The product comprises an imager, a coded data source, and a variable property having a first use, with light emanating from the coded data source representing the first use and specifying which portion of light detected by the imager represents the variable property. The coded data source can be from a plurality of coded data sources and the imager can be from a plurality of imagers.
The transducer product comprises a first imager and a first coded data source. The first imager has a first field of view which extends along a first orthogonal axis triad.
First detected light is detected by the first imager at a first time. First code light emanating from the first coded data source is subsumed in the first detected light.
When the imager is from a plurality of imagers 21 the first field of view is subsumed in a collective field of view 22 of the plurality of imagers and the first detected light is subsumed in collective detected light 12 detected by the plurality of imagers. When the first coded data source is from a plurality of coded data sources and several coded data sources 11 from the plurality of coded data sources are in the collective field of view, code light emanating from the several coded data sources is subsumed in the collective detected light.
A first variable property has a first use which is represented by the first code light. The first variable property has a first value at the first time. The first value is represented by first value light. The first value light is a first value portion of the first detected light. The first value portion is specified by the first code light.
A first variable property can be any physical property which can have an analog or digital representation. For example the first variable property can be temperature represented by an expanding volume thermometer. A first use can be any application using the physical property. For example the first use can be temperature control.
A first signal is caused by the imager when the imager detects the first light at the first time. The first signal represents the first code light and represents the first value light. When the first imager is from a plurality of imagers the first signal is subsumed in collective signals 31 output 23 by the plurality of imagers.
When the first coded data source is from a plurality of coded data sources, second code light can emanate from a second coded data source from the plurality of coded data sources. When first code light and second code light are subsumed in the first detected light, the first imager can concurrently detect first code light and second code light, and the first signal can represent both the first code light and the second code light.
“Detect light” here and throughout means not only detecting the presence of light but also means detecting the specific properties of the light which encode data so that an imager can output a signal which represents the data. Concurrently detecting light from several data sources together distinguishes the imager from a bar code reader which can not concurrently detect light from several spatially separated bar codes, within the meaning of “detect light” used here.
The imager can be the dual mode imager of patent application PCTUS/01/13742 filed 30, Apr. 2001 and published as WO 01/84475 A1 8, Nov. 2001. The coded data source depicted in the figures is a form which works well with the dual mode imager. The bands 41A, 41B, 41C, 41D and 43A, 43B, 43C, 43D retro reflect infra red light. The locate mode of the dual mode imager detects these bands. The react mode of the dual mode imager detects light from the color bands forming coded regions 42A, 42B, 42C, 42D over other light from the field of view. Bands 43A, 43B, 43C, 43D are wider than bands 41A, 41B, 41C, 41D defining a direction. Other imagers and other forms of coded data sources can be used.
A coded data source can itself vary to provide the first value and subsequent values of the first variable property. A coded data source can have an analog variation to provide the first value and subsequent values of the first variable property. For example 40B in
Any part of a coded data source can have an analog variation to represent values of a variable property. Any property which can have an analog representation can be represented this way. For example, when a first size of a portion of a coded data source can represent a first sound frequency and a second size can represent a second sound frequency the coded data source can be used as a musical instrument.
A coded data source can vary digitally to provide the first value and subsequent values of the first variable property. Any variable property which can be represented digitally can be represented this way. This can be done. for example, by changing one, and more, of the color bands in a code region such as 42A.
The digital readout box 50C containing a digital display 51C in
A first position 40A of a coded data source can provide a first value of a variable property and a subsequent position 50A can provide subsequent values. A distance moved 51A can provide a first value, and subsequent distances moved can provide subsequent values. Positions can be reckoned relative to the orthogonal axis triad of an imager. Positions can be reckoned relative to reference coded data sources.
This analog variation of a coded data source can represent any variable property which can have an analog representation. This is especially useful for motion control and for the music example described above. Only some of many examples are described below. A person can move a coded data source and an object will be caused to have analog motion.
Coded data sources can be attached onto several parts of a face of a person and various expressions will move the coded data sources relative to each other so that each expression orientation can represent a specific control signal. Various motions such as nodding can represent specific control signals. Coded data sources can be attached to various places—teeth for example—where motions and orientations can represent control commands.
