Immunotherapy of Cancer

Abstract
Immunogenic modulators and compositions comprising oligonucleotide agents capable of inhibiting suppression of immune response by reducing expression of one or more gene involved with an immune suppression mechanism.
Description
TECHNICAL FIELD

The present invention relates to immunogenic compositions, method of making immunogenic compositions, and methods of using immunogenic compositions for the treatment of cell proliferative disorders or infectious disease, including, for example, cancer and autoimmune disorders.


More particularly, the invention provides cells that are treated with oligonucleotides specifically designed to modulate expression of target genes involved in tumor immune resistance mechanisms.


BACKGROUND

Immunotherapy is the “treatment of disease by inducing, enhancing, or suppressing an immune response”. Immunotherapies designed to elicit or amplify an immune response are activation immunotherapies, while immunotherapies that reduce or suppress immune response are classified as suppression immunotherapies.


Immunotherapy of cancer has become increasingly important in clinical practice over recent decades. The primary approach in today's standard of care is passive immunotherapy through the use of recombinant monoclonal antibodies (mAbs). MAbs act through a mechanisms relevant to the body's own humoral immune response, by binding to key antigens involved in the tumor development and causing moderate forms of cell-mediated immunity, such as antibody-dependent cell-mediated cytotoxicity (ADCC).


Another group of emerging immunotherapeutic approaches is based on the administration of cells capable of destroying tumor cells. The administered cells may be the patient's own tumor-infiltrating lymphocytes (TIL), isolated and expanded ex-vivo. In some cases, TIL are capable of recognizing a variety of tumor associated antigens (TAA), while in other cases TIL can be reactivated and expanded in vitro to recognize specific antigens. The TIL-based therapeutic approaches are commonly referred to as “adoptive cell transfer” (ACT).


Further developments of ACT involve genetic modifications of T-cells to express receptors that recognize specific tumor-associated antigens (TAA). Such modifications may induce the expression of a specific T-cell receptor (TCR) or of a chimeric antigen receptor (CAR) consisting of TAA-specific antibody fused to CD3/co-stimulatory molecule transmembrane and cytoplasmic domains.


The ACT methods may also be considered as passive immunotherapeutic approaches in that they act directly on the tumor cells without invoking an extended immune response. However, unlike mAbs, ACT agents are capable of fully destroying the tumor cells, as opposed to the blockade of selected receptors and moderate cellular responses such as ADCC.


There is ongoing development of numerous methods of active immunotherapy, which restore the ability of body's own immune system to generate antitumor response. Active immunotherapeutic agents are often called therapeutic cancer vaccines, or just cancer vaccines. Many cancer vaccines are currently in clinical trials, and sipuleucell-T has recently become the first such vaccine approved by the United States FDA.


There are several classes of cancer vaccines using different antigens and different mechanisms of generating cell-mediated immune response. One class of vaccines is based on peptide fragments of antigens selectively expressed by tumor cells. The peptides are administered alone or in combination with immune-stimulatory agents, which may include adjuvants and cytokines, such as granulocyte-macrophage colony-stimulating factor (GM-CSF).


Another class of cancer vaccines is based on modified (e.g. sub-lethally irradiated) tumor cells used as antigens, also in combinations with immunostimulatory agents. Vaccines of this type currently in clinical trials are based both on autologous (e.g. OncoVAX, LipoNova) and allogeneic (e.g. Canvaxin, Onyvax-P, GVAX) tumor cell lines.


Yet another class of cancer vaccines uses dendritic cells. By their nature, dendritic cells (DC) are “professional” antigen-presenting cells capable of generating of a strong antigen-dependent cell-mediated immune response and eliciting therapeutic T-cells in vivo. DC-based cancer vaccines usually comprise DCs isolated from patients or generated ex vivo by culturing patient's hematopoietic progenitor cells or monocytes. DCs are further loaded with tumor antigens and sometimes combined with immune-stimulating agents, such as GM-CSF. A large number of DC-vaccines are now in clinical trials, and the first FDA-approved vaccine sipuleucell-T is based on DC.


Mechanisms of Immunosuppression and Therapeutic Approaches to its Mitigation

One of the key physiologic functions of the immune system is to recognize and eliminate neoplastic cells, therefore an essential part of any tumor progression is the development of immune resistance mechanisms. Once developed, these mechanisms not only prevent the natural immune system from effecting the tumor growth, but also limit the efficacy of any immunotherapeutic approaches to cancer. An important immune resistance mechanism involves immune-inhibitory pathways, sometimes referred to as immune checkpoints. The immune-inhibitory pathways play particularly important role in the interaction between tumor cells and CD8+ cytotoxic T-lymphocytes, including ACT therapeutic agents. Among important immune checkpoints are inhibitory receptors expressed on the T-cell surface, such as CTLA-4, PD1 and LAG3, among others.


The importance of the attenuation of immune checkpoints has been recognized by the scientific and medical community. One way to mitigate immunosuppression is to block the immune checkpoints by specially designed agents. The CTLA-4-blocking-antibody, ipilimumab, has recently been approved by the FDA. Several molecules blocking PD1 are currently in clinical development.


Immunosuppression mechanisms also negatively affect the function of dendritic cells and, as a consequence, the efficacy of DC-based cancer vaccines. Immunosuppressive mechanisms can inhibit the ability of DC to present tumor antigens through the MHC class I pathway and to prime naïve CD8+ T-cells for antitumor immunity. Among the important molecules responsible for the immunosuppression mechanisms in DC are ubiquitin ligase A20 and the broadly immune-suppressive protein SOCS1.


The efficacy of immunotherapeutic approaches to cancer can be augmented by combining them with inhibitors of immune checkpoints. Numerous ongoing preclinical and clinical studies are exploring potential synergies between cancer vaccines and other immunotherapeutic agents and checkpoint blocking agents, for example, ipilimumab. Such combination approaches have the potential to result in significantly improved clinical outcomes.


However, there are a number of drawbacks of using cancer immunotherapeutic agents in combination with checkpoint inhibitors. For example, immune checkpoint blockade can lead to the breaking of immune self-tolerance, thereby inducing a novel syndrome of autoimmune/auto-inflammatory side effects, designated “immune related adverse events,” mainly including rash, colitis, hepatitis and endocrinopathies (Corsello, et al. J. Clin. Endocrinol. Metab., 2013, 98:1361).


Reported toxicity profiles of checkpoint inhibitors are different than the toxicity profiles reported for other classes of oncologic agents. Those involve inflammatory events in multiple organ systems, including skin, gastrointestinal, endocrine, pulmonary, hepatic, ocular, and nervous system. (Hodi, 2013, Annals of Oncology, 24: Suppl, i7).


In view of the above, there is a need for new cancer therapeutic agents that can be used in combination with checkpoint inhibitors as well as other classes of oncolytic agents without risk of adverse inflammatory events in multiple organ systems previously reported for checkpoint inhibitors. The immunotherapeutic cells of the invention, prepared by treating cells with a combination oligonucleotide agents targeting genes associated with tumor or infections disease resistance mechanisms, as well as methods of producing such therapeutic cells and methods of treating disease with the produced therapeutic cells, satisfy this long felt need.


SUMMARY OF EMBODIMENTS OF THE INVENTION

The efficacy of immunotherapeutic approaches to cell proliferation disorders and infectious diseases can be augmented by combining them with inhibitors of immune checkpoints. Numerous synergies between cancer vaccines and other immunotherapeutic agents and checkpoint blocking agents provide opportunities for combination approaches that may significantly improve clinical outcomes for example, in proliferative cell disorders and immune diseases.


Various embodiments of the inventions disclosed herein include compositions comprising therapeutic cells obtained by treating cells ex vivo with oligonucleotides to modulate expression of target genes involved in immune suppression mechanisms. The oligonucleotide agent may be an antisense oligonucleotide (ASO), including locked nucleic acids (LNAs), methoxyethyl gapmers, and the like, or an siRNA, miRNA, miRNA-inhibitor, morpholino, PNA, and the like. The oligonucleotide is preferably a self-delivered (sd) RNAi agent. The oligonucleotides may be chemically modified, for example, including at least one 2-O-methyl modification, 2′-Fluro modification, and/or phosphorothioate modification. The oligonucleotides may include one or more hydrophobic modification, for example, one or more sterol, cholesterol, vitamin D, Naphtyl, isobutyl, benzyl, indol, tryptophane, or phenyl hydrophobic modification. The oligonucleotide may be a hydrophobically-modified siRNA-antisense hybrid. The oligonucleotides may be used in combination with transmembrane delivery systems, such as delivery systems comprising lipids.


In an embodiment, the cells are obtained and/or derived from a cancer or infectious disease patient, and may be, for example, tumor infiltrating lymphocytes (TIL) and/or T-cells, antigen presenting cells such as dendritic cells, natural killer cells, induced-pluripotent stem cells, stem central memory T-cells, and the like. The T-cells and NK-cells are preferably genetically engineered to express high-affinity T-Cell receptors (TCR) and/or chimeric antibody or antibody-fragment-T-Cell receptors (CAR). In an embodiment, the chimeric antibody/antibody fragment is preferably capable of binding to antigens expressed on tumor cells. Immune cells may be engineered by transfection with plasmid, viral delivery vehicles, or mRNAs.


In an embodiment, the chimeric antibody or fragment is capable of binding CD19 receptors of B-cells and/or binding to antigens expressed on tumors, such as melanoma tumors. Such melanoma-expressed antigens include, for example, GD2, GD3, HMW-MAA, VEGF-R2, and the like.


Target genes identified herein for modification include: cytotoxic T-cell antigen 4 (CTLA4), programmed cell death protein 1 (PD1), tumor growth factor receptor beta (TGFR-beta), LAG3, TIM3, and adenosine A2a receptor; anti-apoptotic genes including, but not limited to: BAX, BAC, Casp8, and P53; A20 ubiquitine ligase (TNFAIP3, SOCS1 (suppressor of cytokine signaling), IDO (indolamine-2,3-dioxygenase; tryptophan-degrading enzyme), PD-L1 (CD274)(surface receptor, binder to PD1 on Tcells), Notch ligand Delta1 (DLL1), Jagged 1, Jagged 2, FasL (pro-apoptotic surface molecule), CCL17, CCL22 (secreted chemokines that attract Treg cells), IL10 receptor (IL10RA), p38 (MAPK14), STAT3, TNFSF4 (OX40L), MicroRNA miR-155, miR-146a, anti-apoptotic genes including but not limited to BAX, BAC, Casp8 and P53, and the like genes, and combinations thereof. Representative target sequences are listed in Table 1.


The engineered therapeutic cells are treated with RNAi agents designed to inhibit expression of one or more of the targeted genes. The RNAi agent may comprise a guide sequence that hybridizes to a target gene and inhibits expression of the target gene through an RNA interference mechanism, where the target region is selected from the group listed in Table 1. The RNA agent can be chemically modified, and preferably includes at least one 2′-O-methyl, 2′-O-Fluoro, and/or phosphorothioate modification, as well as at least one hydrophobic modification such as cholesterol, and the like.


The immunogenic compositions described herein are useful for the treatment of proliferative disorders, including cancers, and/or infectious disease and are produced by the ex-vivo treatment of cells with oligonucleotides to modulate the expression of target genes involved in tumor immune resistance mechanisms. The ex vivo treatment of cells includes administering to the cells an oligonucleotide capable of targeting and inhibiting expression of a gene involved in a tumor suppressor mechanism, such as the genes listed in Table 1. The oligonucleotide can be used in combination with a transmembrane delivery system that may comprise one or more of: lipid(s) and vector, such as a viral vector.


The invention includes a method of treating a cell proliferative disorder or infectious disease by administering to a subject in need thereof, an immunogenic composition comprising cells that have been treated with one or more oligonucleotide to modulate the expression of one or more target gene involved in tumor immune resistance mechanisms, for example, one or more of the target genes of Table 1.


The invention preferably includes immunogenic cells treated with a plurality of oligonucleotide agents targeting a combination of target genes described herein. The combination may target a plurality of suppressor receptor genes, cytokine receptor genes, regulatory genes, and/or apoptotic factors in order to inhibit tumor immune resistance mechanisms.


The present invention is directed to novel immunotherapeutic cells, methods of generating the immunotherapeutic cells, and therapeutic methods employing such cells.


A new method of immune checkpoint inhibition is described herein, applicable to a broad variety of cell-based immunotherapies, including, but not limited to adaptive cell transfer, for example, based on TIL, TCR, CAR, and other cell types, as well as dendritic cell-based cancer vaccines. Self-deliverable RNAi technology provides efficient transfection of short oligonucleotides in any cell type, including immune cells, providing increased efficacy of immunotherapeutic treatments. In addition, the activated immune cells can be protected by preventing apoptosis via inhibition of key activators of the apoptotic pathway, such as BAC, BAX, Casp8, and P53, among others.


The activated immune cells modified by oligonucleotide transfer for a single therapeutic agent for administration to a subject, providing a number of advantages as compared to separately administered combinations of vaccines and immunotherapeutics and separately administered checkpoint inhibitors. These advantages include lack of side effects associated with the checkpoint inhibitors in a single therapeutic agent (activated immune cells modified by oligonucleotides targeting immune resistance genes).


The claimed immunotherapeutic cells, method of producing immunotherapeutic cells by introduction of oligonucleotide molecules targeting immune resistance pathways, and methods of treating proliferative and infectious disease, improves upon any known immunotherapeutic cells and methods of producing immunotherapeutic cells because it provides:

    • 1) a single therapeutic composition providing a combination of checkpoint inhibitors and other immune resistance mechanism inhibitors;
    • 2) with reduced toxicity; and
    • 3) increased efficacy as compared with other compositions.





BRIEF DESCRIPTION OF THE FIGURES

The foregoing features of embodiments will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:



FIG. 1 is a schematic diagram showing the structure of an sdRNA molecule.



FIG. 2 is a graph showing sdRNA-induced silencing of GAPDH and MAP4K4 in HeLa cells.



FIG. 3 is a graph showing sdRNA-induced knock-down of multiple targets using sdRNA agents directed to three genes in NK-92 cells.



FIG. 4 is a graph showing the knock-down of gene expression in Human Primary T cells by sdRNA agents targeting TP53 and MAP4K4.



FIG. 5 is a graph showing sdRNA-induced knock-down of CTLA4 and PD1 in Human Primary T cells.



FIG. 6 is a graph showing the reduction of PDCD1 and CTLA-4 surface expression by sdRNA in Human Primary T cells.



FIG. 7 is a graph showing MAP4K4-cy3 sdRNA delivery into T and B cells in human PBMCs.





DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

The invention is defined by the claims, and includes oligonucleotides specifically designed and selected to reduce and/or inhibit expression of suppressors of immune resistance (inhibitory oligonucleotides), compositions comprising cells modified by treatment with such inhibitory oligonucleotides, methods of making such compositions, and methods of using the compositions to treat proliferation and/or infectious diseases. In particular, cells are treated with a combination of oligonucleotide agents, each agent particularly designed to interfere with and reduce the activity of a targeted immune suppressor.


Preferably, the combination of oligonucleotide agents targets multiple immune suppressor genes selected from checkpoint inhibitor genes such as CTLA4, PD-1/PD-1L, BTLA (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3, B7-H4 receptors, and TGF beta type 2 receptor; cytokine receptors that inactivate immune cells, such as TGF-beta receptor A and IL-10 receptor; regulatory genes/transcription factors modulating cytokine production by immune cells, such as STAT-3 and P38, miR-155, miR-146a; and apoptotic factors involved in cascades leading to cell death, such as p53 and Cacp8.


Most preferably the oligonucleotide agent is a self-deliverable RNAi agent, which is a hydrophobically modified siRNA-antisense hybrid molecule, comprising a double-stranded region of about 13-22 base pairs, with or without a 3′-overhang on each of the sense and antisense strands, and a 3′ single-stranded tail on the antisense strand of about 2-9 nucleotides. The oligonucleotide contains at least one 2′-O-Methyl modification, at least one 2′-O-Fluoro modification, and at least one phosphorothioate modification, as well as at least one hydrophobic modification selected from sterol, cholesterol, vitamin D, napthyl, isobutyl, benzyl, indol, tryptophane, phenyl, and the like hydrophobic modifiers (see FIG. 1). The oligonucleotide may contain a plurality of such modifications.


DEFINITIONS

As used in this description and the accompanying claims, the following terms shall have the meanings indicated, unless the context requires otherwise:


Proliferative disease, as used herein, includes diseases and disorders characterized by excessive proliferation of cells and turnover of cellular matrix, including cancer, atherlorosclerosis, rheumatoid arthritis, psoriasis, idiopathic pulmonary fibrosis, scleroderma, cirrhosis of the liver, and the like. Cancers include but are not limited to, one or more of: small cell lung cancer, colon cancer, breast cancer, lung cancer, prostate cancer, ovarian cancer, pancreatic cancer, melanoma, hematological malignancy such as chronic myeloid leukemia, and the like cancers where immunotherapeutic intervention to suppress tumor related immune resistance is needed.


Immune target genes can be grouped into at least four general categories: (1) checkpoint inhibitors; (2) cytokine receptors that inactivate immune cells, (3) anti-apoptotic genes; and (4) regulator genes, for example, transcription factors.


Immune Checkpoint inhibitors (ICI), as used herein, include immunotherapeutic agents that bind to certain checkpoint proteins, such as cytotoxic T lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) and its ligand PD-L1 to block and disable inhibitory proteins that prevent the immune system from attacking diseased cells such as cancer cells, liberating tumor-specific T cells to exert their effector function against tumor cells.


Tumor related immune resistance genes, as used herein, include genes involved in checkpoint inhibition of immune response, such as CTLA-4 and PD-1/PD-L1; TGF-beta, LAG3, Tim3, adenosine A2a receptor;


Regulator genes, as used herein, include transcription factors and the like that modulate cytokine production by immune cells, and include p38, STAT3, microRNAs miR-155, miR-146a;


Anti-apoptotic genes, as used herein, include BAX, BAC, Casp8, P53 and the like; and combinations thereof.


Infectious diseases, as used herein, include, but are not limited to, diseases caused by pathogenic microorganisms, including, but not limited to, one or more of bacteria, viruses, parasites, or fungi, where immunotherapeutic intervention to suppress pathogen related immune resistance and/or overactive immune response.


Immunogenic composition, as used herein, includes cells treated with one or more oligonucleotide agent, wherein the cells comprise T-cells. The T-cells may be genetically engineered, for example, to express high affinity T-cell receptors (TCR), chimeric antibody-T-cell receptors (CAR), where the chimeric antibody fragments are capable of binding to CD19 receptors of B-cells and/or to antigens expressed on tumor cells. In one embodiment, the chimeric antibody fragments bind antigens expressed on melanoma tumors, selected from GD2, GD3, HMW-MAA, and VEGF-R2.


Immunogenic compositions described herein include cells comprising antigen-presenting cells, dendritic cells, engineered T-cells, natural killer cells, stem cells, including induced pluripotent stem cells, and stem central memory T-cells. The treated cell also comprises one or a plurality of oligonucleotide agents, preferably sdRNAi agents specifically targeting a gene involved in an immune suppression mechanism, where the oligonucleotide agent inhibits expression of said target gene.


