The present invention is directed to imaging compositions and methods. More specifically, the present invention is directed to stable imaging compositions suitable for application on a substrate to form an article and methods of using the articles.
There are numerous compositions and methods employed in various industries to form images on substrates to mark the substrates. Such industries include the paper industry, packaging industry, paint industry, medical industry, dental industry, electronics industry, textile industry, aeronautical, marine and automotive industries, and the visual arts, to name a few. Imaging or marking typically is used to identify an article such as the name or logo of a manufacturer, a serial number or lot number, tissue types, or may be used for alignment purposes in the manufacture of semiconductor wafers, aeronautical ships, marine vessels and terrestrial vehicles.
Marking also is employed in proofing products, photoresists, soldermasks, printing plates and other photopolymer products. For example, U.S. Pat. No. 5,744,280 discloses photoimageable compositions allegedly capable of forming monochrome and multichrome images, which have contrast image properties. The photoimageable compositions include photooxidants, photosensitizers, photodeactivation compounds and deuterated leuco compounds. The leuco compounds are aminotriarylmethine compounds or related compounds in which the methane (central) carbon atom is deuterated to the extant of at least 60% with deuterium incorporation in place of the corresponding hydrido aminotriaryl-methine. The patent alleges that the deuterated leuco compounds provide for an increased contrast imaging as opposed to corresponding hydrido leuco compounds. Upon exposure of the photoimageable compositions to actinic radiation a phototropic response is elicited.
Marking of information on labels, placing logos on textiles, or stamping information such as company name, a part or serial number or other information such as a lot number or die location on semiconductor devices may be affected by direct printing. The printing may be carried out by pad printing or screen printing. Pad printing has an advantage in printing on a curved surface because of the elasticity of the pad but is disadvantageous in making a fine pattern with precision. Screen printing also meets with difficulty in obtaining a fine pattern with precision due to the limited mesh size of the screen. Besides the poor precision, since printing involves making a plate for every desired pattern or requires time for setting printing conditions, these methods are by no means suitable for uses demanding real time processing.
Hence, marking by printing has recently been replaced by ink jet marking. Although ink jet marking satisfies the demand for speed and real time processing, which are not possessed by many conventional printing systems, the ink to be used, which is jetted from nozzles under pressure, is strictly specified. Unless the specification is strictly met, the ink sometimes causes obstruction of nozzles, resulting in an increase of reject rate.
In order to overcome the problem, laser marking has lately been attracting attention as a high-speed and efficient marking method and already put to practical use in some industries. Many laser marking techniques involve irradiating only necessary areas of substrates with laser light to denature or remove the irradiated area or irradiating a coated substrate with laser light to remove the irradiated coating layer thereby making a contrast between the irradiated area (marked area) and the non-irradiated area (background).
Using a laser to mark an article such as a semiconductor chip is a fast and economical means of marking. There are, however, certain disadvantages associated with state-of-the art laser marking techniques that burn the surface to achieve a desired mark. For example, a mark burned in a surface by a laser may only be visible at select angles of incidence to a light source. Further, oils or other contaminants deposited on the article surface subsequent to marking may blur or even obscure the laser mark. Additionally, because the laser actually burns the surface of the work piece, for bare die marking, the associated burning may damage any underlying structures or internal circuitry or by increasing internal die temperature beyond acceptable limits. Moreover, where the manufactured part is not produced of a laser reactive material, a laser reactive coating applied to the surface of a component adds expense and may take hours to cure.
Alternatively, laser projectors may be used to project images onto surfaces. They are used to assist in the positioning of work pieces on work surfaces. Some systems have been designed to project three-dimensional images onto contoured surfaces rather than flat surfaces. The projected images are used as patterns for manufacturing products and to scan an image of the desired location of a ply on previously placed plies. Examples of such uses are in the manufacturing of leather products, roof trusses, and airplane fuselages. Laser projectors are also used for locating templates or paint masks during the painting of aircraft.
The use of scanned laser images to provide an indication of where to place or align work piece parts, for drilling holes, for forming an outline for painting a logo or picture, or aligning segments of a marine vessel for gluing requires extreme accuracy in calibrating the position of the laser projector relative to the work surface. Typically, six reference points are required for sufficient accuracy to align work piece parts. Reflectors or sensors typically have been placed in an approximate area where the ply is to be placed. Since the points are at fixed locations relative to the work and the laser, the laser also knows where it is relative to the work. Typically, workers hand mark the place where the laser beam image contacts the work piece with a marker or masking tape to define the laser image. Such methods are tedious, and the workers' hands may block the laser image disrupting the alignment beam to the work piece. Accordingly, misalignment may occur.
Another problem associated with laser marking is the potential for opthalmological damage to the workers. Many lasers used in marking may cause retinal damage to workers involved in the marking system. Generally, lasers, which generate energy exceeding 5 mW, present a hazard to workers.
Accordingly, there is still a need for improved imaging compositions and methods of marking a work piece.
Articles include imaging compositions having one or more sensitizers in sufficient amounts to affect a color or shade change in the compositions upon application of energy at powers of 5 mW or less.
In another embodiment an article includes an imaging composition having one or more sensitizers in sufficient amounts to affect a color or shade change in the compositions upon application of energy at powers 5 mW or less, the imaging composition coats one side of the article, the opposite side includes an adhesive.
In a further embodiment an article includes an imaging composition having one or more sensitizers in sufficient amounts to affect a color or shade change in the composition upon application of energy at powers of 5 mW or less, the imaging composition is coated on a side of a polymer base, an opposite side of the polymer base includes an adhesive with an adhesive release coating, a protective layer covers the imaging composition.
The imaging compositions may include binder polymers, diluents, plasticizers, flow agents, accelerators, adhesion promoters, organic acids, surfactants, chain transfer agents, thickeners, rheological modifiers, and other optional components to tailor the imaging compositions for a desired marking method and substrate. The articles with the imaging compositions may then be applied to a suitable work piece to form an image, which is used to produce a product.
In other embodiments methods of imaging include providing an imaging composition comprising one or more sensitizers in sufficient amounts to affect a color or shade change in the composition upon exposure to energy at powers of 5 mW or less; applying the imaging composition to a substrate to form an article; applying the article to a work piece; and applying energy at 5 mW or less to the imaging composition to affect a color or shade change. The articles and methods provide a prompt and efficient means of changing the color or shade of a work piece or of placing a pattern on the work piece such as aeronautical ships, marine vessels and terrestrial vehicles, or for forming images on textiles.
Portions of the imaging composition may be removed with a suitable developer or stripper before or after further processing is done on the work piece. When the article has a releasable adhesive, unwanted portions may be peeled from the work piece.
The image may be used as a mark or indicator, for example, to drill holes for fasteners to join parts together, to form an outline for making a logo or picture on an airplane, or to align segments of marine vessel parts. Since the articles may be promptly applied to a work piece and the image promptly formed by application of energy to create a color or shade contrast, workers no longer need to work adjacent the work piece to mark laser beam images with a hand-held marker or tape in the fabrication of products. Accordingly, the problems of blocking light caused by the movement of workers hands and the slower and tedious process of applying marks by workers using a hand-held marker or pieces of tape are eliminated. Further, the low intensities of energy, which are used to cause the color or shade change, eliminates or at least reduces the potential for opthalmalogical damage to workers.