Coded data sources can be incorporated in a contact lens to identify the wearer and to track the direction of looking. A person can move a coded data source on a finger in writing and drawing motions and a display will be caused to output the writing and drawings. A person can move a coded data source to control various properties of sounds. This can emulate existing musical instruments and can be used to create new musical instruments.
First code light from a first coded data source can specify a first location of a first object which emanates first value light. A first imager will detect the first value light as a first value portion of the first detected light. The first object can vary to provide the first value and subsequent values of a first variable property.
An object can have an analog variation to provide a first value and subsequent values of a variable property. Light emanating from the object comprises value light which represents a first value and subsequent values of a variable property.
An example of this is depicted in
An object can vary digitally to provide a first value and subsequent values of a variable property. An example is depicted in
The imager—dual mode and otherwise—can have components separated in space. This can enlarge the field of view. This can facilitate determining the spatial positions of coded data sources.
The imager can have several elements which selectively detect portions of a range of values of a physical property of light from a coded data source, with the several portions detected by the several imager elements being combined to detect the full range of the physical property of light without forming an image of the coded data source.
Light from a coded data source can have various sources such as light reflected from ambient sources, a light source which is part of a coded data source, light emitted after energizing by suitable radiation, light emitted after energizing by suitable radiation with a characteristic decay time, a light source adjacent to the imager illuminating the coded data source, and combinations of these.
Light is not limited to visible light. For example, infrared can be used, and millimeter and longer wavelengths can be used. Light can be radiating energy from any portion of the electromagnetic spectrum which can provide the functions required here. Other forms of radiating energy—such as acoustic energy—which can provide the functions required here are included in the meaning of “light” here.
A “signal” from a first product part to a second product part and a first product part being “signal connected” with a second product part here, and throughout, mean that a first physical state of the first product part causes a second physical state of the second product part. This can occur by various direct causal means and can occur by any of various transmission means. Transmitted signals can be any of various point-to-point and broadcast forms of energy transmission such as wireless and via wires, cables, and fibers. Parts of transmitted signals can reside with one form of the transmitted signal, parts can reside with a second form of transmitted signal, and parts can reside with various combinations of transmitted signals.
The several causes here can act via any of various processing modes. The processing can utilize configured processing elements such as fixed circuits, can utilize configurable processing elements such as field programmable gate arrays and neural networks, can utilize instructions in a data-bearing medium, and can utilize combinations of these. The processing be stand alone, can act via a local information system, can act via a networked information system, and can act via combinations of these. The processing—in part at least—can be part of an imager.