In one embodiment, the target gene is selected from A20 ubiquitin ligase such as TNFAIP3, SOCS1 (suppressor of cytokine signaling), Tyro3/Ax1/Mer (suppressors of TLR signaling), IDO (indolamine-2,3-dioxygenase, tryptophan-degrading enzyme), PD-L1/CD274 (surface receptor, binds PD1 on T-cells), Notch ligand Delta (DLL1), Jagged 1, Jagged 2, FasL (pro-apoptotic surface molecule), CCL17, CCL22 (secreted chemokines that attract Treg cells), IL-10 receptor (IL10Ra), p38 (MAPK14), STAT3, TNFSF4 (OX40L), microRNA miR-155, miR-146a, anti-apoptotic genes, including but not limited to BAX, BAC, Casp8, and P53; and combinations thereof.


Particularly preferred target genes are those shown in Table 1.


Ex-vivo treatment, as used herein, includes cells treated with oligonucleotide agents that modulate expression of target genes involved in immune suppression mechanisms. The oligonucleotide agent may be an antisense oligonucleotide, including, for example, locked nucleotide analogs, methyoxyethyl gapmers, cyclo-ethyl-B nucleic acids, siRNAs, miRNAs, miRNA inhibitors, morpholinos, PNAs, and the like. Preferably, the oligonucleotide agent is an sdRNAi agent targeting a gene involved in an immune suppression mechanism. The cells treated in vitro by the oligonucleotide agent may be immune cells expanded in vitro, and can be cells obtained from a subject having a proliferative or infectious disease. Alternatively, the cells or tissue may be treated in vivo, for example by in situ injection and/or intravenous injection.


Oligonucleotide or oligonucleotide agent, as used herein, refers to a molecule containing a plurality of “nucleotides” including deoxyribonucleotides, ribonucleotides, or modified nucleotides, and polymers thereof in single- or double-stranded form. The term encompasses nucleotides containing known nucleotide analogs or modified backbone residues or linkages, which are synthetic, naturally occurring, and non-naturally occurring, which have similar binding properties as the reference nucleic acid, and which are metabolized in a manner similar to the reference nucleotides. Examples of such analogs include, without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2-O-methyl ribonucleotides, peptide-nucleic acids (PNAs).


Nucleotide, as used herein to include those with natural bases (standard), and modified bases well known in the art. The nucleotides can be unmodified or modified at the sugar, phosphate and/or base moiety, (also referred to interchangeably as nucleotide analogs, modified nucleotides, non-natural nucleotides, non-standard nucleotides and other; see, for example, PCT Publications No. WO 92/07065 and WO 93/15187. Non-limiting examples of base modifications that can be introduced into nucleic acid molecules include, hypoxanthine, purine, pyridin-4-one, pyridin-2-one, phenyl, pseudouracil, 2,4,6-trimethoxy benzene, 3-methyl uracil, dihydrouridine, naphthyl, aminophenyl, 5-alkylcytidines (e.g., 5-methylcytidine), 5-alkyluridines (e.g., ribothymidine), 5-halouridine (e.g., 5-bromouridine) or 6-azapyrimidines or 6-alkylpyrimidines (e.g. 6-methyluridine and pseudouridine), propyne, and others. The phrase “modified bases” includes nucleotide bases other than adenine, guanine, cytosine, and uracil, modified for example, at the 1′ position or their equivalents.


As used herein, the term “deoxyribonucleotide” encompasses natural and synthetic, unmodified and modified deoxyribonucleotides. Modifications include changes to the sugar moiety, to the base moiety and/or to the linkages between deoxyribonucleotide in the oligonucleotide.


As used herein, the term “RNA” defines a molecule comprising at least one ribonucleotide residue. The term “ribonucleotide” defines a nucleotide with a hydroxyl group at the 2′ position of a b-D-ribofuranose moiety. The term RNA includes double-stranded RNA, single-stranded RNA, isolated RNA such as partially purified RNA, essentially pure RNA, synthetic RNA, recombinantly produced RNA, as well as altered RNA that differs from naturally occurring RNA by the addition, deletion, substitution and/or alteration of one or more nucleotides. Nucleotides of the RNA molecules described herein may also comprise non-standard nucleotides, such as non-naturally occurring nucleotides or chemically synthesized nucleotides or deoxynucleotides. These altered RNAs can be referred to as analogs or analogs of naturally-occurring RNA.


As used herein, “modified nucleotide” refers to a nucleotide that has one or more modifications to the nucleoside, the nucleobase, pentose ring, or phosphate group. For example, modified nucleotides exclude ribonucleotides containing adenosine monophosphate, guanosine monophosphate, uridine monophosphate, and cytidine monophosphate and deoxyribonucleotides containing deoxyadenosine monophosphate, deoxyguanosine monophosphate, deoxythymidine monophosphate, and deoxycytidine monophosphate. Modifications include those naturally-occurring that result from modification by enzymes that modify nucleotides, such as methyltransferases.


Modified nucleotides also include synthetic or non-naturally occurring nucleotides. Synthetic or non-naturally occurring modifications in nucleotides include those with 2′ modifications, e.g., 2′-O-methyl, 2′-methoxyethoxy, 2′-fluoro, 2′-allyl, 2′-O-[2-(methylamino)-2-oxoethyl], 4′-thio, 4′-CH2-O-2′-bridge, 4′-(CH2) 2-O-2′-bridge, 2′-LNA, and 2′-O—(N-methylcarbamate) or those comprising base analogs. In connection with 2′-modified nucleotides as described for the present disclosure, by “amino” is meant 2′-NH2 or 2′-O—NH2, which can be modified or unmodified. Such modified groups are described, for example, in U.S. Pat. Nos. 5,672,695 and 6,248,878.


As used herein, “microRNA” or “miRNA” refers to a nucleic acid that forms a single-stranded RNA, which single-stranded RNA has the ability to alter the expression (reduce or inhibit expression; modulate expression; directly or indirectly enhance expression) of a gene or target gene when the miRNA is expressed in the same cell as the gene or target gene. In one embodiment, a miRNA refers to a nucleic acid that has substantial or complete identity to a target gene and forms a single-stranded miRNA. In some embodiments miRNA may be in the form of pre-miRNA, wherein the pre-miRNA is double-stranded RNA. The sequence of the miRNA can correspond to the full length target gene, or a subsequence thereof. Typically, the miRNA is at least about 15-50 nucleotides in length (e.g., each sequence of the single-stranded miRNA is 15-50 nucleotides in length, and the double stranded pre-miRNA is about 15-50 base pairs in length). In some embodiments the miRNA is 20-30 base nucleotides. In some embodiments the miRNA is 20-25 nucleotides in length. In some embodiments the miRNA is 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length.


Target gene, as used herein, includes genes known or identified as modulating the expression of a gene involved in an immune resistance mechanism, and can be one of several groups of genes, such as suppressor receptors, for example, CTLA4 and PD1; cytokine receptors that inactivate immune cells, for example, TGF-beta receptor, LAG3, Tim3, adenosine A2a receptor, and IL10 receptor; regulatory genes for example, STAT3, p38, mir155 and mir146a; and apoptosis factors involved in cascades leading to cell death, for example, P53, Casp8, BAX, BAC, and combinations thereof. See also preferred target genes listed in Table 1.


As used herein, small interfering RNA (siRNA), sometimes known as short interfering RNA or silencing RNA, defines a group of double-stranded RNA molecules, comprising sense and antisense RNA strands, each generally of about 1022 nucleotides in length, optionally including a 3′ overhang of 1-3 nucleotides. siRNA is active in the RNA interference (RNAi) pathway, and interferes with expression of specific target genes with complementary nucleotide sequences.


As used herein, sdRNA refers to “self-deliverable” RNAi agents, that are formed as an asymmetric double-stranded RNA-antisense oligonucleotide hybrid. The double stranded RNA includes a guide (sense) strand of about 19-25 nucleotides and a passenger (antisense) strand of about 10-19 nucleotides with a duplex formation that results in a single-stranded phosphorothiolated tail of about 5-9 nucleotides.


The RNA sequences may be modified with stabilizing and hydrophobic modifications such as sterols, for example, cholesterol, vitamin D, naphtyl, isobutyl, benzyl, indol, tryptophane, and phenyl, which confer stability and efficient cellular uptake in the absence of any transfection reagent or formulation. Immune response assays testing for IFN-induced proteins indicate sdRNAs produce a reduced immunostimulatory profile as compared other RNAi agents. See, for example, Byrne et al., December 2013, J. Ocular Pharmacology and Therapeutics, 29(10): 855-864.


Cell-Based Immunotherapeutics

In general, cells are obtained from subjects with proliferative disease such as cancer, or an infectious disease such as viral infection. The obtained cells are treated directly as obtained or may be expanded in cell culture prior to treatment with oligonucleotides. The cells may also be genetically modified to express receptors that recognize specific antigens expressed on the tumor cell surface (CAR) or intracellular tumor antigens presented on MHC class I (TCR).


Oligonucleotide Agents
Antisense Oligonucleotides

Small interfering RNA (siRNA), sometimes known as short interfering RNA or silencing RNA, is a double stranded RNA molecule, generally 19-25 base pairs in length. siRNA is used in RNA interference (RNAi), where it interferes with expression of specific genes with complementary nucleotide sequences.


Double stranded DNA (dsRNA) can be generally used to define any molecule comprising a pair of complementary strands of RNA, generally a sense (passenger) and antisense (guide) strands, and may include single-stranded overhang regions. The term dsRNA, contrasted with siRNA, generally refers to a precursor molecule that includes the sequence of an siRNA molecule which is released from the larger dsRNA molecule by the action of cleavage enzyme systems, including Dicer.


sdRNA (self-deliverable) are a new class of covalently modified RNAi compounds that do not require a delivery vehicle to enter cells and have improved pharmacology compared to traditional siRNAs. “Self-deliverable RNA” or sdRNA is a hydrophobically modified RNA interfering-antisense hybrid, demonstrated to be highly efficacious in vitro in primary cells and in vivo upon local administration. Robust uptake and/or silencing without toxicity has been demonstrated in several tissues including dermal, muscle, tumors, alveolar macrophages, spinal cord, and retina cells and tissues. In dermal layer and retina, intradermal and intra-vitreal injection of sdRNA at mg doses induced potent and long lasting silencing.


While sdRNA is a superior functional genomics tool, enabling RNAi in primary cells and in vivo, it has a relatively low hit rate as compared to conventional siRNAs. While the need to screen large number of sequences per gene is not a limiting factor for therapeutic applications, it severely limits the applicability of sdRNA technology to functional genomics, where cost effective compound selection against thousands of genes is required. To optimize sdRNA structure, chemistry, targeting position, sequence preferences, and the like, a proprietary algorithm has been developed and utilized for sdRNA potency prediction. Availability of sdRNA reagents that are active in all cell types ex vivo and in vivo enables functional genomics and target stratification/validation studies.


Proprietary Algorithm

SdRNA sequences were selected based on a proprietary selection algorithm, designed on the basis of a functional screen of over 500 sdRNA sequences in the luciferase reporter assay of HeLa cells. Regression analysis of was used to establish a correlation between the frequency of occurrence of specific nucleotide and modification at any specific position in sdRNA duplex and its functionality in gene suppression assay. This algorithm allows prediction of functional sdRNA sequences, defined as having over 70% knockdown at 1 μM concentration, with a probability over 40%.


Table 1 shows predictive gene targets identified using the proprietary algorithm and useful in the cellular immunotherapeutic compositions and methods described herein.


Delivery of RNAi Agents

BTLA (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; Applic BTLA (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; ation of RNAi technology to functional genomics studies in prim BTLA (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; ary cells and in vivo is limited by requirements to formulate siRNAs into lipids or use of other cell delivery techniques. To circumvent delivery problems, the self-deliverable RNAi technology provides a method of directly transfecting cells with the RNAi agent, without the need for additional formulations or techniques. The ability to transfect hard-to-transfect cell lines, high in vivo activity, and simplicity of use, are characteristics of the compositions and methods that present significant functional advantages over traditional siRNA-based techniques. The sdRNAi technology allows direct delivery of chemically synthesized compounds to a wide range of primary cells and tissues, both ex-vivo and in vivo.


To enable BTLA (B and T-lymphocyte attenuator), MR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; self-delivery, traditional siRNA molecules require a substantial reduction in size and the introduction of extensive chemical modifications which are not well tolerated by RNAi machinery, resulting in extremely low probability of finding active molecules (low hit rate). In contrast, the sdRNA technology allows efficient RNAi delivery to primary cells and tissues in vitro and in vivo, with demonstrated silencing efficiency in humans.


The general structure of sdRNA molecules is shown in FIG. 1. sdRNA are formed as hydrophobically-modified siRNA-antisense oligonucleotide hybrid structures, and are disclosed, for example in Byrne et al., December 2013, J. Ocular Pharmacology and Therapeutics, 29(10): 855-864.


Oligonucleotide Modifications: 2′-O-methyl, 2′-O-Fluro, phosphorothioate


The oligonucleotide agents preferably comprise one or more modification to increase stability and/or effectiveness of the therapeutic agent, and to effect efficient delivery of the oligonucleotide to the cells or tissue to be treated. Such modifications include at least one


BTLA (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; BTLA (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; 2′-O-methyl modification, at least one 2′-O-Fluro modification, and at least one diphosphorothioate modification. Additionally, the oligonucleotide is modified to include one or more hydrophobic modification selected from sterol, cholesterol, vitamin D, naphtyl, isobutyl, benzyl, indol, tryptophane, and phenyl. The hydrophobic modification is preferably a sterol.


Delivery of Oligonucleotide Agents to Cells

The oligonucleotides may be delivered to the cells in combination with a transmembrane delivery system, preferably comprising lipids, viral vectors, and the like. Most preferably, the oligonucleotide agent is a self-delivery RNAi agent, that does not require any delivery agents.


Combination Therapy

Most preferred for this invention, e.g. particular combinations of elements and/or alternatives for specific needs. This objective is accomplished by determining the appropriate genes to be targeted by the oligonucleotide in order to silence immune suppressor genes and using the proprietary algorithm to select the most appropriate target sequence.


It is preferred that the immunotherapeutic cell be modified to include multiple oligonucleotide agents targeting a variety of genes involved in immune suppression and appropriate for the selected target disease and genes. For example, a preferred immunotherapeutic cell is a T-Cell modified to knock-down both CTLA-4 and PD-1


Additional combinations of oligonucleotides to related genes involved in immune suppression include varied combinations of the selected target sequences of Table 1.


BTLA (B and T-lymphocyte attenuator), MR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; (B and T-lymphocyte attenuator), MR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; Preferred BTLA (B and T-lymphocyte attenuator), KIR (killer immunoglobulin-like receptors), B7-H3 and B7-H4 receptors and TGFbeta type 2 receptor; therapeutic combinations include cells engineered to knock down gene expression of the following target genes:


a) CTLA4 and PD1


b) STAT3 and p38


c) PD1 and BaxPD1, CTLA4, Lag-1, ILM-3, and TP53


d) PD1 and Casp8


e) PD1 and IL10R


The therapeutic compositions described herein are useful to treat a subject suffering from a proliferation disorder or infectious disease. In particular, the immunotherapeutic composition is useful to treat disease characterized by suppression of the subjects immune mechanisms. The sdRNA agents described herein are specifically designed to target genes involved in diseases-associated immune suppression pathways.


Methods of treating a subject comprise administering to a subject in need thereof, an immunogenic composition comprising an sdRNAi agent capable of inhibiting expression of genes involved in immune suppression mechanisms, for example, any of the genes listed in Table 1 or otherwise described herein.


EXAMPLES

The embodiments of the invention described above are intended to be merely exemplary; numerous variations and modifications will be apparent to those skilled in the art. All such variations and modifications are intended to be within the scope of the present invention as defined in any appended claims.


Example 1
Self-Deliverable RNAi Immunotherapeutic Agents

Immunotherapeutic agents described herein were produced by treating cells with particular sdRNA agents designed to target and knock down specific genes involved in immune suppression mechanisms. In particular, the following cells and cell lines have been successfully treated with sdRNA and were shown to knock down at least 70% of targeted gene expression in the specified human cells.


These studies demonstrated utility of these immunogenic agents to suppress expression of target genes in cells normally very resistant to transfection, and suggests the agents are capable of reducing expression of target cells in any cell type.












TABLE 2






Target




Cell Type
Gene
sdRNA target sequence
% Knock Down







Primary human
TP53 (P53)
GAGTAGGACATACCAGCTTA
>70% 2 uM


T-cells








Primary human
MAP4K4
AGAGTTCTGTGGAAGTCTA
>70% 2 uM


T-cells








Jurkat T-lymphoma
MAP4K4
AGAGTTCTGTGGAAGTCTA
100% 1 uM 72h


cells








NK-92 cells
MAP4K4
AGAGTTCTGTGGAAGTCTA
 80% 2 uM 72h





NK-92 cells
PPIB
ACAGCAAATTCCATCGTGT
>75% 2 uM 72h





NK-92 cells
GADPH
CTGGTAAAGTGGATATTGTT
>90% 2 uM 72h





HeLa Cells
MAP4K4
AGAGTTCTGTGGAAGTCTA
>80% 2 uM 72h









Example 2
Oligonucleotide Sequences for Inhibiting Expression of Target Genes

A number of human genes were selected as candidate target genes due to involvement in immune suppression mechanisms, including the following genes:



















BAX
BAK1
CASP8



(NM_004324)
(NM_001188)
(NM_001228)



ADORA2A
CTLA4
LAG3



(NM_000675)
(NM_005214)
(NM002286)



PDCD1
TGFBR1
HAVCR2



(NM_NM005018)
(NM-004612)
(NM_032782)



CCL17
CCL22
DLL2



(NM_002987)
(NM_002990)
(NM_005618)



FASLG
CD274
IDO1



(NM_000639)
(NM_001267706)
(NM_002164)



IL10RA
JAG1
JAG2



(NM_001558)
(NM_000214)
(NM_002226)



MAPK14
SOCS1
STAT3



(NM_001315)
(NM_003745)
(NM_003150)



TNFA1P3
TNFSF4
TYRO2



(NM_006290)
(NM_003326)
(NM_006293)



TP53



(NM_000546)










Each of the genes listed above was analyzed using a proprietary algorithm to identify preferred sdRNA targeting sequences and target regions for each gene for prevention of immunosuppression of antigen-presenting cells and T-cells. Results are shown in Table 1.


Example 3
Knock-Down of Target Gene (GAPDH) by sdRNA in HeLa Cells

HeLa cells (ATCC CRM-CCL-2) were subcultured 24 hours before transfection and kept log phase. The efficacy of several GAPDH sdRNAs was tested by qRT-PCR, including G13 sdRNA listed in the Table 1.


Solutions of GAPDH, MAP4K4 (positive control) and NTC (non-targeting control) sdRNA with twice the required concentration were prepared in serum-free EMEM medium, by diluting 100 μM oligonucleotides to 0.2-4 μM.


The total volume of medium for each oligo concentration point was calculated as [50 μl/well]×[number of replicates for each serum point]. Oligonucleotides were dispensed into a 96 well plate at 50 μl/well.


Cells were collected for transfection by trypsinization in a 50 ml tube, washed twice with medium containing 10% FBS without antibiotics, spun down at 200×g for 5 minutes at room temperature and resuspended in EMEM medium containing twice the required amount of FBS for the experiment (6%) and without antibiotics. The concentration of the cells was adjusted to 120,000/ml to yield a final concentration of 6,000 cells/50 μl/well. The cells were dispensed at 50 μl/well into the 96-well plate with pre-diluted oligos and placed in the incubator for 48 hours.


Gene Expression Analysis in HeLa Cells Using qRT-PCR


RNA was isolated from transfected HeLa cells using the PureLink™ Pro96 total RNA purification Kit (Ambion, Cat. No. 12173-011A), with Quanta qScript XLT One-Step RT-qPCR ToughMix, ROX (VWR, 89236672). The isolated RNA was analyzed for gene expression using the Human MAP4K4-FAM (Taqman Hs0377405_ml) and Human GAPDH-VIC (Applied Biosystems, Cat. No. 4326317E) gene expression assays.


