Not applicable.
This invention relates generally optical imaging and more particularly to a method and apparatus for performing three-dimensional surface measurements.
As is known in the art, fiber optic endoscopy is typically conducted by transmitting an image through an array of fibers often referred to as a fiber bundle. While successful for a variety of medical and non-medical applications, utilization of an array of fibers to form the image imposes constraints on the cost, diameter, and flexibility of the imaging device.
In an attempt to overcome these drawbacks, multiple approaches employing a single optical fiber have been proposed for miniature, flexible endoscopes. For example, one technique for confocal imaging with a single fiber has been implemented by utilizing the core of a single-mode fiber as both the source and the detection apertures. Also, miniature confocal microscope probes and endoscopes have been constructed by adding a mechanical micro-scanner at the tip of a single-mode fiber. Another single-fiber method for miniature endoscopy, termed spectral encoding, uses a broadband light source and a diffraction grating to spectrally encode reflectance across a transverse line within the sample as described in Tearney et al. Opt. Lett. 27: 412 (2002). A two-dimensional image is formed by slowly scanning this spectrally encoded line and a three-dimensional image may be obtained by placing the probe in the sample arm of an interferometer as described in Yelin et al. Opt. Lett. 28: 2321 (2003). The core of the single-mode fiber acts as both the source and the detection apertures for all of these techniques.
As is also known, one important design parameter for single-fiber endoscopy is the modal profile of the optical fiber. Single-mode optical fibers enable high resolution imaging with small and flexible imaging probes, but suffer from relatively poor light throughput. Furthermore, the small core of the single-mode fiber acts similarly to a pinhole in free-space confocal microscopy, preventing the detection of out-of-focus light. For endoscopic applications, this optical sectioning may not be desirable since a large depth of field, large working distance, and wide field of view are typically preferred. For endoscopic microscopy applications, optical sectioning may be sacrificed for increased light throughput.
When illuminated by coherent sources, imaging via single-mode fibers also introduces so-called speckle noise, which significantly reduces the effective resolution and quality of the images. Replacing the single-mode fiber with a relatively large diameter multi-mode optical fiber enables higher optical throughput and decreases speckle. Unfortunately, utilization of a large diameter multi-mode fiber severely deteriorates the system's point-spread function and prevents the use of interferometry for high sensitivity and three-dimensional detection.
Recently, significant progress has been made developing high power fiber lasers utilizing double-clad (also called ‘dual-clad’) optical fibers. These fibers are unique in their ability to support single mode propagation through the core with multi-mode propagation through the inner cladding.
In accordance with the present invention, a method for imaging a sample through an optical fiber having a core and at least one cladding region includes (a) transmitting a first propagating mode of light through the core of the optical fiber toward the sample and (b) collecting scattered light from the sample in at least a first one of the at least one cladding regions of the optical fiber. Using the fiber's core for illumination and the inner clad for signal collection reduces image speckle, improves depth of field and increases signal efficiency (i.e. allows the collection of more light). Fiber core for illumination and inner clad for signal collection increases depth of field because an increase in the diameter of the collection aperture increases the depth of field and increased diameter of collection aperture increases the amount of light that can be detected through that aperture. This of course assumes that the collection aperture diameter of the inner cladding is greater than that of the core. A modeling of this effect is represented in
In accordance with a further aspect of the present invention, a method for imaging a sample through an optical fiber having a core and at least one cladding region includes (a)transmitting a first propagating mode of light through at least one of the at least one cladding regions toward the sample and (b) collecting scattered light from the sample in a core of the optical fiber. With this particular arrangement, a technique in which inner cladding of a double clad fiber (or multi-clad fiber) can be used to deliver the illumination light, and the core can be used to collect the light. The large, high numerical aperture (NA), inner clad allows for efficient coupling of illumination light that is spatially incoherent from light sources such as Halogen, Mercury or Xenon lamps. This approach maintains the reduced image speckle due to the multiple illumination angles and the large depth of field, at the expense of a subtle drop in image resolution. The signal collection efficiency is lower compared to the core-illumination clad-collection scheme discussed above, but the increase in excitation light can compensate for that by increasing the signal.