The reduction of human error increases the accuracy of marking. This is important when the marks are used to direct the alignment of parts such as in aeronautical ships, marine vessels or terrestrial vehicles where accuracy in fabrication is critical to the reliable and safe operation of the machines.
The imaging compositions may be applied to substrates by methods such as spray coating, roller coating, dipping, ink jetting, brushing, or other suitable method. Energy sources for applying energy to create the color or shade change include, but are not limited to laser, infrared and ultraviolet light generating apparatus. Conventional apparatus may be employed, thus a new and specialized apparatus is not necessary to use the articles and methods. Additionally, the single, non-selective coating application of the articles on work pieces followed by prompt application of energy to create the color or shade change makes the articles suitable for assembly line use. Accordingly, the articles provide for more efficient manufacturing than many conventional alignment and imaging processes.
The file of this patent contains at least one drawing executed in color. Copies of this patent with color drawing(s) will be provided by the Patent Office upon request and payment of the necessary fee.
As used throughout this specification, the following abbreviations have the following meaning, unless the context indicates otherwise: ° C.=degrees Centigrade; IR=infrared; UV=ultraviolet; gm=gram; mg=milligram; L=liter; mL=milliliter; wt %=weight percent; erg=1 dyne cm=10−7 joules; J=joule; mJ=millijoule; nm=nanometer=10−9 meters; cm=centimeters; mm=millimeters; W=watt=1 joule/second; and mW=milliwatt; ns=nanosecond; μsec=microsecond; Hz=hertz; KV=kilivolt.
The terms “polymer” and “copolymer” are used interchangeably throughout this specification. “Actinic radiation” means radiation from light that produces a chemical change. “Photofugitive response” means that the application of energy causes a colored material to fade, or become lighter. “Phototropic response” means that the application of energy causes material to darken. “Changing shade” means that the color fades or becomes darker. “(Meth)acrylate” includes both methacrylate and acrylate, and “(meth)acrylic acid” includes both methacrylic acid and acrylic acid. “Diluent” means a carrier or vehicle, such as solvents or solid fillers.
Unless otherwise noted, all percentages are by weight and are based on dry weight or solvent free weight. All numerical ranges are inclusive and combinable in any order, except where it is logical that such numerical ranges are constrained to add up to 100%.
Articles include imaging compositions having one or more sensitizers in sufficient amounts to affect a color or shade change in the compositions upon application of energy at powers of 5 mW or less. The imaging compositions may be applied to substrates to form articles. The articles may be applied to work pieces followed by applying sufficient amounts of energy to affect color or shade changes on the entire articles, or to form patterned images on the articles. For example, an article with an imaging composition may be applied selectively to a work piece followed by the application of energy to affect a color or shade change to produce a patterned image over the work piece. Alternatively, the article with the imaging composition may cover the entire work piece and the energy applied selectively to affect a color or shade change to form a patterned image over the work piece. After the image is formed over the work piece, it may be further processed to form a product as described below.
Sensitizers employed in the compositions are compounds, which are activated by energy to change color or shade, or upon activation cause one or more other compounds to change color or shade. The imaging compositions include one or more photosensitizers sensitive to visible light and may be activated with energy at powers of 5 mW or less. Generally, such sensitizers are included in amounts of from 0.005 wt % to 10 wt %, or such as from 0.05 wt % to 5 wt %, or such as from 0.1 wt % to 1 wt % of the imaging compositions.
Sensitizers, which are activated in the visible range, typically are activated at wavelengths of from above 300 nm to less than 600=n, or such as from 350 nm to 550 nm, or such as from 400 nm to 535 nm. Such sensitizers include, but are not limited to cyclopentanone based conjugated compounds such as cyclopentanone, 2,5-bis-[4-(diethylamino)phenyl]methylene]-, cyclopentanone, 2,5-bis[(2,3,6,7-tetrahydro-1H,5H-benzo[i,j]quinolizin-9-yl)methylene]-, and cyclopentanone, 2,5-bis-[4-(diethyl-amino)-2-methylphenyl]methylene]-. Such cyclopentanones may be prepared from cyclic ketones and tricyclic aminoaldehydes by methods known in the art.
Examples of such suitable conjugated compounds have the following formula:
where p and q are independently 0 or 1, r is 2 or 3; and R1 is independently hydrogen, linear or branched (C1-C10)aliphatic, or linear or branched (C1-C10)alkoxy, typically R1 is independently hydrogen, methyl or methoxy; R2 is independently hydrogen, linear or branched (C1-C10)aliphatic, (C5-C7)ring, such as an alicyclic ring, phenyl, alkaryl, linear or branched (C1-C10)hydroxyalkyl, linear or branched hydroxy terminated ether, such as —(CH2)v—O—(CHR3)w—OH, where v is an integer of from 2 to 4, w is an integer of from 1 to 4, and R3 is hydrogen or methyl and carbons of each R2 may be taken together to form a 5 to 7 membered ring with the nitrogen, or a 5 to 7 membered ring with the nitrogen and with another heteroatom chosen from oxygen, sulfur, and a second nitrogen. Such sensitizers may be activated at intensities of 5 mW or less.
Other sensitizers which are activated in the visible light range include, but are not limited to N-alkylamino aryl ketones such as bis(9-julolidyl ketone), bis-(N-ethyl-1,2,3,4-tetrahydro-6-quinolyl)ketone and p-methoxyphenyl-(N-ethyl-1,2,3,4-tetrahydro-6-quinolyl)ketone; visible light absorbing dyes prepared by base catalyzed condensation of an aldehyde or dimethinehemicyanine with the corresponding ketone; visible light absorbing squarylium compounds; 1,3-dihydro-1-oxo-2H-indene derivatives; coumarin based dyes such as ketocoumarin, and 3,3′-carbonyl bis(7-diethylaminocoumarin); halogenated titanocene compounds such as bis(eta.5-2,4-cyclopentadien-1-yl)-bis(2,6-difluoro-3-(1H-pyrrol-1-yl)-phenyl) titanium; and compounds derived from aryl ketones and p-dialkylaminoarylaldehydes. Examples of additional sensitizers include fluorescein type dyes and light adsorber materials based on triarylmethane nucleus. Such compounds include Eosin, Eosin B and Rose Bengal. Another suitable compound is Erythrosin B. Methods of making such sensitizers are known in the art, and many are commercially available. Typically, such visible light activated sensitizers are used in amounts of from 0.05 wt % to 2 wt %, or such as from 0.25 wt % to 1 wt %, or such as from 0.1 wt % to 0.5 wt % of the composition.
