This document relates to an implantable biologic holder.
A ligament, such as an anterior cruciate ligament (ACL), that has ruptured and is non-repairable may be replaced arthroscopically by a tissue graft. The tissue graft can be natural and harvested from another part of the body. For example, in the case of an ACL repair, the tissue graft can be harvested from a portion of a patellar tendon having so called “bone blocks” at each end, and from the semitendonosis and gracilis. Alternatively, the tissue graft can be formed from synthetic materials or from a combination of synthetic and natural materials. When repairing an ACL, the replacement tissue graft can be implanted by securing one end of the tissue graft in a socket formed in a passage within the femur, and passing the other end of the graft through a passage formed in the tibia.
A biologic material, such as a fibrin clot, can be inserted into a ligament or other soft tissue injury site, for example via a cannula, or attached directly to a tissue graft, for example by suturing, to promote healing. The application of a biologic material to an injury site can help promote healing.
According to one aspect, a tissue graft suspension device includes a platform member, a graft connecting element coupled to the platform member such that a portion of the graft connecting element forms a loop for attachment to a tissue graft, and an enclosure member coupled to the loop of the graft connecting element and configured to enclose a biologic material. The enclosure member defines an opening configured to receive the biologic material. The graft connecting element and the enclosure member are configured such that, during use, the tissue graft is coupled to the loop and in contact with the enclosure member.
Implementations of this aspect may include one or more of the following features.
For example, the graft connecting element may be a continuous loop of suture. The loop may pass through the opening of the enclosure member. The loop may pass through an attachment element of the enclosure member. The enclosure member may define two openings configured to receive the biologic material. The biologic material may be a fibrin clot. The biologic material may be a platelet rich plasma. The tissue graft suspension device may further include one or more filaments attached to the enclosure member.
According to another aspect, a method of securing a tissue graft includes providing a platform member coupled to a graft connecting element, the graft connecting element being coupled to an enclosure member and forming a loop for attachment to the tissue graft, the enclosure member configured to enclose a biologic material, inserting the biologic material through an opening in the enclosure member, attaching the tissue graft to the graft connecting element such that the tissue graft is in contact with the enclosure member, forming a bone tunnel in a bone, and positioning the platform member on a surface of the bone such that at least a portion of the tissue graft is in the bone tunnel.
Implementations of this aspect may include one or more of the following features.
For example, attaching the tissue graft to the graft connecting element may include looping the tissue graft through the loop of the graft connecting element such that the enclosure member is positioned between two portions of the tissue graft. Attaching the tissue graft to the graft connecting element may include looping the graft connecting element through an opening in a bone block of the tissue graft. The bone tunnel may include a first opening and a second opening. Positioning the platform member on the surface of the bone may include inserting the platform member into the bone tunnel through the first opening and into the bone tunnel, moving the platform member through the tunnel and out the second opening, and positioning the platform member over the second opening with the graft connecting element extending into the bone tunnel such that a first portion of the tissue graft attached to the graft connecting element is in the tunnel and a second portion of the tissue graft extends out of the first opening.
According to yet another aspect, a scaffold for receiving a biologic material includes a central portion impregnated with a biologic material, the central portion comprising filaments arranged in a weave pattern, and a guide portion attached to an edge of the central portion, the guide portion comprising one or more filaments. The scaffold is configured to be inserted into a tear in soft tissue.
Implementations of this aspect may include one or more of the following features.
For example, the tear in soft tissue may be a meniscal tear. The guide portion may include a first guide portion attached to a first edge of the central portion, and a second guide portion attached to a second edge of the central portion, the second edge being opposite the first edge. The guide portion may include one or more filaments extending out from the weave pattern of the central portion.
According to a further aspect, a method of repairing a soft tissue tear includes providing a scaffold comprising a central portion and a guide portion, the central portion comprising filaments arranged in a weave pattern, impregnating the central portion of the scaffold with a biologic material, inserting an edge of the scaffold into the soft tissue tear, and moving the central portion of the scaffold within the soft tissue tear into a final position by manipulating the guide portion.
Implementations of this aspect may include one or more of the following features.
For example, the soft tissue may be a meniscus. Impregnating the central portion of the scaffold with a biologic material may include forming at least one of a fibrin clot or a platelet rich plasma around the central portion. Impregnating the central portion of the scaffold may include pressing the central portion into at least one of a fibrin clot or a platelet rich plasma.
The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages will become apparent from the description, the drawings, and the claims.
This document describes examples of an implantable enclosure member and an implantable scaffold that can hold a biologic material, for example a fibrin clot, and be positioned within a ligament or other soft tissue repair site such that the biologic material comes in contact with the ligament or other soft tissue.
Referring to
Referring also to
The graft connecting element 18 of the graft attachment device 10 couples the tissue graft 22 (
The platform member 16 of the graft attachment device 10 can be positioned on a cortical surface of the femur 14 (
In addition to various filaments, threads, sutures, or the like, the graft attachment device 10 can include components formed from any biocompatible material or a combination of biocompatible materials, such as certain metal alloys and polymers. Components of the graft attachment device 10 can include non-absorbable materials such as PEEK or Acetal. Alternatively, or additionally, components of the graft attachment device 10 can include bioabsorbable materials such as PLLA.