In accordance with a further aspect of the present invention, a system for imaging a sample includes a light source for transmitting a first propagating mode of light through a core of a double-clad optical fiber toward the sample and collecting scattered light from the sample in at least a first cladding region of the double-clad optical fiber. In some embodiments, it may be desirable to collect light in both the cladding region and the core of the fiber.
With this particular arrangement, an imaging system which utilizes the core of a fiber for illumination and the inner clad of the fiber for signal collection is provided. This results in a technique which reduces image speckle and provides improved depth of field and increased signal efficiency. Using the fiber's core for illumination and the inner clad for signal collection reduces image speckle, improves depth of field and increases signal efficiency. It should, however, be appreciated that the double-clad fiber can be used by taking the opposite approach: the inner clad can be used to deliver the illumination light, and the core to collect the light. The large, high numerical aperture (NA), inner clad allows for efficient coupling of illumination light that is spatially incoherent from light sources. This approach maintains the reduced image speckle due to the multiple illumination angles and the large depth of field, at the expense of a subtle drop in image resolution. The signal collection efficiency is lower compared to the core-illumination clad-collection scheme discussed earlier, but the increase in excitation light can compensate for that by increasing the signal. In some embodiments, it may be advantageous to process information collected through both the core and the cladding regions regardless of whether the illumination light, is delivered through the core or the cladding. By separately collecting information through both the core and the cladding, information provided from one source (e.g. thought the core) can be used to enhance the information collected from the other (e.g. through the cladding). The information collected through each channel (e.g. the core-transmit/core-collection channel, the core-transmit/cladding-collection channel) can be processed and combined to provide information concerning the sample which is not readily available or apparent from the information collected in any single channel. Since the light returned through the core has higher transverse spatial frequencies than light collected through the cladding, one example of such combination of core and cladding light would be to utilize the information obtained through the core to sharpen the information received through the cladding. Additionally, light detected from the core is single mode which enables three-dimensional or phase sensitive information to be obtained when used in conjunction with an interferometer. This information can be utilized to enhance the incoherent information received by the inner cladding in the form of an overlay or pseudocolor representation of phase or three-dimensional information superimposed onto the spatially incoherent information provided by light detected through the inner cladding.
Similarly, information collected through a cladding-transmit/core-collection channel and a cladding-transmit/cladding-collection channel can be processed and combined to provide information concerning the sample which is not readily available or apparent from the information collected in any single channel. In one example of such processing, image information collected by the core can be utilized to sharpen image information received by the inner cladding.
In summary, the use of a double-clad optical fiber in an imaging system provides many benefits to single optical fiber based imaging. In addition to improved image quality, utilization of a double clad fiber enables implementation of single mode illumination with both single- and multi-mode detection, by incorporating a detection beam-splitter with spatial filtering. This enhancement can enable dual-mode imaging where the multi-mode detection can be used to obtain the diffuse endoscopy image and the single-mode detection could be used for interferometric detection such as that employed by three-dimensional spectrally-encoded endoscopy.
It has been found that double-clad optical fiber can be used to obtain speckle-free, signal-efficient spectrally-encoded imaging. By coupling the illuminating broadband light into the fiber's core only, and collecting the reflected light with the inner cladding (a configuration which is referred to herein as single mode-multimode or SM-MM), it is possible to combine the benefits of single-mode illumination with the advantages of multi-mode signal collection.
The foregoing features of this invention, as well as the invention itself, may be more fully understood from the following description of the drawings in which:
Referring now to
In
Light scattered from the sample 25 is coupled into the inner cladding or core or both the inner cladding and core of the DCF 16 and deflected by the beam splitter 14 (BS) to a spectrometer 29. In this exemplary embodiment, spectrometer 29 includes a lens 28, a diffraction grating 30, and a high-speed line-scan camera 32. The images can then be provided to a computer 34 or other processing system where the images can be displayed and stored.