Optionally, the imaging compositions may include one or more photosensitizers that are activated by UV light. Such sensitizers are typically activated at wavelengths of from above 10 nm to less than 300 nm, or such as from 50 nm to 250 mm, or such as from 100 nm to 200 nm. Such UV activated sensitizers include, but are not limited to, polymeric sensitizers having a weight average molecular weight of from 10,000 to 300,000 such as polymers of 1-[4-(dimethylamino)phenyl]-1-(4-methoxyphenyl)-methanone, 1-[4-(dimethylamino)phenyl]-1-(4-hydroxyphenyl)-methanone and 1-[4-(dimethylamino)phenyl]-1-[4-(2-hydroxyethoxy)-phenyl]-methanone; free bases of ketone imine dyestuffs; amino derivatives of triarylmethane dyestuffs; amino derivatives of xanthene dyestuffs; amino derivatives of acridine dyestuffs; methine dyestuffs; and polymethine dyestuffs. Methods of preparing such compounds are known in the art. Typically, such UV activated sensitizers are used in amounts of from 0.05 wt % to 1 wt %, or such as from 0.1 wt % to 0.5 wt % of the composition.
Optionally, the imaging compositions may include one or more photosensitizers that are activated by IR light. Such sensitizers are typically activated at wavelengths of from greater than 600 nm to less than 1,000 nm, or such as from 700 nm to 900 nm, or such as from 750 nm to 850 nm. Such IR activated sensitizers include, but are not limited to infrared squarylium dyes, and carbocyanine dyes. Such dyes are known in the art and may be made by methods described in the literature. Typically, such dyes are included in the compositions in amounts of from 0.05 wt % to 3 wt %, or such as from 0.5 wt % to 2 wt %, or such as from 0.1 wt % to 1 wt % of the composition.
Compounds which may function as reducing agents include, but are not limited to, one or more quinone compounds such as pyrenequinones such as 1,6-pyrenequinone and 1,8-pyrenequinone; 9,10-anthraquinone, 1-chloroanthraquinone, 2-chloro-anthraquinone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, octamethylanthraquinone, 1,4-naphthoquinone, 9,10-phenanthrenequinone, 1,2-benzaanthraquinone, 2,3-benzanthraquinone, 2-methyl-1,4-naphthoquinone, 2,3-dichloronaphthoquinone, 1,4-dimethylanthraquinone, 2,3-dimethylanthraquinone, sodium salt of anthraquinone alpha-sulfonic acid, 3-chloro-2-methylanthraquinone, retenequinone, 7,8,9,10-tetrahydronaphthacenequinone, and 1,2,3,4-tetrahydrobenz(a)anthracene-7,12-dione.
Other compounds which may function as reducing agents include, but are not limited to, acyl esters of triethanolamines having a formula:
N(CH2CH2OC(O)—R)3 (II)
where R is alkyl of 1 to 4 carbon atoms, and 0 to 99% of a C1 to C4 alkyl ester of nitrilotriacetic acid or of 3,3′,3″-nitrilotripropionic acid. Examples of such acyl esters of triethanolamine are triethanolamine triacetate and dibenzylethanolamine acetate.
One or more reducing agent also may be used in the light-sensitive compositions to provide the desired color or shade change. Typically, one or more quinones are used with one or more acyl esters of triethanolamine to provide the desired reducing agent function. Reducing agents may be used in the compositions in amounts of from 0.05 wt % to 50 wt %, or such as from 0.1 wt % to 40 wt %, or such as 0.5 wt % to 35 wt %.
Chain transfer agents may be used in the imaging compositions. Such chain transfer agents function as accelerators. Chain transfer agents or accelerators increase the rate at which the color or shade change occurs after exposure to energy. Any compound which accelerates the rate of color or shade change may be used. Accelerators may be included in the compositions in amounts of from 0.01 wt % to 25 wt %, or such as from 0.5 wt % to 10 wt %. Examples of suitable accelerators include onium salts, and amines.
Suitable onium salts include, but are not limited to, onium salts in which the onium cation is iodonium or sulfonium such as onium salts of arylsulfonyloxybenzenesulfonate anions, phosphonium, oxysulfoxonium, oxysulfonium, sulfoxonium, ammonium, diazonium, selononium, arsonium, and N-substituted N-heterocyclic onium in which N is substituted with a substituted or unsubstituted saturated or unsaturated alkyl or aryl group.
The anion of the onium salts may be, for example, chloride, or a non-nucleophilic anion such as tetrafluoroborate, hexafluorophosphate, hexafluoroarsenate, hexafluoroantimonate, triflate, tetrakis-(pentafluorophenyl)borate, pentafluoroethyl sulfonate, p-methyl-benzyl sulfonate, ethylsulfonate, trifluoromethyl acetate and pentafluoroethyl acetate.
Examples of typical onium salts include, for example, diphenyl iodonium chloride, diphenyliodonium hexafluorophosphate, diphenyl iodonium hexafluoroantimonate, 4,4′-dicumyliodonium chloride, 4,4′dicumyliodonium hexofluorophosphate, N-methoxy-a-picolinium-p-toluene sulfonate, 4-methoxybenzene-diazonium tetrafluoroborate, 4,4′-bis-dodecylphenyliodonium-hexafluoro phosphate, 2-cyanoethyl-triphenylphosphonium chloride, bis-[4-diphenylsulfonionphenyl]sulfide-bis-hexafluoro phosphate, bis-4-dodecylphenyliodonium hexafluoroantimonate, and triphenylsulfonium hexafluoroantimonate.
Suitable amines include, but are not limited to primary, secondary and tertiary amines such as methylamine, diethylamine, triethylamine, heterocyclic amines such as pyridine and piperidine, aromatic amines such as aniline, quaternary ammonium halides such as tetraethylammonium fluoride, and quaternary ammonium hydroxides such as tetraethylammonium hydroxide. The triethanolamines of formula (II) also have accelerator activity in addition to functioning as a reducing agent.
Other compounds such as color formers may be used in the imaging compositions. Such color formers include, but are not limited to, leuco-type compounds. Such color formers also contribute to the color or shade change. Suitable leuco-type compounds include, but are not limited to, aminotriarylmethanes, aminoxanthenes, aminothioxanthenes, amino-9,10-dihydroacridines, aminophenoxazines, aminophenothiazines, aminodihydrophenazines, antinodiphenylmethines, leuco indamines, aminohydrocinnamic acids such as cyanoethanes and leuco methines, hydrazines, leuco indigoid dyes, amino-2,3-dihydroanthraquinones, tetrahalo-p,p′-biphenols, 2(p-hydroxyphenyl)-4,5-diphenylimidazoles, and phenethylanilines. Such compounds are included in amounts of from 0.1 wt % to 5 wt %, or such as from 0.25 wt % to 3 wt %, or such as from 0.5 wt % to 2 wt % of the composition.
