Imaging system and related techniques

Abstract
A method and apparatus for imaging using a double-clad fiber is described.
Description
STATEMENTS REGARDING FEDERALLY SPONSORED RESEARCH

Not applicable.


FIELD OF THE INVENTION

This invention relates generally optical imaging and more particularly to a method and apparatus for performing three-dimensional surface measurements.


BACKGROUND OF THE INVENTION

As is known in the art, fiber optic endoscopy is typically conducted by transmitting an image through an array of fibers often referred to as a fiber bundle. While successful for a variety of medical and non-medical applications, utilization of an array of fibers to form the image imposes constraints on the cost, diameter, and flexibility of the imaging device.


In an attempt to overcome these drawbacks, multiple approaches employing a single optical fiber have been proposed for miniature, flexible endoscopes. For example, one technique for confocal imaging with a single fiber has been implemented by utilizing the core of a single-mode fiber as both the source and the detection apertures. Also, miniature confocal microscope probes and endoscopes have been constructed by adding a mechanical micro-scanner at the tip of a single-mode fiber. Another single-fiber method for miniature endoscopy, termed spectral encoding, uses a broadband light source and a diffraction grating to spectrally encode reflectance across a transverse line within the sample as described in Tearney et al. Opt. Lett. 27: 412 (2002). A two-dimensional image is formed by slowly scanning this spectrally encoded line and a three-dimensional image may be obtained by placing the probe in the sample arm of an interferometer as described in Yelin et al. Opt. Lett. 28: 2321 (2003). The core of the single-mode fiber acts as both the source and the detection apertures for all of these techniques.


As is also known, one important design parameter for single-fiber endoscopy is the modal profile of the optical fiber. Single-mode optical fibers enable high resolution imaging with small and flexible imaging probes, but suffer from relatively poor light throughput. Furthermore, the small core of the single-mode fiber acts similarly to a pinhole in free-space confocal microscopy, preventing the detection of out-of-focus light. For endoscopic applications, this optical sectioning may not be desirable since a large depth of field, large working distance, and wide field of view are typically preferred. For endoscopic microscopy applications, optical sectioning may be sacrificed for increased light throughput.


When illuminated by coherent sources, imaging via single-mode fibers also introduces so-called speckle noise, which significantly reduces the effective resolution and quality of the images. Replacing the single-mode fiber with a relatively large diameter multi-mode optical fiber enables higher optical throughput and decreases speckle. Unfortunately, utilization of a large diameter multi-mode fiber severely deteriorates the system's point-spread function and prevents the use of interferometry for high sensitivity and three-dimensional detection.


Recently, significant progress has been made developing high power fiber lasers utilizing double-clad (also called ‘dual-clad’) optical fibers. These fibers are unique in their ability to support single mode propagation through the core with multi-mode propagation through the inner cladding.


SUMMARY OF THE INVENTION

In accordance with the present invention, a method for imaging a sample through an optical fiber having a core and at least one cladding region includes (a) transmitting a first propagating mode of light through the core of the optical fiber toward the sample and (b) collecting scattered light from the sample in at least a first one of the at least one cladding regions of the optical fiber. Using the fiber's core for illumination and the inner clad for signal collection reduces image speckle, improves depth of field and increases signal efficiency (i.e. allows the collection of more light). Fiber core for illumination and inner clad for signal collection increases depth of field because an increase in the diameter of the collection aperture increases the depth of field and increased diameter of collection aperture increases the amount of light that can be detected through that aperture. This of course assumes that the collection aperture diameter of the inner cladding is greater than that of the core. A modeling of this effect is represented in FIGS. 3B and 3C below


In accordance with a further aspect of the present invention, a method for imaging a sample through an optical fiber having a core and at least one cladding region includes (a) transmitting a first propagating mode of light through at least one of the at least one cladding regions toward the sample and (b) collecting scattered light from the sample in a core of the optical fiber. With this particular arrangement, a technique in which inner cladding of a double clad fiber (or multi-clad fiber) can be used to deliver the illumination light, and the core can be used to collect the light. The large, high numerical aperture (NA), inner clad allows for efficient coupling of illumination light that is spatially incoherent from light sources such as Halogen, Mercury or Xenon lamps. This approach maintains the reduced image speckle due to the multiple illumination angles and the large depth of field, at the expense of a subtle drop in image resolution. The signal collection efficiency is lower compared to the core-illumination clad-collection scheme discussed above, but the increase in excitation light can compensate for that by increasing the signal.


In accordance with a further aspect of the present invention, a system for imaging a sample includes a light source for transmitting a first propagating mode of light through a core of a double-clad optical fiber toward the sample and collecting scattered light from the sample in at least a first cladding region of the double-clad optical fiber. In some embodiments, it may be desirable to collect light in both the cladding region and the core of the fiber.


With this particular arrangement, an imaging system which utilizes the core of a fiber for illumination and the inner clad of the fiber for signal collection is provided. This results in a technique which reduces image speckle and provides improved depth of field and increased signal efficiency. Using the fiber's core for illumination and the inner clad for signal collection reduces image speckle, improves depth of field and increases signal efficiency. It should, however, be appreciated that the double-clad fiber can be used by taking the opposite approach: the inner clad can be used to deliver the illumination light, and the core to collect the light. The large, high numerical aperture (NA), inner clad allows for efficient coupling of illumination light that is spatially incoherent from light sources. This approach maintains the reduced image speckle due to the multiple illumination angles and the large depth of field, at the expense of a subtle drop in image resolution. The signal collection efficiency is lower compared to the core-illumination clad-collection scheme discussed earlier, but the increase in excitation light can compensate for that by increasing the signal. In some embodiments, it may be advantageous to process information collected through both the core and the cladding regions regardless of whether the illumination light, is delivered through the core or the cladding. By separately collecting information through both the core and the cladding, information provided from one source (e.g. thought the core) can be used to enhance the information collected from the other (e.g. through the cladding). The information collected through each channel (e.g. the core-transmit/core-collection channel, the core-transmit/cladding-collection channel) can be processed and combined to provide information concerning the sample which is not readily available or apparent from the information collected in any single channel. Since the light returned through the core has higher transverse spatial frequencies than light collected through the cladding, one example of such combination of core and cladding light would be to utilize the information obtained through the core to sharpen the information received through the cladding. Additionally, light detected from the core is single mode which enables three-dimensional or phase sensitive information to be obtained when used in conjunction with an interferometer. This information can be utilized to enhance the incoherent information received by the inner cladding in the form of an overlay or pseudocolor representation of phase or three-dimensional information superimposed onto the spatially incoherent information provided by light detected through the inner cladding.