During surgery, a surgeon inserts the biologic material 30 into the enclosure member 20 via the opening 28a, 28b prior to attachment of the tissue graft 22. The biologic material 30 can be a fibrin clot or any other material that facilitates ligament or tissue repair. For example, the biologic material 30 can include any biocompatible material or a combination of biocompatible materials such as, but not limited to, platelet rich plasma (PRP), hyaluronic acid (HA), growth factors (e.g. PDGF, FGF, BMP, GDF-5, and other members of the TGF-β superfamily), autologous tissue fragments, and pharmacologic agents (e.g. anti-inflammatory and/or analgesic). Alternatively, or additionally, the biologic material 30 can be pressed into a surface of the enclosure member 20 such that the biologic material 30 is formed around the surface. The enclosure member 20 can be pre-attached to the graft attachment device 10 during manufacture. Alternatively, the enclosure member 20 can be coupled to the graft attachment device 10 prior to or following insertion of the biologic material 30 into the enclosure member 20. In some cases, the surgeon can close the openings 28a, 28b, for example using sutures, to prevent the biologic material 30 from coming out of the enclosure member 20.
The biologic material 30 can help promote healing following surgery, such as ACL reconstruction. For example, the fibrin clot, a paste-like material typically prepared from a patient's blood, can enhance healing between graft bundles as well as between the graft bundles and bone by releasing various growth factors and chemical substances that promote healing.
Referring to
Referring to
Prior to implanting the graft attachment devices 10, 38 and the respectively attached tissue grafts 22, 34, the femoral tunnel 12a, 12b can be drilled from an intercondylar notch of the femur 14 towards the cortical surface of the femur 14. The tibial tunnel 24 can be drilled from an anterior region of the tibia 26 towards the intercondylar notch.
During implantation, the graft attachment device 10, 38, and the attached tissue graft 22, 34, respectively, can be positioned within the femoral tunnel 12a, 12b using lead sutures (not shown) that can be looped through one or more openings 32 of the platform member 16. For example, the lead sutures are passed through the femoral tunnel 12a, 12b from an opening near the intercondylar notch and used to pull the graft attachment device 10, 38 through the femoral tunnel 12a, 12b and towards an opening near the cortical surface of the femur 14. After the platform member 16 exits the femoral tunnel 12a, 12b through the opening near the cortical surface, the lead sutures can be used to flip and position the platform member 16 so that the member 16 lies flat against the cortical surface of the femur 14 and at least a portion of the tissue graft 22, 34 is positioned within the femoral tunnel 12a, 12b. A distal end of the attached tissue graft 22, 34 can extend out of the opening near the intercondylar notch.
In addition to promoting healing at a ligament injury site, such as following an ACL reconstruction surgery, the biologic material 30 can help enhance healing at a soft tissue injury site, for example in a meniscal tissue repair. In a meniscal tear repair procedure, a fibrin clot or PRP, for example, can be inserted into a meniscal tear to promote healing, especially in meniscal regions of low vascularity such as red-white and white-white regions of a meniscus.
Referring to
The central portion 56 of the suture scaffold 50 is configured to be impregnated with the biologic material 30 so that the biologic material 30 may be readily delivered and secured to the soft tissue injury site during surgery. For example, the central portion 56 can include a plurality of horizontally oriented sutures 62 and transversely oriented sutures 64 that are woven together to form a mesh surface. The horizontal and transverse sutures 62, 64 of the central portion 56 can be arranged such that the resulting mesh is sufficiently sparse to allow a biologic material to be pushed at least partially through its surface, yet dense enough to hold the pushed-through biologic material in place. In some implementations, the sutures 62, 64 can have a rough surface texture, or other surface properties, that aids in holding the pushed-through biologic material in place. In use, the surgeon can impregnate the central portion 56 with the biologic material 30, for example a fibrin clot, by pressing the biologic material 30 into the mesh surface of the central portion 56. Horizontal sutures 62 and transverse sutures 64 of the central portion 56 hold the biologic material 30 within the central portion 56 and can impart increased structural integrity to the biologic material 30 to aid in handling and delivery of the material 30. Alternatively, or additionally, the biologic material 30 can be chemically formed around the central portion 56, for example through coagulation of fibrinogen by thrombin.