In one embodiment, the light source 12 may be provided as a broadband light source such as a KLM Ti:Al2O3 laser (750-950 nm) and coupled to the core of the double-clad fiber 16 using an NA=0.4 microscope objective lens. The double-clad fiber 16 may be provided as the type available through Fibercore Limited having a 3.7 μm core diameter (4.1 μm mode-field diameter), NA=0.19, and a 90 μm diameter cladding, NA=0.23 and identified as a SUMM900. The light transmitted from the core of the DCF 16 was collimated using an NA=0.4 microscope objective lens 18 to approximately a 2 mm beam diameter.
Imaging using single mode detection and collection (denoted as SM-SM) was accomplished by replacing the double-clad fiber (i.e. DCF 16 in
The lens 28 (L2) can be provided having f=40 mm, the diffraction grating 30 (G2) can be provided having 1200 lines/mm, and the camera 32 can be provided as a high-speed line-scan camera such as a Basler L104k. With these components, the power on the sample was 2 mW.
To demonstrate spectrally-encoded imaging with the double-clad fiber, the face of a small doll was imaged using three different fiber-based illumination-detection configurations. The results of these three different fiber-based illumination-detection configurations are shown and described below in conjunction with
Referring now to
The SM-SM image (
The MM-MM image (
In order to gain better understanding of the underlying process that lead to these results, various imaging parameters, including the transverse and axial resolution, collected signal intensity, and speckle contrast were numerically simulated for different inner cladding diameters and experimentally measured for the SM-SM and SM-MM configurations.
Referring now to
For point-spread function calculations, the double-clad fiber 41 was treated as a confocal imaging system, where the inner cladding 54 was simulated by a finite-sized pinhole, thereby establishing a correspondence between results obtained with the above-described system and previously published confocal microscopy calculations. Due to the discrete nature of the number of propagating modes in the inner cladding 54, the validity of this approximation depends upon the specific fiber parameters. For example, for an NA=0.23 cladding, a 6 μm diameter fiber supports 13 propagation modes at a wavelength of 0.85 μm. This number increases proportionally to the cladding area, and as a result, for our 90 μm diameter inner cladding, one would expect nearly 3000 modes to be guided. Since a large number of modes are guided by the inner cladding of the SMM900, the pinhole model is expected to correspond to experimental measurements for this double-clad fiber.
Referring now to
Efficient signal collection is important for high signal-to-noise ratio imaging. The detected signal intensity was calculated by simulating 1000 rough surfaces (one random surface for each point on the sample) with uniformly distributed random amplitude and phase, within a Gaussian intensity envelope of 200 μm.
Referring now to
Speckle noise is one of the limiting factors in many coherent imaging techniques. It reduces the effective resolution, produces image artifacts and makes images look unnatural. Using the simulation described above for the detected signal intensity, speckle noise was calculated by dividing the standard deviation of the image by its mean. The resulting speckle contrast, plotted as a solid line in
These experiments and simulations show the benefits of the SM-MM configuration for single-fiber endoscopy. As expected, when the diameter of the inner cladding was equal to the diameter of the core (SM-SM), the results demonstrated coherent or confocal behavior. The images in this case had the highest resolution and contrast, but suffered from speckle noise, low signal power and a relatively limited depth of field. The SM-MM configuration provided by the double clad fiber is analogous to opening the pinhole in a free space confocal microscope. The large area of the cladding improved the detection efficiency, increased the depth of field, and decreased speckle noise, resulting with natural-appearing endoscopy images.
Choosing the optimal clad diameter depends upon the requirements of the specific application. Clad diameters around 10-20 μm, that are only slightly larger than the core diameter, would reduce speckle and increase the signal with only minor reduction in both transverse and depth resolution. Such a configuration is desired in confocal endoscopic imaging, for example, rejection of out of focus light is used to obtain optical sectioning. When optical sectioning is not necessary, or when large depth of field is required, large clad diameters can be used, as was demonstrated in the work described above.
Double-clad optical fibers can be used to enhance several other fiber-based imaging and non-imaging systems, in particular, systems that do not need coherent signal detection and would benefit from the increase in signal and in depth of field, such as fluorescence and Raman fiber probes.
