The present invention generally relates to medical systems and apparatus and uses thereof for treating obesity or obesity-related diseases, and more specifically, relates to access ports and methods for applying the same to bodily tissue.
Adjustable gastric banding apparatus have provided an effective and substantially less invasive alternative to gastric bypass surgery and other conventional surgical weight loss procedures. Despite the positive outcomes of invasive weight loss procedures, such as gastric bypass surgery, it has been recognized that sustained weight loss can be achieved through a laparoscopically-placed gastric band, for example, the LAP-BAND® (Allergan, Inc., Irvine, Calif.) gastric band or the LAP-BAND AP® (Allergan, Inc., Irvine, Calif.) gastric band. Generally, gastric bands are placed about the cardia, or upper portion, of a patient's stomach forming a stoma that restricts food's passage into a lower portion of the stomach. When the stoma is of an appropriate size that is restricted by a gastric band, food held in the upper portion of the stomach may provide a feeling of satiety or fullness that discourages overeating. Unlike gastric bypass procedures, gastric band apparatus are reversible and require no permanent modification to the gastrointestinal tract.
Medical implants, including gastric band systems, for performing therapeutic functions for a patient are well known. Such devices include pace makers, vascular access ports, injection ports (such as used with gastric banding systems) and gastric pacing devices. Such implants need to be attached, typically subcutaneously, in an appropriate place in order to function properly.
Many implantable medical devices are secured with sutures. For example, when inserting a gastric band and an associated access port, the associated access port may be sutured into place with sutures against the rectus muscle sheath. Such placement of the sutures is often challenging because the associated access port is placed below several inches of bodily tissue (e.g., fat), and suturing the associated access port often takes as long as placing the gastric band itself.
Additionally, the sutures can cause post surgical pain for the patient due to the inherent pulling and slight tearing of the tissue pieces by and adjacent to the suture.
Also, it is common for medical professionals desiring to add or remove fluid via a needle through the access port to palpitate the skin to locate the implanted port. The medical professional has a general idea of the top surface of the port, but occasionally will accidentally miss the septum and puncture the tube and/or tissue surrounding or adjacent to the port.
Further, some body-related systems utilize retention geometry for the access port attachment such as Bestetti, et al., U.S. Pat. No. 6,270,475. However, Bestetti discloses a percutaneous access port not a subcutaneous access port. Similarly, Svensson, et al., U.S. Pat. No. 5,098,397, discloses a percutaneous access port not a subcutaneous access port.
Conlon, et al., U.S. Pat. No. 7,374,557, generally discloses self attaching injection ports comprising integral fasteners for subcutaneous attachment. However, Conlon does not disclose a tube guard, a tissue guard, or a porous coupling device.
U.S. Patent Publication Nos. 2005/0131352 and 2004/0254537 to Conlon, et al., also generally disclose a self attaching injection port comprising integral fasteners for subcutaneous attachment. Patent Publication Nos. 2005/0131352 and 2004/0254537 do not disclose a tube guard, a tissue guard, or a porous coupling device.
Accordingly, there remains a need for a procedure to implant medical devices in a quick, easy and efficient manner, utilizing as small of an incision as possible which reduces the likelihood of future discomfort for the patient.
The present invention, in one embodiment, provides an implantable coupling device configured to facilitate coupling an implantable access port to a tissue of a patient. The device may include a porous coupling member having a top surface and a bottom surface and a coupling agent proximate the top surface of the porous coupling member for mating with a base of the implantable access port of an adjustable gastric banding system. The porous coupling member may extend substantially parallel to the base of the implantable access port. The bottom surface of the porous coupling member may be configured for anchoring the porous coupling member to the tissue of the patient. The access port may be latched onto an interior portion, or muscle portion of a patient through various methods described herein.
In one embodiment, the porous coupling member is made from an injection moldable plastic or rubber material. In another embodiment, the porous coupling member is over-molded on at least one of a fabric or woven mesh material. The porous coupling member may include at least one flexible flange.
The porous coupling member may comprise a tissue shield such as a first portion extending substantially parallel to the base of the implantable access port which does not comprise a porous surface and a second portion extending substantially parallel to the base of the implantable access port which comprises a porous surface. The first portion may be proximate to the implantable access port.
In one embodiment, the porous coupling member includes a raised canopy configured to permit the passage of a tube coupled to a side surface of the implantable access port. The surface of the raised canopy may be configured to shield the tube from contact with a needle. A surface of the raised canopy may be formed to mirror a portion of the side surface of the implantable access port. The device may include a hingeable shroud extending distally from the canopy or port.