Similarly, information collected through a cladding-transmit/core-collection channel and a cladding-transmit/cladding-collection channel can be processed and combined to provide information concerning the sample which is not readily available or apparent from the information collected in any single channel. In one example of such processing, image information collected by the core can be utilized to sharpen image information received by the inner cladding.


In summary, the use of a double-clad optical fiber in an imaging system provides many benefits to single optical fiber based imaging. In addition to improved image quality, utilization of a double clad fiber enables implementation of single mode illumination with both single- and multi-mode detection, by incorporating a detection beam-splitter with spatial filtering. This enhancement can enable dual-mode imaging where the multi-mode detection can be used to obtain the diffuse endoscopy image and the single-mode detection could be used for interferometric detection such as that employed by three-dimensional spectrally-encoded endoscopy.


It has been found that double-clad optical fiber can be used to obtain speckle-free, signal-efficient spectrally-encoded imaging. By coupling the illuminating broadband light into the fiber's core only, and collecting the reflected light with the inner cladding (a configuration which is referred to herein as single mode-multimode or SM-MM), it is possible to combine the benefits of single-mode illumination with the advantages of multi-mode signal collection.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing features of this invention, as well as the invention itself, may be more fully understood from the following description of the drawings in which:



FIG. 1A is a block diagram of an optical system for spectrally-encoded imaging with a double-clad fiber;



FIG. 1B is an expanded cross-sectional view of the double-clad fiber of FIG. 1;



FIG. 2A is a photograph of a standard white light image of a face of a doll;



FIG. 2B is an image of the face of the doll of FIG. 2A generated using spectrally-encoded imaging with single-mode illumination and single-mode collection (SM-SM);



FIG. 2C is an image of the face of the doll of FIG. 2A generated using spectrally-encoded imaging with single-mode illumination and multi-mode collection (SM-MM);



FIG. 2D is an image of the face of the doll of FIG. 2A generated using spectrally-encoded imaging with multi-mode illumination and multi-mode collection (MM-MM);



FIG. 3A is a block diagram of a system for signal collection using a double-clad fiber (DCF) in which a lens images scattered light onto the face of an inner clad layer;



FIG. 3B is a plot of normalized SM-MM transverse (solid line) and axial spot sizes, plotted as a function of inner cladding diameter;



FIG. 3C is a plot of speckle contrast and normalized total signal intensity;



FIG. 4A is a block diagram of a signal collection system which illustrates using a double-clad fiber in which a lens images scattered light onto the face of an inner clad layer of the fiber;



FIG. 4B is a block diagram of a signal collection system using a double-clad fiber in which a lens images scattered light onto the face of a core of the fiber;



FIG. 5A. is a block diagram of a system which utilizes a double-clad fiber for both coherent light collection (collection of light through the core only) and non-coherent light collection (light collection through the inner clad only); and



FIGS. 6A-6E are a series of cross-sectional views of probes which utilize a double clad fiber.





DETAILED DESCRIPTION OF THE INVENTION

Referring now to FIG. 1, an optical system 10 for spectrally-encoded imaging with a double-clad fiber includes a broadband light source 12 which transmits light to a beam splitter (BS) 14. A first portion of the light is directed toward a double clad fiber (DCF) 16. The light propagates through the DCF 16 and through a collimating lens 18 to a miniature imaging probe 19.


In FIG. 1, the miniature imaging probe 19 is simulated using a compact lens grating design provided from a lens 20 and a grating 22. A galvanometric optical scanner 24 controlled by a processor 34 to performs slow axis scanning. The scanner directs the light toward a surface of a sample 25.


Light scattered from the sample 25 is coupled into the inner cladding or core or both the inner cladding and core of the DCF 16 and deflected by the beam splitter 14 (BS) to a spectrometer 29. In this exemplary embodiment, spectrometer 29 includes a lens 28, a diffraction grating 30, and a high-speed line-scan camera 32. The images can then be provided to a computer 34 or other processing system where the images can be displayed and stored.


In one embodiment, the light source 12 may be provided as a broadband light source such as a KLM Ti:Al2O3 laser (750-950 nm) and coupled to the core of the double-clad fiber 16 using an NA=0.4 microscope objective lens. The double-clad fiber 16 may be provided as the type available through Fibercore Limited having a 3.7 μm core diameter (4.1 μm mode-field diameter), NA=0.19, and a 90 μm diameter cladding, NA=0.23 and identified as a SUMM900. The light transmitted from the core of the DCF 16 was collimated using an NA=0.4 microscope objective lens 18 to approximately a 2 mm beam diameter.


Imaging using single mode detection and collection (denoted as SM-SM) was accomplished by replacing the double-clad fiber (i.e. DCF 16 in FIG. 1) and the beam splitter (i.e. BS 14 in FIG. 1) with a single-mode 50/50 fiber-splitter (e.g. a single-mode 50/50 fiber-splitter of the type provided by Gould Electronics Inc., Corning HI 780-5/125 fiber, NA=0.14). In one embodiment, the miniature imaging probe was simulated by using a compact lens-grating design in which the beam was first focused by the lens 20 (L1, f=65 mm) and then diffracted by the transmission grating 22 (G1, 1000 lines/mm) to form a line on the surface of the sample. In another embodiment, the miniature imaging probe comprises a DCF with an objective lens such as a gradient index lens (GRIN) attached to the distal end of the DCF. In another embodiment, a spacer and angled grating is affixed to the distal end of a GRIN lens attached to the DCF. In yet a further embodiment, the probe is comprised of a DCF, lens, dual-prism GRISM and objective lens, as is described in Pitris C, Bouma B E, Shishkov M, Tearney G J. A GRISM-based probe for spectrally encoded confocal microscopy. Optics Express 2003; 11:120-24.


The lens 28 (L2) can be provided having f=40 mm, the diffraction grating 30 (G2) can be provided having 1200 lines/mm, and the camera 32 can be provided as a high-speed line-scan camera such as a Basler L104k. With these components, the power on the sample was 2 mW.


To demonstrate spectrally-encoded imaging with the double-clad fiber, the face of a small doll was imaged using three different fiber-based illumination-detection configurations. The results of these three different fiber-based illumination-detection configurations are shown and described below in conjunction with FIGS. 2B-2D.


Referring now to FIG. 2A, an image of a doll's face obtained using white light illumination and a CCD camera is shown. The scale bar (in the lower right hand corner of FIG. 2A) represents 2 mm. This image is presented for comparison with the images shown in FIGS. 2B-2D.



