The invention relates to a wire-shaped collector electrode, which can be implanted by laparoscopy through the abdominal wall into the small pelvis of the human body, is arranged at one end on a connection cable having an outer surface and is used for neurostimulation of nerves, said collector electrode comprising several outer segment electrodes which can be contacted individually or in groups and are arranged axially one after another in the direction of the longitudinal extent of the collector electrode, wherein an insulating section is arranged between in each case two adjacent outer segment electrodes and permits the electrical insulation of the respective two adjacent outer segment electrodes.
From US 2007/0198065 A1 filed by the applicant, it is known to provide neurostimulation of nerves (e.g. plexus sacralis, nervus ischiadicus, nervus pudendus) in the small pelvis by using collector electrodes with eight ring-shaped outer segment electrodes that are spaced axially apart from one another, which collector electrodes are usually implanted by laparoscopy. The collector electrode is connected by a connection cable to a pacemaker, which acts on the collector electrode with a stimulation pattern and in doing so controls the outer segment electrodes individually, in order to selectively stimulate the desired nerve. In the implantation of the pacemaker, it is often necessary for the operator to pull the connection cable in the direction of the axial end having the collector electrode. It can happen that the operator pulls the connection cable in the direction of the pacemaker instead of in the direction of the collector electrode and thus shifts the latter away from the nerve to be stimulated, which then entails awkward repositioning of the collector electrode.
US 2009/0248124 A1 discloses a non-wire-shaped collector electrode for implantation in the human body, wherein the connection cable of the electrode is provided, within a short axial section, with a marker so as to be able to identify the electrode and/or to assign the electrode to the correct connection channel of the pacemaker. In the known electrode, the problem of directional orientation does not arise, since the comparatively broad electrode cannot be shifted out of position by pulling on the connection cable.
US 2010/0030298 A1 discloses an implantable electrode having a marker with which the rotary orientation of the connection for contacting a pacemaker can be determined.
Proceeding from the aforementioned prior art, the object of the invention is to propose a collector electrode which has a connection cable, and with which an inadvertent shifting of the collector electrode away from the nerve to be stimulated can be reliably avoided during a surgical intervention. The object is also to make available a system comprising a correspondingly improved collector electrode which is connected by the connection cable to a pacemaker for applying a stimulation pattern to the collector electrode.
In an implantable collector electrode of the type in question, particularly a collector electrode implantable by laparoscopy, this object is achieved by the fact that a direction marker perceptible by sight and/or by touch is provided on the outer surface of the connection cable, at least in an axial section which is spaced apart from the axial ends of the connection cable, said direction marker indicating the orientation of the connection cable to the operator.
As regards the system, the object is achieved by the combination of a collector electrode, designed according to the concept of the invention, together with a pacemaker.
Advantageous additional developments of the invention are also set forth herein. The scope of the invention covers all combinations of at least two of the features disclosed in the description, the claims and/or the figures.
In order to avoid repetition, features that are disclosed in relation to the device are also to be understood as having been disclosed and able to be claimed in relation to the method. Likewise, features that are disclosed in relation to the method are to be understood as having been disclosed and able to be claimed in relation to the device.
The invention is based on the concept of avoiding inadvertent shifting of the collector electrode during implantation of the pacemaker, by providing a direction marker, perceptible by sight and/or by touch, on the outer surface of the connection cable, at least in an axial section which is spaced apart from the axial ends of the connection cable, said direction marker indicating the orientation of the connection cable to the operator. The orientation of the connection cable is to be understood as the direction in which, on the basis of the direction marker, the collector electrode or the axial end directed away from the collector electrode is located. The direction marker thus has the function of providing the operator with information concerning the orientation of the connection cable, such that the operator can see, from the axial section observed, in which direction the connection cable is to be pulled, without this resulting in undesired shifting of the collector electrode at the end away from the nerve. The feature “at least in an axial section which is spaced apart from the axial ends of the connection cable” is to be understood as meaning that the orientation information is intended to be recognizable to the operator in an area spaced apart from the axial ends. Of course, the axial section having the direction marker can also extend as far as at least one of the two axial ends of the connection cable, although the direction marker must at least also be provided in an area spaced apart from the ends. It is important that the operator obtains the orientation information without having to see one of the two axial ends, particularly since these ends are located in regions of the body that are not visible, that are concealed or that are not exposed.