In one embodiment the raised canopy is hingably coupled to or integral to the porous coupling member. The porous coupling member may include a notch under the canopy configured to permit the flexing of the tube without interference with the implantable coupling device.
In another embodiment, an implantable coupling device includes a coupling member having a top surface and a bottom surface and a pre-fabricated mesh material with at least one through hole configured to allow the passage of a coupler. The top surface of the coupling member includes at least one coupler for mating with the base of an implantable access port of an adjustable gastric banding apparatus. The pre-fabricated mesh material may be sandwichably oriented between the implantable access port and the coupling member. In one embodiment, the pre-fabricated mesh material is made from an injection moldable plastic or rubber material.
The pre-fabricated mesh material may include a notch under the canopy configured to permit the flexing of the tube below the plane of a bottom surface of the pre-fabricated mesh material without interference with the pre-fabricated mesh material. In one embodiment, the device includes a hingeable shroud extending distally from the canopy. The coupling member and/or pre-fabricated mesh material further comprises a flange configured to flex with the movement of the tissue of the patient. The coupler may be at least one of a partial ring shape or a substantially circular shape.
In various embodiments, an implantable coupling device, configured to facilitate coupling an implantable access port to a tissue of a patient, includes a coupling member having a top surface and a bottom surface. The coupling member may include a raised canopy configured to permit the passage of a tube coupled to a side surface of the implantable access port, and the coupling member may be configured for anchoring the coupling member to a tissue of a patient. The coupling member may include a coupling agent proximate to the top surface of the porous coupling member for mating with a base of the implantable access port of an adjustable gastric banding system.
In one embodiment, an implantable anchoring device includes a first anchoring member and a second anchoring member. The first anchoring member and second anchoring members may have a first top surface and a first bottom surface. A first beam of the first anchoring member may be configured to extend through a first opening in a second anchoring member in response to the first anchoring member being rotated about an axis from a first position to a second position. A second beam of the second anchoring member may be configured to release through a second opening in the first anchoring member in response to the first anchoring member being rotated about the axis from the first position to the second position. The second top surface of the second anchoring member may be configured to attachably mate with a base of an implantable access port housing of an adjustable gastric banding system. The first beam may be integral to the first anchoring member and the second beam may be integral to the second anchoring member. The first beam and the second beam may be configured to return to a preset deployed position in response to the first anchoring member being moved from the first position into the second position.
These and other aspects of the invention may be more clearly understood or appreciated by referring to the accompanying drawings and the detailed description.
The present invention relates to implantable medical devices and fasteners therefore and more specifically to access ports and methods for applying the same to bodily tissue. Specifically, the present invention is directed to a subcutaneous implantable gastric banding system including an access port coupled to bodily tissue. In some embodiments, a tube guard, a tube hingeable shroud, and/or a tissue guard may reduce pain caused by errant needle sticks/strikes or follow-up surgery needed to repair damaged components.
In various embodiments, the present invention utilizes tube guards, hingeable tube shrouds, tissue shields, pre-fabricated mesh and porous coupling devices and/or combinations thereof to protect the patient from unnecessary pain or discomfort. In some embodiments, a mesh material (described in greater detail below) may be used to anchor an access port to a patient's tissue. For example, the mesh material may encourage tissue ingrowth or tissue engagement through holes and spaces of the mesh material. This use of mesh materials to anchor the access port using the patient's own tissue engagement may obviate the need for sutures during implantation. For example, where access port implantation may occur using sutures, during recovery and beyond, movement of the patient may cause discomfort due to a pulling and slight tearing of the tissue around the implantation site. Use of a porous coupling device or prefabricated mesh material according to embodiments of the present invention may eliminate or substantially reduce this discomfort.
In accordance with various embodiments,
In various embodiments, the access port 10 comprises at least one anchoring surface 8. The anchoring surface 8 may comprise any suitable anchoring surface, such as a latch, clip, hole, ridge, surface deformity, notch, flange and/or the like. The anchoring surface 8 comprises a plurality of through holes, such as suture holes. The housing of the access port 10 may comprise any suitable geometry, such as conical, cylindrical, square, block, and/or the like. The side wall of the housing of the access port 10 may comprise a surface transition to assist the operation of the anchoring surface 8. For example, the side wall of the tapered access port 10 comprises notches to assist material being threaded through the opening of the anchoring surface 8.
With continued reference to
In one embodiment, as illustrated in
Further, in an embodiment, a portion of the coupler 20 may be porous. For instance, a plurality of though holes 22 may pass from the top surface to the bottom surface of the coupler 20. These though holes 22 may be configured to allow for tissue ingrowth or tissue engagement through the though holes 22 to serve as or assist with the anchoring of the port 10 with the patient. The though holes 22 may be formed in any configuration. For example, the spacing of the holes may be regular or irregular. The though holes 22 may be formed in substantially the entire surface of the coupler 20 or the though holes 22 may be located in a particular portion(s) of the coupler 20. For example, the though holes 22 may be located towards the outer perimeter of the coupler 20 leaving a portion of the surface without though holes 22 proximate the base of the port 10.