FIG. 2B is an image of the doll's face obtained with single-mode illumination and single-mode detection (denoted SM-SM).



FIG. 2C is an image of the doll's face obtained with single-mode illumination and multi-mode detection (denoted as SM-MM).



FIG. 2D is an image of the doll's face obtained using multi-mode illumination with multi-mode detection (MM-MM) where the excitation light was coupled mainly to the inner cladding.


The SM-SM image (FIG. 2B) had relatively high resolution and contrast, but was corrupted by speckle noise. While the SM-MM image (FIG. 2C) had slightly lower resolution compared with the SM-SM image, its appearance was more natural and more similar to the white light reference image (FIG. 2A). Also, due to an increase in depth of field, the doll's neck and the shoulder could be seen in the SM-MM image, whereas the small core diameter of the SM-SM image rejected the signal coming from these regions.


The MM-MM image (FIG. 2D) did not contain speckle noise and had the largest depth of field, but also had a dramatically reduced resolution compared to the resolution of the SM-SM or SM-MM images. The images that utilized multi-mode collection, FIGS. 2C and 2D, were also much brighter than the SM-SM image.


In order to gain better understanding of the underlying process that lead to these results, various imaging parameters, including the transverse and axial resolution, collected signal intensity, and speckle contrast were numerically simulated for different inner cladding diameters and experimentally measured for the SM-SM and SM-MM configurations.


Referring now to FIG. 3A, the signal collection geometry of a double-clad fiber 41, used for the numerical simulations is shown. The grating G1 and the galvanometric scanner shown in FIG. 1 were omitted from this illustration for simplicity and to maintain the generality of the scheme. The spatially coherent light (dashed rays 42) emanated from the core 44 and was focused to a small spot on the rough surface 46a of the sample 46. It was assumed that the light from the sample surface 46a scattered equally in all directions. By imaging the diffused light spot resultant from illuminating a variety of samples e.g. paper, razor blade and a volunteer's finger, it was found that the area covered by the diffused light extended to a typical size of about 200 mm. The scattered light 50 (dotted lines) was imaged back onto the face of the fiber, and coupled mainly into the inner cladding 52.


For point-spread function calculations, the double-clad fiber 41 was treated as a confocal imaging system, where the inner cladding 54 was simulated by a finite-sized pinhole, thereby establishing a correspondence between results obtained with the above-described system and previously published confocal microscopy calculations. Due to the discrete nature of the number of propagating modes in the inner cladding 54, the validity of this approximation depends upon the specific fiber parameters. For example, for an NA=0.23 cladding, a 6 μm diameter fiber supports 13 propagation modes at a wavelength of 0.85 μm. This number increases proportionally to the cladding area, and as a result, for our 90 μm diameter inner cladding, one would expect nearly 3000 modes to be guided. Since a large number of modes are guided by the inner cladding of the SMM900, the pinhole model is expected to correspond to experimental measurements for this double-clad fiber.


Referring now to FIG. 3B, by numerically solving the Fresnel integral, the full width at half maximum (FWHM) of the point-spread function was calculated. The transverse and the axial spot sizes, normalized to unity when the cladding diameter was equal to the core diameter, are shown as solid and dashed lines, respectively, in FIG. 3B. The transverse spot size increased by up to a factor of 1.4 and then remained constant for large cladding diameters, while the axial spot increases almost linearly. The transverse point-spread function was measured by taking the derivative of the signal from an edge in an air-force resolution chart. The full width at half maximum (FWHM) of the measured point-spread function was 17.4±1.5 μm using the SM-SM configuration (the mean of 35 locations on the image), and 27.7±2.9 μm for the SM-MM case (shown by a filled circle in FIG. 3B). The FWHM of the measured signal, obtained by scanning a mirror along the optical axis through the focal point, was measured for the SM-SM and SM-MM configurations to be about 2.1±0.3 mm and 18.5±3 mm, respectively. The ratio between these measurements was 8.8, which was slightly lower than the ratio of 10.5 obtained from our simulation.


Efficient signal collection is important for high signal-to-noise ratio imaging. The detected signal intensity was calculated by simulating 1000 rough surfaces (one random surface for each point on the sample) with uniformly distributed random amplitude and phase, within a Gaussian intensity envelope of 200 μm.


Referring now to FIG. 3C, a plot of normalized total signal intensity that was collected with the inner cladding is shown as a dashed line. It should be appreciated that all SM-MM values are normalized to those of the SM-SM case and that the error bars represent one standard deviation. For small cladding diameters, the signal collection increased with the cladding area. The total collected signal reached a plateau as the cladding covered the entire extent of the scattered light. The total signal from a highly scattering paper at the object plane was measured and it was found that the signal collected with the SMM900 inner cladding was 32.5 times stronger than the signal that was collected in the SM-SM case (diamonds in FIG. 3C). This measurement was in good agreement with the ratio of 35 obtained from a simulation.


Speckle noise is one of the limiting factors in many coherent imaging techniques. It reduces the effective resolution, produces image artifacts and makes images look unnatural. Using the simulation described above for the detected signal intensity, speckle noise was calculated by dividing the standard deviation of the image by its mean. The resulting speckle contrast, plotted as a solid line in FIG. 3C, rapidly decreases with the increasing cladding diameter. The speckle contrast for 50 lines of an image of a rough aluminum surface was measured. For the SM-SM configuration the speckle contrast was found to be 0.76±0.09 and for the SM-MM case, a speckle contrast was found to be 0.1±0.15 (shown in filled circles on the plot), corresponding to a reduction of speckle by a factor of 7.6. This ratio was in good agreement with that of a simulation, which demonstrated a ratio of 9.4.


These experiments and simulations show the benefits of the SM-MM configuration for single-fiber endoscopy. As expected, when the diameter of the inner cladding was equal to the diameter of the core (SM-SM), the results demonstrated coherent or confocal behavior. The images in this case had the highest resolution and contrast, but suffered from speckle noise, low signal power and a relatively limited depth of field. The SM-MM configuration provided by the double clad fiber is analogous to opening the pinhole in a free space confocal microscope. The large area of the cladding improved the detection efficiency, increased the depth of field, and decreased speckle noise, resulting with natural-appearing endoscopy images.


Choosing the optimal clad diameter depends upon the requirements of the specific application. Clad diameters around 10-20 μm, that are only slightly larger than the core diameter, would reduce speckle and increase the signal with only minor reduction in both transverse and depth resolution. Such a configuration is desired in confocal endoscopic imaging, for example, rejection of out of focus light is used to obtain optical sectioning. When optical sectioning is not necessary, or when large depth of field is required, large clad diameters can be used, as was demonstrated in the work described above.