The direction marker can be designed to be perceptible by sight, for example by suitable printing on the outer surface. If appropriate, the marker can also be designed to be perceptible by touch. A direction marker perceptible by touch can be obtained by a raised and/or recessed formation of the direction marker.
The invention is based on the concept that the direction marker is provided over a (relatively long) cable section of at least 10 cm in length and/or of at least 15% of the total length of the connection cable and is designed in such a way that every 2 cm, preferably every 1.5 cm, more preferably every 1.0 cm, very particularly preferably every 0.5 cm, of this cable section is enough to allow the operator to visually establish the orientation of the connection cable (without further optical aids such as magnifying lenses). To put it another way, provision is made according to the invention that the axial extent of the cable section with direction marker measures at least 10 cm, preferably at least 15 cm, more preferably at least 20 cm, very particularly preferably at least 25 cm, and that the orientation of the connection cable can be read off at any desired section of this at least 10 cm long cable section which (the section) has a length of at most 2 cm, preferably at most 1.5 cm, more preferably 1.0 cm, very particularly preferably 0.5 cm. Of course, the preselected section of the cable section provided with the direction marker can also be larger. However, according to the invention, it is sufficient to have an axial extent of 2 cm or less, very particularly preferably of 0.5 cm or less.
The solution according to the invention is therefore in two steps. First, the cable section with the direction marker must be sufficiently long (according to the invention at least 10 cm and/or 15% of the total length of the connection cable), and, second, the direction marker must be so configured, for example by a suitable number of visual markers per centimeter, that the orientation can be read off at each section of this cable section if the section has a longitudinal extent of 2 cm (or more), preferably 1.5 cm (or more), preferably 1 cm or more, very particularly preferably 0.5 cm (or more). With a typical connection cable length of 60 cm, 15% of the total longitudinal extent corresponds to approximately the at least 10 cm.
In the case where the axial extent of the cable section provided with the direction marker is smaller than the axial extent (total axial extent) of the connection cable, it is particularly expedient if most (more than 50%, preferably more than 60%) of the axial extent of the cable section with direction marker is then situated in the proximal section (toward the pacemaker) of the connection cable.
The total axial extent of the connection cable is understood as the axial extent between the collector electrode at the end and the contact or connection area for contacting the pacemaker.
As has already been mentioned, the collector electrode designed according to the concept of the invention serves for neurostimulation of endopelvic nerve sections in the small pelvis, by means of a pacemaker applying a defined stimulation pattern to the collector electrode or the outer segment electrodes of the collector electrode. The stimulation pattern is preferably chosen according to the indication that is to be treated. The collector electrode designed according to the concept of the invention can alternatively also be used as a sensor for detecting nerve impulses. The collector electrode designed according to the concept of the invention is preferably suitable for use in the following indications:
In addition to restoration of bladder and/or bowel function, deambulation, in particular by stimulation of the sciatic nerve (cf. illustrative embodiment according to
The collector electrode is preferably arranged at an axial end of the connection cable or is formed by an axial end area of the connection cable. It is particularly preferable if the collector electrode has a wire-shaped design. Wire-shaped is to be understood here as an elongate, for example rod-shaped, rigid or, alternatively, possibly deformable configuration.
According to the invention, provision is made that the collector electrode has a wire-shaped design. Wire-shaped is to be understood here as an elongate, for example rod-shaped, rigid or, alternatively, possibly deformable configuration.
The axial extent of the in particular wire-shaped collector electrode is preferably chosen from a value range of between approximately 45 mm and approximately 65 mm. The axial extent is particularly preferably approximately 57 mm. The length dimension relates here to the distance between the opposite axial ends of the outer segment electrodes farthest from each other. It is particularly expedient if the diameter of the collector electrode, which is preferably at least approximately cylindrical, in particular circularly cylindrical, in contour is chosen from a value range of between 0.5 mm and 2 mm, very particularly preferably from a value range of between 0.8 mm and 1.2 mm. The diameter is still more preferably approximately 1 mm.