When leuco-type compounds are included in the compositions, one or more oxidizing agent is typically included. Compounds, which may function as oxidizing agents include, but are not limited to, hexaarylbiimidazole compounds such as 2,4,5,2′,4′,5′-hexaphenylbiimidazole, 2,2′,5-tris(2-chlorophenyl)-4-(3,4-dimethoxyphenyl)-4,5-diphenylbiimidazole (and isomers), 2,2′-bis(2-ethoxyphenyl)-4,4′,5,5′-tetraphenyl-1,1′-bi-1H-mimidazole, and 2,2′-di-1-naphthalenyl-4,4′,5,5′-tetraphenyl-1′-bi-1H-imidazole. Other suitable compounds include, but are not limited to, halogenated compounds with a bond dissociation energy to produce a first halogen as a free radical of not less than 40 kilocalories per mole, and having not more than one hydrogen attached thereto; a sulfonyl halide having a formula: R′—SO2—X where R′ is an alkyl, alkenyl, cycloalkyl, aryl, alkaryl, or aralkyl and X is chlorine or bromine; a sulfenyl halide of the formula: R″—S—X′ where R″ and X′ have the same meaning as R′ and X above; tetraaryl hydrazines, benzothiazolyl disulfides, polymetharylaldehydes, alkylidene 2,5-cyclohexadien-1-ones, azobenzyls, nitrosos, alkyl (T1), peroxides, and haloamines. Such compounds are included in the compositions in amounts of from 0.25 wt % to 10 wt %, or such as from 0.5 wt % to 5 wt %, or such as from 1 wt % to 3 wt % of the composition. Methods are known in the art for preparing the compounds and many are commercially available.
Film forming polymers may be included in the imaging compositions to function as binders for the compositions. Any film forming binder may be employed in the formulation of the compositions provided that the film forming polymers do not adversely interfere with the desired color or shade change. The film forming polymers are included in amounts of from 10 wt % to 90 wt %, or such as from 15 wt % to 70 wt %, or such as from 25 wt % to 60 wt % of the compositions. Typically, the film forming polymers are derived from a mixture of acid functional monomers and non-acid functional monomers. The acid and non-acid functional monomers are combined to form copolymers such that the acid number ranges from at least 80, or such as from 150 to 250. Examples of suitable acid functional monomers include (meth)acrylic acid, maleic acid, fumaric acid, citraconic acid, 2-acrylamido-2-methylpropanesulfonic acid, 2-hydroxyethyl acrylol phosphate, 2-hydroxypropyl acrylol phosphate, and 2-hydroxy-alpha-acrylol phosphate.
Examples of suitable non-acid functional monomers include esters of (meth)acrylic acid such as methyl acrylate, 2-ethyl hexyl acrylate, n-butyl acrylate, n-hexyl acrylate, methyl methacrylate, hydroxylethyl acrylate, butyl methacrylate, octyl acrylate, 2-ethoxy ethyl methacrylate, t-butyl acrylate, 1,5-pentanediol diacrylate, N,N-diethylaminoethyl acrylate, ethylene glycol diacrylate, 1,3-propanediol diacrylate, decamethylene glycol diacrylate, decamethylene glycol dimethacrylate, 1,4-cyclohexanediol diacrylate, 2,2-dimethylol propane diacrylate, glycerol diacrylate, tripropylene glycol diacrylate, glycerol triacrylate, 2,2-di(p-hydroxyphenyl)-propane dimethacrylate, triethylene glycol diacrylate, polyoxyethyl-2,2-di(p-hydroxyphenyl)-propane dimethacrylate, triethylene glycol dimethacrylate, polyoxypropyltrimethylol propane triacrylate, ethylene glycol dimethacrylate, butylenes glycol dimethacrylate, 1,3-propanediol dimethacrylate, 1,2,4-butanetriol trimethacrylate, 2,2,4-trimethyl-1,3-pentanediol dimethacrylate, pentaerythritol trimethacrylate, 1-phenyl ethylene-1,2-dimethacrylate, pentaerythritol tetramethacrylate, trimethylol propane trimethacrylate, 1,5-pentanediol dimethacrylate; styrene and substituted styrene such as 2-methyl styrene and vinyl toluene and vinyl esters such as vinyl acrylate and vinyl methacrylate.
Other suitable polymers include, but are not limited to, nonionic polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, hydroxyl-ethylcellulose, and hydroxyethylpropyl methylcellulose.
Optionally, one or more plasticizers also may be included in the compositions. Any suitable plasticizer may be employed. Plasticizers may be included in amounts of from 0.5 wt % to 15 wt %, or such as from 1 wt % to 10 wt % of the compositions. Examples of suitable plasticizers include phthalate esters such as dibutylphthalate, diheptylphthalate, dioctylphthalate and diallylphthalate, glycols such as polyethylene glycol and polypropylene glycol, glycol esters such as triethylene glycol diacetate, tetraethylene glycol diacetate, and dipropylene glycol dibenzoate, phosphate esters such as tricresylphosphate, triphenylphosphate, amides such as p-toluenesulfoneamide, benzenesulfoneamide, N-n-butylacetoneamide, aliphatic dibasic acid esters such as diisobutyl-adipate, dioctyladipate, dimethylsebacate, dioctylazelate, dibutylmalate, triethylcitrate, tri-n-butylacetylcitrate, butyl-laurate, dioctyl-4,5-diepoxycyclohexane-1,2-dicarboxylate, and glycerine triacetylesters.
Optionally, one or more flow agents also may be included in the compositions. Flow agents are compounds, which provide a smooth and even coating over a substrate. Flow agents may be included in amounts of from 0.05 wt % to 5 wt % or such as from 0.1 wt % to 2 wt % of the compositions. Suitable flow agents include, but are not limited to, copolymers of alkylacrylates. An example of such alkylacrylates is a copolymer of ethyl acrylate and 2-ethylhexyl acrylate.
Optionally, one or more organic acids may be employed in the compositions. Organic acids may be used in amounts of from 0.01 wt % to 5 wt %, or such as from 0.5 wt % to 2 wt %. Examples of suitable organic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, capric acid, lauric acid, phenylacetic acid, benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, adipic acid, 2-ethylhexanoic acid, isobutyric acid, 2-methylbutyric acid, 2-propylheptanoic acid, 2-phenylpropionic acid, 2-(p-isobutylphenyl)propionic acid, and 2-(6-methoxy-2-naphthyl)propionic acid.
Optionally, one or more surfactants may be used in the compositions. Surfactants may be included in the compositions in amounts of from 0.5 wt % to 10 wt %, or such as from 1 wt % to 5 wt % of the composition. Suitable surfactants include non-ionic, ionic and amphoteric surfactants. Examples of suitable non-ionic surfactants include polyethylene oxide ethers, derivatives of polyethylene oxides, aromatic ethoxylates, acetylenic ethylene oxides and block copolymers of ethylene oxide and propylene oxide. Examples of suitable ionic surfactants include alkali metal, alkaline earth metal, ammonium, and alkanol ammonium salts of alkyl sulfates, alkyl ethoxy sulfates, and alkyl benzene sulfonates. Examples of suitable amphoteric surfactants include derivatives of aliphatic secondary and tertiary amines in which the aliphatic radical may be straight chain or branched and where one or the aliphatic substituents contains from 8 to 18 carbon atoms and one contains an anionic water solubilizing group such as carboxy, sulfo, sulfato, phosphate, or phosphono. Specific examples of such amphoteric surfactants are sodium 3-dodecylaminopropionate and sodium 3-dodecylaminopropane sulfonate.