Double-clad optical fibers can be used to enhance several other fiber-based imaging and non-imaging systems, in particular, systems that do not need coherent signal detection and would benefit from the increase in signal and in depth of field, such as fluorescence and Raman fiber probes.


Referring now to FIG. 4A, a system 60 for fluorescence or Raman signal collection using a double-clad fiber probe is shown. Light 61 emanates from a core 62 of a double-clad fiber 64 and is directed through a lens 66 toward a surface 68a of a sample 68. Light 69 reflects of the sample 68 back through the lens 66 and onto the face of the fiber, and coupled mainly into the inner cladding 70 of the fiber 64.


Referring now to FIG. 4B, a system 60′ for fluorescence or Raman signal collection using a double-clad fiber probe is shown. Light 61 emanates from a cladding region 70′ of a double-clad fiber 64′ and is directed through a lens 66′ toward a surface 68a of a sample 68. Light 69′ reflects off the sample 68 back through the lens 66′ and onto the face of the fiber, and coupled mainly into the core 62′ of the fiber 64′.


Thus, the double-clad fiber can be used by taking an approach opposite to that described in FIG. 4A. Specifically, as shown in FIG. 4B, the inner clad can be used to deliver the illumination light, and the core to collect the light. The large, high NA, inner clad allows for efficient coupling of illumination light that is spatially incoherent from light sources such as Halogen, Mercury or Xenon lamps. This approach maintains the reduced image speckle due to the multiple illumination angles and the large depth of field, at the expense of a subtle drop in image resolution. The signal collection efficiency is lower compared to the core-illumination clad-collection scheme discussed earlier, but the increase in excitation light can compensate for that by increasing the signal.


Referring now to FIG. 5A, a system 72 which uses double-clad fiber (DCF) to perform both coherent and non-coherent light collection (i.e. coherent collection of light through the core only and non-coherent collection of light through the inner clad only) includes a broadband light source 74 which transmits light through a fiber coupler 76 having a first port coupled to a double-pass Rapid Scanning Optical Delay (RSOD) line and a second port coupled to a double-clad fiber (DCF) 78. Light propagates through the DCF to a sample 80. The coherent light is transmitted through the core and coupled back into a fiber splitter 82. An interference pattern between this light and the light from the delay line at the reference arm can be detected by a single detector (as shown in the figure), or by a charge coupled device (CCD) array or by using any other technique and apparatus now known or later discovered.


It should be noted that when the DCF is used for fluorescence detection, there is no need to utilize a coherent detection scheme since the fluorescence light is not coherent. In addition to conventional fluorescence and reflectance, other imaging modalities may benefit from collection of the remitted light by a second cladding of the fiber, including second harmonic, third harmonic, two-photon fluorescence, Raman scattering, coherent-anti-stokes Raman (CARS), surface-enhanced-Raman scattering (SERS) and the like.


It should be appreciated that the benefits provided by the double-clad fiber, namely the reduced speckle, the improved depth of field and the increase in signal collection efficiency, can be obtained with different fiber or waveguide designs. It should this be appreciated that any configuration in which the sample is illuminated with a beam that provides a resolution spot that is acceptable by the imaging system, and the light collection is performed by a larger aperture in the fiber, may provide similar benefits.



FIGS. 6A-6E are a series of cross-sectional views which illustrate several possible probe designs.


Referring now to FIG. 6A, a probe can be provided as a double clad fiber having a core 90, a first cladding layer 92 and a second cladding layer 94.


Referring now to FIG. 6B, a probe can be provided as a multi-clad fiber having a core 96 and a plurality of cladding regions 98a-98c.


Referring now to FIG. 6C, a double clad fiber having a core 100 and a cladding 102 with an arbitrary cladding shape is shown. It should be appreciated that while this particular embodiment is shown as a double clad fiber, a multi-clad fiber may also be provided a cladding layer having an arbitrary shape.


Referring now to FIG. 6D, a probe comprises a single-mode fiber 104 and a multimode fiber.


Referring now to FIG. 6E, a probe includes a core 108 and a plurality of a single-mode fibers 110a-110f for illumination and multi mode waveguides as shown in FIG. 6E for signal collection disposed about the core 108.


It should be understood that in addition to all of the benefits provided by the probe and fiber configurations described above, coherence detection can still be performed by a single-mode illuminating core, or any other single mode waveguide in the probe. Coherence detection may provide depth sensitivity and allow for use of a heterodyne detection scheme to allow for weak signal detection.


Although only a few exemplary embodiments of this invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. For example, as discussed above, using the fiber's core for illumination and the inner clad for signal collection reduces image speckle, improves depth of field and increases signal efficiency. It should, however, be appreciated that the double-clad fiber can be used by taking the opposite approach: the inner clad can be used to deliver the illumination light, and the core to collect the light. The large, high NA, inner clad allows for efficient coupling of illumination light that is spatially incoherent from light sources such as Halogen, Mercury or Xenon lamps. This approach maintains the reduced image speckle due to the multiple illumination angles and the large depth of field, at the expense of a subtle drop in image resolution. The signal collection efficiency is lower compared to the core-illumination clad-collection scheme discussed earlier, but the increase in excitation light can compensate for that by increasing the signal.


Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the following claims. It should further be noted that any patents, applications and publications referred to herein are incorporated by reference in their entirety.

Claims
  • 1. A method for imaging a sample through an optical fiber having at least one first cladding region and at least one second cladding region, comprising: transmitting a first propagating light through the at least one first cladding region of the optical fiber toward the sample; andcollecting a scattered light from the sample in the at least one second cladding region.
  • 2. The method of claim 1, wherein the optical fiber further comprises at least one third cladding region, and the method further comprises collecting the scattered light from the sample in the second and third cladding regions of the optical fiber.
  • 3. The method of claim 2, further comprising collecting scattered light from the sample in each of the first and second cladding regions of the optical fiber.
  • 4. The method of claim 1, further comprising collecting scattered light from the sample additionally in a core of the optical fiber.
  • 5. The method of claim 1, wherein transmitting the first propagating mode of light comprises: transmitting a spatially coherent light through the at least one first cladding region of the fiber, and focusing the spatially coherent light onto a spot on a surface of the sample, and wherein the collecting of the scattered light is obtained from the sample surface.
  • 6. An apparatus, comprising: a light transmission path arrangement which includes at least one of an optical fiber and an optical waveguide, the light transmission path arrangement illuminating a sample with a beam of light, the light transmission path arrangement including at least one first cladding region; anda light collection path arrangement which is separate from the light transmission path arrangement, the light collection path arrangement including a fiber core and at least one second cladding region receiving light reflected from the sample.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a divisional application of U.S. patent application Ser. No. 11/174,425 filed Jul. 1, 2005 now U.S. Pat. No. 7,447,408, which application claims the benefit under 35 U.S.C. §119(e) of Provisional Patent Application Ser. No. 60/585,065 filed Jul. 2, 2004, the entire disclosures of which are incorporated herein by reference. The present application claims priority from U.S. Provisional Patent Application No. 60/585,065.