In one embodiment, the coupler 20 may comprise one or more flanges 26 configured to support the flexing of the anchoring surface of the patient, such as the patient's abdominal wall adjacent to and coupled to the bottom surface of the coupler 20. For example, with reference to
Turning now to
With reference to
In this manner, the body's own tissue may grow into coupler 20 and act as an anchoring mechanism. This anchoring may be more comfortable for the patient post surgery than previous access port anchoring methods and techniques.
Turning now to
The mesh member 34 may encourage local tissue growth around the access port 10 to engage with the access port 10 after the access port 10 has been applied. The mesh member 34 aids in securing the access port 10 in place on the patient's tissue. In addition, the mesh member 34 may aid in forming a biological seal, or a dermal interface, around the interface between the tissue and the access port 10. In addition, the mesh member 34 may prevent the local tissue from rejecting the access port 10 and may decrease the chance of medical complications related to the access port 10.
Furthermore, a portion of the mesh member 34 may be used as an attachment point to suture, staple, tack or otherwise fasten the access port 10 to the patient's body.
In various embodiments, the mesh member 34 may be made of a bioresorbable material, such as silk, or the like, or may be made of a non-resorbable material such as polypropylene, or the like. In addition, the mesh member 34 may be made of a blend of both bioresorbable materials and non-resorbable materials such as a Covidien mesh, or the like.
The mesh member 34 may include apertures appropriately sized to allow a portion of the coupling agents 24 to pass through the mesh member 34. In addition, the mesh member 34 may be sized and spaced to allow the coupling agents 24 to pass through the mesh member 34 without contacting or damaging the mesh member 34. In one embodiment, the mesh member 34 and sutures may be used to engage the bodily tissue.
With reference to
Turning now to
In various embodiments, the pre-fabricated mesh material 44 may be integrally molded into or as part of the base of the access port 10. In such an embodiment, the pre-fabricated mesh material 44 and the base of the access port 10, for example, the bottom surface of the port 10, may be molded as one piece. In addition, the mesh material 44 may be over-molded onto the access port 10, or a portion of the access port 10. The pre-fabricated mesh material 44 and the access port 10 may be made of different materials or the same materials. In one embodiment, the pre-fabricated mesh material 44 may be sandwichably oriented between the access port 10 and a clip 40.
In accordance with various embodiments, and with reference to
The clip 40 may be any suitable size or dimension. In one embodiment, as shown in
Turning now to
In various embodiments, the tube guard 60 is coupled to the pre-fabricated mesh material 44. For example, the pre-fabricated mesh material 44 may be generally shaped with curved outer edges. The pre-fabricated mesh material 44 may comprise a notch under the tube 6 to allow the tube 6 to travel and flex through a plane parallel to the bottom surface of the pre-fabricated mesh material 44 without interference from the pre-fabricated mesh material 44.
In one embodiment, the side(s) of the tube guard 60 adjacent to the port 10 is configured to mirror the side surface properties of the access port 10 to reduce the chance of errant needle punctures in the protected tube 6. The tube guard 60 may extend from the access port 10 over the tube 6 in any desired dimension for any desired length. As the distance of the tube 6 from the top surface of the access port 10 increases, the likelihood of a puncture by a needle decrease and the need for the tube guard 60 coverage decreases.
In some embodiments, the tube 6 may be protected by additional shields such as a plurality of individual shields, or beads, coupled to the tube 6 and spaced adjacent to one another. Each individual shield may be configured to have a generally cylindrical shape that wraps around or partially around an outer circumference of a portion of the tube 6. Additional details regarding exemplary tube shields and puncture resistant configurations are disclosed in co-pending U.S. patent application Ser. No. 12/771,609 filed on Apr. 30, 2010 and entitled “IMPLANTABLE DEVICE TO PROTECT TUBING FROM PUNCTURE” having common ownership as the present application, the contents of which are hereby incorporated by reference in their entirety.