Optionally, thickeners also may be included in the compositions. Any suitable thickener may be used. An example of a suitable thickener is an associative thickener. Examples of such thickeners include polyurethanes, hydrophobically modified alkali soluble emulsions, hydrophobically modified hydroxyethyl cellulose and hydrophobically modified polyacrylamides. An example of a suitable polyurethane thickener is a low molecular weight polyurethane having at least three hydrophobic groups interconnected by hydrophilic polyether groups. The molecular weight of such thickeners is from 10,000 to 200,000. Thickeners are included in the compositions in amount of from 0.5 wt % to 10 wt %, or such as from 1 wt % to 5 wt % of the composition.
Rheology modifiers may be included in conventional amounts. Typically, rheology modifiers are used in amounts of from 0.5 wt % to 20 wt %, or such as from 5 wt % to 15 wt % of the imaging compositions. Examples of rheology modifiers include vinyl aromatic polymers and acrylic polymers.
Diluents are included in the compositions to provide a vehicle or carrier for the other components. Diluents are added as needed. Solid diluents or fillers are typically added in amounts to bring the dry weight of the compositions to 100 wt %. Examples of solid diluents are celluloses. Liquid diluents or solvents are employed to make solutions, suspensions or emulsions of the active components of the imaging compositions. The solvents may be aqueous or organic, or mixtures thereof. Examples of organic solvents include alcohols such as methyl, ethyl, and isopropyl alcohol, propanols, diisopropyl ether, diethylene glycol dimethyl ether, 1,4-dioxane, tetrahydrofuran or 1,2-dimethoxy propane, and ester such as butyrolactone, ethylene glycol carbonate and propylene glycol carbonate, an ether ester such as methoxyethyl acetate, ethoxyethyl acetate, 1-methoxypropyl-2-acetate, 2-methoxypropyl-1-acetate, 1-ethoxypropyl-2-acetate and 2-ethoxypropyl-1-acetate, ketones such as acetone and methylethyl ketone, nitrites such as acetonitrile, propionitrile and methoxypropionitrile, sulfones such as sulfolan, dimethylsulfone and diethylsulfone, and phosphoric acid esters such as trimethyl phosphate and triethyl phosphate.
The imaging compositions may be in the form of a concentrate. In such concentrates, the solids content may range from 80 wt % to 98 wt %, or such as from 85 wt % to 95 wt %. Concentrates may be diluted with water, one or more organic solvents, or a mixture of water and one or more organic solvents. Concentrates may be diluted such that the solids content ranges from 5 wt % to less than 80 wt %, or such as from 10 wt % to 70 wt %, or such as from 20 wt % to 60 wt %.
The imaging compositions may be applied to a substrate such as by spray coating, roller coating, brushing or dipping. Any solvent or residual solvent may be driven off by air drying or by applying a sufficient amount of heat from a hot-air dryer or oven to form cohesion between the composition and the substrate.
Optionally, one or more adhesion promoters may be included in the imaging compositions to improve cohesion between the imaging compositions and the substrate. Such adhesion promoters may be included in amounts of from 0.5 wt % to 10 wt %, or such as from 1 wt % to 5 wt % of the imaging compositions. Examples of such adhesion promoters include acrylamido hydroxylacetic acid (hydrated and anhydrous), bisacrylamido acetic acid, 3-acrylamido-3-methyl-butanoic acid, and mixtures thereof.
The imaging compositions are applied to film substrates with adhesives applied opposite to the side where the imaging compositions are coated. An example of such a film substrate is an adhesive tape. Imaging compositions are coated on one side of the film in layers of from 0.5 mm to 10 mm, or such as from 1 mm to 5 mm. Coating may be done by conventional methods such as spray coating, roller coating, dipping or by brushing. The adhesives are coated on the opposite side of the substrate in amounts of from 5 μm to 50 μm or such as from 10 μm to 25 μm.
Any suitable adhesive may be employed on the substrate. The adhesive may be a permanent adhesive, a semi-permanent, a repositional adhesive, a releasable adhesive, or freezer category adhesive. Many of such adhesives may be classified as hot-melt, hot-melt pressure sensitive, and pressure sensitive adhesives. Typically, the releasable adhesives are pressure sensitive adhesives. Examples of such releasable, pressure sensitive adhesives are acrylics, polyurethanes, poly-alpha-olefins, silicones, combinations of acrylate pressure sensitive adhesives and thermoplastic elastomer-based pressure sensitive adhesives, and tackified natural and synthetic rubbers.
Acrylate pressure sensitive adhesives in combination with thermoplastic elastomer-based pressure sensitive adhesives include from 10 wt % to 90 wt % or such as from 30 wt % to 70 wt % of acrylate pressure sensitive adhesive, and 10 wt % to 90 wt % or such as from 30 wt % to 70 wt % of the acrylate pressure sensitive adhesive, and 10 wt % to 90 wt % or such as from 30 wt % to 70 wt % of the elastomer-based pressure sensitive adhesive. An example of a suitable acrylate pressure sensitive adhesive is derived from at least one polymerized monofunctional (meth)acrylic acid ester whose polymer has a Tg (glass transition temperature) of no greater than 0° C., and optionally, at least one copolymerized monofunctional ethylenically unsaturated monomer whose homopolymer has a Tg of at least 10° C. The monofunctional ethylenically unsaturated monomer may be present in the acrylate fraction of the adhesive in amounts of from 5 wt % to 10 wt %. The thermoplastic elastomer-based pressure sensitive adhesive component may be composed of radial block copolymers such as block copolymers of polystyrene with polybutadiene, or polyisoprene or mixtures thereof. Optionally, cross-linking agents may be included.
Representative examples of materials suitable for the film substrate include polyolefins such as polyethylene, including high density polyethylene, low density polyethylene, linear low density polyethylene, and linear ultra low density polyethylene, polypropylene, and polybutylenes; vinyl copolymers such as polyvinyl chlorides, both plasticized and unplasticized, and polyvinyl acetates; olefinic copolymers such as ethylene/methacrylate copolymers, ethylene/vinyl acetate copolymers, acrylonitrile-butadiene-styrene copolymers, and ethylene/propylene copolymers; acrylic polymers and copolymers; cellulose; polyesters; and combinations of the foregoing. Mixtures or blends of any plastic or plastic and elastomeric materials such as polypropylene/polyethylene, polyurethane/polyolefin, polyurethane/polycarbonate, polyurethane/polyester may also be used.
Such film substrates may be opaque to light. Such opacity provides enhanced contrast between the color faded and non-faded portions of a patterned composition on the substrate. Typically such films are white in appearance.
The adhesive side of the article may have a removable release layer, which protects the adhesive from the environment and accidental adhesion prior to application of the article to a substrate. Removable release layers range in thickness of from 1 mm to 20 mm or such as from 5 mm to 10 mm. Removable release layers include, but are not limited to, cellulose, polymers and copolymers such as polyesters, polyurethanes, vinyl copolymers, polyolefins, polycarbonates, polyimides, polyamides, epoxy polymers and combinations thereof.
Removable release layers may include a release coating formulation to enable ready removal of the release layer from the adhesive. Such release formulations typically include silicone-vinyl copolymers as the active release agent. Such copolymers are known in the art and conventional amounts are included in the release layer of the articles.