The incubated plate was spun down and washed once with 100 μl/well PBS and lysed with 60 μl/well buffer provided in the kit. RNA isolation was conducted according to the manufacturer's instructions, and the RNA was eluted with 100 μl RNase-free water, and used undiluted for one-step qRT-PCR.


Dilutions of non-transfected (NT) cells of 1:5 and 1:25 were prepared for the standard curve using RNase-free water. qRT-PCR was performed by dispensing 9 μl/well into a low profile PCR plate and adding 1 μl RNA/well from the earlier prepared RNA samples. After brief centrifugation, the samples were placed in the real-time cycler and amplified using the settings recommended by the manufacturer.


GAPDH gene expression was measured by qPCR, normalized to MAP4K4 and plotted as percent of expression in the presence of non-targeting sdRNA. The results were compared to the normalized according to the standard curve. As shown in FIG. 2, several sdRNA agents targeting GAPDH or MAP4K4 significantly reduced their mRNA levels leading to more than 80-90% knock-down with 1 μM sdRNA. (See FIG. 2).


Example 4
Silencing of Multiple Targets by sdRNA in NK-92 Cells

NK-92 cells were obtained from Conqwest and subjected to one-step RT-PCR analysis without RNA purification using the FastLane Cell Multiplex Kit (Qiagen, Cat. No. 216513). For transfection, NK-92 cells were collected by centrifugation and diluted with RPMI medium containing 4% FBS and IL2 1000 U/ml and adjusted to 1,000,000 cells/ml.


Multiple sdRNA agents targeting MAP4K4, PPIB or GADPH were diluted separately in serum-free RPMI medium to 4 μM and individually aliquoted at 50 μl/well into a 96-well plate. The prepared cells were then added at 50 μl cells/well to the wells with either MAP4K4, PPIB or GAPDH sdRNAs. Cells were incubated for 24, 48, or 72 hours.


At the specified timepoints, the plated transfected cells were washed once with 100 μl/well PBS and once with FCW buffer. After removal of supernatant, cell processing mix of 23.5 μl FCPL and 1.5 μl gDNA wipeout solution was added to each well and incubated for five minutes at room temperature. Lysates were then transferred to PCR strips and heated at 75° C. for five minutes.


To setup qRT-PCR, the lysates were mixed with QuantiTect reagents from the FastLane Cell Multiplex Kit and with primer probe mix for MAP4K4-FAM/GAPDH-VIC or PPIB-FAM/GAPDH-VIC. The following Taqman gene expression assays were used: human MAP4K4-FAM (Taqman, Hs00377405_ml), human PPIB-FAM (Taqman, Hs00168719_ml) and human GAPDH-VIC (Applied Biosystems, cat. No 4326317E).


A volume of 9 μl/well of each reaction mix was dispensed into a low profile PCR plate. One μl lysate per well was added from the previously prepared lysates. The samples were amplified using the settings recommended by the manufacturer.


Results shown in FIG. 3 demonstrate significant silencing of each of the multiple targets, MAP4K4, PPIB, and GADPH by sdRNA agents transfected into NK-92 cells, including greater than 75% inhibition of expression of each target within 24 to 72 hours of incubation.


Example 5
Silencing of TP53 and MAP4K4 by sdRNA in Human Primary T-Cells

Primary human T-cells were obtained from AllCells (CA) and cultured in complete RPMI medium containing 1000 IU/ml IL2. Cells were activated with anti-CD3/CD28 Dynabeads (Gibco, 11131) according to the manufacturer's instructions for at least 4 days prior to the transfection. Cells were collected by brief vortexing to dislodge the beads from cells and separating them using the designated magnet.


sdRNA agents targeting TP53 or MAP4K4 were prepared by separately diluting the sdRNAs to 0.2-4 μM in serum-free RPMI per sample (well) and individually aliquoted at 100 μl/well of 96-well plate. Cells were prepared in RPMI medium containing 4% FBS and IL2 2000 U/ml at 1,000,000 cells/ml and seeded at 100 μl/well into the 96-well plate with pre-diluted sdRNAs.


At the end of the transfection incubation period, the plated transfected cells were washed once with 100 μl/well PBS and processed with FastLane Cell Multiplex Kit reagents essentially as described for the Example 4 and according to the manufacturer's instructions. Taqman gene expression assays were used in the following combinations: human MAP4K4-FAM/GAPDH-VIC or human TP53-FAM (Taqman, Hs01034249_ml)/GAPDH-VIC. A volume of 18 μl/well of each reaction mix was combined with 2 μl lysates per well from the previously prepared lysates. The samples were amplified as before (see Example 4).


Results shown in FIG. 4 demonstrate significant silencing of both MAP4K4 and TP53 by sdRNA agents transfected into T-cells, reaching 70-80% inhibition of gene expression with 1-2 μM sdRNA.


Example 6
Immunotherapeutic Combination of sdRNAs for Treating Melanoma

Melanomas utilize at least two particular pathways to suppress immune function of T-cells, and each involves both PD1 and CTLA4. Melanoma tumors expressing the PD1 ligand, PD1L, can be targeted with T-cells pretreated ex-vivo with sd-RNAi agents specifically designed to target PD1 and interfere with PD1 expression. PD1 is also known as PDCD1, and particular targeting sequences and gene regions identified and predicted to be particularly functional in sdRNA mediated suppression, are shown in Table 1 for PDCD1 (NM_005018) and for CTLA4 (NM005214).


Treatment of melanoma tumors can be effected by providing to melanoma cells T-cells, such as tumor-infiltrating lymphocytes, pretreated ex-vivo with a combination of sdRNAs targeting PD1/PDCD1 and CTLA4, for example, targeting one or more of the twenty target sequences listed for PD1/PDCD1 and/or CTLA4. A combination of sdRNAs targeting PD1/PDCD1 and FASLG (NM_000639) and/or CTLA4, can increase T-cell toxicity in tumors expressing both PD1L and FAS.


In addition to and in combination with anti-CTLA-4 and anti-PD1 sdRNAs, T-cells used for the immunotherapy of melanoma can also be treated with sdRNA targeting other genes implicated in immunosuppression by the tumor. These receptors include, but are not limited to TGF-beta type 1 and 2 receptors, BTLA (binder of herpes virus entry indicator (HVEM) expressed on melanoma cells), and receptors of integrins expressed by myeloid derived suppressor cells (MDSC), such as CD11b, CD18, and CD29.


For tumors whose profile of expressed suppressive proteins is unknown, any combination of sdRNAs targeting PD1/PDCD1 and any one of know suppressing receptors may be helpful to reduce immune suppression and increase therapeutic efficacy.


Example 7
Combination of sdRNAs for Mitigating Immune Cell Suppression

T-cell or dendritic cell suppression may be modulated by various cytokines, such as IL10 and/or TGF beta. Suppressing corresponding receptors in T-cells and dendritic cells may be beneficial for their activity. For example, providing a combination of anti-PD1 with anti-IL10R sdRNAs is expected to mitigate cytokine induced suppression of T-cells and dendritic cells, as compared with anti-PD1 alone.


Example 8
Combination of sdRNAs for Mitigating Immune Cell Suppression

When the mechanism of tumor suppression of immune cells may be not known, use of sdRNA agents to suppress genes involved in apoptosis (programmed cell death), such as p53, Casp8 or other gene activating apoptosis may be beneficial to increase immune cell activity. Combination of an anti-receptor sdRNAs with sdRNAs against pro-apoptotic genes can additionally reduce death of immune cells and thus increase their activity. For example, combination of anti-PD1 with anti-p53 sdRNAs may additionally protect T-cells from suppression by blocking activation of apoptosis.


Example 9
Silencing of CTLA-4 and PDCD1 by sdRNA in Human Primary T-Cells

Primary human T-cells were cultured and activated essentially as described in Example 5. sdRNA agents targeting PDCD1 and CTLA-4 were prepared by separately diluting the sdRNAs to 0.4-4 μM in serum-free RPMI per sample (well) and aliquoted at 100 μl/well of 96-well plate. Cells were prepared in RPMI medium containing 4% FBS and IL2 2000 U/ml at 1,000,000 cells/ml and seeded at 100 μl/well into the 96-well plate with pre-diluted sdRNAs.


72 h later, the transfected cells were washed once with 100 μl/well PBS and processed with FastLane Cell Multiplex Kit reagents essentially as described for the Example 4 and according to the manufacturer's instructions. Taqman gene expression assays were used in the following combinations: human PDCD1-FAM (Taqman, Hs01550088_ml)/GAPDH-VIC or human CTLA4-FAM (Taqman, Hs03044418_ml)/GAPDH-VIC. A volume of 18 μl/well of each reaction mix was combined with 2 μl lysates per well from the previously prepared lysates. The samples were amplified as before (see Example 4).


Results shown in FIG. 5 demonstrate significant silencing of PDCD1 and CTLA-4 by using combined sdRNA agents delivered to T-cells, obtaining greater than 60-70% inhibition of gene expression with 2 μM sdRNA.


Example 10
Reduction of CTLA-4 and PDCD1 Surface Expression by sdRNA in Human Primary T-Cells

Primary human T-cells were cultured and activated essentially as described in Example 5.


sdRNA agents targeting CTLA-4 or PD1 were separately diluted to 5 μM in serum-free RPMI per sample (well) and aliquoted at 250 μl/well to 24-well plates. Cells mixed with magnetic beads were collected and adjusted to 500,000 cells in 250 μl RPMI medium containing 4% FBS and IL2 2000 IU/ml. Cells were seeded at 250 μl/well to the prepared plate containing pre-diluted sdRNAs. 24 hours later FBS was added to the cells to obtain 10% final concentration.


After 72 hours of incubation, the transfected cells were collected, separated from the activation beads using the magnet, as described in Example 5. Cells were washed with PBS, spun down and resuspended in blocking buffer (PBS with 3% BSA) at 200,000 cells/50 μl/sample.


Antibody dilutions were prepared in the blocking buffer. The antibodies were mixed in two combinations: anti-PD1/anti-CD3 (1:100 dilutions for both antibodies) and anti-CTLA4/anti-CD3 (10 μl/106 cells for anti-CTLA4; 1:100 for CD3). The following antibodies were used: rabbit monoclonal [SP7] to CD3 (Abcam, ab16669); mouse monoclonal [BNI3] to CTLA4 (Abcam, ab33320) and mouse monoclonal [NAT105] to PD1 (Abcam, ab52587). Cells were mixed with the diluted antibodies and incubated 30 minutes on ice. Cells were then washed twice with PBS containing 0.2% Tween-20 and 0.1% sodium azide.


Secondary antibodies were diluted in blocking buffer and mixed together resulting in a final dilution 1:500 for anti-mouse Cy5 (Abcam, ab97037) and 1:2000 for anti-rabbit Alexa-488 (Abcam, ab150077). Cells were mixed with the diluted antibodies at 1:1 ratio and incubated 30 minutes on ice. Cells were washed as before, and diluted in 500 μl PBS per tube. The data was acquired immediately on the Attune Acoustic Focusing Cytometer (Applied Biosystems).


As shown in FIG. 6, sdRNA efficiently reduced surface expression of CTLA-4 and PD1 in activated Human Primary T cells.


Example 11
MAP4K4 sdRNA Delivery into CD3- and CD19-Positive Subsets of Human Peripheral Blood Mononuclear Cells (PBMCs)

PBMCs were cultured in complete RPMI supplemented with 1.5% PHA solution and 500 U/ml IL2. For transfection, PBMCs were collected by centrifugation and diluted with RPMI medium containing 4% FBS and IL2 1000 U/ml and seeded to 24-well plate at 500,000 cells/well.


MAP4K4 sdRNA labeled with cy3 was added to the cells at 0.1 μM final concentration. After 72 hours of incubation, the transfected cells were collected, washed with PBS, spun down and diluted in blocking buffer (PBS with 3% BSA) at 200,000 cells/50 μl/sample.


Antibody dilutions were prepared in the blocking buffer as following: 1:100 final dilution anti-CD3 (Abeam, ab16669) and anti-CD19 at 10 μl/1,000,000 cells (Abeam, ab31947). Cells were mixed with the diluted antibodies and incubated 30 min on ice. Cells were then washed twice with PBS containing 0.2% Tween-20 and 0.1% sodium azide.


Secondary antibodies were diluted in the blocking buffer in a final dilution 1:500 for anti-mouse Cy5 (Abeam, ab97037) and 1:2000 for anti-rabbit Alexa-488 (Abeam, ab150077). Cells were mixed with the diluted antibodies at 1:1 ratio and incubated 30 min on ice. Cells were washed as before, and diluted in 500 μl PBS per tube. The data was acquired immediately on the Attune Acoustic Focusing Cytometer (Applied Biosystems).



FIG. 7 shows efficient transfection over 97% of CD3-positive (t cells) and over 98% CD19-positive (B-cells) subsets in Human Peripheral Blood Mononuclear Cells (PBMCs).









TABLE 1





Targeting sequences and gene regions of genes targeted with sdRNAs to prevent immunosuppression of


antigen-presenting cells and T-cells.
















Accession:



HUGO gene



symbol:
NM_004324










Oligo_
BAX




count
Oligo_ID
targeting sequence
Gene_region





 1
BAX_NM_004324_human_835
GAATTGCTCAAGTTCATTGA
CCTCCACTGCCTCTGGAATTGCTCAAGTTCATTGATGACCCTCTG





 2
BAX_NM_004324_human_157
TTCATCCAGGATCGAGCAGG
CTTTTGCTTCAGGGTTTCATCCAGGATCGAGCAGGGCGAATGGGG





 3
BAX_NM_004324_human_684
ATCATCAGATGTGGTCTATA
TCTCCCCATCTTCAGATCATCAGATGTGGTCTATAATGCGTTTTC





 4
BAX_NM_004324_human_412
TACTTTGCCAGCAAACTGGT
GTTGTCGCCCTTTTCTACTTTGCCAGCAAACTGGTGCTCAAGGCC





 5
BAX_NM_004324_human_538
GGTTGGGTGAGACTCCTCAA
ATCCAAGACCAGGGTGGTTGGGTGAGACTCCTCAAGCCTCCTCAC





 6
BAX_NM_004324_human_411
CTACTTTGCCAGCAAACTGG
GGTTGTCGCCCTTTTCTACTTTGCCAGCAAACTGGTGCTCAAGGC





 7
BAX_NM_004324_human_706
GCGTTTTCCTTACGTGTCTG
GATGTGGTCTATAATGCGTTTTCCTTACGTGTCTGATCAATCCCC





 8
BAX_NM_004324_human_716
TACGTGTCTGATCAATCCCC
ATAATGCGTTTTCCTTACGTGTCTGATCAATCCCCGATTCATCTA





 9
BAX_NM_004324_human_150
TCAGGGTTTCATCCAGGATC
AGGGGCCCTTTTGCTTCAGGGTTTCATCCAGGATCGAGCAGGGCG





10
BAX_NM_004324_human_372
TGACGGCAACTTCAACTGGG
AGCTGACATGTTTTCTGACGGCAACTTCAACTGGGGCCGGGTTGT





11
BAX_NM_004324_human_356
CAGCTGACATGTTTTCTGAC
TCTTTTTCCGAGTGGCAGCTGACATGTTTTCTGACGGCAACTTCA





12
BAX_NM_004324_human_357
AGCTGACATGTTTTCTGACG
CTTTTTCCGAGTGGCAGCTGACATGTTTTCTGACGGCAACTTCAA





13
BAX_NM_004324_human_776
CACTGTGACCTTGACTTGAT
AGTGACCCCTGACCTCACTGTGACCTTGACTTGATTAGTGCCTTC





14
BAX_NM_004324_human_712
TCCTTACGTGTCTGATCAAT
GTCTATAATGCGTTTTCCTTACGTGTCTGATCAATCCCCGATTCA





15
BAX_NM_004324_human_465
GATCAGAACCATCATGGGCT
CAAGGTGCCGGAACTGATCAGAACCATCATGGGCTGGACATTGGA





16
BAX_NM_004324_human_642
CTTCTGGAGCAGGTCACAGT
TCTGGGACCCTGGGCCTTCTGGAGCAGGTCACAGTGGTGCCCTCT





17
BAX_NM_004324_human_117
TGAGCAGATCATGAAGACAG
GGGGCCCACCAGCTCTGAGCAGATCATGAAGACAGGGGCCCTTTT





18
BAX_NM_004324_human_700
TATAATGCGTTTTCCTTACG
TCATCAGATGTGGTCTATAATGCGTTTTCCTTACGTGTCTGATCA





19
BAX_NM_004324_human_673
CCCATCTTCAGATCATCAGA
CAGTGGTGCCCTCTCCCCATCTTCAGATCATCAGATGTGGTCTAT





20
BAX_NM_004324_human_452
AGGTGCCGGAACTGATCAGA
AGGCCCTGTGCACCAAGGTGCCGGAACTGATCAGAACCATCATGG





Accession:





HUGO gene





symbol:
NM_001188




Oligo_
BAK1




count
Oligo_ID
targeting sequence
Gene_region





 1
BAK1_NM_001188_human_1813
TGGTTTGTTATATCAGGGAA
ACAGGGCTTAGGACTTGGTTTGTTATATCAGGGAAAAGGAGTAGG





 2
BAK1_NM_001188_human_911
TGGTACGAAGATTCTTCAAA
TGTTGGGCCAGTTTGTGGTACGAAGATTCTTCAAATCATGACTCC





 3
BAK1_NM_001188_human_1820
TTATATCAGGGAAAAGGAGT
TTAGGACTTGGTTTGTTATATCAGGGAAAAGGAGTAGGGAGTTCA





 4
BAK1_NM_001188_human_1678
TCCCTTCCTCTCTCCTTATA
GTCCTCTCAGTTCTCTCCCTTCCTCTCTCCTTATAGACACTTGCT





 5
BAK1_NM_001188_human_926
TCAAATCATGACTCCCAAGG
TGGTACGAAGATTCTTCAAATCATGACTCCCAAGGGTGCCCTTTG





 6
BAK1_NM_001188_human_1818
TGTTATATCAGGGAAAAGGA
GCTTAGGACTTGGTTTGTTATATCAGGGAAAAGGAGTAGGGAGTT





 7
BAK1_NM_001188_human_915
ACGAAGATTCTTCAAATCAT
GGGCCAGTTTGTGGTACGAAGATTCTTCAAATCATGACTCCCAAG





 8
BAK1_NM_001188_human_912
GGTACGAAGATTCTTCAAAT
GTTGGGCCAGTTTGTGGTACGAAGATTCTTCAAATCATGACTCCC





 9
BAK1_NM_001188_human_2086
GAAGTTCTTGATTCAGCCAA
GGGGGTCAGGGGGGAGAAGTTCTTGATTCAGCCAAATGCAGGGAG





10
BAK1_NM_001188_human_620
CCTATGAGTACTTCACCAAG
CCACGGCAGAGAATGCCTATGAGTACTTCACCAAGATTGCCACCA





11
BAK1_NM_001188_human_1823
TATCAGGGAAAAGGAGTAGG
GGACTTGGTTTGTTATATCAGGGAAAAGGAGTAGGGAGTTCATCT





12
BAK1_NM_001188_human_1687
CTCTCCTTATAGACACTTGC
GTTCTCTCCCTTCCTCTCTCCTTATAGACACTTGCTCCCAACCCA





13
BAK1_NM_001188_human_1810
ACTTGGTTTGTTATATCAGG
ACTACAGGGCTTAGGACTTGGTTTGTTATATCAGGGAAAAGGAGT





14
BAK1_NM_001188_human_1399
AAGATCAGCACCCTAAGAGA
ATTCAGCTATTCTGGAAGATCAGCACCCTAAGAGATGGGACTAGG





15
BAK1_NM_001188_human_654
GTTTGAGAGTGGCATCAATT
GATTGCCACCAGCCTGTTTGAGAGTGGCATCAATTGGGGCCGTGT





16
BAK1_NM_001188_human_1875
GACTATCAACACCACTAGGA
TCTAAGTGGGAGAAGGACTATCAACACCACTAGGAATCCCAGAGG





17
BAK1_NM_001188_human_1043
AGCTTTAGCAAGTGTGCACT
CCTCAAGAGTACAGAAGCTTTAGCAAGTGTGCACTCCAGCTTCGG





18
BAK1_NM_001188_human_1846
TTCATCTGGAGGGTTCTAAG
AAAAGGAGTAGGGAGTTCATCTGGAGGGTTCTAAGTGGGAGAAGG





19
BAK1_NM_001188_human_2087
AAGTTCTTGATTCAGCCAAA
GGGGTCAGGGGGGAGAAGTTCTTGATTCAGCCAAATGCAGGGAGG





20
BAK1_NM_001188_human_1819
GTTATATCAGGGAAAAGGAG
CTTAGGACTTGGTTTGTTATATCAGGGAAAAGGAGTAGGGAGTTC





Accession:
NM_001228




HUGO gene
CASP8




symbol:
Oligo_ID
targeting sequence
Gene_region





 1
CASP8_NM_001228_human_2821
TTAAATCATTAGGAATTAAG
TCTGCTTGGATTATTTTAAATCATTAGGAATTAAGTTATCTTTAA





 2
CASP8_NM_001228_human_2833
GAATTAAGTTATCTTTAAAA
ATTTTAAATCATTAGGAATTAAGTTATCTTTAAAATTTAAGTATC





 3
CASP8_NM_001228_human_2392
AACTTTAATTCTCTTTCAAA
TGTTAATATTCTATTAACTTTAATTCTCTTTCAAAGCTAAATTCC





 4
CASP8_NM_001228_human_1683
GACTGAAGTGAACTATGAAG
TATTCTCACCATCCTGACTGAAGTGAACTATGAAGTAAGCAACAA





 5
CASP8_NM_001228_human_281
ATATTCTCCTGCCTTTTAAA
GGGAATATTGAGATTATATTCTCCTGCCTTTTAAAAAGATGGACT





 6
CASP8_NM_001228_human_2839
AGTTATCTTTAAAATTTAAG
AATCATTAGGAATTAAGTTATCTTTAAAATTTAAGTATCTTTTTT





 7 
CASP8_NM_001228_human_2164
TAGATTTTCTACTTTATTAA
TATTTACTAATTTTCTAGATTTTCTACTTTATTAATTGTTTTGCA





 8
CASP8_NM_001228_human_888
CTGTGCCCAAATCAACAAGA
CATCCTGAAAAGAGTCTGTGCCCAAATCAACAAGAGCCTGCTGAA





 9
CASP8_NM_001228_human_2283
AGCTGGTGGCAATAAATACC
TTTGGGAATGTTTTTAGCTGGTGGCAATAAATACCAGACACGTAC





10
CASP8_NM_001228_human_1585
TCCTACCGAAACCCTGCAGA
GTGAATAACTGTGTTTCCTACCGAAACCCTGCAGAGGGAACCTGG





11
CASP8_NM_001228_human_2200
TATAAGAGCTAAAGTTAAAT
TGTTTTGCACTTTTTTATAAGAGCTAAAGTTAAATAGGATATTAA





12
CASP8_NM_001228_human_2140
CACTATGTTTATTTACTAAT
ACTATTTAGATATAACACTATGTTTATTTACTAATTTTCTAGATT





13
CASP8_NM_001228_human_2350
ATTGTTATCTATCAACTATA
GGGCTTATGATTCAGATTGTTATCTATCAACTATAAGCCCACTGT





14
CASP8_NM_001228_human_1575
TAACTGTGTTTCCTACCGAA
GATGGCCACTGTGAATAACTGTGTTTCCTACCGAAACCCTGCAGA





15
CASP8_NM_001228_human_2397
TAATTCTCTTTCAAAGCTAA
ATATTCTATTAACTTTAATTCTCTTTCAAAGCTAAATTCCACACT





16
CASP8_NM_001228_human_2726
TATATGCTTGGCTAACTATA
TGCTTTTATGATATATATATGCTTGGCTAACTATATTTGCTTTTT





17
CASP8_NM_001228_human_2805
CTCTGCTTGGATTATTTTAA
CATTTGCTCTTTCATCTCTGCTTGGATTATTTTAAATCATTAGGA





18
CASP8_NM_001228_human_2729
ATGCTTGGCTAACTATATTT
TTTTATGATATATATATGCTTGGCTAACTATATTTGCTTTTTGCT





19
CASP8_NM_001228_human_2201
ATAAGAGCTAAAGTTAAATA
GTTTTGCACTTTTTTATAAGAGCTAAAGTTAAATAGGATATTAAC





20
CASP8_NM_001228_human_2843
ATCTTTAAAATTTAAGTATC
ATTAGGAATTAAGTTATCTTTAAAATTTAAGTATCTTTTTTCAAA





Accession:





HUGO gene





symbol:
NM_000675




Oligo_
ADORA2A




count
Oligo_ID
targeting sequence
Gene_region





 1
ADORA2A_NM_000675_human_
TAACTGCCTTTCCTTCTAAA
GTGAGAGGCCTTGTCTAACTGCCTTTCCTTCTAAAGGGAATGTTT



2482







 2
ADORA2A_NM_000675_human_
TTCCTTCTAAAGGGAATGTT
CTTGTCTAACTGCCTTTCCTTCTAAAGGGAATGTTTTTTTCTGAG



2491







 3
ADORA2A_NM_000675_human_
GCCTTTCCTTCTAAAGGGAA
AGGCCTTGTCTAACTGCCMCCTTCTAAAGGGAATGTTTTTTTTTC



2487







 4
ADORA2A_NM_000675_human_
TTTTCTGAGATAAAATAAAA
CTAAAGGGAATGTTTTTTTCTGAGATAAAATAAAAACGAGCCACA



2512







 5
ADORA2A_NM_000675_human_
CATCTCTTGGAGTGACAAAG
TCTCAGTCCCAGGGCCATCTCTTGGAGTGACAAAGCTGGGATCAA



2330







 6
ADORA2A_NM_000675_human_
CATGGTGTACTTCAACTTCT
GGTCCCCATGAACTACATGGTGTACTTCAACTTCTTTGCCTGTGT



987







 7
ADORA2A_NM_000675_human_
CTAACTGCCTTTCCTTCTAA
AGTGAGAGGCCTTGTCTAACTGCCTTTCCTTCTAAAGGGAATGTT



2481







 8
ADORA2A_NM_000675_human_
CTGATGATTCATGGAGTTTG
TGGAGCAGGAGTGTCCTGATGATTCATGGAGTTTGCCCCTTCCTA



1695







 9
ADORA2A_NM_000675_human_
CTCAGAGTCCTCTGTGAAAA
CCTGGTTTCAGGAGACTCAGAGTCCTCTGTGAAAAAGCCCTTGGA



264







10
ADORA2A_NM_000675_human_
AACGAGCCACATCGTGTTTT
CTGAGATAAAATAAAAACGAGCCACATCGTGTTTTAAGCTTGTCC



2531







11
ADORA2A_NM_000675_human_
TCCTTCTAAAGGGAATGTTT
TTGTCTAACTGCCTTTCCTTCTAAAGGGAATGTTTTTTTCTGAGA



2492







12
ADORA2A_NM_000675_human_
CATGAACTACATGGTGTACT
TGAGGATGTGGTCCCCATGAACTACATGGTGTACTTCAACTTCTT



978







13
ADORA2A_NM_000675_human_
AACTGCCTTTCCTTCTAAAG
TGAGAGGCCTTGTCTAACTGCCTTTCCTTCTAAAGGGAATGTTTT



2483







14
ADORA2A_NM_000675_human_
CAGATGTTTCATGCTGTGAG
TGGGTTCTGAGGAAGCAGATGTTTCATGCTGTGAGGCCTTGCACC



1894







15
ADORA2A_NM_000675_human_
CCCATGAACTACATGGTGTA
TTTGAGGATGTGGTCCCCATGAACTACATGGTGTACTTCAACTTC



976







16
ADORA2A_NM_000675_human_
AGGCAGCAAGAACCTTTCAA
CGCAGCCACGTCCTGAGGCAGCAAGAACCTTTCAAGGCAGCTGGC



1384







17
ADORA2A_NM_000675_human_
GTCCTGATGATTCATGGAGT
GGATGGAGCAGGAGTGTCCTGATGATTCATGGAGTTTGCCCCTTC



1692







18
ADORA2A_NM_000675_human_
GTACTTCAACTTCTTTGCCT
CATGAACTACATGGTGTACTTCAACTTCTTTGCCTGTGTGCTGGT



993







19
ADORA2A_NM_000675_human_
TGTAAGTGTGAGGAAACCCT
TTTTTCCAGGAAAAATGTAAGTGTGAGGAAACCCTTTTTATTTTA



2167







20
ADORA2A_NM_000675_human_
CCTACTTTGGACTGAGAGAA
TGAGGGCAGCCGGTTCCTACTTTGGACTGAGAGAAGGGAGCCCCA



1815





Accession:





HUGO gene
NM_005214




symbol:
CTLA4





 1
CTLA4_NM_005214_human_61
TGATTCTGTGTGGGTTCAAA
TCTATATAAAGTCCTTGATTCTGTGTGGGTTCAAACACATTTCAA





 2
CTLA4_NM_005214_human_909
TTATTTGTTTGTGCATTTGG
GCTATCCAGCTATTTTTATTTGTTTGTGCATTTGGGGGGAATTCA





 3
CTLA4_NM_005214_human_1265
TGATTACATCAAGGCTTCAA
TCTTAAACAAATGTATGATTACATCAAGGCTTCAAAAATACTCAC





 4
CTLA4_NM_005214_human_1094
GATGTGGGTCAAGGAATTAA
GGGATGCAGCATTATGATGTGGGTCAAGGAATTAAGTTAGGGAAT





 5
CTLA4_NM_005214_human_1241
CCTTTTATTTCTTAAACAAA
AAGTTAAATTTTATGCCTTTTATTTCTTAAACAAATGTATGATTA





 6
CTLA4_NM_005214_human_1266
GATTACATCAAGGCTTCAAA
CTTAAACAAATGTATGATTACATCAAGGCTTCAAAAATACTCACA





 7
CTLA4_NM_005214_human_65
TCTGTGTGGGTTCAAACACA
TATAAAGTCCTTGATTCTGTGTGGGTTCAAACACATTTCAAAGCT





 8
CTLA4_NM_005214_human_1405
TTGATAGTATTGTGCATAGA
TATATATATTTTAATTTGATAGTATTGTGCATAGAGCCACGTATG





 9
CTLA4_NM_005214_human_1239
TGCCTTTTATTTCTTAAACA
TCAAGTTAAATTTTATGCCTTTTATTTCTTAAACAAATGTATGAT





10
CTLA4_NM_005214_human_1912
TCCATGAAAATGCAACAACA
TTTAACTCAATATTTTCCATGAAAATGCAACAACATGTATAATAT





11
CTLA4_NM_005214_human_1245
TTATTTCTTAAACAAATGTA
TAAATTTTATGCCTTTTATTTCTTAAACAAATGTATGATTACATC





12
CTLA4_NM_005214_human_1449
TTAATGGTTTGAATATAAAC
GTTTTTGTGTATTTGTTAATGGTTTGAATATAAACACTATATGGC





13
CTLA4_NM_005214_human_1095
ATGTGGGTCAAGGAATTAAG
GGATGCAGCATTATGATGTGGGTCAAGGAATTAAGTTAGGGAATG





14
CTLA4_NM_005214_human_1208
AGCCGAAATGATCTTTTCAA
GTATGAGACGTTTATAGCCGAAATGATCTTTTCAAGTTAAATTTT





15
CTLA4_NM_005214_human_1455
GTTTGAATATAAACACTATA
GTGTATTTGTTAATGGTTTGAATATAAACACTATATGGCAGTGTC





16
CTLA4_NM_005214_human_1237
TATGCCTTTTATTTCTTAAA
TTTCAAGTTAAATTTTATGCCTTTTATTTCTTAAACAAATGTATG





17
CTLA4_NM_005214_human_1911
TTCCATGAAAATGCAACAAC
TTTTAACTCAATATTTTCCATGAAAATGCAACAACATGTATAATA





18
CTLA4_NM_005214_human_937
CATCTCTCTTTAATATAAAG
CATTTGGGGGGAATTCATCTCTCTTTAATATAAAGTTGGATGCGG





19
CTLA4_NM_005214_human_931
GGAATTCATCTCTCTTTAAT
TTTGTGCATTTGGGGGGAATTCATCTCTCTTTAATATAAAGTTGG





20
CTLA4_NM_005214_human_45
ATCTATATAAAGTCCTTGAT
TCTGGGATCAAAGCTATCTATATAAAGTCCTTGATTCTGTGTGGG





Accession:





HUGO gene





symbol:
NM_002286




Oligo_
LAG3




count
Oligo_ID
targeting sequence
Gene_region





 1
LAG3_NM_002286_human_1292
GACTTTACCCTTCGACTAGA
ACTGGAGACAATGGCGACTTTACCCTTCGACTAGAGGATGTGAGC





 2
LAG3_NM_002286_human_1096
CAACGTCTCCATCATGTATA
CTACAGAGATGGCTTCAACGTCTCCATCATGTATAACCTCACTGT





 3
LAG3_NM_002286_human_1721
GTCCTTTCTCTGCTCCTTTT
TTTCTCATCCTTGGTGTCCTTTCTCTGCTCCTTTTGGTGACTGGA





 4
LAG3_NM_002286_human_1465
TCCAGTATCTGGACAAGAAC
GCTTTGTGAGGTGACTCCAGTATCTGGACAAGAACGCTTTGTGTG





 5
LAG3_NM_002286_human_1795
ATTTTCTGCCTTAGAGCAAG
GTGGCGACCAAGACGATTTTCTGCCTTAGAGCAAGGGATTCACCC





 6
LAG3_NM_002286_human_1760
TTTCACCTTTGGAGAAGACA
ACTGGAGCCTTTGGCTTTCACCTTTGGAGAAGACAGTGGCGACCA





 7
LAG3_NM_002286_human_904
CATTTTGAACTGCTCCTTCA
AGCCTCCGACTGGGTCATTTTGAACTGCTCCTTCAGCCGCCCTGA





 8
LAG3_NM_002286_human_1398
TCATCACAGTGACTCCCAAA
CTGTCACATTGGCAATCATCACAGTGACTCCCAAATCCTTTGGGT





 9
LAG3_NM_002286_human_1758
GCTTTCACCTTTGGAGAAGA
TGACTGGAGCCTTTGGCTTTCACCTTTGGAGAAGACAGTGGCGAC





10
LAG3_NM_002286_human_1753
CTTTGGCTTTCACCTTTGGA
TTTGGTGACTGGAGCCTTTGGCTTTCACCTTTGGAGAAGACAGTG





11
LAG3_NM_002286_human_905
ATTTTGAACTGCTCCTTCAG
GCCTCCGACTGGGTCATTTTGAACTGCTCCTTCAGCCGCCCTGAC





12
LAG3_NM_002286_human_1387
CACATTGGCAATCATCACAG
GCTCAATGCCACTGTCACATTGGCAATCATCACAGTGACTCCCAA





13
LAG3_NM_002286_human_301
TTTCTGACCTCCTTTTGGAG
ACTGCCCCCTTTCCTTTTCTGACCTCCTTTTGGAGGGCTCAGCGC





14
LAG3_NM_002286_human_895
CGACTGGGTCATTTTGAACT
ATCTCTCAGAGCCTCCGACTGGGTCATTTTGAACTGCTCCTTCAG





15
LAG3_NM_002286_human_1625
TACTTCACAGAGCTGTCTAG
CTTGGAGCAGCAGTGTACTTCACAGAGCTGTCTAGCCCAGGTGCC





16
LAG3_NM_002286_human_1390
ATTGGCAATCATCACAGTGA
CAATGCCACTGTCACATTGGCAATCATCACAGTGACTCCCAAATC





17
LAG3_NM_002286_human_1703
CTGTTTCTCATCCTTGGTGT
GCAGGCCACCTCCTGCTTTTTCTCATCCTTGGTGTCCTTTCTCTG





18
LAG3_NM_002286_human_1453
TTGTGAGGTGACTCCAGTAT
CCTGGGGAAGCTGCTTTGTGAGGTGACTCCAGTATCTGGACAAGA





19
LAG3_NM_002286_human_1754
TTTGGCTTTCACCTTTGGAG
TTGGTGACTGGAGCCTTTGGCTTTCACCTTTGGAGAAGACAGTGG





20
LAG3_NM_002286_human_1279
TGGAGACAATGGCGACTTTA
TGACCTCCTGGTGACTGGAGACAATGGCGACTTTACCCTTCGACT





Accession:





HUGO gene





symbol:
NM_005018




Oligo_
PDCD1




count
Oligo_ID
targeting sequence
Gene_region





 1
PDCD1_NM_005018_human_2070
TATTATATTATAATTATAAT
CCTTCCCTGTGGTTCTATTATATTATAATTATAATTAAATATGAG





 2
PDCD1_NM_005018_human_2068
TCTATTATATTATAATTATA
CCCCTTCCCTGTGGTTCTATTATATTATAATTATAATTAAATATG





 3
POCD1_NM_005018_human_1854
CATTCCTGAAATTATTTAAA
GCTCTCCTTGGAACCCATTCCTGAAATTATTTAAAGGGGTTGGCC





 4
PDCD1_NM_005018_human_2069
CTATTATATTATAATTATAA
CCCTTCCCTGTGGTTCTATTATATTATAATTATAATTAAATATGA





 5
PDCD1_NM_005018_human_1491
AGTTTCAGGGAAGGTCAGAA
CTGCAGGCCTAGAGAAGTTTCAGGGAAGGTCAGAAGAGCTCCTGG





 6
PDCD1_NM_005018_human_2062
TGTGGTTCTATTATATTATA
GGGATCCCCCTTCCCTGTGGTTCTATTATATTATAATTATAATTA





 7
PDCD1_NM_005018_human_719
TGTGTTCTCTGTGGACTATG
CCCCTCAGCCGTGCCTGTGTTCTCTGTGGACTATGGGGAGCTGGA





 8
PDCD1_NM_005018_human_1852
CCCATTCCTGAAATTATTTA
GAGCTCTCCTTGGAACCCATTCCTGAAATTATTTAAAGGGGTTGG





 9
PDCD1_NM_005018_human_812
TGCCACCATTGTCTTTCCTA
TGAGCAGACGGAGTATGCCACCATTGTCTTTCCTAGCGGAATGGG





10
PDCD1_NM_005018_human_1490
AAGTTTCAGGGAAGGTCAGA
CCTGCAGGCCTAGAGAAGTTTCAGGGAAGGTCAGAAGAGCTCCTG





11
PDCD1_NM_005018_human_2061
CTGTGGTTCTATTATATTAT
AGGGATCCCCCTTCCCTGTGGTTCTATTATATTATAATTATAATT





12
PDCD1_NM_005018_human_2067
TTCTATTATATTATAATTAT
CCCCCTTCCCTGTGGTTCTATTATATTATAATTATAATTAAATAT





13
PDCD1_NM_005018_human_1493
TTTCAGGGAAGGTCAGAAGA
GCAGGCCTAGAGAAGTTTCAGGGAAGGTCAGAAGAGCTCCTGGCT





14
PDCD1_NM_005018_human_1845
CTTGGAACCCATTCCTGAAA
ACCCTGGGAGCTCTCCTTGGAACCCATTCCTGAAATTATTTAAAG





15
PDCD1_NM_005018_human_2058
TCCCTGTGGTTCTATTATAT
ACAAGGGATCCCCCTTCCCTGTGGTTCTATTATATTATAATTATA





16
PDCD1_NM_005018_human_2060
CCTGTGGTTCTATTATATTA
AAGGGATCCCCCTTCCCTGTGGTTCTATTATATTATAATTATAAT





17
PDCD1_NM_005018_human_1847
TGGAACCCATTCCTGAAATT
CCTGGGAGCTCTCCTTGGAACCCATTCCTGAAATTATTTAAAGGG





18
PDCD1_NM_005018_human_2055
CCTTCCCTGTGGTTCTATTA
GGGACAAGGGATCCCCCTTCCCTGTGGTTCTATTATATTATAATT





19
PDCD1_NM_005018_human_2057
TTCCCTGTGGTTCTATTATA
GACAAGGGATCCCCCTTCCCTGTGGTTCTATTATATTATAATTAT





20
PDCD1_NM_005018_human_1105
CACAGGACTCATGTCTCAAT
CAGGCACAGCCCCACCACAGGACTCATGTCTCAATGCCCACAGTG





Accession:





HUGO gene





symbol:
NM_004612




Oligo_
TGFBR1




count
Oligo_ID
targeting sequence
Gene_region





 1
TGFBR1_NM_004612_human_
CCTGTTTATTACAACTTAAA
GTTAATAACATTCAACCTGTTTATTACAACTTAAAAGGAACTTCA



5263







 2
TGFBR1_NM_004612_human_
CCATTGGTGGAATTCATGAA
TTGCTCGACGATGTTCCATTGGTGGAATTCATGAAGATTACCAAC



1323







 3
TGFBR1_NM_004612_human_
TTTTCCTTATAACAAAGACA
TTTAGGGATTTTTTTTTTTCCTTATAACAAAGACATCACCAGGAT



6389







 4
TGFBR1_NM_004612_human_
TGTATTACTTGTTTAATAAT
TTTTTATAGTTGTGTTGTATTACTTGTTTAATAATAATCTCTAAT



3611







 5
TGFBR1_NM_004612_human_
TTATTGAATCAAAGATTGAG
TGCTGAAGATATTTTTTATTGAATCAAAGATTGAGTTACAATTAT



3882







 6
TGFBR1_NM_004612_human_
TTCTTACCTAAGTGGATAAA
GTTACAATTATACTTTTCTTACCTAAGTGGATAAAATGTACTTTT



3916







 7
TGFBR1_NM_004612_human_
ATGTTGCTCAGTTACTCAAA
TAAAGTATGGGTATTATGTTGCTCAGTTACTCAAATGGTACTGTA



5559







 8
TGFBR1_NM_004612_human_
ATATTTGTACCCCAAATAAC
GGTACTGTATTGTTTATATTTGTACCCCAAATAACATCGTCTGTA



5595







 9
TGFBR1_NM_004612_human_
TGTAAATGTAAACTTCTAAA
TTATGCAATCTTGTTTGTAAATGTAAACTTCTAAAAATATGGTTA



5222







10
TGFBR1_NM_004612_human_
AGAATGAGTGACATATTACA
AACCAAAGTAATTTTAGAATGAGTGACATATTACATAGGAATTTA



3435







11
TGFBR1_NM_004612_human_
CCATTTCTAAGCCTACCAGA
GTTGTTGTTTTTGGGCCATTTCTAAGCCTACCAGATCTGCTTTAT



3709







12
TGFBR1_NM_004612_human_
ATATTCCAAAAGAATGTAAA
ATTGTATTTGTAGTAATATTCCAAAAGAATGTAAATAGGAAATAG



5826







13
TGFBR1_NM_004612_human_
TTACTTCCAATGCTATGAAG
TATAATAACTGGTTTTTACTTCCAATGCTATGAAGTCTCTGCAGG



3146







14
TGFBR1_NM_004612_human_
TCTTTATCTGTTCAAAGACT
TGTAAGCCATTTTTTTTCTTTATCTGTTCAAAGACTTATTUTTAA



2675







15
TGFBR1_NM_004612_human_
GTCTAAGTATACTTTTAAAA
CATTTTAATTGTGTTGTCTAAGTATACTTTTAAAAAATCAAGTGG



2529







16
TGFBR1_NM_004612_human_
ATCTTTGGACATGTACTGCA
GAGATACTAAGGATTATCTTTGGACATGTACTGCAGCTTCTTGTC



5079







17
TGFBR1_NM_004612_human_
GTGTTGTATTACTTGTTTAA
TTTGTTTTTATAGTTGTGTTGTATTACTTGTTTAATAATAATCTC



3607







18
TGFBR1_NM_004612_human_
TGCTGTAGATGGCAACTAGA
CATGCCATATGTAGTTGCTGTAGATGGCAACTAGAACCTTTGAGT



5994







19
TGFBR1_NM_004612_human_
TCTTTCACTTATTCAGAACA
GTATACTATTATTGTTCTTTCACTTATTCAGAACATTACATGCCT



2177







20
TGFBR1_NM_004612_human_
GTATTTGTAGTAATATTCCA
TTTAAATTGTATATTGTATTTGTAGTAATATTCCAAAAGAATGTA



5814





Accession:





HUGO gene





symbol:
NM _032782




Oligo_
HAVCR2




count
Oligo_ID
targeting sequence
Gene_region





 1
HAVCR2_NM_032782_human_937
CTCATAGCAAAGAGAAGATA
TTTTCAAATGGTATTCTCATAGCAAAGAGAAGATACAGAATTTAA





 2
HAVCR2_NM_032782_human_932
GTATTCTCATAGCAAAGAGA
TTTAATTTTCAAATGGTATTCTCATAGCAAAGAGAAGATACAGAA





 3
HAVCR2_NM_032782_human_
TTGCTTGTTGTGTGCTTGAA
TGTATTGGCCAAGTTTTGCTTGTTGTGTGCTTGAAAGAAAATATC



2126







 4
HAVCR2_NM_032782_human_
TATTCGTGGACCAAACTGAA
TCTGACCAACTTCTGTATTCGTGGACCAAACTGAAGCTATATTTT



2171







 5
HAVCR2_NM_032782_human_158
ATTGTGGAGTAGACAGTTGG
GCTACTGCTCATGTGATTGTGGAGTAGACAGTTGGAAGAAGTACC





 6
HAVCR2_NM_032782_human_
GTTGTGTGCTTGAAAGAAAA
GGCCAAGTTTTGCTTGTTGTGTGCTTGAAAGAAAATATCTCTGAC



2132







 7
HAVCR2_NM_032782_human_
TGTTGTGTGCTTGAAAGAAA
TGGCCAAGTTTTGCTTGTTGTGTGCTTGAAAGAAAATATCTCTGA



2131







 8
HAVCR2_NM_032782_human_
CCCTAAACTTAAATTTCAAG
TTGACAGAGAGTGGTCCCTAAACTTAAATTTCAAGACGGTATAGG



2313







 9
HAVCR2_NM_032782_human_489
ACATCCAGATACTGGCTAAA
GATGTGAATTATTGGACATCCAGATACTGGCTAAATGGGGATTTC





10
HAVCR2_NM_032782_human_
CATTTTCAGAAGATAATGAC
GGAGCAGAGTTTTCCCATTTTCAGAAGATAATGACTCACATGGGA



1272







11
HAVCR2_NM_032782_human_785
CACATTGGCCAATGAGTTAC
TCTAACACAAATATCCACATTGGCCAATGAGTTACGGGACTCTAG





12
HAVCR2_NM_032782_human_
TGCTTGTTGTGTGCTTGAAA
GTATTGGCCAAGTTTTGCTTGTTGTGTGCTTGAAAGAAAATATCT



2127







13
HAVCR2_NM_032782_human_164
GAGTAGACAGTTGGAAGAAG
GCTCATGTGATTGTGGAGTAGACAGTTGGAAGAAGTACCCAGTCC





14
HAVCR2_NM_032782_human_
TTGTTGTGTGCTTGAAAGAA
TTGGCCAAGTTTTGCTTGTTGTGTGCTTGAAAGAAAATATCTCTG



2130







15
HAVCR2_NM_032782_human_911
CGGCGCTTTAATTTTCAAAT
TCTGGCTCTTATCTTCGGCGCTTTAATTTTCAAATGGTATTCTCA





16
HAVCR2_NM_032782_human_
TTTGGCACAGAAAGTCTAAA
TGAAAGCATAACTTTTTTGGCACAGAAAGTCTAAAGGGGCCACTG



1543







17
HAVCR2_NM_032782_human_
GATCTGTCTTGCTTATTGTT
AGACGGTATAGGCTTGATCTGTCTTGCTTATTGTTGCCCCCTGCG



2346







18
HAVCR2_NM_032782_human_
GGTGTGTATTGGCCAAGTTT
GAAGTGCATTTGATTGGTGTGTATTGGCCAAGTTTTGCTTGTTGT



2107







19
HAVCR2_NM_032782_human_
CCCATTTTCAGAAGATAATG
ATGGAGCAGAGTTTTCCCATTTTCAGAAGATAATGACTCACATGG



1270







20
HAVCR2_NM_032782_human_
TGGCACAGAAAGTCTAAAGG
AAAGCATAALTTTTTTGGCACAGAAAGTCTAAAGGGGCCACTGAT



1545





Accession:





HUGO gene





symbol:
NM _002987




Oligo_
CCL17




count
Oligo_ID
targeting sequence
Gene_region





 1
CCL17_NM_002987_human_385
AAATACCTGCAAAGCCTTGA
GTGAAGAATGCAGTTAAATACCTGCAAAGCCTTGAGAGGTCTTGA





 2
CCL17_NM_002987_human_318
TTTTGTAACTGTGCAGGGCA
CAGGGATGCCATCGTTTTTGTAACTGTGCAGGGCAGGGCCATCTG





 3
CCL17_NM_002987_human_367
AGAGTGAAGAATGCAGTTAA
GACCCCAACAACAAGAGAGTGAAGAATGCAGTTAAATACCTGCAA





 4
CCL17_NM_002987_human_396
AAGCCTTGAGAGGTCTTGAA
AGTTAAATACCTGCAAAGCCTTGAGAGGTCTTGAAGCCTCCTCAC





 5
CCL17_NM_002987_human_386
AATACCTGCAAAGCCTTGAG
TGAAGAATGCAGTTAAATACCTGCAAAGCCTTGAGAGGTCTTGAA





 6
CCL17_NM_002987_human_378
TGCAGTTAAATACCTGCAAA
CAAGAGAGTGAAGAATGCAGTTAAATACCTGCAAAGCCTTGAGAG





 7
CCL17_NM_002987_human_357
CAACAACAAGAGAGTGAAGA
CATCTGTTCGGACCCCAACAACAAGAGAGTGAAGAATGCAGTTAA





 8
CCL17_NM_002987_human_55
CTGAATTCAAAACCAGGGTG
CTGCTGATGGGAGAGCTGAATTCAAAACCAGGGTGTCTCCCTGAG





 9
CCL17_NM_002987_human_387
ATACCTGCAAAGCCTTGAGA
GAAGAATGCAGTTAAATACCTGCAAAGCCTTGAGAGGTCTTGAAG





10
CCL17_NM_002987_human_254
TTCCCCTTAGAAAGCTGAAG
ACTTCAAGGGAGCCATTCCCCTTAGAAAGCTGAAGACGTGGTACC





11
CCL17_NM_002987_human_49
GGAGAGCTGAATTCAAAACC
CACCGCCTGCTGATGGGAGAGCTGAATTCAAAACCAGGGTGTCTC





12
CCL17_NM_002987_human_379
GCAGTTAAATACCTGCAAAG
AAGAGAGTGAAGAATGCAGTTAAATACCTGCAAAGCCTTGAGAGG





13
CCL17_NM_002987_human_372
GAAGAATGCAGTTAAATACC
CAACAACAAGAGAGTGAAGAATGCAGTTAAATACCTGCAAAGCCT





14
CCL17_NM_002987_human_377
ATGCAGTTAAATACCTGCAA
ACAAGAGAGTGAAGAATGCAGTTAAATACCTGCAAAGCCTTGAGA





15
CCL17_NM_002987_human_252
CATTCCCCTTAGAAAGCTGA
GTACTTCAAGGGAGCCATTCCCCTTAGAAAGCTGAAGACGTGGTA





16
CCL17_NM_002987_human_51
AGAGCTGAATTCAAAACCAG
CCGCCTGCTGATGGGAGAGCTGAATTCAAAACCAGGGTGTCTCCC





17
CCL17_NM_002987_human_45
GATGGGAGAGCTGAATTCAA
GTGTCACCGCCTGCTGATGGGAGAGCTGAATTCAAAACCAGGGTG





18
CCL17_NM_002987_human_44
TGATGGGAGAGCTGAATTCA
AGTGTCACCGCCTGCTGATGGGAGAGCTGAATTCAAAACCAGGGT





19
CCL17_NM_002987_human_16
ACTTTGAGCTCACAGTGTCA
GCTCAGAGAGAAGTGACTTTGAGCTCACAGTGTCACCGCCTGCTG





20
CCL17_NM_002987_human_368
GAGTGAAGAATGCAGTTAAA
ACCCCAACAACAAGAGAGTGAAGAATGCAGTTAAATACCTGCAAA





Accession:





HUGO gene





symbol:
NM_002990




Oligo_
CCL22




count
Oligo_ID
targeting sequence
Gene_region





 1
CCL22_NM_002990_human_2083
GTATTTGAAAACAGAGTAAA
GCTGGAGTTATATATGTATTTGAAAACAGAGTAAATACTTAAGAG





 2
CCL22_NM_002990_human_298
CAATAAGCTGAGCCAATGAA
GGTGAAGATGATTCTCAATAAGCTGAGCCAATGAAGAGCCTACTC





 3
CCL22_NM_002990_human_2103
TACTTAAGAGGCCAAATAGA
TGAAAACAGAGTAAATACTTAAGAGGCCAAATAGATGAATGGAAG





 4
CCL22_NM_002990_human_2081
ATGTATTTGAAAACAGAGTA
AAGCTGGAGTTATATATGTATTTGAAAACAGAGTAAATACTTAAG





 5
CCL22_NM_002990_human_2496
TTCATACAGCAAGTATGGGA
TTGAGAAATATTCTTTTCATACAGCAAGTATGGGACAGCAGTGTC





 6
CCL22_NM_002990_human_1052
CTGCAGACAAAATCAATAAA
GAGCCCAGAAAGTGGCTGCAGACAAAATCAATAAAACTAATGTCC





 7
CCL22_NM_002990_human_1053
TGCAGACAAAATCAATAAAA
AGCCCAGAAAGTGGCTGCAGACAAAATCAATAAAACTAATGTCCC





 8
CCL22_NM_002990_human_2112
GGCCAAATAGATGAATGGAA
AGTAAATACTTAAGAGGCCAAATAGATGAATGGAAGAATTTTAGG





 9
CCL22_NM_002990_human_299
AATAAGCTGAGCCAATGAAG
GTGAAGATGATTCTCAATAAGCTGAGCCAATGAAGAGCCTACTCT





10
CCL22_NM_002990_human_2108
AAGAGGCCAAATAGATGAAT
ACAGAGTAAATACTTAAGAGGCCAAATAGATGAATGGAAGAATTT





11
CCL22_NM_002990_human_2116
AAATAGATGAATGGAAGAAT
AATACTTAAGAGGCCAAATAGATGAATGGAAGAATTTTAGGAACT





12
CCL22_NM_002990_human_2091
AAACAGAGTAAATACTTAAG
TATATATGTATTTGAAAACAGAGTAAATACTTAAGAGGCCAAATA





13
CCL22_NM_002990_human_2067
AGCTGGAGTTATATATGTAT
TGACTTGGTATTATAAGCTGGAGTTATATATGTATTTGAAAACAG





14
CCL22_NM_002990_human_2047
ACCTTTGACTTGGTATTATA
ATGGTGTGAAAGACTACCTTTGACTTGGTATTATAAGCTGGAGTT





15
CCL22_NM_002990_human_238
AACCTTCAGGGATAAGGAGA
TGGCGTGGTGTTGCTAACCTTCAGGGATAAGGAGATCTGTGCCGA





16
CCL22_NM_002990_human_2037
GTGAAAGACTACCTTTGACT
AATTCATGCTATGGTGTGAAAGACTACCTTTGACTTGGTATTATA





17
CCL22_NM_002990_human_2030
CTATGGTGTGAAAGACTACC
ACAATCAAATTCATGCTATGGTGTGAAAGACTACCTTTGACTTGG





18
CCL22_NM_002990_human_1682
CACTACGGCTGGCTAATTTT
ATTACAGGTGTGTGCCACTACGGCTGGCTAATTTTTGTATTTTTA





19
CCL22_NM_002990_human_2071
GGAGTTATATATGTATTTGA
TTGGTATTATAAGCTGGAGTTATATATGTATTTGAAAACAGAGTA





20
CCL22_NM_002990_human_1111
ATATCAATACAGAGACTCAA
CCAAAAGGCAGTTACATATCAATACAGAGACTCAAGGTCACTAGA





Accession:





HUGO gene





symbol:
NM_005618




Oligo_
DLL1




count
Oligo_ID
targeting sequence
Gene_region





 1
DLL1_NM_005618_human_3246
CTGTTTTGTTAATGAAGAAA
TATTTGAGTTTTTTACTGTTTTGTTAATGAAGAAATTCCTTTTTA





 2
DIl1_NM_005618_human_3193
TTGTATATAAATGTATTTAT
TGTGACTATATTTTTTTGTATATAAATGTATTTATGGAATATTGT





 3
DLLl_NM_005618_human_3247
TGTTTTGTTAATGAAGAAAT
ATTTGAGTTTTTTTACTGTTTTGTTAATGAAGAAATTCCTTTTAA





 4
DLL1_NM_005618_human_3141
AATTTTGGTAAATATGTACA
GTTTTTTATAATTTAAATTTTGGTAAATATGTACAAAGGCACTTC





 5
DLL1_NM_005618_human_3293
AAATTTTATGAATGACAAAA
ATATTTTTCCAAAATAAATTTTATGAATGACAAAAAAAAAAAAAA





 6
DLL1_NM_005618_human_3208
TTTATGGAATATTGTGCAAA
TTGTATATAAATGTATTTATGGAATATTGTGCAAATGTTATTTGA





 7
DLL1_NM_005618_human_3243
TTACTGTTTTGTTAATGAAG
TGTTATTTGAGTTTTTTACTGTTTTGTTAATGAAGAAATTCCTTT





 8
DLL1_NM_005618_human_2977
TTCTTGAATTAGAAACACAA
TTATGAGCCAGTCTTTTCTTGAATTAGAAACACAAACACTGCCTT





 9
DLLl_NM_005618_human_2874
CAGTTGCTCTTAAGAGAATA
CCGTTGCACTATGGACAGTTGCTCTTAAGAGAATATATATTTAAA





10
DLL1_NM_005618_human_2560
CAACTTCAAAAGACACCAAG
CGGACTCGGGCTGTTCAACTTCAAAAGACACCAAGTACCAGTCGG





11
DLL1_NM_005618_human_3285
TCCAAAATAAATTTTATGAA
TTTTTAAAATATTTTTCCAAAATAAATTTTATGAATGACAAAAAA





12
DLL1_NM_005618_human_2909
GAACTGAATTACGCATAAGA
TATATTTAAATGGGTGAACTGAATTACGCATAAGAAGCATGCACT





13
DLL1_NM_005618_human_1173
GGATTTTGTGACAAACCAGG
TGTGATGAGCAGCATGGATTTTGTGACAAACCAGGGGAATGCAAG





14
DLL1_NM_005618_human_3244
TACTGTTTTGTTAATGAAGA
GTTATTTGAGTTTTTTACTGTTTTGTTAATGAAGAAATTCCTTTT





15
DLL1_NM_005618_human_3144
TTTGGTAAATATGTACAAAG
TTTTATAATTTAAATTTTGGTAAATATGTACAAAGGCACTTCGGG





16
DLL1_NM_005618_human_3286
CCAAAATAAATTTTATGAAT
TTTTAAAATATTTTTCCAAAATAAATTTTATGAATGACAAAAAAA





17
DLL1_NM_005618_human_3133
ATAATTTAAATTTTGGTAAA
TGATGTTCGTTTTTTATAATTTAAATTTTGGTAAATATGTACAAA





18
DLL1_NM_005618_human_2901
AAATGGGTGAACTGAATTAC
AGAGAATATATATTTAAATGGGTGAACTGAATTACGCATAAGAAG





19
DLL1_NM_005618_human_3168
TTCGGGTCTATGTGACTATA
TATGTACAAAGGCACTTCGGGTCTATGTGACTATATTTTTTTGTA





20
DLL1_NM_005618_human_3245
ACTGTTTTGTTAATGAAGAA
TTAMGAGTMTTACTGTTTTGTTAATGAAGAAATTCCTTTTTTTTT





Accession:





HUGO gene





symbol:
NM_000639




Oligo_
FASLG




count
Oligo_ID
targeting sequence
Gene_region





 1
FASLG_NM_000639_human_1154
TAGCTCCTCAACTCACCTAA
GGTTCAAAATGTCTGTAGCTCCTCAACTCACCTAATGTTTATGAG





 2
FASLG_NM_000639_human_1771
ATGTTTTCCTATAATATAAT
TGTCAGCTACTAATGATGTTTTCCTATAATATAATAAATATTTAT





 3
FASLG_NM_000639_human_1774
TTTTCCTATAATATAATAAA
CAGCTACTAATGATGTTTTCCTATAATATAATAAATATTTATGTA





 4
FASLG_NM_000639_human_1776
TTCCTATAATATAATAAATA
GCTACTAATGATGTTTTCCTATAATATAATAAATATTTATGTAGA





 5
FASLG_NM_000639_human_1086
TGCATTTGAGGTCAAGTAAG
GAGGGTCTTCTTACATGCATTTGAGGTCAAGTAAGAAGACATGAA





 6
FASLG_NM_000639_human_1750
ATTGATTGTCAGCTACTAAT
TAGTGCTTAAAAATCATTGATTGTCAGCTACTAATGATGTTTTCC





 7
FASLG_NM_000639_human_1820
AAATGAAAACATGTAATAAA
ATGTGCATTTTTGTGAAATGAAAACATGTAATAAAAAGTATATGT





 8
FASLG_NM_000639_human_1659
ATTGTGAAGTACATATTAGG
AGAGAGAATGTAGATATTGTGAAGTACATATTAGGAAAATATGGG





 9
FASLG_NM_000639_human_667
GCTTTCTGGAGTGAAGTATA
CTATGGAATTGTCCTGCTTTCTGGAGTGAAGTATAAGAAGGGTGG





10
FASLG_NM_000639_human_1692
CATTTGGTCAAGATTTTGAA
GGAAAATATGGGTTGCATTTGGTCAAGATTTTGAATGCTTCCTGA





11
FASLG_NM_000639_human_986
GGCTTATATAAGCTCTAAGA
TCTCAGACGTTTTTCGGCTTATATAAGCTCTAAGAGAAGCACTTT





12
FASLG_NM_000639_human_911
ACCAGTGCTGATCATTTATA
GCAGTGTTCAATCTTACCAGTGCTGATCATTTATATGTCAACGTA





13
FASLG_NM_000639_human_598
CCATTTAACAGGCAAGTCCA
GCTGAGGAAAGTGGCCCATTTAACAGGCAAGTCCAACTCAAGGTC





14
FASLG_NM_000639_human_1665
AAGTACATATTAGGAAAATA
AATGTAGATATTGTGAAGTACATATTAGGAAAATATGGGTTGCAT





15
FASLG_NM_000639_human_1625
TGTGTGTGTGTATGACTAAA
GTGTGTGTGTGTGTGTGTGTGTGTGTATGACTAAAGAGAGAATGT





16
FASLG_NM_000639_human_1238
AAGAGGGAGAAGCATGAAAA
CTGGGCTGCCATGTGAAGAGGGAGAAGCATGAAAAAGCAGCTACC





17
FASLG_NM_000639_human_1632
GTGTATGACTAAAGAGAGAA
TGTGTGTGTGTGTGTGTGTATGACTAAAGAGAGAATGTAGATATT





18
FASLG_NM_000639_human_1581
GTATTTCCAGTGCAATTGTA
CCTAACACAGCATGTGTATTTCCAGTGCAATTGTAGGGGTGTGTG





19
FASIG_NM_000639_human_1726
CAACTCTAATAGTGCTTAAA
ATGCTTCCTGACAATCAACTCTAATAGTGCTTAAAAATCATTGAT





20
FASLG_NM_000639_human_1626
GTGTGTGTGTATGACTAAAG
TGTGTGTGTGTGTGTGTGTGTGTGTATGACTAAAGAGAGAATGTA





Accession:





HUGO gene





symbol:
NM_001267706




Oligo_
CD274




count
Oligo_ID
targeting sequence
Gene_region





 1
CD274_NM_001267706_human_
ACCTGCATTAATTTAATAAA
ATTGTCACTTTTTGTACCTGCATTAATTTAATAAAATATTCTTAT



3222







 2
CD274_NM_001267706_human_
AACTTGCCCAAACCAGTAAA
GCAAACAGATTAAGTAACTTGCCCAAACCAGTAAATAGCAGACCT



1538







 3
CD274_NM_001267706_human_
ATTTGCTCACATCTAGTAAA
ACTTGCTGCTTAATGATTTGCTCACATCTAGTAAAACATGGAGTA



1218







 4
CD274_NM_001267706_human_
CCTTTGCCATATAATCTAAT
TTTATTCCTGATTTGCCTTTGCCATATAATCTAATGCTTGTTTAT



1998







 5
CD274_NM_001267706_human_
ATATAGCAGATGGAATGAAT
ATTTTAGTGTTTCTTATATAGCAGATGGAATGAATTTGAAGTTCC



2346







 6
CD274_NM_001267706_human_
GCCTTTGCCATATAATCTAA
ATTTATTCCTGATTTGCCTTTGCCATATAATCTAATGCTTGTTTA



1997







 7
CD274_NM_001267706_human_
GATTTGCCTTTGCCATATAA
ATTATATTTATTCCTGATTTGCCTTTGCCATATAATCTAATGCTT



1992







 8
CD274_NM_001267706_human_
AATTTTCATTTACAAAGAGA
CTTAATAATCAGAGTAATTTTCATTTACAAAGAGAGGTCGGTACT



1905







 9
CD274_NM_001267706_human_
AGTGTTTCTTATATAGCAGA
ATTTTTATTTATTTTAGTGTTTCTTATATAGCAGATGGAATGAAT



2336







10 
CD274_NM_001267706_human_
GCTTTCTGTCAAGTATAAAC
GAACTTTTGTTTTCTGCTTTCTGTCAAGTATAAACTTCACTTTGA



2656







11 
CD274_NM_001267706_human_
CATTTGGAAATGTATGTTAA
TCTAAAGATAGTCTACATTTGGAAATGTATGTTAAAAGCACGTAT



2235







12 
CD274_NM_001267706_human_
TTATTTTAGTGTTTCTTATA
CTTTGCTATTTTTATTTATTTTAGTGTTTCTTATATAGCAGATGG



2329







13 
CD274_NM_001267706_human_
GTGGTAGCCTACACACATAA
CAGCTTTACAATTATGTGGTAGCCTACACACATAATCTCATTTCA



1433







14 
CD274_NM_001267706_human_
ATGAGGAGATTAACAAGAAA
GGAGCTCATAGTATAATGAGGAGATTAACAAGAAAATGTATTATT



1745







15 
CD274_NM_001267706_human_
CAATTTTGTCGCCAAACTAA
TTGTAGTAGATGTTACAATTTTGTCGCCAAACTAAACTTGCTGCT



1183







16 
CD274_NM_001267706_human_
TATATAGCAGATGGAATGAA
TATTTTAGTGTTTCTTATATAGCAGATGGAATGAATTTGAAGTTC



2345







17 
CD274_NM_001267706_human_
AAATGCCACTAAATTTTAAA
CTGTCTTTTCTATTTAAATGCCACTAAATTTTAAATTCATACCTT



2069







18 
CD274_NM_001267706_human_
TCTTTCCCATAGCTTTTCAT
TTTGTTTCTAAGTTATCTTTCCCATAGCTTTTCATTATCTTTCAT



2414







19 
CD274_NM_001267706_human_
TATATTCATGACCTACTGGC
GATATTTGCTGTCTTTATATTCATGACCTACTGGCATTTGCTGAA



129 







20 
CD274_NM_001267706_human_
GTCCAGTGTCATAGCATAAG
TATTATTACAATTTAGTCCAGTGTCATAGCATAAGGATGATGCGA



1783





Accession:





HUGO gene





symbol:
NM_002164




Oligo_
IDO1




count
Oligo_ID
targeting sequence
Gene_region





 1
IDO1_NM_002164_human_1896
ATTCTGTCATAATAAATAAA
AAAAAAAAAAGATATATTCTGTCATAATAAATAAAAATGCATAAG





 2
IDO1_NM_002164_human_1532
TATCTTATCATTGGAATAAA
AAGTTTTGTAATCTGTATCTTATCATTGGAATAAAATGACATTCA





 3
IDO1_NM_002164_human_578
GTGATGGAGACTGCAGTAAA
TTTTGTTCTCATTTCGTGATGGAGACTGCAGTAAAGGATTCTTCC





 4
IDO1_NM_002164_human_1897
TTCTGTCATAATAAATAAAA
AAAAAAAAAGATATATTCTGTCATAATAAATAAAAATGCATAAGA





 5
IDO1_NM_002164_human_1473
CTTGTAGGAAAACAACAAAA
AATACCTdTGCATTTCTTGTAGGAAAACAACAAAAGGTAATTATG





 6
IDO1_NM_002164_human_1547
ATAAAATGACATTCAATAAA
TATCTTATCATTGGAATAAAATGACATTCAATAAATAAAAATGCA





 7
IDO1_NM_002164_human_412
CGTAAGGTCTTGCCAAGAAA
GGTCATGGAGATGTCCGTAAGGTCTTGCCAAGAAATATTGCTGTT





 8
IDO1_NM_002164_human_1472
TCTTGTAGGAAAACAACAAA
AAATACCTGTGCATTTCTTGTAGGAAAACAACAAAAGGTAATTAT





 9
IDO1_NM_002164_human_1248
AACTGGAGGCACTGATTTAA
ACTGGAAGCCAAAGGAACTGGAGGCACTGATTTAATGAATTTCCT





10
IDO1_NM_002164_human_1440
CAATACAAAAGACCTCAAAA
GTTTTACCAATAATGCAATACAAAAGACCTCAAAATACCTGTGCA





11
IDO1_NM_002164_human_636
TGCTTCTGCAATCAAAGTAA
GGTGGAAATAGCAGCTGCTTCTGCAATCAAAGTAATTCCTACTGT





12
IDO1_NM_002164_human_1551
AATGACATTCAATAAATAAA
TTATCATTGGAATAAAATGACATTCAATAAATAAAAATGCATAAG





13
IDO1_NM_002164_human_1538
ATCATTGGAATAAAATGACA
TGTAATCTGTATCTTATCATTGGAATAAAATGACATTCAATAAAT





14
IDO1_NM_002164_human_1430
ACCAATAATGCAATACAAAA
ACTATGCAATGTTTTACCAATAATGCAATACAAAAGACCTCAAAA





15
IDO1_NM_002164_human_1527
ATCTGTATCTTATCATTGGA
ACTAGAAGTTTTGTAATCTGTATCTTATCATTGGAATAAAATGAC





16
IDO1_NM_002164_human_1533
ATCTTATCATTGGAATAAAA
AGTTTTGTAATCTGTATCTTATCATTGGAATAAAATGACATTCAA





17
IDO1_NM_002164_human_632
CAGCTGCTTCTGCAATCAAA
TATTGGTGGAAATAGCAGCTGCTTCTGCAATCAAAGTAATTCCTA





18
IDO1_NM_002164_human_1439
GCAATACAAAAGACCTCAAA
TGTTTTACCAATAATGCAATACAAAAGACCTCAAAATACCTGTGC





19
IDO1_NM_002164_human_657
TCCTACTGTATTCAAGGCAA
TGCAATCAAAGTAATTCCTACTGTATTCAAGGCAATGCAAATGCA





20
IDO1_NM_002164_human_1398
CAGAGCCACAAACTAATACT
CATTACCCATTGTAACAGAGCCACAAACTAATACTATGCAATGTT





Accession:





HUGO gene





symbol:
NM_001558




Oligo_
IL10RA




count
Oligo_ID
targeting sequence
Gene_region





 1
IL10RA_NM_001558_human_
TTGTTCATTTATTTATTGGA
CTTTATTTATTTATTTTGTTCATTTATTTATTGGAGAGGCAGCAT



3364







 2
IL10RA_NM_001558_human_
TTATTCCAATAAATTGTCAA
AGTGATACATGTTTTTTATTCCAATAAATTGTCAAGACCACAGGA



3626







 3
IL10RA_NM_001558_human_
TATTTTCTGGACACTCAAAC
AGATCTTAAGGTATATATTTTCTGGACACTCAAACACATCATAAT



2395







 4
IL10RA_NM_001558_human_
TTTATTGGAGAGGCAGCATT
TATTTTGTTCATTTATTTATTGGAGAGGCAGCATTGCACAGTGAA



3375







 5
IL10RA_NM_001558_human_
ACCTTGGAGAAGTCACTTAT
GTTTCCAGTGGTATGACCTTGGAGAAGTCACTTATCCTCTTGGAG



3469







 6
IL10RA_NM_001558_human_
TTATTTATTTATTTTGTTCA
GTTCCCTTGAAAGCTTTATTTATTTATTTTGTTCATTTATTTATT



3351







 7
IL10RA_NM_001558_human_
CTCTTTCCTGTATCATAAAG
TCTCCCTCCTAGGAACTCTTTCCTGTATCATAAAGGATTATTTGC



2108







 8
IL10RA_NM_001558_human_
CTGAGGAAATGGGTATGAAT
GGATGTGAGGTTCTGCTGAGGAAATGGGTATGAATGTGCCTTGAA



3563







 9
IL10RA_NM_001558_human_
GAATGTGCCTTGAACACAAA
TGAGGAAATGGGTATGAATGTGCCTTGAACACAAAGCTCTGTCAA



3579







10
IL10RA_NM_001558_human_
GGACACTCAAACACATCATA
AGGTATATATTTTCTGGACACTCAAACACATCATAATGGATTCAC



2403







11
IL10RA_NM_001558_human_
CTGTATCATAAAGGATTATT
CCTAGGAACTCTTTCCTGTATCATAAAGGATTATTTGCTCAGGGG



2115







12
IL10RA_NM_001558_human_
TCACTTCCGAGAGTATGAGA
TGAAAGCATCTTCAGTCACTTCCGAGAGTATGAGATTGCCATTCG



563







13
IL10RA_NM_001558_human_
TCTCTGGAGCATTCTGAAAA
TCTCAGCCCTGCCTTTCTCTGGAGCATTCTGAAAACAGATATTCT



3197







14
IL10RA_NM_001558_human_
TTATGCCAGAGGCTAACAGA
AAGCTGGCTTGTTTCTTATGCCAGAGGCTAACAGATCCAATGGGA



2987







15
IL10RA_NM_001558_human_
AGTGGCATTGACTTAGTTCA
AGGGGCCAGGATGACAGTGGCATTGACTTAGTTCAAAACTCTGAG



1278







16
IL10RA_NM_001558_human_
TTTCTGGACACTCAAACACA
TCTTAAGGTATATATTTTCTGGACACTCAAACACATCATAATGGA



2398







17
IL10RA_NM_001558_human_
GCATTGCACAGTGAAAGAAT
TTTATTGGAGAGGCAGCATTGCACAGTGAAAGAATTCTGGATATC



3390







18
IL10RA_NM_001558_human_
GACCTTGGAGAAGTCACTTA
TGTTTCCAGTGGTATGACCTTGGAGAAGTCACTTATCCTCTTGGA



3468







19
IL10RA_NM_001558_human_
TCACGTTCACACACAAGAAA
AGGTGCCGGGAAACTTCACGTTCACACACAAGAAAGTAAAACATG



610







20
IL10RA_NM_001558_human_
ACTTTGCTGTTTCCAGTGGT
GAAATTCTAGCTCTGACTTTGCTGTTTCCAGTGGTATGACCTTGG



3446





Accession:





HUGO gene





symbol:
NM_000214




Oligo_
JAG1




count
Oligo_ID
targeting sequence
Gene_region





 1
JAG1_NM_000214_human_4799
TATTTGATTTATTAACTTAA
ATTAATCACTGTGTATATTTGATTTATTAACTTAATAATCAAGAG





 2
JAG1_NM_000214_human_5658
GAAAAGTAATATTTATTAAA
TTGGCAATAAATTTTGAAAAGTAATATTTATTAAATTTTTTTGTA





 3
JAG1_NM_000214_human_4752
ACTTTGTATAGTTATGTAAA
AATGTCAAAAGTAGAACTTTGTATAGTTATGTAAATAATTCTTTT





 4
JAG1_NM_000214_human_5418
GAATACTTGAACCATAAAAT
TCTAATAAGCTAGTTGAATACTTGAACCATAAAATGTCCAGTAAG





 5
JAG1_NM_000214_human_5641
TCTTGGCAATAAATTTTGAA
TCTTTGATGTGTTGTTCTTGGCAATAAATTTTGAAAAGTAATATT





 6
JAG1_NM_000214_human_5150
TTTCTGCTTTAGACTTGAAA
TGTTTGTTTTTTGTTTTTCTGCTTTAGACTTGAAAAGAGACAGGC





 7
JAG1_NM_000214_human_4526
TATATTTATTGACTCTTGAG
GATCATAGTTTTATTTATATTTATTGACTCTTGAGTTGTTTTTGT





 8
JAG1_NM_000214_human_4566
TATGATGACGTACAAGTAGT
TTTGTATATTGGTTTTATGATGACGTACAAGTAGTTCTGTATTTG





 9
JAG1_NM_000214_human_5634
GTGTTGTTCTTGGCAATAAA
AAATGCATCTTTGATGTGTTGTTCTTGGCAATAAATTTTGAAAAG





10
JAG1_NM_000214_human_173
CTGATCTAAAAGGGAATAAA
CCTTTTTCCATGCAGCTGATCTAAAAGGGAATAAAAGGCTGCGCA





11
JAG1_NM_000214_human_5031
TACGACGTCAGATGTTTAAA
GATGGAATTTTTTTGTACGACGTCAGATGTTTAAAACACCTTCTA





12
JAG1_NM_000214_human_4817
AATAATCAAGAGCCTTAAAA
TTGATTTATTAACTTAATAATCAAGAGCCTTAAAACATCATTCCT





13
JAG1_NM_000214_human_5685
GTATGAAAACATGGAACAGT
TTATTAAATTTTTTTGTATGAAAACATGGAACAGTGTGGCCTCTT





14
JAG1_NM_000214_human_4560
TGGTTTTATGATGACGTACA
GTTGTTTTTGTATATTGGTTTTATGATGACGTACAAGTAGTTCTG





15
JAG1_NM_000214_human_5151
TTCTGCTTTAGACTTGAAAA
GTTTGTTTTTTGTTTTTCTGCTTTAGACTTGAAAAGAGACAGGCA





16
JAG1_NM_000214_human_5642
CTTGGCAATAAATTTTGAAA
CTTTGATGTGTTGTTCTTGGCAATAAATTTTGAAAAGTAATATTT





17
JAG1_NM_000214_human_5377
TTTAATCTACTGCATTTAGG
GATTTGATTTTTTTTTTTAATCTACTGCATTTAGGGAGTATTCTA





18
JAG1_NM_000214_human_4756
TGTATAGTTATGTAAATAAT
TCAAAAGTAGAACTTTGTATAGTTATGTAAATAATTCTTTTTTAT





19
JAG1_NM_000214_human_4523
ATTTATATTTATTGACTCTT
TTAGATCATAGTTTTATTTATATTTATTGACTCTTGAGTTGTTTT





20
JAG1_NM_000214_human_5325
CTTTTCACCATTCGTACATA
TGTAAATTCTGATTTCTTTTCACCATTCGTACATAATACTGAACC





Accession:





HUGO gene





symbol:
NM_002226




Oligo_
JAG2




count
Oligo_ID
targeting sequence
Gene_region





 1
JAG2_NM_002226_human_4266
CGTTTCTTTAACCTTGTATA
AATGTTTATTTTCTACGTTTCTTTAACCTTGTATAAATTATTCAG





 2
JAG2_NM_002226_human_5800
TAAATGAATGAACGAATAAA
GGCAGAACAAATGAATAAATGAATGAACGAATAAAAATTTTGACC





 3
JAG2_NM_002226_human_5450
TCATTCATTTATTCCTTTGT
GGTCAAAATTTTTATTCATTCATTTATTCCTTTGTTTTGCTTGGT





 4
JAG2_NM_002226_human_5021
GTAAATGTGTACATATTAAA
TGAAAGTGCATTTTTGTAAATGTGTACATATTAAAGGAAGCACTC





 5
JAG2_NM_002226_human_5398
ACCCACGAATACGTATCAAG
AGTATAAAATTGCTTACCCACGAATACGTATCAAGGTCTTAAGGA





 6
JAG2_NM_002226_human_5371
GTTTTATAAAATAGTATAAA
AAACAGCTGAAAACAGTTTTATAAAATAGTATAAAATTGCTTACC





 7
JAG2_NM_002226_human_5691
CAACTGAGTCAAGGAGCAAA
TGAGGGGTAGGAGGTCAACTGAGTCAAGGAGCAAAGCCAAGAACC





 8
JAG2_NM_002226_human_5025
ATGTGTACATATTAAAGGAA
AGTGCATTTTTGTAAATGTGTACATATTAAAGGAAGCACTCTGTA





 9
JAG2_NM_002226_human_4269
TTCTTTAACCTTGTATAAAT
GTTTATTTTCTACGTTTCTTTAACCTTGTATAAATTATTCAGTAA





10
JAG2_NM_002226_human_4258
ATTTTCTACGTTTCTTTAAC
AAAAACCAAATGTTTATTTTCTACGTTTCTTTAACCTTGTATAAA





11
JAG2_NM_002226_human_5369
CAGTTTTATAAAATAGTATA
TAAAACAGCTGAAAACAGTTTTATAAAATAGTATAAAATTGCTTA





12
JAG2_NM_002226_human_5780
GCACAGGCAGAACAAATGAA
GAGTGAGGCTGCCTTGCACAGGCAGAACAAATGAATAAATGAATG





13
JAG2_NM_002226_human_4302
TCAGGCTGAAAACAATGGAG
ATTATTCAGTAACTGTCAGGCTGAAAACAATGGAGTATTCTCGGA





14
JAG2_NM_002226_human_5387
TAAAATTGCTTACCCACGAA
TTTTATAAAATAGTATAAAATTGCTTACCCACGAATACGTATCAA





15
JAG2_NM_002226_human_4301
GTCAGGCTGAAAACAATGGA
AATTATTCAGTAACTGTCAGGCTGAAAACAATGGAGTATTCTCGG





16
JAG2_NM_002226_human_5023
AAATGTGTACATATTAAAGG
AAAGTGCATTTTTGTAAATGTGTACATATTAAAGGAAGCACTCTG





17
JAG2_NM_002226_human_4293
CAGTAACTGTCAGGCTGAAA
CTTGTATAAATTATTCAGTAACTGTCAGGCTGAAAACAATGGAGT





18
JAG2_NM_002226_human_4321
GTATTCTCGGATAGTTGCTA
GCTGAAAACAATGGAGTATTCTCGGATAGTTGCTATTTTTGTAAA





19
JAG2_NM_002226_human_3994
TCTCACACAAATTCACCAAA
AGGCGGAGAAGTTCCTCTCACACAAATTCACCAAAGATCCTGGCC





20
JAG2_NM_002226_human_5466
TTGTTTTGCTTGGTCATTCA
CATTCATTTATTCCTTTGTTTTGCTTGGTCATTCAGAGGCAAGGT





Accession:





HUGO gene





symbol:
NM_001315




Oigo_
MAPK14




count
Oligo_ID
targeting sequence
Gene_region





 1
MAPK14_NM_001315_human_670
TCATGCGAAAAGAACCTACA
ATTTCAGTCCATCATTCATGCGAAAAGAACCTACAGAGAACTGCG





 2
MAPK14_NM_001315_human_833
AAATGTCAGAAGCTTACAGA
CTGAACAACATTGTGAAATGTCAGAAGCTTACAGATGACCATGTT





 3
MAPK14_NM_001315_human_707
AAACATATGAAACATGAAAA
GAACTGCGGTTACTTAAACATATGAAACATGAAAATGTGATTGGT





 4
MAPK14_NM_001315_human_863
CAGTTCCTTATCTACCAAAT
ACAGATGACCATGTTCAGTTCCTTATCTACCAAATTCTCCGAGGT





 5
MAPK14_NM_001315_human_
TCCTGGTACAGACCATATTA
TGGAAGAACATTGTTTCCTGGTACAGACCATATTAACCAGCTTCA



1150







 6
MAPK14_NM_001315_human_866
TTCCTTATCTACCAAATTCT
GATGACCATGTTCAGTTCCTTATCTACCAAATTCTCCGAGGTCTA





 7
MAPK14_NM_001315_human_
TTCCTGGTACAGACCATATT
CTGGAAGAACATTGTTTCCTGGTACAGACCATATTAACCAGCTTC



1149







 8
MAPK14_NM_001315_human_896
AAGTATATACATTCAGCTGA
ATTCTCCGAGGTCTAAAGTATATACATTCAGCTGACATAATTCAC





 9
MAPK14_NM_001315_human_
CATTACAACCAGACAGTTGA
ATGCTGAACTGGATGCATTACAACCAGACAGTTGATATTTGGTCA



1076







10
MAPK14_NM_001315_human_926
AGGGACCTAAAACCTAGTAA
GCTGACATAATTCACAGGGACCTAAAACCTAGTAATCTAGCTGTG





11
MAPK14_NM_001315_human_765
CTCTGGAGGAATTCAATGAT
TTACACCTGCAAGGTCTCTGGAGGAATTCAATGATGTGTATCTGG





12
MAPK14_NM_001315_human_706
TAAACATATGAAACATGAAA
AGAACTGCGGTTACTTAAACATATGAAACATGAAAATGTGATTGG





13
MAPK14_NM_001315_human_815
GATCTGAACAACATTGTGAA
CATCTCATGGGGGCAGATCTGAACAACATTGTGAAATGTCAGAAG





14
MAPK14_NM_001315_human_862
TCAGTTCCTTATCTACCAAA
TACAGATGACCATGTTCAGTTCCTTATCTACCAAATTCTCCGAGG





15
MAPK14_NM_001315_human_917
ATAATTCACAGGGACCTAAA
ATACATTCAGCTGACATAATTCACAGGGACCTAAAACCTAGTAAT





16
MAPK14_NM_001315_human_887
CGAGGTCTAAAGTATATACA
ATCTACCAAATTCTCCGAGGTCTAAAGTATATACATTCAGCTGAC





17
MAPK14_NM_001315_human_832
GAAATGTCAGAAGCTTACAG
TCTGAACAACATTGTGAAATGTCAGAAGCTTACAGATGACCATGT





18
MAPK14_NM_001315_human_
AGCTGTTGACTGGAAGAACA
GATGCATAATGGCCGAGCTGTTGACTGGAAGAACATTGTTTCCTG



1125







19
MAPK14_NM_001315_human_879
AAATTCTCCGAGGTCTAAAG
AGTTCCTTATCTACCAAATTCTCCGAGGTCTAAAGTATATACATT





20
MAPK14_NM_001315_human_725
AATGTGATTGGTCTGTTGGA
CATATGAAACATGAAAATGTGATTGGTCTGTTGGACGTTTTTACA





Accession:





HUGO gene
NM_003745




symbol:
SOCS1





 1
SOCS1_NM_003745_human_1141
CTGCTGTGCAGAATCCTATT
TCTGGCTTTATTTTTCTGCTGTGCAGAATCCTATTTTATATTTTT





 2
SOCS1_NM_003745_human_1143
GCTGTGCAGAATCCTATTTT
TGGCTTTATTTTTCTGCTGTGCAGAATCCTATTTTATATTTTTTA





 3
SOCS1_NM_003745_human_1170
TTAAAGTCAGTTTAGGTAAT
CCTATTTTATATTTTTTAAAGTCAGTTTAGGTAATAAACTTTATT





 4
SOCS1_NM_003745_human_1144
CTGTGCAGAATCCTATTTTA
GGCTTTATTTTTCTGCTGTGCAGAATCCTATTTTATATTTTTTAA





 5
SOCS1_NM_003745_human_1076
GTTTACATATACCCAGTATC
CTCCTACCTCTTCATGTTTACATATACCCAGTATCTTTGCACAAA





 6
SOCS1_NM_003745_human_837
ATTTTGTTATTACTTGCCTG
CTGGGATGCCGTGTTATTTTGTTATTACTTGCCTGGAACCATGTG





 7
SOCS1_NM_003745_human_819
TAACTGGGATGCCGTGTTAT
CCGTGCACGCAGCATTAACTGGGATGCCGTGTTATTTTGTTATTA





 8
SOCSl_NM_003745_human_841
TGTTATTACTTGCCTGGAAC
GATGCCGTGTTATTTTGTTATTACTTGCCTGGAACCATGTGGGTA





 9
SOCS1_NM_003745_human_1138
TTTCTGCTGTGCAGAATCCT
GTCTCTGGCTTTATTTTTCTGCTGTGCAGAATCCTATTTTATATT





10
SOCS1_NM_003745_human_831
CGTGTTATTTTGTTATTACT
CATTAACTGGGATGCCGTGTTATTTTGTTATTACTTGCCTGGAAC





11
SOCS1_NM_003745_human_1168
TTTTAAAGTCAGTTTAGGTA
ATCCTATTTTATATTTTTTAAAGTCAGTTTAGGTAATAAACTTTA





12
SOCS1_NM_003745_human_1142
TGCTGTGCAGAATCCTATTT
CTGGCTTTATTTTTCTGCTGTGCAGAATCCTATTTTATATTTTTT





13
SOCS1_NM_003745_human_825
GGATGCCGTGTTATTTTGTT
ACGCAGCATTAACTGGGATGCCGTGTTATTTTGTTATTACTTGCC





14
SOCS1_NM_003745_human_1169
TTTAAAGTCAGTTTAGGTAA
TCCTATTTTATATTTTTTAAAGTCAGTTTAGGTAATAAACTTTAT





15
SOCS1_NM_003745_human_1171
TAAAGTCAGTTTAGGTAATA
CTATTTTATATTTTTTAAAGTCAGTTTAGGTAATAAACTTTATTA





16
SOCS1_NM_003745_human_1140
TCTGCTGTGCAGAATCCTAT
CTCTGGCTTTATTTTTCTGCTGTGCAGAATCCTATTTTATATTTT





17
SOCS1_NM_003745_human_1082
ATATACCCAGTATCTTTGCA
CCTCTTCATGTTTACATATACCCAGTATCTTTGCACAAACCAGGG





18
SOCS1_NM_003745_human_1150
AGAATCCTATTTTATATTTT
ATTTTTCTGCTGTGCAGAATCCTATTTTATATTTTTTAAAGTCAG





19
SOCS1_NM_003745_human_1011
GGTTGTTGTAGCAGCTTAAC
CCTCTGGGTCCCCCTGGTTGTTGTAGCAGCTTAACTGTATCTGGA





20
SOCS1_NM_003745_human_1087
CCCAGTATCTTTGCACAAAC
TCATGTTTACATATACCCAGTATCTTTGCACAAACCAGGGGTTGG





Accession:





HUGO gene





symbol:
NM_003150




Oligo_
STAT3




count
Oligo_ID
targeting sequence
Gene_region





 1
STAT3_NM_003150_human_4897
ATATTGCTGTATCTACTTTA
TTTTTTTTTTTTGGTATATTGCTGTATCTACTTTAACTTCCAGAA





 2
STAT3_NM_003150_human_4325
TGTTTGTTAAATCAAATTAG
GTTTCTGTGGAATTCTGTTTGTTAAATCAAATTAGCTGGTCTCTG





 3
STAT3_NM_003150_human_2730
TTTATCTAAATGCAAATAAG
TGTGGGTGATCTGCTTTTATCTAAATGCAAATAAGGATGTGTTCT





 4
STAT3_NM_003150_human_3615
ATTTTCCTTTGTAATGTATT
TTTATAAATAGACTTATTTTCCTTTGTAATGTATTGGCCTTTTAG





 5
STAT3_NM_003150_human_453
TATCAGCACAATCTACGAAG
GAGTCGAATGTTCTCTATCAGCACAATCTACGAAGAATCAAGCAG





 6
STAT3_NM_003150_human_4477
AGCTTAACTGATAAACAGAA
CTTCAGTACATAATAAGCTTAACTGATAAACAGAATATTTAGAAA





 7
STAT3_NM_003150_human_2870
GTTGTTGTTGTTCTTAGACA
CAGCTTTTTGTTATTGTTGTTGTTGTTCTTAGACAAGTGCCTCCT





 8
STAT3_NM_003150_human_2873
GTTGTTGTTCTTAGACAAGT
CTTTTTGTTATTGTTGTTGTTGTTCTTAGACAAGTGCCTCCTGGT





 9
STAT3_NM_003150_human_3096
TCTGTATTTAAGAAACTTAA
TATCAGCATAGCCTTTCTGTATTTAAGAAACTTAAGCAGCCGGGC





10
STAT3_NM_003150_human_3613
TTATTTTCCTTTGTAATGTA
TTTTTATAAATAGACTTATTTTCCTTTGTAATGTATTGGCCTTTT





11
STAT3_NM_003150_human_4481
TAACTGATAAACAGAATATT
AGTACATAATAAGCTTAACTGATAAACAGAATATTTAGAAAGGTG





12
STAT3_NM_003150_human_1372
ACATTCTGGGCACAAACACA
GATCCCGGAAATTTAACATTCTGGGCACAAACACAAAAGTGATGA





13
STAT3_NM_003150_human_2720
GTGATCTGCTTTTATCTAAA
AATGAGTGAATGTGGGTGATCTGCTTTTATCTAAATGCAAATAAG





14
STAT3_NM_003150_human_1044
CAGACCCGTCAACAAATTAA
GCAGAATCTCAACTTCAGACCCGTCAACAAATTAAGAAACTGGAG





15
STAT3_NM_003150_human_1148
GGAGCTGTTTAGAAACTTAA
GGAGGAGAGAATCGTGGAGCTGTTTAGAAACTTAATGAAAAGTGC





16
STAT3_NM_003150_human_4523
ACCATTGGGTTTAAATCATA
GTGAGACTTGGGCTTACCATTGGGTTTAAATCATAGGGACCTAGG





17
STAT3_NM_003150_human_3573
GGAGAATCTAAGCATTTTAG
AATAGGAAGGTTTAAGGAGAATCTAAGCATTTTAGACTTTTTTTT





18
STAT3_NM_003150_human_2987
CCTTGCTGACATCCAAATAG
CATTGCACTTTTTAACCTTGCTGACATCCAAATAGAAGATAGGAC





19
STAT3_NM_003150_human_3041
AAATTAAGAAATAATAACAA
CCTAGGTTTCTTTTTAAATTAAGAAATAATAACAATTAAAGGGCA





20
STAT3_NM_003150_human_3037
TTTTAAATTAAGAAATAATA
AAGCCCTAGGTTTCTTTTTAAATTAAGAAATAATAACAATTAAAG





Accession:





HUGO gene





symbol:
NM_006290




Oligo_
TNFAIP3




count
Oligo_ID
targeting sequence
Gene_region





 1
TNFAIP3_NM_006290_human_
AGCTTGAACTGAGGAGTAAA
ACTTCTAAAGAAGTTAGCTTGAACTGAGGAGTAAAAGTGTGTACA



3451







 2
TNFAIP3_NM_006290_human_
CCTTTGCAACATCCTCAGAA
AATACACATATTTGTCCTTTGCAACATCCTCAGAAGGCCAATCAT



916







 3
TNFAIP3_NM_006290_human_
TTCTTTCCAAAGATACCAAA
ACGAATCTTTATAATTTCTTTCCAAAGATACCAAATAAACTTCAG



4422







 4
TNFAIP3_NM_006290_human_
TTATTTTATTACAAACTTCA
TGTAATTCACTTTATTTATTTTATTACAAACTTCAAGATTATTTA



3688







 5
TNFAIP3_NM_006290_human_
TATTTATACTTATTATAAAA
GTGAAAAAAAGTAATTATTTATACTTATTATAAAAAGTATTTGAA



4536







 6
TNFAIP3_NM_006290_human_
CATTTCAGACAAAATGCTAA
AAGGCCAATCATTGTCATTTCAGACAAAATGCTAAGAAGTTTGGA



949







 7
TNFAIP3_NM_006290_human_
ATGAAGGAGAAGCTCTTAAA
GATCCTGAAAATGAGATGAAGGAGAAGCTCTTAAAAGAGTACTTA



1214







 8
TNFAIP3_NM_006290_human_
ATTTTGTGTTGATCATTATT
AGTTGATATCTTAATATTTTGTGTTGATCATTATTTCCATTCTTA



4489







 9
TNFAIP3_NM_006290_human_
TTCATCGAGTACAGAGAAAA
TTTTGCACACTGTGTTTCATCGAGTACAGAGAAAACAAACATTTT



2204







10
TNFAIP3_NM_006290_human_
TTACTGGGAAGACGTGTAAC
AAAAATTAGAATATTTTACTGGGAAGACGTGTAACTCTTTGGGTT



3394







11
TNFAIP3_NM_006290_human_
TCATTGAAGCTCAGAATCAG
ACTGCCAGAAGTGTTTCATTGAAGCTCAGAATCAGAGATTTCATG



2355







12
TNFAIP3_NM_006290_human_
TTCCATTCTTAATGTGAAAA
TGTGTTGATCATTATTTCCATTCTTAATGTGAAAAAAAGTAATTA



4508







13
TNFAIP3_NM_006290_human_
TGAAGGATACTGCCAGAAGT
TGGAAGCACCATGTTTGAAGGATACTGCCAGAAGTGTTTCATTGA



2332







14
TNFAIP3_NM_006290_human_
CACAAGAGTCAACATTAAAA
ATAAATGTAALTTTTCACAAGAGTCAACATTAAAAAATAAATTAT



4650







15
TNFAIP3_NM_006290_human_
AATTATTTATACTTATTATA
AATGTGAAAAAAAGTAATTATTTATACTTATTATAAAAAGTATTT



4533







16
TNFAIP3_NM_006290_human_
TTCGTGCTTCTCCTTATGAA
CATATTCATCGATGTTTCGTGCTTCTCCTTATGAAACTCCAGCTA



3907







17
TNFAIP3_NM_006290_human_
TATTTTATTACAAACTTCAA
GTAATTCACTTTATTTATTTTATTACAAACTTCAAGATTATTTAA



3689







18
TNFAIP3_NM_006290_human_
TATTACAAACTTCAAGATTA
TCACTTTATTTATTTTATTACAAACTTCAAGATTATTTAAGTGAA



3694







19
TNFAIP3_NM_006290_human_
CTCTTAAAGTTGATATCTTA
TGTTTTCATCTAATTCTCTTAAAGTTGATATCTTAATATTTTGTG



4467







20
TNFAIP3_NM_006290_human_
TTCCAAAGATACCAAATAAA
ATCTTTATAATTTCTTTCCAAAGATACCAAATAAACTTCAGTGTT



4426





Accession:





HUGO gene





symbol:
NM_003326




Oligo_
TNFSF4




count
Oligo_ID
targeting sequence
Gene_region





 1
TNFSF4_NM_003326_human_
AATTTGACTTAGCCACTAAC
GAGATCAGAATTTTAAATTTGACTTAGCCACTAACTAGCCATGTA



2984







 2
TNFSF4_NM_003326_human_
GATATTAATAATATAGTTAA
GAGAGTATTAATATTGATATTAATAATATAGTTAATAGTAATATT



3422







 3
TNFSF4_NM_003326_human_
CTGTGAATGCACATATTAAA
TGCTTACAGTGTTATCTGTGAATGCACATATTAAATGTCTATGTT



3119







 4
TNFSF4_NM_003326_human_
GTTTTCTATTTCCTCTTAAG
GGATTTTTTTTTCCTGTTTTCTATTTCCTCTTAAGTACACCTTCA



2208







 5
TNFSF4_NM_003326_human_
AAATAGCACTAAGAAGTTAT
ATTCAATCTGATGTCAAATAGCACTAAGAAGTTATTGTGCCTTAT



1727







 6
TNFSF4_NM_003326_human_
CCAATCCCGATCCAAATCAT
AATGCTTAAGGGATTCCAATCCCGATCCAAATCATAATTTGTTCT



3311







 7
TNFSF4_NM_003326_human_
CTATTTAGAGAATGCTTAAG
TTAGTTAGATATTTTCTATTTAGAGAATGCTTAAGGGATTCCAAT



3286







 8
TNFSF4_NM_003326_human_
CAGTTTGCATATTGCCTAAA
AGGTTAAATTGATTGCAGTTTGCATATTGCCTAAATTTAAACTTT



1222







 9
TNFSF4_NM_003326_human_
CTCGAATTCAAAGTATCAAA
TATCACATCGGTATCCTCGAATTCAAAGTATCAAAGTACAATTTA



326







10
TNFSF4_NM_003326_human_
ATCTGTGAATGCACATATTA
TATGCTTACAGTGTTATCTGTGAATGCACATATTAAATGTCTATG



3117







11
TNFSF4_NM_003326_human_
TTTGTGGGAAAAGAATTGAA
TATACATGGCAGAGTTTTGTGGGAAAAGAATTGAATGAAAAGTCA



2938







12
TNFSF4_NM_003326_human_
ATTGACCATGTTCTGCAAAA
ATTTCACTTTTTGTTATTGACCATGTTCTGCAAAATTGCAGTTAC



2537







13
TNFSF4_NM_003326_human_
GATTCTTCATTGCAAGTGAA
GGTGGACAGGGCATGGATTCTTCATTGCAAGTGAAGGAGCCTCCC



776







14
TNFSF4_NM_003326_human_
GATGTCAAATAGCACTAAGA
TATCAAATTCAATCTGATGTCAAATAGCACTAAGAAGTTATTGTG



1721







15
TNFSF4_NM_003326_human_
GTATACAGGGAGAGTGAGAT
AAGAGAGATTTTCTTGTATACAGGGAGAGTGAGATAACTTATTGT



1459







16
TNFSF4_NM_003326_human_
GTTGCTATGAGTCAAGGAGT
AATGTCTATGTTCTTGTTGCTATGAGTCAAGGAGTGTAACCTTCT



3152







17
TNFSF4_NM_003326_human_
TAGTTGAAATGTCCCCTTAA
GTATCCCCTTATGTTTAGTTGAAATGTCCCCTTAACTTGATATAA



1882







18
TNFSF4_NM_003326_human_
CTCTGTGCCAAACCTTTTAT
GATGATTTGTAACTTCTCTGTGCCAAACTTTTTATAAACATAAAT



1980







19
TNFSF4_NM_003326_human_
CTCTGTCTAGAAATACCATA
ATGAAAAATAATGATCTCTGTCTAGAAATACCATAGACCATATAT



1770







20
TNFSF4_NM_003326_human_
GGTTTCAAGAAATGAGGTGA
CACAGAAACATTGCTGGTTTCAAGAAATGAGGTGATCCTATTATC



1680





Accession:





HUGO gene





symbol:
NM_006293




Oligo_
TYRO3




count
Oligo_ID
targeting sequence
Gene_region





 1
TYRO3_NM_006293_human_3927
AGTTGCTGTTTAAAATAGAA
CATTTCCAAGCTGTTAGTTGCTGTTTAAAATAGAAATAAAATTGA





 2
TYRO3_NM_006293_human_3932
CTGTTTAAAATAGAAATAAA
CCAAGCTGTTAGTTGCTGTTTAAAATAGAAATAAAATTGAAGACT





 3
TYRO3_NM_006293_human_1731
GGCATCAGCGATGAACTAAA
ACATTGGACAGCTTGGGCATCAGCGATGAACTAAAGGAAAAACTG





 4
TYRO3_NM_006293_human_3699
AATATCCTAAGACTAACAAA
GCTACCAAATCTCAAAATATCCTAAGACTAACAAAGGCAGCTGTG





 5
TYRO3_NM_006293_human_3928
GTTGCTGTTTAAAATAGAAA
ATTTCCAAGCTGTTAGTTGCTGTTTAAAATAGAAATAAAATTGAA





 6
TYRO3_NM_006293_human_3938
AAAATAGAAATAAAATTGAA
TGTTAGTTGCTGTTTAAAATAGAAATAAAATTGAAGACTAAAGAC





 7
TYRO3_NM_006293_human_842
CTGTGAAGCTCACAACCTAA
GAGCACCATGTTTTCCTGTGAAGCTCACAACCTAAAAGGCCTGGC





 8
TYRO3_NM_006293_human_3953
TTGAAGACTAAAGACCTAAA
AAAATAGAAATAAAATTGAAGACTAAAGACCTAAAAAAAAAAAAA





 9
TYRO3_NM_006293_human_3703
TCCTAAGACTAACAAAGGCA
CCAAATCTCAAAATATCCTAAGACTAACAAAGGCAGCTGTGTCTG





10
TYRO3_NM_006293_human_3909
GGACATTTCCAAGCTGTTAG
GGTCCTAGCTGTTAGGGACATTTCCAAGCTGTTAGTTGCTGTTTA





11
TYRO3_NM_006293_human_3190
ATGTTTCCATGGTTACCATG
AGGAGTGGGGTGGTTATGTTTCCATGGTTACCATGGGTGTGGATG





12
TYRO3_NM_006293_human_3926
TAGTTGCTGTTTAAAATAGA
ACATTTCCAAGCTGTTAGTTGCTGTTTAAAATAGAAATAAAATTG





13
TYRO3_NM_006293_human_3949
AAAATTGAAGACTAAAGACC
GTTTAAAATAGAAATAAAATTGAAGACTAAAGACCTAAAAAAAAA





14
TYRO3_NM_006293_human_3900
AGCTGTTAGGGACATTTCCA
CATGGGGCGGGTCCTAGCTGTTAGGGACATTTCCAAGCTGTTAGT





15
TYRO3_NM_006293_human_2511
GAGGACGTGTATGATCTCAT
CCTCCGGAGTGTATGGAGGACGTGTATGATCTCATGTACCAGTGC





16
TYRO3_NM_006293_human_3400
TTTTAGGTGAGGGTTGGTAA
CCTTGTAATATTCCCTTTTAGGTGAGGGTTGGTAAGGGGTTGGTA





17
TYRO3_NM_006293_human_1895
AGCTGACATCATTGCCTCAA
TGTGAAGATGCTGAAAGCTGACATCATTGCCTCAAGCGACATTGA





18
TYRO3_NM_006293_human_3690
AAATCTCAAAATATCCTAAG
TCTGAGCACGCTACCAAATCTCAAAATATCCTAAGACTAACAAAG





19
TYRO3_NM_006293_human_3919
AAGCTGTTAGTTGCTGTTTA
GTTAGGGACATTTCCAAGCTGTTAGTTGCTGTTTAAAATAGAAAT





20
TYRO3_NM_006293_human_3384
TCCTTGTAATATTCCCTTTT
AGTCACAAAGAGATGTCCTTGTAATATTCCCTTTTAGGTGAGGGT





Accession:





HUGO gene





symbol:
NM_000546




Oligo_
TP53




count
Oligo_ID
Sequence
Gene_region





 1
TP53_NM_000546_human_1630
TGTTTGGGAGATGTAAGAAA
TTTTACTGTGAGGGATGTTTGGGAGATGTAAGAAATGTTCTTGCA





 2
TP53_NM_000546_human_1808
GCATTGTGAGGGTTAATGAA
CCTACCTCACAGAGTGCATTGTGAGGGTTAATGAAATAATGTACA





 3
TP53_NM_000546_human_2538
TCGATCTCTTATTTTACAAT
TATCCCATTTTTATATCGATCTCTTATTTTACAATAAAACTTTGC





 4
TP53_NM_000546_human_1812
TGTGAGGGTTAATGAAATAA
CCTCACAGAGTGCATTGTGAGGGTTAATGAAATAATGTACATCTG





 5
TP53_NM_000546_human_812
GAGTATTTGGATGACAGAAA
GGAAATTTGCGTGTGGAGTATTTGGATGACAGAAACACTTTTCGA





 6
TP53_NM_000546_human_1627
GGATGTTTGGGAGATGTAAG
GGTTTTTACTGTGAGGGATGTTTGGGAGATGTAAGAAATGTTCTT





 7
TP53_NM_000546_human_1646
GAAATGTTCTTGCAGTTAAG
GTTTGGGAGATGTAAGAAATGTTCTTGCAGTTAAGGGTTAGTTTA





 8
TP53_NM_000546_human_1831
ATGTACATCTGGCCTTGAAA
AGGGTTAATGAAATAATGTACATCTGGCCTTGAAACCACCTTTTA





 9
TP53_NM_000546_human_1645
AGAAATGTTCTTGCAGTTAA
TGTTTGGGAGATGTAAGAAATGTTCTTGCAGTTAAGGGTTAGTTT





10
TP53_NM_000546_human_2015
GGTGAACCTTAGTACCTAAA
GTCTGACAACCTCTTGGTGAACCTTAGTACCTAAAAGGAAATCTC





11
TP53_NM_000546_human_1753
TAACTTCAAGGCCCATATCT
CTGTTGAATTTTCTCTAACTTCAAGGCCCATATCTGTGAAATGCT





12
TP53_NM_000546_human_782
CTTATCCGAGTGGAAGGAAA
GCCCCTCCTCAGCATCTTATCCGAGTGGAAGGAAATTTGCGTGTG





13
TP53_NM_000546_human_2086
ATGATCTGGATCCACCAAGA
CATCTCTTGTATATGATGATCTGGATCCACCAAGACTTGTTTTAT





14
TP53_NM_000546_human_1744
AATTTTCTCTAACTTCAAGG
TGTCCCTCACTGTTGAATTTTCTCTAACTTCAAGGCCCATATCTG





15
TP53_NM_000546_human_2542
TCTCTTATTTTACAATAAAA
CCATTTTTATATCGATCTCTTATTTTACAATAAAACTTTGCTGCC





16
TP53_NM_000546_human_2546
TTATTTTACAATAAAACTTT
TTTTATATCGATCTCTTATTTTACAATAAAACTTTGCTGCCACCT





17
TP53_NM_000546_human_1842
GCCTTGAAACCACCTTTTAT
AATAATGTACATCTGGCCTTGAAACCACCTTTTATTACATGGGGT





18
TP53_NM_000546_human_2534
TATATCGATCTCTTATTTTA
TTTATATCCCATTTTTATATCGATCTCTTATTTTACAATAAAACT





19
TP53_NM_000546_human_2021
CCTTAGTACCTAAAAGGAAA
CAACCTCTTGGTGAACCTTAGTACCTAAAAGGAAATCTCACCCCA





20
TP53_NM_000546_human_1809
CATTGTGAGGGTTAATGAAA
CTACCTCACAGAGTGCATTGTGAGGGTTAATGAAATAATGTACAT








Claims
  • 1. An immune modulator comprising one or more oligonucleotide capable of suppressing expression of a plurality of immune target genes.
  • 2. An immunogenic composition comprising one or more oligonucleotide, said composition capable of suppressing expression a plurality of target genes in a cell.
  • 3. The immunogenic composition of claim 2, wherein said composition comprises cells modified to suppress expression of a plurality of immune checkpoint genes.
  • 4. The immunogenic composition of claim 3, wherein said cells are modified to suppress expression of at least one immune checkpoint gene, and at least one anti-apoptosis gene.
  • 5. The immunogenic composition of claim 3, wherein said cells are modified to suppress expression of at least one immune checkpoint gene and at least one cytokine receptor gene.
  • 6. The immunogenic composition of claim 3, wherein said cells are modified to suppress expression of at least one immune checkpoint gene and at least one regulator gene.
  • 7. The immunogenic composition of claim 3, wherein said cells are modified to suppress expression of a plurality of genes involved in immune suppression, said plurality of genes including at least one target gene listed in Table 1.
  • 8. The immunogenic composition of claim 3, wherein said cells are modified to suppress expression of a plurality of target genes selected from the group consisting of CTLA4, PD1/PDCD1, TGFBR1, TGFRBR2, IL10RA, TP53, BAX, BAK1, CASP8, ADOARA2A, LAG3, HAVCR2, CCL17, CCL22, DLL2, FASLG, CD274, IDO1, ILIORA, JAG1, JAG2, MAPK14, SOCS1, STAT3, TNFAIP3, and TYRO3, BTLA, KIR, B7-H3 and B7-H4 receptors.
  • 9. The immunogenic composition of claim 3, wherein said modified cells comprise one or more sdRNAi agents capable of suppressing expression of said plurality of target genes.
  • 10. The immunogenic composition of claim 9, wherein said cells are selected from the group consisting of T-cells, NK-cells, antigen-presenting cells, dendritic cells, stem cells, induced pluripotent stem cells, and/or stem central memory T-cells.
  • 11. The immunogenic composition of claim 9, wherein said cells are T-cells comprising one or more transgene expressing high affinity T-cell receptors (TCR) and/or chimeric antibody-T-cell receptors (CAR).
  • 12. The immunogenic composition of claim 9, wherein said cells comprise one or more sdRNAi agent targeting one or more of: CTLA4, PD1, FAS, TGFR-beta, IL-10R, STAT3, P38, LAG3, TIM3, BTLA, B7-H3 and B7-H4 receptors and adenosine A2a receptor.
  • 13. The immunogenic composition of claim 9, wherein said cells comprise one or more sdRNAi agent targeting one or more anti-apoptotic genes selected from the group consisting of BAX, BAC, TP53, and Casp8.
  • 14. The immunogenic composition of claim 9, wherein said sdRNAi agent induces at least 50% inhibition of expression of at least one target gene.
  • 15. The immunogenic composition of claim 9, wherein said sdRNAi agent comprises at least one 2′-O-methyl modification and/or at least one 2′-O-Fluoro modification, and at least one phosphorothioate modification.
  • 16. The immunogenic composition of claim 9, wherein said sdRNAi agent comprises at least one hydrophobic modification.
  • 17. The immunogenic composition of claim 9, wherein said sdRNAi agent is modified to comprises at least one cholesterol molecule.
  • 18. The immunogenic composition of claim 9, wherein said sdRNA agent is designed to specifically target a gene sequence listed in Table 1.
  • 19. A method of producing the therapeutic composition comprising one or more oligonucleotide, said composition capable of suppressing expression a plurality of traget genes in a cell, wherein said composition comprises cells modified to suppress expression of a plurality of immune checkpoint genes, said method comprising transforming at least one cell with one or more sdRNA agent capable of targeting and suppressing expression of at least one target gene listed in Table 1.
  • 20. The method of claim 19, wherein sdRNA inhibit expression of one or more gene selected from the group consisting of: CTLA4, PD1/PDCD1, TGFBR1, TGFRBR2, IL10RA, TP53, BAX, BAK1, CASP8, ADOARA2A, LAG3, HAVCR2, CCL17, CCL22, DLL2, FASLG, CD274, IDO1, ILIORA, JAG1, JAG2, MAPK14, SOCS1, STAT3, TNFAIP3, and TYRO3, BTLA, KIR, B7-H3 and B7-H4 receptors.
  • 21. The method of claim 19, wherein said cells are selected from the group consisting of T-cells, NK-cells, antigen-presenting cells, dendritic cells, stem cells, induced pluripotent stem cells, and/or stem central memory T-cells.
  • 22. The method of claim 19, wherein said cells are T-cells comprise one or more transgene expressing high affinity T-cell receptors (TCR) and/or chimeric antibody-T-cell receptors (CAR).
  • 23. The method of claim 19, wherein said cells are selected from the group consisting of T-cells, NK-cells, antigen-presenting cells, dendritic cells, stem cells, induced pluripotent stem cells, and/or stem central memory T-cells.
  • 24. (canceled)
  • 25. A method for treating a subject for suffering from a proliferative disease or infectious disease, the method comprising administering to the subject the therapeutic modulator comprising one or more oligonucleotide capable of suppressing expression of a plurality of immune target genes.
  • 26. The method of claim 25, wherein said proliferative disease is cancer.
  • 27. The method of claim 25, wherein said infectious disease is a pathogen infection.
  • 28. (canceled)
CROSS REFERENCE

This application claims priority to U.S. Provisional Application No. 61/910,728, filed Dec. 2, 2013, herein incorporated by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US14/68244 12/2/2014 WO 00
Provisional Applications (1)
Number Date Country
61910728 Dec 2013 US