US Referenced Citations (448)
Number Name Date Kind
2339754 Brace Jan 1944 A
3090753 Matuszak et al. May 1963 A
3601480 Randall Aug 1971 A
3856000 Chikama Dec 1974 A
3872407 Hughes Mar 1975 A
3941121 Olinger Mar 1976 A
4030827 Delhaye et al. Jun 1977 A
4030831 Gowrinathan Jun 1977 A
4140364 Yamashita et al. Feb 1979 A
4141362 Wurster Feb 1979 A
4224929 Furihata Sep 1980 A
4295738 Meltz et al. Oct 1981 A
4300816 Snitzer et al. Nov 1981 A
4479499 Alfano Oct 1984 A
4585349 Gross et al. Apr 1986 A
4601036 Faxvog et al. Jul 1986 A
4607622 Fritch et al. Aug 1986 A
4631498 Cutler Dec 1986 A
4639999 Daniele Feb 1987 A
4650327 Ogi Mar 1987 A
4734578 Horikawa Mar 1988 A
4744656 Moran et al. May 1988 A
4751706 Rohde et al. Jun 1988 A
4763977 Kawasaki et al. Aug 1988 A
4770492 Levin et al. Sep 1988 A
4827907 Tashiro et al. May 1989 A
4834111 Khanna et al. May 1989 A
4868834 Fox et al. Sep 1989 A
4890901 Cross, Jr. Jan 1990 A
4905169 Buican et al. Feb 1990 A
4909631 Tan et al. Mar 1990 A
4925302 Cutler May 1990 A
4928005 Lefèvre et al. May 1990 A
4940328 Hartman Jul 1990 A
4965441 Picard Oct 1990 A
4966589 Kaufman Oct 1990 A
4984888 Tobias et al. Jan 1991 A
4993834 Carlhoff et al. Feb 1991 A
4998972 Chin et al. Mar 1991 A
5039193 Snow et al. Aug 1991 A
5040889 Keane Aug 1991 A
5045936 Lobb et al. Sep 1991 A
5046501 Crilly Sep 1991 A
5065331 Vachon et al. Nov 1991 A
5085496 Yoshida et al. Feb 1992 A
5120953 Harris Jun 1992 A
5121983 Lee Jun 1992 A
5127730 Brelje et al. Jul 1992 A
5197470 Helfer et al. Mar 1993 A
5202745 Sorin et al. Apr 1993 A
5202931 Bacus et al. Apr 1993 A
5208651 Buican May 1993 A
5212667 Tomlinson et al. May 1993 A
5214538 Lobb May 1993 A
5217456 Narciso, Jr. Jun 1993 A
5241364 Kimura et al. Aug 1993 A
5248876 Kerstens et al. Sep 1993 A
5250186 Dollinger et al. Oct 1993 A
5251009 Bruno Oct 1993 A
5262644 Maguire Nov 1993 A
5275594 Baker Jan 1994 A
5281811 Lewis Jan 1994 A
5283795 Fink Feb 1994 A
5291885 Taniji et al. Mar 1994 A
5293872 Alfano et al. Mar 1994 A
5293873 Fang Mar 1994 A
5302025 Kleinerman Apr 1994 A
5304173 Kittrell et al. Apr 1994 A
5304810 Amos Apr 1994 A
5305759 Kaneko et al. Apr 1994 A
5317389 Hochberg et al. May 1994 A
5318024 Kittrell et al. Jun 1994 A
5321501 Swanson et al. Jun 1994 A
5348003 Caro Sep 1994 A
5353790 Jacques et al. Oct 1994 A
5383467 Auer et al. Jan 1995 A
5394235 Takeuchi et al. Feb 1995 A
5404415 Mori et al. Apr 1995 A
5411016 Kume et al. May 1995 A
5419323 Kittrell et al. May 1995 A
5424827 Horwitz et al. Jun 1995 A
5439000 Gunderson et al. Aug 1995 A
5441053 Lodder et al. Aug 1995 A
5450203 Penkethman Sep 1995 A
5454807 Lennox et al. Oct 1995 A
5459325 Hueton et al. Oct 1995 A
5459570 Swanson et al. Oct 1995 A
5465147 Swanson Nov 1995 A
5486701 Norton et al. Jan 1996 A
5491524 Hellmuth et al. Feb 1996 A
5491552 Knuttel Feb 1996 A
5522004 Djupsjobacka et al. May 1996 A
5526338 Hasman et al. Jun 1996 A
5555087 Miyagawa et al. Sep 1996 A
5562100 Kittrell et al. Oct 1996 A
5565983 Barnard et al. Oct 1996 A
5565986 Kneüttel Oct 1996 A
5566267 Neuberger Oct 1996 A
5583342 Ichie Dec 1996 A
5590660 MacAulay et al. Jan 1997 A
5600486 Gal et al. Feb 1997 A
5601087 Gunderson et al. Feb 1997 A
5621830 Lucey et al. Apr 1997 A
5623336 Raab et al. Apr 1997 A
5635830 Itoh Jun 1997 A
5649924 Everett et al. Jul 1997 A
5697373 Richards-Kortum et al. Dec 1997 A
5698397 Zarling et al. Dec 1997 A
5710630 Essenpreis et al. Jan 1998 A
5719399 Alfano et al. Feb 1998 A
5730731 Mollenauer et al. Mar 1998 A
5735276 Lemelson Apr 1998 A
5740808 Panescu et al. Apr 1998 A
5748318 Maris et al. May 1998 A
5748598 Swanson et al. May 1998 A
5752518 McGee et al. May 1998 A
5784352 Swanson et al. Jul 1998 A
5785651 Kuhn et al. Jul 1998 A
5795295 Hellmuth et al. Aug 1998 A
5801826 Williams Sep 1998 A
5801831 Sargoytchev et al. Sep 1998 A
5803082 Stapleton et al. Sep 1998 A
5807261 Benaron et al. Sep 1998 A
5810719 Toida Sep 1998 A
5817144 Gregory Oct 1998 A
5836877 Zavislan et al. Nov 1998 A
5840023 Oraevsky et al. Nov 1998 A
5842995 Mahadevan-Jansen et al. Dec 1998 A
5843000 Nishioka et al. Dec 1998 A
5843052 Benja-Athon Dec 1998 A
5847827 Fercher Dec 1998 A
5862273 Pelletier Jan 1999 A
5865754 Sevick-Muraca et al. Feb 1999 A
5867268 Gelikonov et al. Feb 1999 A
5871449 Brown Feb 1999 A