A protective polymer layer may be placed over the imaging composition on the film substrate. The protective polymer blocks light to prevent premature activation of the imaging composition on the substrate. The protective polymer layer may be of the same material as the substrate.
The components, which compose the imaging compositions, may be combined by any suitable method known in the art. Typically, the components are blended or mixed together using conventional apparatus to form a solid mixture, solution, suspension, dispersion or emulsion. The formulation process is typically performed in light controlled environments to prevent premature activation of one or more of the components. The compositions may then be stored for later application or applied promptly after formulation to a substrate by anyone of the methods discussed above. Typically the compositions are stored in light controlled environments prior to use. For example, compositions with sensitizers activated by visible light are typically formulated and stored under red light.
Upon application of a sufficient amount of energy to an imaging composition, a photofugitive or a phototropic response occurs. The amount of energy may be from 0.2 mJ/cm2 and greater, or such as from 0.2 mJ/cm2 to 100 mJ/cm2, or such as from 2 mJ/cm2 to 40 mJ/cm2, or such as from 5 mJ/cm2 to 30 mJ/cm2.
The imaging compositions undergo color or shade changes with the application of powers of 5 mW or energy or less (i.e., greater than 0 mW), or such as from less than 5 mW to 0.01 mW, or such as from 4 mW to 0.05 mW, or such as from 3 mW to 0.1 mW, or such as from 2 mW to 0.25 mW or such as from 1 mW to 0.5 mW. Typically, such intensities powers are generated with light sources in the visible range. Other photosensitizers and energy sensitive components, which may be included in the imaging compositions, may elicit a color or shade change upon exposure to energy from light outside the visible range. Such photosensitizers and energy sensitive compounds are included to provide a more pronounced color or shade contrast with that of the response caused by the application of 5 mW or less. Typically, photosensitizers and energy sensitive compounds, which form the color or shade contrast with photosensitizers activated by energy at powers 5 mW or less, elicit a phototropic response.
While not being bound by theory, one or more color or shade changing mechanisms are believed involved to provide a color or shade change after energy is applied. For example, when a photofugitive response is induced, the one or more sensitizers releases a free radical to activate the one or more reducing agents to reduce the one or more sensitizers to affect a change in color or shade from dark to light. When a phototropic response is induced, for example, free radicals from one or more sensitizer induces a redox reaction between one or more leuco-type compound and one or more oxidizing agent to affect a change in color or shade from light to dark. Some formulations may have combinations of photofugitive and phototropic responses. For example, exposing a composition to artificial energy, i.e. laser light, generates a free radical from one or more sensitizer, which then activates one or more reducing agent to reduce the sensitizer to cause a photofugitive response. Exposing the same composition to ambient light causes one or more oxidizing agent to oxidize the one or more leuco-type compound to cause the phototropic response.
Any suitable energy source may be used to induce the photofugitive or phototropic response. Examples of suitable light energy sources include, but are not limited to, lasers, such as hand held lasers and 3-D imaging systems, and flash lamps. Operating wavelengths of lasers may be in the IR, visible, and UV light ranges. Two classes of lasers are described which are suitable for inducing a color or shade change.
Excimer lasers are high power lasers that can generate high fluence light in the UV frequency range. Their lasing capacity is based upon the excitation of specific diatomic gas molecules. In particular, excimer lasers constitute a family of laser, which emit light in the wavelength range of 157 nm to 355 nm. The most common excimer wavelengths and respective diatomic gases are XeCl (308) nm), KrF (248 nm) and ArF (193 nm). The lasting action within an excimer is the result of a population inversion in the excited dimmers formed by the diatomic gases. Pulse widths are in the 10 ns to 100 ns resulting in high energy, short pulse width pulses.
Solid state lasers are high power lasers that can generate concentrated light beams from the IR through the UV wavelength ranges. A selected portion of these solid state lasers is based on materials and involve the doping of neodymium into a solid host such as yttrium-aluminum garnet (YAG), yttrium-lithium-fluoride (YLF), and yttrium vanadate (YVO5). Such materials lase at a fundamental wavelength in the IR range of 1.04 to 1.08 microns. The lasing may be extended to shorter wavelengths through the use of nonlinear optical crystals such as lithium triborate (LBO) or potassium titanyl phosphate (KTP). As an example, the fundamental 1.06 microns radiation from a neodymium doped YAG laser may be frequency increased to a wavelength of 532 nm using such crystals.
An example of an alternative light source to the excimer laser is a short pulse linear excimer, UV flash lamp. Such lamps include a transparent quart lamp tube with a wall thickness of 1 mm with an internal bore of 3 to 20 mm in diameter. Such flash lamps may be as long as 30 cm. Electrodes made of tungsten are sealed into the ends of the lamp tube, which is filled with a noble gas such as xenon. The flash lamp is pulsed in the range of 1 Hz to 20 Hz by applying a high voltage in the range of 5 KV to 40 KV to the electrodes using a capacitor bank. The charge ionizes the xenon atoms to form a plasma which emits a broadband of radiation ranging in wavelengths of from 200 nm to 800 nm. The flash lamp may include a reflector placed partially around the tube to shape and guide the radiation from the lamp toward a mask or workpiece.
Linear flash lamps are capable of producing high intensity, high fluence energy output at shorter wavelengths in relatively short pulses of 5 μsec. For example, it has been found that a xenon linear flash lamp, with a broadband spectral output may provide a useful energy density of from 1 J/cm2 to 1.5 J/cm2 during a pulse of 2 μsec to 6 μsec.
The articles with the imaging compositions may be removed from work pieces in whole or in part by peeling the unwanted portions from the work pieces or by using a suitable developer or stripper. The developers and strippers may be aqueous based or organic based. For example, conventional aqueous base solutions may be used to remove articles with polymer binders having acidic functionality. Examples of such aqueous base solutions are alkali metal aqueous solutions such as sodium and potassium carbonate solutions. Conventional organic developers include, but are not limited to, primary amines such as benzyl, butyl, and allyl amines, secondary amines such as dimethylamine and tertiary amines such as trimethylamine and triethylamine.
The articles provide a rapid and efficient means of changing the color or shade of a work piece or of placing an image over a work piece such as aeronautical ships, marine vessels and terrestrial vehicles, or for forming images on textiles. After the article is applied to the work piece a sufficient amount of energy is applied to the imaging composition to change its color or shade. Generally, the color or shade change is stable. Stable means that the color or shade change lasts at least 10 seconds, or such as from 20 minutes to 2 days, or such as from 30 minutes to 1 hour.
Alternatively, the energy may be selectively applied to form a patterned image, and the work piece may be further processed to form a final product. For example, the image may be used as a mark or indicator to drill holes for fasteners to join parts together such as in the assembly of an automobile, to form an outline for making a logo or picture on an airplane body, or to align segments of marine vessel parts. Since the articles may be promptly applied to a work piece and the image promptly formed by application of energy to create color or shade contrast, workers no longer need to work adjacent the substrate to mark laser beam images with hand-held ink markers or tape in the fabrication of products. Accordingly, the problems of blocking laser beams caused by workers using the hand-held markers and tape are eliminated.