Referring now to
Referring now to
Thus, the double-clad fiber can be used by taking an approach opposite to that described in
Referring now to
It should be noted that when the DCF is used for fluorescence detection, there is no need to utilize a coherent detection scheme since the fluorescence light is not coherent. In addition to conventional fluorescence and reflectance, other imaging modalities may benefit from collection of the remitted light by a second cladding of the fiber, including second harmonic, third harmonic, two-photon fluorescence, Raman scattering, coherent-anti-stokes Raman (CARS), surface-enhanced-Raman scattering (SERS) and the like.
It should be appreciated that the benefits provided by the double-clad fiber, namely the reduced speckle, the improved depth of field and the increase in signal collection efficiency, can be obtained with different fiber or waveguide designs. It should this be appreciated that any configuration in which the sample is illuminated with a beam that provides a resolution spot that is acceptable by the imaging system, and the light collection is performed by a larger aperture in the fiber, may provide similar benefits.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
It should be understood that in addition to all of the benefits provided by the probe and fiber configurations described above, coherence detection can still be performed by a single-mode illuminating core, or any other single mode waveguide in the probe. Coherence detection may provide depth sensitivity and allow for use of a heterodyne detection scheme to allow for weak signal detection.
Although only a few exemplary embodiments of this invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. For example, as discussed above, using the fiber's core for illumination and the inner clad for signal collection reduces image speckle, improves depth of field and increases signal efficiency. It should, however, be appreciated that the double-clad fiber can be used by taking the opposite approach: the inner clad can be used to deliver the illumination light, and the core to collect the light. The large, high NA, inner clad allows for efficient coupling of illumination light that is spatially incoherent from light sources such as Halogen, Mercury or Xenon lamps. This approach maintains the reduced image speckle due to the multiple illumination angles and the large depth of field, at the expense of a subtle drop in image resolution. The signal collection efficiency is lower compared to the core-illumination clad-collection scheme discussed earlier, but the increase in excitation light can compensate for that by increasing the signal.
Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the following claims. It should further be noted that any patents, applications and publications referred to herein are incorporated by reference in their entirety.
This application claims the benefit under 35 U.S.C. §119(e) of Provisional Patent Application No. 60/585,065 filed on Jul. 2, 2004, which application is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2339754 | Brace | Jan 1944 | A |
