unit (PD4) may receive blue (B) light.
In an exemplary embodiment of the present inventive concept, the first photoelectric conversion unit (PD1) may receive magenta (M) light. The second photoelectric conversion unit (PD2) may receive yellow (Y) light. The third photoelectric conversion unit (PD3) may receive cyan (C) light. The fourth photoelectric conversion unit (PD4) may receive white (W) light.
The first to fourth photoelectric conversion units (PD1 to PD4) may receive light of different wavelength bands, using color filters. For example, the first photoelectric conversion unit (PD1) may be disposed below a color filter that transmits only red (R) light. However, the present inventive concept is not limited thereto.
Referring to
The CDS 120 may receive a reference voltage (CH1 Reference) of the first channel (CH1). Although
The first transfer transistor TG1 may be turned on and off. The CDS 120 may receive a signal voltage (CH1 Signal) of the first channel (CH1).
The floating diffusion node (FD) may be reset to the reference voltage level (VDD), using the reset transistor (RG). At this time, the CDS 120 may receive a reference voltage (CH2 Reference) of the second channel (CH2). Thereafter, the second transfer transistor (TG2) may be turned on and off. At this time, the CDS 120 may receive a signal voltage (CH2 Signal) of the second channel (CH2).
By performing substantially the same process, the CDS 120 may receive a reference voltage (CH3 Reference) of the third channel (CH3) and a signal voltage (CH3 Signal) of the third channel (CH3). Likewise, the CDS 120 may receive a fourth reference voltage (CH4 Reference) and a fourth signal voltage (CH4 Signal).
Referring to
Referring to
Thereafter, the reset transistor (SG) may be turned on and off. At this time, the CDS 120 may receive the reference voltage (CH1 Reference) of the first channel (CH1). Subsequently, the first transfer transistor (TG1) may be turned on and off again. At this time, the CDS 120 may receive the signal voltage (CH1 Signal) of the first channel (CH1). Subsequently, the CDS 120 may receive the reference voltage (CH2 Reference) of the second channel (CH2), the signal voltage (CH2 Signal) of the second channel (CH2), the reference voltage (CH3 Reference) of the third channel (CH3), the signal voltage (CH3 Signal) of the third channel (CH3), the reference voltage (CH4 Reference) of the fourth channel (CH4), and the signal voltage (CH4 Signal) of the fourth channel (CH4).
Referring to
The first pixel 113 may include a first photoelectric conversion unit (PD1), a first transfer transistor (TG1), a first floating diffusion node (FD1), a first reset transistor (RG1), a first source follower transistor (SF1), a first selection transistor (SG1), and a first booster 210. The second pixel 114 may include a second photoelectric conversion unit (PD2), a second transfer transistor (TG2), a second floating diffusion node (FD2), a second reset transistor (RG2), a second source follower transistor (SF2), a second selection transistor (SG2), and a second booster 211. The outputs of the first pixel 113 and the second pixel 114 may be connected to the same output line (OUT).
The first booster 210 may be enabled/disabled by a first boosting signal (FDB1). Further, the second booster 211 may be enabled/disabled by a second boosting signal (FDB2).
Referring to
Referring to
In the first and second pixels 113 and 114 of
Referring to
While the present inventive concept has been shown and described with reference to exemplary embodiments thereof, it will be apparent to those of ordinary skill in the art that various modifications in form and details may be made thereto without materially departing from the spirit and scope of the inventive concept as set forth by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2018-0004618 | Jan 2018 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
8426796 | Mao et al. | Apr 2013 | B2 |
9083902 | Masagaki et al. | Jul 2015 | B2 |
9491386 | Chen et al. | Nov 2016 | B2 |
10103193 | Manabe | Oct 2018 | B1 |
20070147132 | Lee | Jun 2007 | A1 |
20090272879 | Dai | Nov 2009 | A1 |
20110036969 | Ahn | Feb 2011 | A1 |
20130009043 | Mao | Jan 2013 | A1 |
20170070691 | Nishikido | Mar 2017 | A1 |
20170078594 | Kawabata | Mar 2017 | A1 |
20170126997 | Ha | May 2017 | A1 |
20170223297 | Kawaguchi | Aug 2017 | A1 |
20170237922 | Kim et al. | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
5895525 | Mar 2016 | JP |
Number | Date | Country | |
---|---|---|---|
20190222781 A1 | Jul 2019 | US |