Further, the reduction of human error increases the accuracy of marking. This is important when the marks are used to direct the alignment of parts such as in aeronautical ships, marine vessels and terrestrial vehicles where accuracy in fabrication is critical to the reliable and safe operation of the machine. Additionally, since pattern formation may be performed using low power light sources (i.e., 5 mW or less), opthalmological hazards to workers is eliminated or at least reduced.
The articles are suitable for industrial assembly line fabrication of numerous products. For example, a work piece such as an airplane body may pass to station 1 where the composition is applied to a surface of the airplane body to cover the desired portions or the entire surface. The article is applied such as by lamination or hand pressure application. The airplane body with the article is then transferred to station 2 where energy is applied over the entire surface or is selectively applied to form an image. While the first airplane body is at station 2, a second body may be moved into station 1 for article application. The energy may be applied using laser beams, which induce a color or shade change on the surface of the airplane body. Since manual marking by workers is eliminated, the imaged airplane body is then promptly transferred to station 3 for further processing such as developing away or stripping unwanted portions of the article, or drilling holes in the body for fasteners for the alignment of parts at other stations. Further, the elimination of workers at the imaging station improves the accuracy of image formation since there are no workers to interfere with the laser beams pathway to their designated points on the airplane surface. Accordingly, the articles provide for more efficient manufacturing than many conventional imaging and alignment processes.
In addition to the use of the articles in alignment processes, the articles may be used to prepare proofing products, photoresists, soldermasks, printing plates, and other photopolymer products.
The imaging compositions also may be used in paints such as water based and organic based paints. When the compositions are used in paints, they are included in amounts of from 1 wt % to 25 wt %, or such as from 5 wt % to 20 wt %, or such as from 8 wt % to 15 wt % of the final mixture. The imaging compositions may then be brushed onto the substrate and dried to form the article.
The respective components for the two different formulations disclosed in Tables 1 and 2 below were mixed together at 20° C. under red light to form two homogeneous mixtures. The formulations were prepared to illustrate the difference between a photofugitive response and a phototropic response when exposed to visible light at 532 nm.
The copolymer was formed from monomers of 29 wt % n-hexyl methacrylate, 29 wt % methylmethacrylate, 15 wt % n-butyl acrylate, 5 wt % styrene, and 22 wt % methacrylic acid. A sufficient amount of methyl ethyl ketone was used to form a 45 wt % solids mixture. The copolymer was formed by conventional free-radical polymerization.
After the homogenous mixture was prepared, it was spray coated on a polyethylene film. The polyethylene film was 30 cm×30 cm and had a thickness of 250 microns. The homogeneous mixture was dried using a hair dryer to removal the methyl ethyl ketone.
Under UV light the dried coating on the polyethylene film was reddish brown in color as shown in
The same copolymer was used as the formulation of Table 1. After the mixture was prepared, it was spray coated on a polyethylene film under UV light. The polyethylene film was 30 cm×30 cm and had a thickness of 250 microns. The coating on the polyethylene film was dried using a hair dryer. The coating had a yellow green appearance under UV light as shown in
Energy from a hand held laser at a wavelength of 532 nm was selectively applied to the coating to induce a phototropic response. The pattern of four rectangles formed with the laser darkened to form four violet rectangles as shown in
The following composition with the components in the table below is prepared.
The copolymer is the same copolymer as in Example 1. The formulation is prepared under red light at 20° C. The components are mixed together using a conventional mixing apparatus to form a homogeneous mixture.
The homogeneous mixture is roller coated on one side of a polyethylene terephthalate film having the dimensions 40 cm×40 cm and a thickness of 2 mm. The opposite side is coated with a pressure sensitive releasable adhesive of 500 microns thick with a releasable protective backing of cellulose acetate. The protective backing has a layer 50 microns thick of a silicone vinyl copolymer release agent for easy removal of the protective backing from the adhesive. The pressure sensitive releasable adhesive is a conventional polyurethane adhesive.
The coating is dried to the polyethylene terephthalate film with a hair dryer. The releasable cellulose acetate backing is removed and the polyethylene terephthalate film with the coating is hand pressed to an aluminum coupon with the dimensions 60 cm×60 cm with a thickness of 5 mm. Under UV light the coating appears amber in color.
A light beam at a wavelength of 532 nm from a hand held laser is selectively applied to the amber coating to form patterns of 5 equidistant dots. Selective applications of the light beam causes fading of the amber color to form 5 clear dots. A conventional drill for drilling holes in aluminum is used to drill holes through the aluminum at the positions of the dots. The polyethylene terephthalate adhesive is hand peeled from the aluminum coupon leaving aluminum coupon with three equidistant holes.
The following composition is prepared at 20° C. under red light.
The copolymer is the same copolymer of Example 1. The components are mixed together using a conventional mixing apparatus to form a homogeneous mixture.
The homogeneous mixture is roller coated on a polyethylene terephthalate backed releasable adhesive tape with a cellulose release layer. The bisacrylamide acetic acid adhesion promoter is expected to improve adhesion between the coating and the backing of the releasable adhesive tape.
Selective application of light at 532 nm with a laser beam induces the portions of the coating exposed to the light to change from amber to clear.
The following paint formulation is prepared.
The paint formulation in Table 5 is blended with the photosensitive composition disclosed in Table 4, Example 3 such that the photosensitive composition composes 5 wt % of the final formulation. The paint and the photosensitive composition are mixed together at 20° C. using conventional mixing apparatus to form a homogeneous blend. The mixing is done under red light.
The paint/photosensitive composition blend is brushed onto tape with a releasable adhesive and a releasable backing. The composition is air dried at room temperature. The releasable backing is removed and the coated tape is pressure applied on an aluminum coupon of 80 cm×80 cm with a thickness of 5 mm. Good adhesion is expected between the blend and the aluminum coupon.
Selective application of light at 532 nm from a hand held laser causes the selected portions of the coating to go from amber to clear.
Two photosensitive compositions are prepared. One composition includes accelerators as shown in Table 6 and the second composition as shown in Table 7 excludes the accelerators. Each composition is prepared by mixing the components in a conventional laboratory mixer at 20° C. under red light.
Each formulation is spray coated on separate 60 cm×60 cm 5 mm thick aluminum coupons. A hair dryer is used to remove the acetone solvent from each composition.
Each coated coupon is selectively exposed to a laser beam with a light beam wavelength of 532 nm. The coating with the composition containing the accelerators is expected to change from amber to clear at the laser light exposed portions 2× to 10× faster than the coating without the accelerators.
