The present invention generally relates to an imaging system and method capable of controlling exterior lights of a controlled vehicle, and more specifically relates to an imaging system and method that may be used to control exterior lights of a controlled vehicle in response to a detected condition.
According to one aspect of the present invention, an imaging system is provided and includes an image sensor configured to image a scene external and forward of a controlled vehicle and to generate image data corresponding to the acquired images. A processor is communicatively connected to the image sensor and is configured to receive and analyze the image data and to detect whether a road on which the controlled vehicle is traveling is a winding road and generate a signal in response to detection of a winding road.
According to another aspect of the present invention, an imaging method is provided and includes providing an image sensor for imaging a scene external and forward of a controlled vehicle and generating image data corresponding to the acquired images. The image data is received and analyzed in a processor communicatively connected to the image sensor. The processor detects whether the road on which the controlled vehicle is traveling is a winding road and generates a signal in response to detection of a winding road.
According to another aspect of the present invention, a non-transitory computer readable medium is provided having stored thereon software instructions executed by a processor. The software instructions include imaging a scene external and forward of a controlled vehicle and generating image data corresponding to the acquired images. The image data is received and analyzed in the processor. The processor detects whether the road on which the controlled vehicle is traveling is a winding road and generates a signal in response to detection of a winding road.
These and other features, advantages, and objects of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.
The present invention will be more fully understood from the detailed description and the accompanying drawings, wherein:
Reference will now be made in detail to the present preferred embodiments, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts. In the drawings, the depicted structural elements are not to scale and certain components are enlarged relative to the other components for purposes of emphasis and understanding.
The embodiments described herein relate to an imaging system capable of controlling exterior lights of a controlled vehicle in response to image data acquired from an image sensor, which captures images forward of the vehicle. Adaptive Main Beam Control (ADB) and alternate methods of controlling the light beam illumination in front of a motor vehicle maximizes the use of high beams at night by identifying oncoming and preceding vehicles and automatically controlling the high beam lighting pattern. This prevents glare to other vehicles, yet maintains a high beam light distribution to illuminate areas not occupied by other vehicles. Prior systems are known for controlling exterior vehicle lights in response to images captured forward of the vehicle. In these prior systems, a controller would analyze the captured images and determine if any preceding or oncoming vehicles were present in a glare area in front of the vehicle employing the system. This “glare area” was the area in which the exterior lights would cause excessive glare to a driver if the exterior lights were in a high beam state (or some state other than a low beam state). If a vehicle was present in the glare area, the controller would respond by changing the state of the exterior lights so as to not cause glare for the other driver(s). Glare to other drivers can be prevented by moving a blocking mechanism in the high beam headlamps that blocks portions of the light otherwise generated by the headlamps from projecting in selected glare-free regions of the forward scene. Examples of such systems are described in U.S. Pat. Nos. 5,837,994, 5,990,469, 6,008,486, 6,049,171, 6,130,421, 6,130,448, 6,166,698, 6,255,639, 6,379,013, 6,403,942, 6,587,573, 6,593,698, 6,611,610, 6,631,316, 6,653,614, 6,728,393, 6,774,988, 6,861,809, 6,906,467, 6,947,577, 7,321,112, 7,417,221, 7,565,006, 7,567,291, 7,653,215, 7,683,326, 7,881,839, 8,045,760, and 8,120,652, as well as in U.S. patent application Ser. No. 13/432,250 entitled “VEHICULAR IMAGING SYSTEM AND METHOD FOR DETERMINING ROADWAY WIDTH” and filed on Mar. 28, 2012, by Jeremy A. Schut et al., the entire disclosures of which are incorporated herein by reference.
Published United States Patent Application Publication No. US 2013/0261838 A1 entitled “VEHICULAR IMAGING SYSTEM AND METHOD FOR DETERMINING ROADWAY WIDTH” and filed on Mar. 28, 2012, by Jeremy A. Schut et al. discloses an imaging system that improves upon the prior systems by determining a road model based on the roadway width and roadway type (i.e., motorway, two-lane road, multi-lane road, etc.) in order to more accurately discriminate between other vehicles and non-vehicle light sources, reflectors, and road signs and to allow different modes of operation depending upon the type of roadway on which the controlled vehicle is traveling. More specifically, the roadway width may be estimated from various objects detected in the forward scene, including lane markers, reflectors, road signs, and any other objects that may be useful to detect the edges of the road. The roadway type may be determined from the roadway width. Other vehicle parameters such as vehicle speed, yaw, roll, position and vehicle direction may also be used when determining the roadway type and the road model. Then, using the road model, the system may track the positioning (or “world positioning”) relative to the controlled vehicle, the movement, the brightness, the size, the color, and other characteristics of various detected light sources to determine if the light sources appear to be on the roadway. If so, the light sources are more likely to be another vehicle to which the system responds by appropriately controlling the exterior lights.