As shown in
During a meniscal tear repair procedure, as shown in
While this document contains many specific implementation details, these should not be construed as limitations on the scope of any implementations or of what may be claimed, but rather as descriptions of features specific to particular implementations of particular implementations. Certain features that are described in this document in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination. Thus, particular implementations of the subject matter have been described. Other implementations are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3176316 | Bodell | Apr 1965 | A |
3613120 | McFarland, Jr. | Oct 1971 | A |
4255820 | Rothermel et al. | Mar 1981 | A |
4469101 | Coleman et al. | Sep 1984 | A |
4584722 | Levy et al. | Apr 1986 | A |
4642119 | Shah | Feb 1987 | A |
4662886 | Moorse et al. | May 1987 | A |
4731084 | Dunn et al. | Mar 1988 | A |
4744793 | Parr et al. | May 1988 | A |
4773910 | Chen et al. | Sep 1988 | A |
4834755 | Silvestrini et al. | May 1989 | A |
4863471 | Mansat | Sep 1989 | A |
4917699 | Chervitz | Apr 1990 | A |
4917700 | Aikins | Apr 1990 | A |
5176708 | Frey et al. | Jan 1993 | A |
5306301 | Graf et al. | Apr 1994 | A |
5456721 | Legrand | Oct 1995 | A |
5549676 | Johnson | Aug 1996 | A |
5645588 | Graf et al. | Jul 1997 | A |
5769894 | Ferragamo | Jun 1998 | A |
6027744 | Vacanti et al. | Feb 2000 | A |
6056752 | Roger | May 2000 | A |
6143029 | Rippstein | Nov 2000 | A |
6193754 | Seedhom | Feb 2001 | B1 |
6203572 | Johnson et al. | Mar 2001 | B1 |
6214047 | Melvin | Apr 2001 | B1 |
6267767 | Strobel et al. | Jul 2001 | B1 |
6283996 | Chervitz et al. | Sep 2001 | B1 |
6296659 | Foerster | Oct 2001 | B1 |
6517578 | Hein | Feb 2003 | B2 |
6599319 | Knudsen et al. | Jul 2003 | B2 |
6602290 | Esnouf et al. | Aug 2003 | B2 |
6638309 | Bonutti | Oct 2003 | B2 |
6752831 | Sybert et al. | Jun 2004 | B2 |
6866681 | Laboureau et al. | Mar 2005 | B2 |
6872227 | Sump et al. | Mar 2005 | B2 |
7001390 | Gebhardt et al. | Feb 2006 | B2 |
7097654 | Freedland | Aug 2006 | B1 |
7309356 | Steiner | Dec 2007 | B2 |
7850711 | Stone et al. | Dec 2010 | B1 |
7896917 | Walters et al. | Mar 2011 | B2 |
7901455 | Koob et al. | Mar 2011 | B2 |
7901461 | Harmon et al. | Mar 2011 | B2 |
7905918 | Cimino | Mar 2011 | B2 |
7988732 | Bojarski et al. | Aug 2011 | B2 |
8097033 | Tse | Jan 2012 | B2 |
8137400 | Shino | Mar 2012 | B2 |
8162997 | Struhl | Apr 2012 | B2 |
8177839 | Koob et al. | May 2012 | B2 |
8202306 | Dreyfuss | Jun 2012 | B2 |
8226715 | Hwang et al. | Jul 2012 | B2 |
8439976 | Albertorio et al. | May 2013 | B2 |
8460350 | Albertorio et al. | Jun 2013 | B2 |
8486143 | Laurencin et al. | Jul 2013 | B2 |
8545558 | Spenciner et al. | Oct 2013 | B2 |
8597311 | Criscuolo et al. | Dec 2013 | B2 |
8663324 | Schmieding et al. | Mar 2014 | B2 |
20020019670 | Crawley et al. | Feb 2002 | A1 |
20020055749 | Esnouf et al. | May 2002 | A1 |
20020072797 | Hays et al. | Jun 2002 | A1 |
20020161439 | Strobel et al. | Oct 2002 | A1 |
20030023304 | Carter et al. | Jan 2003 | A1 |
20040153153 | Elson et al. | Aug 2004 | A1 |
20040267362 | Hwang et al. | Dec 2004 | A1 |
20050004670 | Gebhardt et al. | Jan 2005 | A1 |
20050070906 | Clark et al. | Mar 2005 | A1 |
20050125077 | Harmon et al. | Jun 2005 | A1 |
20070049944 | Stone et al. | Mar 2007 | A1 |
20080046009 | Albertorio et al. | Feb 2008 | A1 |
20080188933 | Koob et al. | Aug 2008 | A1 |
20080234819 | Schmieding et al. | Sep 2008 | A1 |
20080319546 | Bojarski et al. | Dec 2008 | A1 |
20090060974 | Schmieding et al. | Mar 2009 | A1 |
20090214613 | Vazquez et al. | Aug 2009 | A1 |
20090306776 | Murray | Dec 2009 | A1 |
20100040662 | Cotton et al. | Feb 2010 | A1 |
20100125297 | Guederian et al. | May 2010 | A1 |
20100249930 | Myers | Sep 2010 | A1 |
20100324676 | Albertorio et al. | Dec 2010 | A1 |
20130345810 | Jaeger et al. | Dec 2013 | A1 |
20140025166 | Bonutti | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
WO 9216167 | Oct 1992 | WO |
WO 2008048578 | Apr 2008 | WO |
Entry |
---|
International Search Report, PCT/US2013/024235, Jul. 18, 2013, pp. 8. |
Number | Date | Country | |
---|---|---|---|
20130204367 A1 | Aug 2013 | US |