5872879 Hamm Feb 1999 A
5877856 Fercher Mar 1999 A
5887009 Mandella et al. Mar 1999 A
5892583 Li Apr 1999 A
5910839 Erskine et al. Jun 1999 A
5912764 Togino Jun 1999 A
5920373 Bille Jul 1999 A
5920390 Farahi et al. Jul 1999 A
5921926 Rolland et al. Jul 1999 A
5926592 Harris et al. Jul 1999 A
5949929 Hamm Sep 1999 A
5951482 Winston et al. Sep 1999 A
5955737 Hallidy et al. Sep 1999 A
5956355 Swanson et al. Sep 1999 A
5968064 Selmon et al. Oct 1999 A
5975697 Podoleanu et al. Nov 1999 A
5983125 Alfano et al. Nov 1999 A
5987346 Benaron et al. Nov 1999 A
5991697 Nelson et al. Nov 1999 A
5994690 Kulkarni et al. Nov 1999 A
5995223 Power Nov 1999 A
6002480 Izatt et al. Dec 1999 A
6004314 Wei et al. Dec 1999 A
6006128 Izatt et al. Dec 1999 A
6007996 McNamara et al. Dec 1999 A
6010449 Selmon et al. Jan 2000 A
6014214 Li Jan 2000 A
6016197 Krivoshlykov Jan 2000 A
6020963 DiMarzio et al. Feb 2000 A
6025956 Nagano et al. Feb 2000 A
6033721 Nassuphis Mar 2000 A
6037579 Chan et al. Mar 2000 A
6044288 Wake et al. Mar 2000 A
6045511 Ott et al. Apr 2000 A
6048742 Weyburne et al. Apr 2000 A
6053613 Wei et al. Apr 2000 A
6069698 Ozawa et al. May 2000 A
6078047 Mittleman et al. Jun 2000 A
6091496 Hill Jul 2000 A
6091984 Perelman et al. Jul 2000 A
6094274 Yokoi Jul 2000 A
6107048 Goldenring et al. Aug 2000 A
6111645 Tearney et al. Aug 2000 A
6117128 Gregory Sep 2000 A
6120516 Selmon et al. Sep 2000 A
6134003 Tearney et al. Oct 2000 A
6134010 Zavislan Oct 2000 A
6134033 Bergano et al. Oct 2000 A
6141577 Rolland et al. Oct 2000 A
6151522 Alfano et al. Nov 2000 A
6159445 Klaveness et al. Dec 2000 A
6160826 Swanson et al. Dec 2000 A
6161031 Hochman et al. Dec 2000 A
6166373 Mao Dec 2000 A
6174291 McMahon et al. Jan 2001 B1
6175669 Colston et al. Jan 2001 B1
6185271 Kinsinger Feb 2001 B1
6191862 Swanson et al. Feb 2001 B1
6193676 Winston et al. Feb 2001 B1
6198956 Dunne Mar 2001 B1
6201989 Whitehead et al. Mar 2001 B1
6208415 De Boer et al. Mar 2001 B1
6208887 Clarke Mar 2001 B1
6245026 Campbell et al. Jun 2001 B1
6249349 Lauer Jun 2001 B1
6249381 Suganuma Jun 2001 B1
6249630 Stock et al. Jun 2001 B1
6263234 Engelhardt et al. Jul 2001 B1
6264610 Zhu Jul 2001 B1
6272376 Marcu et al. Aug 2001 B1
6274871 Dukor et al. Aug 2001 B1
6282011 Tearney et al. Aug 2001 B1
6297018 French et al. Oct 2001 B1
6301048 Cao et al. Oct 2001 B1
6308092 Hoyns Oct 2001 B1
6324419 Guzelsu et al. Nov 2001 B1
6341036 Tearney et al. Jan 2002 B1
6353693 Kano et al. Mar 2002 B1
6374128 Toida et al. Apr 2002 B1
6377349 Fercher Apr 2002 B1
6384915 Everett et al. May 2002 B1
6393312 Hoyns May 2002 B1
6394964 Sievert, Jr. et al. May 2002 B1
6396941 Bacus et al. May 2002 B1
6421164 Tearney et al. Jul 2002 B2
6437867 Zeylikovich et al. Aug 2002 B2
6441892 Xiao et al. Aug 2002 B2
6441959 Yang et al. Aug 2002 B1
6445485 Frigo et al. Sep 2002 B1
6445939 Swanson et al. Sep 2002 B1
6445944 Ostrovsky Sep 2002 B1
6463313 Winston et al. Oct 2002 B1
6469846 Ebizuka et al. Oct 2002 B2
6475159 Casscells et al. Nov 2002 B1
6475210 Phelps et al. Nov 2002 B1
6477403 Eguchi et al. Nov 2002 B1
6485413 Boppart et al. Nov 2002 B1
6485482 Belef Nov 2002 B1
6501551 Tearney et al. Dec 2002 B1
6501878 Hughes et al. Dec 2002 B2
6516014 Sellin et al. Feb 2003 B1
6517532 Altshuler et al. Feb 2003 B1
6538817 Farmer et al. Mar 2003 B1
6540391 Lanzetta et al. Apr 2003 B2
6549801 Chen et al. Apr 2003 B1
6552796 Magnin et al. Apr 2003 B2
6556305 Aziz et al. Apr 2003 B1
6556853 Cabib et al. Apr 2003 B1
6558324 Von Behren et al. May 2003 B1
6564087 Pitris et al. May 2003 B1
6564089 Izatt et al. May 2003 B2
6567585 Harris May 2003 B2
6593101 Richards-Kortum et al. Jul 2003 B2
6611833 Johnson et al. Aug 2003 B1
6615071 Casscells, III et al. Sep 2003 B1
6622732 Constantz Sep 2003 B2
6654127 Everett et al. Nov 2003 B2
6657730 Pfau et al. Dec 2003 B2
6658278 Gruhl Dec 2003 B2
6680780 Fee Jan 2004 B1
6685885 Varma et al. Feb 2004 B2
6687007 Meigs Feb 2004 B1
6687010 Horii et al. Feb 2004 B1
6692430 Adler Feb 2004 B2
6701181 Tang et al. Mar 2004 B2
6721094 Sinclair et al. Apr 2004 B1
6738144 Dogariu et al. May 2004 B1
6757467 Rogers Jun 2004 B1
6790175 Furusawa et al. Sep 2004 B1
6806963 Wälti et al. Oct 2004 B1
6816743 Moreno et al. Nov 2004 B2
6831781 Tearney et al. Dec 2004 B2