In prior systems, a problem occurs on winding roads, typical in mountain areas, where the automatic control of the high beam lighting pattern is not able to prevent glare to other vehicles and creates areas without illumination or dark areas that would otherwise be illuminated by the high beams. As a result, a driver navigating a turn can suddenly dazzle an oncoming vehicle and/or lose visibility of the road ahead, especially when the vehicle is travelling at higher speeds. Such a reduction in visibility is generally caused by delays in the movement of the blocking mechanisms in the high beam headlamps or glare-free region of the vehicle.
Accordingly, the imaging system of the present invention is capable of detecting winding roads and may subsequently disable the ADB control. The disabling of the ADB control may result in constant low beam illumination, thereby preventing control of the high beam lighting pattern from suddenly creating the dark areas with high beam illumination and possibly impairing a driver's vision of the road and/or causing glare to other vehicles on the road.
A first embodiment of an imaging system 10 is shown in
Controller 30 may be configured to directly connect to the equipment (50) being controlled such that the generated signals directly control the equipment. Alternatively, controller 30 may be configured to connect to an equipment controls (60 and 70), which, in turn, is connected to the equipment being controlled (62 and 80) such that the signals generated by controller 30 only indirectly control the equipment. For example, in the case of the equipment being exterior lights 80, controller 30 may analyze the image data from image sensor 201 so as to generate signals that are more of a recommendation for an exterior light control 70 to use when controlling exterior lights 80. The signals may further include not just a recommendation, but also a code representing a reason for the recommendation so that equipment controls (60 and 70) may determine whether or not to override a recommendation. Further, as described in detail below, the signal may include an indication of the detection of a winding road. Such a winding road detection indication is particularly useful when an equipment controls (60 and 70) that is separate from controller 30 performs the direct control of the equipment.
By providing a winding road detection indication, controller 30 provides additional information to exterior light control 70 and/or equipment control 60 that was not previously made available to such equipment controls. This allows the vehicle manufacturer more flexibility in how they choose to respond to the winding road detection indication. Examples of which are to turn the high beam lighting off or extend the delay following a determination that the winding road is no longer detected so as to delay turning the high beam lighting back on.
The present imaging system improves upon the above-mentioned imaging systems by allowing vehicle manufacturers to respond in a manner of their choosing to the winding road detection indication. This also allows one common system to be used for all manufacturers regardless of whether they wish to change or maintain a particular illumination pattern in response to such an indication. Further, different features of equipment control may be enabled or disabled based upon the detection of a winding road. In addition, different equipment may respond differently to the winding road detection indication.
As shown in
According to one embodiment, the equipment that imaging system 10 controls may include one or more exterior lights 80 and the signal generated by controller 30 may be used to control exterior lights 80. In this embodiment, exterior lights 80 may be controlled directly by controller 30 or by an exterior light control 70, which receives a signal from controller 30. As used herein, the “exterior lights” broadly includes any exterior lighting on the vehicle. Such exterior lights may include headlamps (both low and high beam if separate from one another), tail lights, foul weather lights such as fog lights, brake lights, center-mounted stop lights (CHMSLs), turn signals, back-up lights, etc. The exterior lights 80 may be operated in several different modes including conventional low-beam and high-beam states. They may also be operated as daytime running lights, and additionally as super-bright high beams in those countries where they are permitted.
The exterior light brightness may also be continuously varied between the low, high, and super-high states. Separate lights may be provided for obtaining each of these exterior lighting states or the actual brightness of the exterior lights 80 may be varied to provide these different exterior lighting states. In either case, the “perceived brightness” or illumination pattern of the exterior lights 80 is varied. As used herein, the term “perceived brightness” means the brightness of the exterior lights 80 as perceived by an observer outside the vehicle. Most typically, such observers will be drivers or passengers in a preceding vehicle or in a vehicle traveling along the same street in the opposite direction. Ideally, the exterior lights 80 are controlled such that if an observer is located in a vehicle within a “glare area” relative to the vehicle (i.e., the area in which the observer would perceive the brightness of the exterior lights 80 as causing excessive glare), the beam illumination pattern is varied such that the observer is no longer in the glare area. The perceived brightness and/or glare area of the exterior lights 80 may be varied by changing the illumination output of one or more exterior lights 80, by steering one or more lights to change the aim of one or more of the exterior lights 80, selectively blocking or otherwise activating or deactivating some or all of the exterior lights 80, altering the illumination pattern forward of the vehicle, or a combination of the above.
