The present invention relates to an image sensor. More particularly, the present invention relates to an image sensor having infrared sensing function.
With the development of the access control systems and security systems, the biometric technologies using human characteristics to confirm personal identity becomes prevalent. Iris recognition technology is a popular one of the biometric technologies since the iris recognition technology has high reliability. When the iris recognition technology is applied in an electronic device, such as a smart phone, an image sensor capable of receiving visible light and infrared separately is required to implement iris recognition function. A conventional image sensor has two different portions for receiving visible light and infrared separately.
The present invention provides an image sensor. The image sensor includes an infrared receiving portion and a visible light receiving portion. The infrared receiving portion is configured to receive infrared. The visible light receiving portion is configured to receive a visible light. The visible light receiving portion includes an infrared cutoff filter grid configured to purify the visible light.
The invention can be more fully understood by reading the following detailed description of the embodiment, with reference made to the accompanying drawings as follows:
Specific embodiments of the present invention are further described in detail below with reference to the accompanying drawings, however, the embodiments described are not intended to limit the present invention and it is not intended for the description of operation to limit the order of implementation. Moreover, any device with equivalent functions that is produced from a structure formed by a recombination of elements shall fall within the scope of the present invention. Additionally, the drawings are only illustrative and are not drawn to actual size.
As shown in
The infrared cutoff filter grid 118 is filled with the color filter 118 to provide the color light. In this embodiment, the color filter 118 includes a red color filter unit 118a, a blue color filter unit 118b and a green color filter unit 118c, but embodiments of the present invention are not limited thereto.
The infrared cutoff filter 114 is configured to cutoff the infrared. In other words, the infrared cutoff filter 114 can block the transmission of the infrared, while passing the light. In this embodiment, the infrared cutoff filter 114 blocks lights having a wavelength greater than 850 nm, but embodiments of the present invention are not limited thereto.
As shown in
In this embodiment, one of the first filter 124 and the second filter 126 is an infrared pass filter. The other one of the first filter 124 and the second filter 126 is a white filter or the infrared pass filter. The infrared pass filter is configured to cutoff the visible light. In other words, the infrared pass filter can block the transmission of the visible light, while passing the light. In this embodiment, the infrared pass filter blocks lights having a wavelength smaller than 850 nm, but embodiments of the present invention are not limited thereto. The white filter is configured to allow the passage of the infrared. In this embodiment, the white filter is a white photoresist, but embodiments of the present invention are not limited thereto.
As shown in
As shown in
The spacer layer SP is located on the color filter 118 and the second filter 126 to provide a flat surface on which the micro-lens layer ML is disposed. It is noted that a sum of a thickness of the infrared cutoff filter 114 and a thickness of the infrared cutoff filter grid 116 and the color filter 118 is substantially equal to a sum of a thickness of the first filter 124 and a thickness of the second filter 126 in this embodiment. The micro-lens layer ML is configured to collect the infrared and the visible light. Specifically, when the image sensor 100 is used to sense an object (for example iris), the object is focused though the micro-lens layer ML. Further, focus of the image sensor 100 can be adjusted by varying a thickness of the micro-lens layer ML.
It is noted that the material of the micro-lens layer ML may be epoxy, optical cement, polymethylmethacrylates (PMMAs), polyurethanes (PUs) polydimethylsiloxane (PDMS), or other thermal curing or photo-curing transparent materials, but the present invention is not limited thereto.
In comparison with the conventional image sensor, the image sensor 100 doesn't need a planar layer since the infrared cutoff filter grid 116 provides a suitable structure to receive the color filter 118, thereby decreasing the light path of the visible light and the infrared received by the image sensor 100. Therefore, the visible light and the infrared received by the image sensor 100 have a smaller loss of the intensity. Furthermore, in comparison with the conventional image sensor, the visible light received by the image sensor 100 has smaller noise since the cutoff filter grid 116 is configured to purify the visible light.
Referring to
As shown in
As shown in
As shown in
From the above description, the structure of the image sensor of the present invention includes the infrared cutoff filter grid to purify the visible light, such that the visible light received by the image sensor of the present invention has a smaller noise. Furthermore, the structure of the image sensor of the present invention doesn't need a planar layer, such that the visible light and infrared received by the image sensor of the present invention have a smaller loss of the intensity.
Although the present invention has been described in considerable detail with reference to certain embodiments thereof, other embodiments are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the embodiments contained herein. It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
20060145197 | Baek | Jul 2006 | A1 |
20110181948 | Kindler | Jul 2011 | A1 |
20110235017 | Iwasaki | Sep 2011 | A1 |
20150381907 | Boettiger et al. | Dec 2015 | A1 |
20160099272 | Wang | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
2010-288274 | Dec 2010 | JP |
201614820 | Apr 2016 | TW |
Number | Date | Country | |
---|---|---|---|
20180254296 A1 | Sep 2018 | US |