3601480 | Randall | Aug 1971 | A |
3856000 | Chikama | Dec 1974 | A |
3941121 | Olinger | Mar 1976 | A |
4030827 | Delhaye et al. | Jun 1977 | A |
4141362 | Wurster | Feb 1979 | A |
4295738 | Meltz et al. | Oct 1981 | A |
4300816 | Snitzer et al. | Nov 1981 | A |
4479499 | Alfano | Oct 1984 | A |
4585349 | Gross et al. | Apr 1986 | A |
4601036 | Faxvog et al. | Jul 1986 | A |
4607622 | Fritch et al. | Aug 1986 | A |
4631498 | Cutler | Dec 1986 | A |
4770492 | Levin et al. | Sep 1988 | A |
4868834 | Fox et al. | Sep 1989 | A |
4925302 | Cutler | May 1990 | A |
4928005 | Lefèvre et al. | May 1990 | A |
4965441 | Picard | Oct 1990 | A |
4993834 | Carlhoff et al. | Feb 1991 | A |
5039193 | Snow et al. | Aug 1991 | A |
5040889 | Keane | Aug 1991 | A |
5045936 | Lobb et al. | Sep 1991 | A |
5046501 | Crilly | Sep 1991 | A |
5065331 | Vachon et al. | Nov 1991 | A |
5120953 | Harris | Jun 1992 | A |
5127730 | Brelje et al. | Jul 1992 | A |
5197470 | Helfer et al. | Mar 1993 | A |
5202745 | Sorin et al. | Apr 1993 | A |
5248876 | Kerstens et al. | Sep 1993 | A |
5262644 | Maguire | Nov 1993 | A |
5291885 | Taniji et al. | Mar 1994 | A |
5293872 | Alfano et al. | Mar 1994 | A |
5293873 | Fang | Mar 1994 | A |
5304810 | Amos | Apr 1994 | A |
5305759 | Kaneko et al. | Apr 1994 | A |
5317389 | Hochberg et al. | May 1994 | A |
5321501 | Swanson et al. | Jun 1994 | A |
5353790 | Jacques et al. | Oct 1994 | A |
5383467 | Auer et al. | Jan 1995 | A |
5411016 | Kume et al. | May 1995 | A |
5419323 | Kittrell et al. | May 1995 | A |
5439000 | Gunderson et al. | Aug 1995 | A |
5441053 | Lodder et al. | Aug 1995 | A |
5450203 | Penkethman | Sep 1995 | A |
5454807 | Lennox et al. | Oct 1995 | A |
5459325 | Hueton et al. | Oct 1995 | A |
5459570 | Swanson et al. | Oct 1995 | A |
5465147 | Swanson | Nov 1995 | A |
5486701 | Norton et al. | Jan 1996 | A |
5491524 | Hellmuth et al. | Feb 1996 | A |
5491552 | Knuttel | Feb 1996 | A |
5526338 | Hasman et al. | Jun 1996 | A |
5562100 | Kittrell et al. | Oct 1996 | A |
5565986 | Knüttel | Oct 1996 | A |
5583342 | Ichie | Dec 1996 | A |
5590660 | MacAulay et al. | Jan 1997 | A |
5600486 | Gal et al. | Feb 1997 | A |
5601087 | Richards-Kortum et al. | Feb 1997 | A |
5621830 | Lucey et al. | Apr 1997 | A |
5623336 | Raab et al. | Apr 1997 | A |
5697373 | Gunderson et al. | Dec 1997 | A |
5698397 | Zarling et al. | Dec 1997 | A |
5710630 | Essenpreis et al. | Jan 1998 | A |
5719399 | Alfano et al. | Feb 1998 | A |
5735276 | Lemelson | Apr 1998 | A |
5740808 | Panescu et al. | Apr 1998 | A |
5748598 | Swanson et al. | May 1998 | A |
5784352 | Swanson et al. | Jul 1998 | A |
5785651 | Kuhn et al. | Jul 1998 | A |
5795295 | Hellmuth et al. | Aug 1998 | A |
5801826 | Williams | Sep 1998 | A |
5803082 | Stapleton et al. | Sep 1998 | A |
5807261 | Benaron et al. | Sep 1998 | A |
5817144 | Gregory | Oct 1998 | A |
5840023 | Oraevsky et al. | Nov 1998 | A |
5842995 | Mahadevan-Jansen et al. | Dec 1998 | A |
5843000 | Nishioka et al. | Dec 1998 | A |
5843052 | Benja-Athon | Dec 1998 | A |