Image sensor 201 may be any conventional image sensor. Examples of suitable imaging sensors are disclosed in published United States Patent Application Publication Nos. US 2008/0192132 A1 and US 2012/0072080 A1, and in U.S. Provisional Application Nos. 61/500,418 entitled “MEDIAN FILTER” filed on Jun. 23, 2011, by Jon H. Bechtel et al.; 61/544,315 entitled “MEDIAN FILTER” and filed on Oct. 7, 2011, by Jon H. Bechtel et al.; 61/556,864 entitled “HIGH DYNAMIC RANGE CAMERA LOW LIGHT LEVEL FILTERING” filed on Nov. 8, 2011, by Jon H. Bechtel et al., the entire disclosures of which are incorporated herein by reference.
The image sensor 201 (or camera) captures images that may then be displayed and/or analyzed in order to control vehicle equipment in addition to exterior lights. For example, such image sensors have been used for lane departure warning systems, forward collision warning systems, adaptive cruise control systems, pedestrian detection systems, night vision systems, terrain detection systems, parking assist systems, traffic sign recognition systems, and reverse camera display systems. Examples of systems using image sensors for such purposes are disclosed in U.S. Pat. Nos. 5,837,994, 5,990,469, 6,008,486, 6,049,171, 6,130,421, 6,130,448, 6,166,698, 6,379,013, 6,403,942, 6,587,573, 6,611,610, 6,631,316, 6,774,988, 6,861,809, 7,321,112, 7,417,221, 7,565,006, 7,567,291, 7,653,215, 7,683,326, 7,881,839, 8,045,760, and 8,120,652, and in U.S. Provisional Application Nos. 61/512,213 entitled “RAISED LANE MARKER DETECTION SYSTEM AND METHOD THEREOF” and filed on Jul. 27, 2011, by Brock R. Rycenga et al., and 61/512,158 entitled “COLLISION WARNING SYSTEM AND METHOD THEREOF” and filed on Jul. 27, 2011, by Brock R. Rycenga et al., the entire disclosures of which are incorporated herein by reference.
In the example shown in
Controller 30 can also take advantage of the availability of signals (such as vehicle speed, steering wheel angle, pitch, roll, and yaw) communicated via discreet connections or over the vehicle bus 25 in making decisions regarding the operation of the exterior lights 80. In particular, speed input 21 provides vehicle speed information to the controller 30 from which speed can be a factor in determining the control state for the exterior lights 80 or other equipment. The reverse signal 22 informs controller 30 that the vehicle is in reverse, responsive to which the controller 30 may clear an electrochromic mirror element regardless of signals output from light sensors. Auto ON/OFF switch input 23 is connected to a switch having two states to dictate to controller 30 whether the vehicle exterior lights 80 should be automatically or manually controlled. The auto ON/OFF switch (not shown) connected to the ON/OFF switch input 23 may be incorporated with the headlamp switches that are traditionally mounted on the vehicle dashboard or incorporated into steering wheel column levels. Manual dimmer switch input 24 is connected to a manually actuated switch (not shown) to provide a manual override signal for an exterior light control state. Some or all of the inputs 21, 22, 23, 24 and outputs 42a, 42b, and 42c, as well as any other possible inputs or outputs, such as a steering wheel input, can optionally be provided through vehicle bus 25 shown in
Controller 30 can control, at least in part, other equipment 50 within the vehicle which is connected to controller 30 via vehicle bus 42. Specifically, the following are some examples of one or more equipment 50 that may be controlled by controller 30: exterior lights 80, a rain sensor, a compass, information displays, windshield wipers, a heater, a defroster, a defogger, an air conditioning system, a telephone system, a navigation system, a security system, a tire pressure monitoring system, a garage door opening transmitter, a remote keyless entry system, a telematics system, a voice recognition system such as a digital signal processor based voice actuation system, a vehicle speed control, interior lights, rearview mirrors, an audio system, an engine control system, and various other switches and other display devices that may be located throughout the vehicle.