6839496 Mills et al. Jan 2005 B1
6882432 Deck Apr 2005 B2
6900899 Nevis May 2005 B2
6909105 Heintzmann et al. Jun 2005 B1
6949072 Furnish et al. Sep 2005 B2
6961123 Wang et al. Nov 2005 B1
6980299 de Boer Dec 2005 B1
6996549 Zhang et al. Feb 2006 B2
7006231 Ostrovsky et al. Feb 2006 B2
7006232 Rollins et al. Feb 2006 B2
7019838 Izatt et al. Mar 2006 B2
7027633 Foran et al. Apr 2006 B2
7061622 Rollins et al. Jun 2006 B2
7072047 Westphal et al. Jul 2006 B2
7075658 Izatt et al. Jul 2006 B2
7099358 Chong et al. Aug 2006 B1
7113288 Fercher Sep 2006 B2
7113625 Watson et al. Sep 2006 B2
7130320 Tobiason et al. Oct 2006 B2
7139598 Hull et al. Nov 2006 B2
7142835 Paulus Nov 2006 B2
7148970 De Boer Dec 2006 B2
7177027 Hirasawa et al. Feb 2007 B2
7190464 Alphonse Mar 2007 B2
7230708 Lapotko et al. Jun 2007 B2
7231243 Tearney et al. Jun 2007 B2
7236637 Sirohey et al. Jun 2007 B2
7242480 Alphonse Jul 2007 B2
7267494 Deng et al. Sep 2007 B2
7272252 De La Torre-Bueno et al. Sep 2007 B2
7304798 Izumi et al. Dec 2007 B2
7330270 O'Hara et al. Feb 2008 B2
7336366 Choma et al. Feb 2008 B2
7342659 Horn et al. Mar 2008 B2
7355716 De Boer et al. Apr 2008 B2
7355721 Quadling et al. Apr 2008 B2
7359062 Chen et al. Apr 2008 B2
7366376 Shishkov et al. Apr 2008 B2
7382809 Chong et al. Jun 2008 B2
7391520 Zhou et al. Jun 2008 B2
7458683 Chernyak et al. Dec 2008 B2
7530948 Seibel et al. May 2009 B2
7539530 Caplan et al. May 2009 B2
7609391 Betzig Oct 2009 B2
7630083 de Boer et al. Dec 2009 B2
7643152 de Boer et al. Jan 2010 B2
7643153 de Boer et al. Jan 2010 B2
7646905 Guittet et al. Jan 2010 B2
7649160 Colomb et al. Jan 2010 B2
7664300 Lange et al. Feb 2010 B2
7733497 Yun et al. Jun 2010 B2
7782464 Mujat et al. Aug 2010 B2
7805034 Kato et al. Sep 2010 B2
20010036002 Tearney et al. Nov 2001 A1
20010047137 Moreno et al. Nov 2001 A1
20020016533 Marchitto et al. Feb 2002 A1
20020024015 Hoffmann et al. Feb 2002 A1
20020048025 Takaoka Apr 2002 A1
20020048026 Isshiki et al. Apr 2002 A1
20020052547 Toida May 2002 A1
20020057431 Fateley et al. May 2002 A1
20020064341 Fauver et al. May 2002 A1
20020076152 Hughes et al. Jun 2002 A1
20020085209 Mittleman et al. Jul 2002 A1
20020086347 Johnson et al. Jul 2002 A1
20020091322 Chaiken et al. Jul 2002 A1
20020109851 Deck Aug 2002 A1
20020122182 Everett et al. Sep 2002 A1
20020122246 Tearney et al. Sep 2002 A1
20020140942 Fee et al. Oct 2002 A1
20020158211 Gillispie Oct 2002 A1
20020161357 Anderson et al. Oct 2002 A1
20020163622 Magnin et al. Nov 2002 A1
20020168158 Furusawa et al. Nov 2002 A1
20020172485 Keaton et al. Nov 2002 A1
20020183623 Tang et al. Dec 2002 A1
20020188204 McNamara et al. Dec 2002 A1
20020196446 Roth et al. Dec 2002 A1
20020198457 Tearney et al. Dec 2002 A1
20030001071 Mandella et al. Jan 2003 A1
20030013973 Georgakoudi et al. Jan 2003 A1
20030023153 Izatt et al. Jan 2003 A1
20030026735 Nolte et al. Feb 2003 A1
20030028114 Casscells, III et al. Feb 2003 A1
20030030816 Eom et al. Feb 2003 A1
20030053673 Dewaele et al. Mar 2003 A1
20030067607 Wolleschensky et al. Apr 2003 A1
20030082105 Fischman et al. May 2003 A1
20030097048 Ryan et al. May 2003 A1
20030108911 Klimant et al. Jun 2003 A1
20030120137 Pawluczyk et al. Jun 2003 A1
20030135101 Webler Jul 2003 A1
20030137669 Rollins et al. Jul 2003 A1
20030164952 Deichmann et al. Sep 2003 A1
20030165263 Hamer et al. Sep 2003 A1
20030171691 Casscells, III et al. Sep 2003 A1
20030174339 Feldchtein et al. Sep 2003 A1
20030220749 Chen et al. Nov 2003 A1
20030236443 Cespedes et al. Dec 2003 A1
20040002650 Mandrusov et al. Jan 2004 A1
20040039298 Abreu Feb 2004 A1
20040054268 Esenaliev et al. Mar 2004 A1
20040072200 Rigler et al. Apr 2004 A1
20040075841 Van Neste et al. Apr 2004 A1
20040076940 Alexander et al. Apr 2004 A1
20040077949 Blofgett et al. Apr 2004 A1
20040085540 Lapotko et al. May 2004 A1
20040086245 Farroni et al. May 2004 A1
20040100631 Bashkansky et al. May 2004 A1
20040100681 Bjarklev et al. May 2004 A1
20040110206 Wong et al. Jun 2004 A1
20040126048 Dave et al. Jul 2004 A1
20040126120 Cohen et al. Jul 2004 A1
20040150829 Koch et al. Aug 2004 A1
20040150830 Chan Aug 2004 A1
20040152989 Puttappa et al. Aug 2004 A1
20040165184 Mizuno Aug 2004 A1
20040166593 Nolte et al. Aug 2004 A1
20040189999 De Groot et al. Sep 2004 A1