5847827 | Fercher | Dec 1998 | A |
5862273 | Pelletier | Jan 1999 | A |
5865754 | Sevick-Muraca et al. | Feb 1999 | A |
5867268 | Gelikonov et al. | Feb 1999 | A |
5871449 | Brown | Feb 1999 | A |
5872879 | Hamm | Feb 1999 | A |
5877856 | Fercher | Mar 1999 | A |
5887009 | Mandella et al. | Mar 1999 | A |
5892583 | Li | Apr 1999 | A |
5920373 | Bille | Jul 1999 | A |
5920390 | Farahi et al. | Jul 1999 | A |
5921926 | Rolland et al. | Jul 1999 | A |
5949929 | Hamm | Sep 1999 | A |
5951482 | Winston et al. | Sep 1999 | A |
5956355 | Swanson et al. | Sep 1999 | A |
5968064 | Selmon et al. | Oct 1999 | A |
5983125 | Alfano et al. | Nov 1999 | A |
5987346 | Benaron et al. | Nov 1999 | A |
5991697 | Nelson et al. | Nov 1999 | A |
5994690 | Kulkarni et al. | Nov 1999 | A |
6002480 | Izatt et al. | Dec 1999 | A |
6004314 | Wei et al. | Dec 1999 | A |
6006128 | Izatt et al. | Dec 1999 | A |
6010449 | Selmon et al. | Jan 2000 | A |
6014214 | Li | Jan 2000 | A |
6033721 | Nassuphis | Mar 2000 | A |
6044288 | Wake et al. | Mar 2000 | A |
6048742 | Weyburne et al. | Apr 2000 | A |
6053613 | Wei et al. | Apr 2000 | A |
6069698 | Ozawa et al. | May 2000 | A |
6091496 | Hill | Jul 2000 | A |
6091984 | Perelman et al. | Jul 2000 | A |
6111645 | Tearney et al. | Aug 2000 | A |
6117128 | Gregory | Sep 2000 | A |
6120516 | Selmon et al. | Sep 2000 | A |
6134003 | Tearney et al. | Oct 2000 | A |
6134010 | Zavislan | Oct 2000 | A |
6134033 | Bergano et al. | Oct 2000 | A |
6141577 | Rolland et al. | Oct 2000 | A |
6151522 | Alfano et al. | Nov 2000 | A |
6159445 | Klaveness et al. | Dec 2000 | A |
6160826 | Swanson et al. | Dec 2000 | A |
6161031 | Hochman et al. | Dec 2000 | A |
6166373 | Mao | Dec 2000 | A |
6174291 | McMahon et al. | Jan 2001 | B1 |
6175669 | Colston et al. | Jan 2001 | B1 |
6185271 | Kinsinger | Feb 2001 | B1 |
6191862 | Swanson et al. | Feb 2001 | B1 |
6193676 | Winston et al. | Feb 2001 | B1 |
6198956 | Dunne | Mar 2001 | B1 |
6201989 | Whitehead et al. | Mar 2001 | B1 |
6208415 | De Boer et al. | Mar 2001 | B1 |
6208887 | Clarke | Mar 2001 | B1 |
6249349 | Lauer | Jun 2001 | B1 |
6263234 | Engelhardt et al. | Jul 2001 | B1 |
6264610 | Zhu | Jul 2001 | B1 |
6272376 | Marcu et al. | Aug 2001 | B1 |
6274871 | Dukor et al. | Aug 2001 | B1 |
6282011 | Tearney et al. | Aug 2001 | B1 |
6308092 | Hoyns | Oct 2001 | B1 |
6324419 | Guzelsu et al. | Nov 2001 | B1 |
6341036 | Tearney et al. | Jan 2002 | B1 |
6353693 | Kano et al. | Mar 2002 | B1 |
6377349 | Fercher | Apr 2002 | B1 |
6384915 | Everett et al. | May 2002 | B1 |
6393312 | Hoyns | May 2002 | B1 |
6394964 | Sievert, Jr. et al. | May 2002 | B1 |
6421164 | Tearney et al. | Jul 2002 | B2 |
6445944 | Ostrovsky | Sep 2002 | B1 |
6463313 | Winston et al. | Oct 2002 | B1 |
6469846 | Ebizuka et al. | Oct 2002 | B2 |
6485413 | Boppart et al. | Nov 2002 | B1 |
6485482 | Belef | Nov 2002 | B1 |
6501551 | Tearney et al. | Dec 2002 | B1 |
6501878 | Hughes et al. | Dec 2002 | B2 |
6549801 | Chen et al. | Apr 2003 | B1 |
6552796 | Magnin et al. | Apr 2003 | B2 |
6556305 | Aziz et al. | Apr 2003 | B1 |