In addition, controller 30 may be, at least in part, located within a rearview assembly of a vehicle or located elsewhere within the vehicle. The controller 30 may also use a second controller (or controllers), equipment control 60, which may be located in a rearview assembly or elsewhere in the vehicle in order to control certain kinds of equipment 62. Equipment control 60 can be connected to receive via vehicle bus 42 signals generated by controller 30. Equipment control 60 subsequently communicates and controls equipment 62 via bus 61. For example, equipment control 60 may be a windshield wiper control unit which controls windshield wiper equipment, turning this equipment ON or OFF. Equipment control may also be an electrochromic mirror control unit where controller 30 is programmed to communicate with the electrochromic control unit in order for the electrochromic control unit to change the reflectivity of the electrochromic mirror(s) in response to information obtained from an ambient light sensor, a glare sensor, as well as any other components coupled to the processor. Specifically, equipment control unit 60 in communication with controller 30 may control the following equipment: exterior lights, a rain sensor, a compass, information displays, windshield wipers, a heater, a defroster, a defogger, air conditioning, a telephone system, a navigation system, a security system, a tire pressure monitoring system, a garage door opening transmitter, a remote keyless entry, a telemetry system, a voice recognition system such as a digital signal processor-based voice actuation systems, a vehicle speed, interior lights, rearview mirrors, an audio system, a climate control, an engine control, and various other switches and other display devices that may be located throughout the vehicle.
Portions of imaging system 10 can be advantageously integrated into a rearview assembly 200 as illustrated in
Referring to
Controller 30 of
Rearview assembly 200 may include a mirror element or a display that displays a rearward view. The mirror element may be a prismatic element or an electro-optic element, such as an electrochromic element.
Additional details of the manner by which image sensor 201 may be integrated into a rearview mirror assembly 200 are described in U.S. Pat. No. 6,611,610, the entire disclosure of which is incorporated herein by reference. Alternative rearview mirror assembly constructions used to implement exterior light control systems are disclosed in U.S. Pat. No. 6,587,573, the entire disclosure of which is incorporated herein by reference.
The method for controlling exterior lights 80 of a controlled vehicle is described herein as being implemented by controller 30. This method may be a subroutine executed by any processor, and thus this method may be embodied in a non-transitory computer readable medium having stored thereon software instructions that, when executed by a processor, cause the processor to control the equipment of the controlled vehicle, by executing the steps of the method described below. In other words, aspects of the inventive method may be achieved by software stored on a non-transitory computer readable medium or software modifications or updates to existing software residing in a non-transitory computer readable medium. Such software or software updates may be downloaded into a first non-transitory computer readable media 32 of controller 30 (or locally associated with controller 30 or some other processor) typically prior to being installed in a vehicle, from a second non-transitory computer readable media 90 located remote from first non-transitory computer readable media 32. Second non-transitory computer readable media 90 may be in communication with first non-transitory computer readable media 32 by any suitable means, which may at least partially include the Internet or a local or wide area wired or wireless network.
This method may use vehicle operating parameters such as, but not limited to, vehicle yaw, speed, steering wheel angle, and/or a history of the past driving conditions to detect the presence of a winding road and then disable the ADB function or otherwise indicate the presence of a winding road. To detect a winding road (as opposed to a road with one or two turns), the controller 30 detects turns in a road by measuring curve radius and monitors how often turns occur. In this manner, if a predetermined number of turns are detected within a specified period of time, a road may be identified as a winding road. Continued detection of a winding road may result in prolonged disablement of the ADB. However, when the foregoing conditions for a winding road cease to be met, the ADB may then be reactivated, thus signifying that a road has become sufficiently straight.
If controller 30 directly controls exterior lights 80, when a winding road has been detected, controller 30 generates a signal in response thereto that controls exterior lights 80 so as to operate in a low beam state until such time that the vehicle is no longer determined to be driving on a winding road. Conversely, if controller 30 does not directly control exterior lights 80, detection of a winding road may cause controller 30 to generate a signal that (1) indicates the detection of a winding road; (2) indicates that the exterior lights should be operated in a low beam state; (3) indicates a winding road mode of operation, or (4) indicates that the ADB or other automatic dynamic control of the exterior lights should be disabled. The particular indication would behave as more of a recommendation for the exterior light control 70 to use when controlling exterior lights 80 and would depend on the configuration of the exterior light control 70 and the inputs available to control 70, in addition to the needs of a vehicle manufacturer.
The above description is considered that of the preferred embodiments only. Modifications of the invention will occur to those skilled in the art and to those who make or use the invention. Therefore, it is understood that the embodiments shown in the drawings and described above are merely for illustrative purposes and not intended to limit the scope of the invention, which is defined by the claims as interpreted according to the principles of patent law, including the doctrine of equivalents.
This application claims priority to and the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 61/733,077, filed on Dec. 4, 2012, entitled “SYSTEM AND METHOD FOR CONTROLLING VEHICLE FORWARD LIGHTING ON WINDING ROADS,” the entire disclosure of which is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61733077 | Dec 2012 | US |