20040239938 Izatt Dec 2004 A1
20040246490 Wang Dec 2004 A1
20040246583 Mueller et al. Dec 2004 A1
20040254474 Seibel et al. Dec 2004 A1
20040263843 Knopp et al. Dec 2004 A1
20050018133 Huang et al. Jan 2005 A1
20050018201 De Boer Jan 2005 A1
20050035295 Bouma et al. Feb 2005 A1
20050036150 Izatt et al. Feb 2005 A1
20050046837 Izumi et al. Mar 2005 A1
20050057680 Agan Mar 2005 A1
20050057756 Fang-Yen et al. Mar 2005 A1
20050059894 Zeng et al. Mar 2005 A1
20050065421 Burckhardt et al. Mar 2005 A1
20050119567 Choi et al. Jun 2005 A1
20050128488 Yelin et al. Jun 2005 A1
20050165303 Kleen et al. Jul 2005 A1
20050171438 Chen et al. Aug 2005 A1
20050190372 Dogariu et al. Sep 2005 A1
20050254061 Alphonse et al. Nov 2005 A1
20060033923 Hirasawa et al. Feb 2006 A1
20060093276 Bouma et al. May 2006 A1
20060103850 Alphonse et al. May 2006 A1
20060146339 Fujita et al. Jul 2006 A1
20060164639 Horn et al. Jul 2006 A1
20060171503 O'Hara et al. Aug 2006 A1
20060184048 Saadat et al. Aug 2006 A1
20060193352 Chong et al. Aug 2006 A1
20060244973 Yun et al. Nov 2006 A1
20070019208 Toida et al. Jan 2007 A1
20070038040 Cense et al. Feb 2007 A1
20070070496 Gweon et al. Mar 2007 A1
20070076217 Baker et al. Apr 2007 A1
20070086013 De Lega et al. Apr 2007 A1
20070086017 Buckland et al. Apr 2007 A1
20070091317 Freischlad et al. Apr 2007 A1
20070133002 Wax et al. Jun 2007 A1
20070188855 Shishkov et al. Aug 2007 A1
20070223006 Tearney et al. Sep 2007 A1
20070236700 Yun et al. Oct 2007 A1
20070258094 Izatt et al. Nov 2007 A1
20070291277 Everett et al. Dec 2007 A1
20080002197 Sun et al. Jan 2008 A1
20080007734 Park et al. Jan 2008 A1
20080049220 Izzia et al. Feb 2008 A1
20080094613 de Boer et al. Apr 2008 A1
20080094637 de Boer et al. Apr 2008 A1
20080097225 Tearney et al. Apr 2008 A1
20080097709 de Boer et al. Apr 2008 A1
20080100837 de Boer et al. May 2008 A1
20080152353 de Boer et al. Jun 2008 A1
20080154090 Hashimshony Jun 2008 A1
20080204762 Izatt et al. Aug 2008 A1
20080265130 Colomb et al. Oct 2008 A1
20080308730 Vizi et al. Dec 2008 A1
20090011948 Uniu et al. Jan 2009 A1
20090196477 Cense et al. Aug 2009 A1
20090273777 Yun et al. Nov 2009 A1
20090290156 Popescu et al. Nov 2009 A1
20100086251 Xu et al. Apr 2010 A1
20100094576 de Boer et al. Apr 2010 A1
20100150467 Zhao et al. Jun 2010 A1
Foreign Referenced Citations (79)
Number Date Country
1550203 Dec 2004 CN
4309056 Sep 1994 DE
19542955 May 1997 DE
1 0351319 Jun 2005 DE
10351319 Jun 2005 DE
0110201 Jun 1984 EP
0251062 Jan 1988 EP
0617286 Feb 1994 EP
0590268 Apr 1994 EP
0728440 Aug 1996 EP
1324051 Jul 2003 EP
1426799 Jun 2004 EP
2738343 Aug 1995 FR
1257778 Dec 1971 GB
2030313 Apr 1980 GB
2209221 May 1989 GB
2298054 Aug 1996 GB
6073405 Apr 1985 JP
20040056907 Feb 1992 JP
4135550 May 1992 JP
4135551 May 1992 JP
5509417 Nov 1993 JP
2002214127 Jul 2002 JP
20030035659 Feb 2003 JP
2007271761 Oct 2007 JP
7900841 Oct 1979 WO
9201966 Feb 1992 WO
9216865 Oct 1992 WO
9219930 Nov 1992 WO
9303672 Mar 1993 WO
9533971 Dec 1995 WO
9732182 Sep 1997 WO
9800057 Jan 1998 WO
9801074 Jan 1998 WO
9814132 Apr 1998 WO
9835203 Aug 1998 WO
9838907 Sep 1998 WO
9846123 Oct 1998 WO
9848838 Nov 1998 WO
9848846 Nov 1998 WO
9944089 Feb 1999 WO
9944089 Sep 1999 WO
9957507 Nov 1999 WO
0058766 Oct 2000 WO
0101111 Jan 2001 WO
WO 0101111 Jan 2001 WO
0127679 Apr 2001 WO
0138820 May 2001 WO
0142735 Jun 2001 WO
0236015 May 2002 WO
0237075 May 2002 WO
0238040 May 2002 WO
WO 0238040 May 2002 WO
02053050 Jul 2002 WO
02054027 Jul 2002 WO
02084263 Oct 2002 WO
03020119 Mar 2003 WO
03046495 Jun 2003 WO
03046636 Jun 2003 WO
03062802 Jul 2003 WO
03105678 Dec 2003 WO
2004057266 Jul 2004 WO
2004066824 Aug 2004 WO
2004088361 Oct 2004 WO
2004105598 Dec 2004 WO
2005000115 Jan 2005 WO
2005047813 May 2005 WO
2005054780 Jun 2005 WO
2005082225 Sep 2005 WO
2006004743 Jan 2006 WO
2006014392 Feb 2006 WO
2006038876 Apr 2006 WO
2006039091 Apr 2006 WO
2006059109 Jun 2006 WO
2006124860 Nov 2006 WO
2006130797 Dec 2006 WO
2007028531 Mar 2007 WO
2007083138 Jul 2007 WO
2007084995 Jul 2007 WO
Related Publications (1)
Number Date Country
20090003765 A1 Jan 2009 US
Provisional Applications (1)
Number Date Country
60585065 Jul 2004 US
Divisions (1)
Number Date Country
Parent 11174425 Jul 2005 US
Child 12205758 US