A very particularly preferred embodiment of the collector electrode is one in which the direction marker consisting of a multiplicity of individual symbols, or the cable section having the direction marker, has, in a section spaced apart by at least 10 cm, preferably at least 15 cm from the proximal end (toward the pacemaker), an axial extent of at least 10 cm, preferably at least 15 cm, more preferably at least 20 cm, very particularly preferably at least 25 cm, in order to be able to determine the orientation in an area of the connection cable spaced apart relatively far from the pacemaker, wherein at most every 2 cm, preferably at most every 1.5 cm, more preferably at most every 1.0 cm, very particularly preferably at most every 0.5 cm, of this cable section is enough to allow the orientation of the connection cable to be determined visually without optical aids.
As has already been indicated at the outset, the at least one axial section having the direction marker does not necessarily have to end at a distance from one or both axial ends of the connection cable, and instead, if so desired, it can be continued as far as at least one of the axial ends of the connection cable.
It is important, however, that the orientation of the connection cable can be read off from the direction marker at least in one area spaced apart from the axial ends.
In an alternative embodiment, the at least one axial section provided with a direction marker ends at an axial distance in front of at least one of the two axial ends of the connection cable.
This distance is preferably less than 25% of the total longitudinal extent of the connection cable, more preferably less than 15%.
There are various possibilities regarding the specific configuration of the direction marker. For example, it is possible that the direction marker is formed by a multiplicity of symbols that are arranged axially in succession, are spaced apart from one another or connected to one another, and are perceptible by sight and/or touch. For example, these can be arrow symbols that point in one of the two axial directions, in order thereby to indicate the position of the collector electrode or the position of the pacemaker relative to the arrow symbol. It is very particularly preferable if the symbols are arranged in a row. It is very particularly preferable if the symbols are spaced axially apart from one another. If necessary, several rows of symbols spaced apart in the circumferential direction can be provided. The at least one row of symbols preferably extends, at least more or less, along the entire axial extent of the connection cable.
It is essential to provide a sufficient number of symbols per unit of length, so as to ensure that the orientation can be read off at each section with a length of 2 cm, 1.5 cm, 1.0 cm, preferably 0.5 cm, of the at least 10 cm long cable section.
Particularly if no arrow symbols are used to indicate orientation, the orientation can be signaled by the fact that a geometric feature, for example an axial extent and/or a circumferential extent of the symbols, varies from symbol to symbol or from symbol group to symbol group, where each symbol group comprises at least two symbols. In other words, a geometric dimension, for example, decreases or increases from symbol to symbol toward one of the two axial ends, in order thereby to provide the orientation information upon simultaneous observation of at least two symbols or symbol groups.
In an alternative embodiment, particularly when arrow symbols are used, the symbols arranged one after another can be of identical design.
In another alternative embodiment, the direction marker can comprise a single symbol or a small number, e.g. only two, three or four in total, of axially adjacent symbols, wherein the information concerning direction or orientation can be read off from the change in a geometric dimension of the symbol or symbols. For example, the circumferential extent of the symbol can decrease toward one axial end, resulting, for example, in an extremely elongate arrow symbol.
A very particularly preferred embodiment of the collector electrode is one in which it comprises at least five, preferably at least six, very particularly preferably at least seven, still more preferably eight, outer segment electrodes that are spaced apart in the axial direction and are preferably ring-shaped.
An embodiment in which the collector electrode is arranged at one end on the connection cable is particularly expedient.
This means that the actual collector electrode, i.e. the arrangement of outer segment electrodes, closes off an axial end of the connection cable or forms an end section of the connection cable. Thus, the collector electrode is not situated at just any axial position on the connection cable, but expressly at an axial end, so as to be able to position the collector electrode optimally, in particular by grasping the connection cable. The collector electrode thus forms the end continuation of the connection cable or of the connection cable end, resulting in a wire-shaped configuration of the collector electrode/connection cable arrangement. The diameter of the connection cable preferably corresponds, at least more or less (±10%), to the diameter of the collector electrode preferably formed by the end section of the connection cable.