6556853 | Cabib et al. | Apr 2003 | B1 |
6558324 | Von Behren et al. | May 2003 | B1 |
6564087 | Pitris et al. | May 2003 | B1 |
6564089 | Izatt et al. | May 2003 | B2 |
6615071 | Casscells, III et al. | Sep 2003 | B1 |
6622732 | Constantz | Sep 2003 | B2 |
6680780 | Fee | Jan 2004 | B1 |
6685885 | Nolte et al. | Feb 2004 | B2 |
6687007 | Meigs | Feb 2004 | B1 |
6687010 | Horii et al. | Feb 2004 | B1 |
6790175 | Furusawa et al. | Sep 2004 | B1 |
6806963 | Wälti et al. | Oct 2004 | B1 |
6816743 | Moreno et al. | Nov 2004 | B2 |
6839496 | Mills et al. | Jan 2005 | B1 |
6980299 | de Boer | Dec 2005 | B1 |
7006231 | Ostrovsky et al. | Feb 2006 | B2 |
7231243 | Tearney et al. | Jun 2007 | B2 |
20010047137 | Moreno et al. | Nov 2001 | A1 |
20020016533 | Marchitto et al. | Feb 2002 | A1 |
20020064341 | Fauver et al. | May 2002 | A1 |
20020076152 | Hughes et al. | Jun 2002 | A1 |
20020085209 | Mittleman et al. | Jul 2002 | A1 |
20020122246 | Tearney et al. | Sep 2002 | A1 |
20020161357 | Rox et al. | Oct 2002 | A1 |
20020163622 | Magnin et al. | Nov 2002 | A1 |
20020172485 | Keaton et al. | Nov 2002 | A1 |
20020188204 | McNamara et al. | Dec 2002 | A1 |
20020196446 | Roth et al. | Dec 2002 | A1 |
20020198457 | Tearney et al. | Dec 2002 | A1 |
20030023153 | Izatt et al. | Jan 2003 | A1 |
20030026735 | Nolte et al. | Feb 2003 | A1 |
20030135101 | Webler | Jul 2003 | A1 |
20030164952 | Deichmann et al. | Sep 2003 | A1 |
20030171691 | Casscells, III et al. | Sep 2003 | A1 |
20030236443 | Cespedes et al. | Dec 2003 | A1 |
20040086245 | Farroni et al. | May 2004 | A1 |
20040100631 | Bashkansky et al. | May 2004 | A1 |
20040100681 | Bjarklev et al. | May 2004 | A1 |
20040150829 | Koch et al. | Aug 2004 | A1 |
20040166593 | Nolte et al. | Aug 2004 | A1 |
20050018201 | De Boer | Jan 2005 | A1 |
Number | Date | Country |
---|---|---|
4309056 | Sep 1994 | DE |
195 42 955 | May 1997 | DE |
19542955 | May 1997 | DE |
10351319 | Jun 2005 | DE |
0110201 | Jun 1984 | EP |
0251062 | Jan 1988 | EP |
0590268 | Apr 1994 | EP |
1426799 | Jun 2004 | EP |
1257778 | Dec 1971 | GB |
2030313 | Apr 1980 | GB |
2209221 | May 1989 | GB |
413550 | May 1992 | JP |
4135551 | May 1992 | JP |
9219930 | Nov 1992 | WO |
9303672 | Mar 1993 | WO |
9533971 | Dec 1995 | WO |
9732182 | Sep 1997 | WO |
9801074 | Jan 1998 | WO |
9814132 | Apr 1998 | WO |
9835203 | Aug 1998 | WO |
9838907 | Sep 1998 | WO |
9846123 | Oct 1998 | WO |
9848838 | Nov 1998 | WO |
9944089 | Sep 1999 | WO |
9957507 | Nov 1999 | WO |
0058766 | Oct 2000 | WO |
0138820 | May 2001 | WO |
0142735 | Jun 2001 | WO |
0236015 | May 2002 | WO |
0238040 | May 2002 | WO |
WO 0238040 | May 2002 | WO |
WO 0238040 | May 2002 | WO |
02054027 | Jul 2002 | WO |
03020119 | Mar 2003 | WO |
03062802 | Jul 2003 | WO |
20040066824 | Aug 2004 | WO |
2004088361 | Oct 2004 | WO |
2004105598 | Dec 2004 | WO |
20050000115 | Jan 2005 | WO |
2005054780 | Jun 2005 | WO |
2006014392 | Feb 2006 | WO |
2006130797 | Dec 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20060013544 A1 | Jan 2006 | US |
Number | Date | Country | |
---|---|---|---|
60585065 | Jul 2004 | US |