This application is a national stage of PCT/US01/48015 filed Dec. 10, 2001, which claims benefit of U.S. provisional application 60/256,086 filed 15, Dec. 2000 and U.S. provisional application 60/318,962 filed 11, Sep. 2001.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US01/48015 | 12/10/2001 | WO | 00 | 5/27/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/48947 | 6/20/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4053233 | Bien et al. | Oct 1977 | A |
4099050 | Sauermann | Jul 1978 | A |
4228430 | Iwamura et al. | Oct 1980 | A |
4439672 | Salaman | Mar 1984 | A |
4603231 | Reiffel | Jul 1986 | A |
4637797 | Whitney et al. | Jan 1987 | A |
4650334 | Alster et al. | Mar 1987 | A |
4684349 | Ferguson et al. | Aug 1987 | A |
4945914 | Allen | Aug 1990 | A |
4998441 | Stuart | Mar 1991 | A |
5107350 | Omori | Apr 1992 | A |
5111410 | Nakayama et al. | May 1992 | A |
5181015 | Marshall et al. | Jan 1993 | A |
5206556 | Hayakawa | Apr 1993 | A |
5214414 | Levine et al. | May 1993 | A |
5282045 | Mimura et al. | Jan 1994 | A |
5415553 | Szmidla | May 1995 | A |
5448261 | Koike et al. | Sep 1995 | A |
5453015 | Vogel | Sep 1995 | A |
5507527 | Tomioka et al. | Apr 1996 | A |
5537211 | Dial | Jul 1996 | A |
5563401 | Lemelson | Oct 1996 | A |
5644126 | Ogawa | Jul 1997 | A |
5710416 | Belknap et al. | Jan 1998 | A |
5712658 | Arita et al. | Jan 1998 | A |
5729220 | Russell | Mar 1998 | A |
5756981 | Roustaei et al. | May 1998 | A |
5789732 | McMahon et al. | Aug 1998 | A |
5795161 | Vogel | Aug 1998 | A |
5821523 | Bunte et al. | Oct 1998 | A |
5822735 | De Lapa et al. | Oct 1998 | A |
5825045 | Koenck et al. | Oct 1998 | A |
5826578 | Curchod | Oct 1998 | A |
5835237 | Ebrahimi | Nov 1998 | A |
5852211 | Dumpelmann et al. | Dec 1998 | A |
5852823 | De Bonet | Dec 1998 | A |
5867265 | Thomas | Feb 1999 | A |
5912700 | Honey et al. | Jun 1999 | A |
5917472 | Perala | Jun 1999 | A |
5917486 | Rylander | Jun 1999 | A |
5963145 | Escobosa | Oct 1999 | A |
5982352 | Pryor | Nov 1999 | A |
5988505 | Shellhammer | Nov 1999 | A |
6000612 | Xu | Dec 1999 | A |
6047893 | Saporetti | Apr 2000 | A |
6048117 | Banton | Apr 2000 | A |
6056199 | Wiklof et al. | May 2000 | A |
6082619 | Ma et al. | Jul 2000 | A |
6118848 | Reiffel | Sep 2000 | A |
6121953 | Walker | Sep 2000 | A |
6155489 | Collins, Jr. et al. | Dec 2000 | A |
6163946 | Pryor | Dec 2000 | A |
6167607 | Pryor | Jan 2001 | B1 |
6301763 | Pryor | Oct 2001 | B1 |
6311214 | Rhoads | Oct 2001 | B1 |
6314631 | Pryor | Nov 2001 | B1 |
6317188 | Shibahara | Nov 2001 | B1 |
6317953 | Pryor | Nov 2001 | B1 |
6330973 | Bridgelall et al. | Dec 2001 | B1 |
6335685 | Schrott et al. | Jan 2002 | B1 |
6542083 | Richley et al. | Apr 2003 | B1 |
6545670 | Pryor | Apr 2003 | B1 |
6708885 | Reiffel | Mar 2004 | B2 |
6720949 | Pryor | Apr 2004 | B1 |
6750848 | Pryor | Jun 2004 | B1 |
6766036 | Pryor | Jul 2004 | B1 |
20020036617 | Pryor | Mar 2002 | A1 |
20020183961 | French et al. | Dec 2002 | A1 |
20030222145 | Reiffel | Dec 2003 | A1 |
20040027455 | Reiffel | Feb 2004 | A1 |
20040041027 | Reiffel | Mar 2004 | A1 |
20040125224 | Reiffel | Jul 2004 | A1 |
20040135766 | Reiffel | Jul 2004 | A1 |
20040188525 | Reiffel | Sep 2004 | A1 |
20040195327 | Reiffel | Oct 2004 | A1 |
Number | Date | Country |
---|---|---|
0 062 473 | Oct 1982 | EP |
0 840 248 | May 1998 | EP |
1 020 810 | Jul 2000 | EP |
2 694 827 | Feb 1994 | FR |
11-143629 | May 1999 | JP |
WO 8707106 | Nov 1987 | WO |
WO 9318478 | Sep 1993 | WO |
WO 9632690 | Oct 1996 | WO |
WO 9936836 | Jul 1999 | WO |
WO 9966441 | Dec 1999 | WO |
WO 0171397 | Sep 2001 | WO |
WO 0184475 | Nov 2001 | WO |
WO 0217037 | Feb 2002 | WO |
WO 0217291 | Feb 2002 | WO |
WO 0217293 | Feb 2002 | WO |
WO 0248947 | Jun 2002 | WO |
WO 0249340 | Jun 2002 | WO |
WO 0249344 | Jun 2002 | WO |
WO 02086807 | Oct 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20040041027 A1 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
60256086 | Dec 2000 | US | |
60318962 | Sep 2001 | US |