There are various possibilities regarding the configuration of the insulating sections and/or of the outer segment electrodes. For example, these can extend only around sections of the circumference. However, it is particularly preferable if the insulating sections and/or the outer segment electrodes are ring segments closed all the way round the circumference.
The axial extent of the outer segment electrodes is preferably chosen from a value range of between approximately 1 mm and approximately 5 mm. The axial extent is preferably approximately 3 mm. The axial extent of at least one of the insulating sections is preferably chosen from a value range of between 2 mm and 7 mm. The axial extent is preferably 3 mm or 6 mm.
The invention also leads to a system for neurostimulation of nerves, comprising a collector electrode as described above with connection cable, wherein the outer segment electrodes of the collector electrode can be electrically controlled individually and/or in groups by an in particular eight-channel pacemaker, wherein the pacemaker is arranged at an axial end of the connection cable directed away from the outer segment electrodes.
Further advantages, features and details of the invention will become clear from the following description of preferred illustrative embodiments and by reference to the drawings, in which:
Elements that are the same and elements that have the same function are indicated by the same reference signs in the figures.
In the preferred illustrative embodiment shown, the substantially cylindrical surface 16 of the collector electrode 12 comprises a total of eight outer segment electrodes 1 to 8, counting upward from the free end (situated on the right in the plane of the drawing) of the collector electrode 12. The outer segment electrodes 1 to 8 are individually controllable by means of the pacemaker 11 and are electrically insulated from one another. For this purpose, insulating sections 101 to 107 (likewise counting upward from the free end of the collector electrode 12) are situated between in each case two of the outer segment electrodes 1, 2; 2, 3; 3, 4; 4, 5; 5, 6; 6, 7; 7, 8 arranged axially one after another. It will be seen from
It will also be seen from
Alternatively, an embodiment is conceivable in which all the insulating sections 101 to 107 are of the same size. It is also possible that it is not the third insulating section 103, but another insulating section 101, 102 or 104 to 107, that is larger than the other insulating sections.
In the illustrative embodiment shown, the axial extent of the flexible, wire-shaped connection cable measures 20 mm. Each outer segment electrode 1 to 8 is individually contacted by an electrically insulated (control) lead, not shown for reasons of clarity, wherein all the leads are guided out from the collector electrode 12, specifically at the end of the collector electrode 12 directed toward the connection cable 13. Up to there, the leads are guided in the interior of the collector electrode 12 at a radial distance from the circumferential wall of the collector electrode. The leads join up to form the single connection cable 13 provided with a jacket 19 and used to contact the pacemaker 11.
The outer surface 20 of the connection cable 13 is provided with a direction marker 21, which indicates the orientation of the connection cable 13, that is to say the relative position of the axial ends 14, 15. In the illustrative embodiment shown, the direction marker 21 is formed by a multiplicity of in this case arrow-shaped symbols 22 arranged one after another in the axial direction, the tip of the arrows pointing in the direction of the collector electrode 12 in the illustrative embodiment shown. Alternatively, the tips of the arrows can of course be designed or arranged pointing in the direction of the pacemaker 11.
The operator simply has to know in which direction the arrow symbols point. In the illustrative embodiment shown, the symbols 22 arranged in a row extend, at least more or less, along the entire longitudinal extent of the connection cable 13 and are therefore also present in axial sections arranged at an axial distance from the ends 14, 15. The cable section provided with the direction marker 21 has a longitudinal extent of well over 10 cm and is indicated by reference sign 23. In the illustrative embodiment shown, the operator can read off the orientation of the connection cable 13 at any desired axial section of the cable section 23 having a length of at least 0.5 cm.
The following illustrative embodiments correspond substantially to the above-described illustrative embodiment of a system 10 as shown in
In
It is preferable for them to be perceptible by a combination of sight and touch. For this purpose, the arrow symbols can be raised, for example, or designed as depressions in the jacket 19.
In the illustrative embodiment according to
In the illustrative embodiment according to
The symbol pairs preferably extend over at least 25% of the total longitudinal extent of the connection cable 13.
In
All of the symbols shown in
Number | Date | Country | Kind |
---|---|---|---|
10 2010 021 512.0 | May 2010 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP11/58570 | 5/25/2011 | WO | 00 | 1/14/2013 |