Number | Name | Date | Kind |
---|---|---|---|
3390994 | Cescon | Jul 1968 | A |
3390997 | Read | Jul 1968 | A |
3445234 | Cescon et al. | May 1969 | A |
3598592 | Cescon | Aug 1971 | A |
3615454 | Cescon et al. | Oct 1971 | A |
3630736 | Cescon et al. | Dec 1971 | A |
3652275 | Baum et al. | Mar 1972 | A |
3658543 | Gerlach et al. | Apr 1972 | A |
3666466 | Strilko | May 1972 | A |
3726804 | Matsukawa et al. | Apr 1973 | A |
3761942 | Lorenz et al. | Sep 1973 | A |
3796696 | Brown | Mar 1974 | A |
3968123 | Dingwall et al. | Jul 1976 | A |
3977953 | Von Hirsch et al. | Aug 1976 | A |
3993489 | Heimsch et al. | Nov 1976 | A |
4017313 | Hartzler | Apr 1977 | A |
4065315 | Yamazaki et al. | Dec 1977 | A |
4066460 | Chang et al. | Jan 1978 | A |
4090877 | Streeper | May 1978 | A |
4147552 | Specht et al. | Apr 1979 | A |
4155892 | Emmons et al. | May 1979 | A |
4162162 | Dueber | Jul 1979 | A |
4212937 | Akashi et al. | Jul 1980 | A |
4245031 | Chambers | Jan 1981 | A |
4280888 | Bush et al. | Jul 1981 | A |
4291115 | Chambers | Sep 1981 | A |
4311783 | Dessauer | Jan 1982 | A |
4320140 | Crounse et al. | Mar 1982 | A |
4341860 | Sysak | Jul 1982 | A |
4343885 | Reardon, Jr. | Aug 1982 | A |
4535052 | Anderson et al. | Aug 1985 | A |
4565769 | Dueber et al. | Jan 1986 | A |
4575625 | Knowles | Mar 1986 | A |
4619956 | Susi | Oct 1986 | A |
4647578 | Crounse et al. | Mar 1987 | A |
4874799 | Hung et al. | Oct 1989 | A |
4882265 | Laganis et al. | Nov 1989 | A |
4894314 | Barr et al. | Jan 1990 | A |
4917977 | Smothers | Apr 1990 | A |
4940690 | Skees | Jul 1990 | A |
4962009 | Washizu et al. | Oct 1990 | A |
4987230 | Monroe | Jan 1991 | A |
5008231 | Yoshizawa et al. | Apr 1991 | A |
5019549 | Kellogg et al. | May 1991 | A |
5102952 | Memon | Apr 1992 | A |
5112721 | Kuchta | May 1992 | A |
5137571 | Eisenhart et al. | Aug 1992 | A |
5139928 | Lewis | Aug 1992 | A |
5147758 | Smothers et al. | Sep 1992 | A |
5149617 | Liu | Sep 1992 | A |
5153106 | Liu | Oct 1992 | A |
5204467 | Smothers | Apr 1993 | A |
5219917 | Ingle et al. | Jun 1993 | A |
5225312 | Dixit et al. | Jul 1993 | A |
5236808 | Smothers | Aug 1993 | A |
5236812 | Vassiliou et al. | Aug 1993 | A |
5244769 | Yanagihara et al. | Sep 1993 | A |
5256520 | Smothers | Oct 1993 | A |
5260149 | Monroe et al. | Nov 1993 | A |
5302429 | Memon | Apr 1994 | A |
5320933 | Lundy et al. | Jun 1994 | A |
5332819 | Smothers | Jul 1994 | A |
5369140 | Valet et al. | Nov 1994 | A |
5389489 | Yanagihara et al. | Feb 1995 | A |
5395718 | Jensen et al. | Mar 1995 | A |
5401608 | Pawlowski et al. | Mar 1995 | A |
5407783 | Caruso | Apr 1995 | A |
5413629 | Yasui et al. | May 1995 | A |
5414041 | Larson et al. | May 1995 | A |
5444505 | Dorsey-Palmateer | Aug 1995 | A |
5484927 | Smothers | Jan 1996 | A |
5552249 | Jensen et al. | Sep 1996 | A |
5563023 | Kangas et al. | Oct 1996 | A |
5651600 | Dorsey-Palmateer | Jul 1997 | A |
5665522 | Vogel et al. | Sep 1997 | A |
5705298 | Knoedl, Jr. | Jan 1998 | A |
5705560 | Takarabe et al. | Jan 1998 | A |
5723653 | Santhanam | Mar 1998 | A |
5742385 | Champa | Apr 1998 | A |
5744280 | Mooney, III et al. | Apr 1998 | A |
5786132 | Nohr et al. | Jul 1998 | A |
5821497 | Yamazaki et al. | Oct 1998 | A |
5831661 | Tabuchi et al. | Nov 1998 | A |
5837429 | Nohr et al. | Nov 1998 | A |
5846682 | Murofushi et al. | Dec 1998 | A |
5858583 | Dessauer et al. | Jan 1999 | A |
5942554 | Ren et al. | Aug 1999 | A |
5955224 | Caspar et al. | Sep 1999 | A |
6120946 | Johnson et al. | Sep 2000 | A |
6124044 | Swidler | Sep 2000 | A |
6187432 | Krish et al. | Feb 2001 | B1 |
6200666 | Christian et al. | Mar 2001 | B1 |
6242149 | Maeda | Jun 2001 | B1 |
6251571 | Dessauer et al. | Jun 2001 | B1 |
6309797 | Grinevich et al. | Oct 2001 | B1 |
6322950 | Sorori et al. | Nov 2001 | B1 |
6331286 | Dees et al. | Dec 2001 | B1 |
6411362 | Anderson et al. | Jun 2002 | B2 |
6433035 | Grinevich et al. | Aug 2002 | B1 |
6433069 | Oeltjen et al. | Aug 2002 | B1 |
6482879 | Hieltjes et al. | Nov 2002 | B2 |
6492019 | Shipston et al. | Dec 2002 | B1 |
6503621 | Ma et al. | Jan 2003 | B1 |
6527900 | Kreckel et al. | Mar 2003 | B1 |
6528555 | Nikutowski et al. | Mar 2003 | B1 |
6541109 | Kumar et al. | Apr 2003 | B1 |
6545084 | Brown et al. | Apr 2003 | B2 |
6547397 | Kaufman et al. | Apr 2003 | B1 |
6555615 | Van Rheenen | Apr 2003 | B2 |
6613381 | Bredahl et al. | Sep 2003 | B1 |
6627309 | Stebbings et al. | Sep 2003 | B2 |
6632522 | Hyde et al. | Oct 2003 | B1 |
6632523 | Rosenfeld et al. | Oct 2003 | B1 |
6653265 | Rossi et al. | Nov 2003 | B2 |
6660374 | Smetana et al. | Dec 2003 | B2 |
6754551 | Zohar et al. | Jun 2004 | B1 |
6828525 | Hayes et al. | Dec 2004 | B1 |
20030087178 | Lungu | May 2003 | A1 |
20030108708 | Anderson et al. | Jun 2003 | A1 |
20030149164 | Minnee et al. | Aug 2003 | A1 |
20050058332 | Kaufman et al. | Mar 2005 | A1 |
20050175229 | Barr et al. | Aug 2005 | A1 |
20050175929 | Barr et al. | Aug 2005 | A1 |
20050282084 | Barr et al. | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
WO02096662 | Mar 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20060073409 A1 | Apr 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10773991 | Feb 2004 | US |
Child | 11180184 | US |