As depicted in
Turning now to
Further, in accordance with various embodiments,
In one embodiment, the coupler 20 comprises at least one coupling agent 24 configured to mate with an anchoring surface 8 of the access port 10 such as an existing suture hole of the access port 10 via an interference fit. The tube guard 60 is coupled to the coupler 20 via a plurality of attachment tabs 96 and 98. These attachment tabs 96, 98 may be any suitable shape and width. For example, the width of the attachment tabs 96 and 98 may run substantially the entire length of the tube shield 60, or the widths of the attachment tabs 96 and 98 may comprise a portion of the width of tube shield 60 (as shown). The attachment tabs 96 and 98 may have equal widths or unequal widths. Moreover, there may be fewer or more attachment tabs 96 and 98 as desired. In one embodiment, the attachment tabs 96 and 98 are configured to flex. Further, in an embodiment, the coupler 20 of
In an embodiment, the coupler 20 may replicate the exiting anchoring surfaces 8 used by the coupling agents 24 adjacent to the anchoring surfaces 8. These replicated anchoring surfaces 109 may be coupled to tissue, mesh, a second coupler, additional coupling agents 24, or the pre-fabricated mesh material 44 as desired. In one embodiment, the coupler 20 of
The first element 1120 comprises a top surface and a bottom surface. The first element 1120 comprises through holes 1122 passing from the bottom surface to the top surface through the first element 1120. Coupled to the top surface and/or side surface of the first element 1120 is a tube guard 1160. The tube guard 1160 forms a canopy protecting at least a portion of a tube 6 configured to be coupled to the port 10. This tube guard 1160 is configured to protect the tube 6 from unintended needle contact. The tube guard 1160 may be any suitable shape and dimension. Similar to previously described tube guards, the side surface adjacent to the port 10 of the tube guard 1160 may be shaped to mirror the side surface of the port 10. A side interior wall of the tube guard 1160 may comprise a tab 1151 for depressing an anchor beam 1135 while the first element 1120 is in a first position described in further detail below.
The top surface of the first element 1120 also comprises openings 1123 for receiving the coupling agents 1124. The first element 1120 also comprises at least one anchoring beam 1125 that is notched out of the first element 1120 and pre-bent so that at rest the orientation of the anchoring beam 1125 is in a deployment position. For example, a deployment position may extend out from the respective first element 1120 and the second element 1130 at an angle configured to interact with surrounding tissue and internal bodies of the patient. The anchor beams 1125 and 1135 in a deployment position may be configured to orient anchoring device 1100 in a selected orientation and position. The first element 1120 further comprises at least one opening 1140 for receiving at least one anchoring beam 1135 from the second element 1130.
The second element 1130 comprises a top surface and a bottom surface. The second element 1130 comprises through holes 1122 passing from the bottom surface to the top surface through second element 1130. The top surface of the second element 1130 also comprises the coupling agents 1124 for mating with an anchoring surface 8 of the access port 10, similar to the previously described coupling agents 24. The second element 1130 further comprises at least one opening 1145 for receiving at least one anchoring beam 1125 from the first element 1120. The second element 1130 comprises a notch 1128 under the tube 6 to allow the tube 6 to travel and flex through a plane parallel to the bottom surface of the second element 1130 without interference from the anchoring device 1100. The second element 1130 further comprises a ridge 1165 with a height greater than the thickness of the first element 1120. The ridge 1165 allows the first element 1120 to rotate about an axis while the first element 1120 is coupled between the second element 1130 and the access port 10. The second element 1130 also comprises at least one beam 1135 that is notched out of the second element 1130 and pre-bent so that at rest the preferred orientation of the beam 1135 is in a deployed position.
In one embodiment, the elements of the anchoring device 1100 may be coated with a bioresorbable material, for example, to encourage biological compatibility between the anchoring device 1100 and the body tissue. The coating may cover the entirety of the anchoring device 1100 or only a portion of the anchoring device 1100. A thickness of the coating may be even, or may vary along the surface of the anchoring device 1100. The coating may be deposited through a process including a spraying process, dipping process, molding process, wiping process, or other equivalent means of attaching the bioresorbable material to the anchoring device 1100. The coating thickness may vary between approximately 0.001 inches and 0.25 inches. The bioresorbable material serves to form a biological seal between the access port 10 and the body tissue, and to encourage compatibility between the access port 10 and the body tissue.
As illustrated in
The terms “a,” “an,” “the” and similar referents used in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.
Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.
Certain embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations on these described embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor expects skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
Specific embodiments disclosed herein may be further limited in the claims using “consisting of” or “consisting essentially of” language. When used in the claims, whether as filed or added per amendment, the transition term “consisting of” excludes any element, step, or ingredient not specified in the claims. The transition term “consisting essentially of” limits the scope of a claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic(s). Embodiments of the invention so claimed are inherently or expressly described and enabled herein.
In closing, it is to be understood that the embodiments of the invention disclosed herein are illustrative of the principles of the present invention. Other modifications that may be employed are within the scope of the invention. Thus, by way of example, but not of limitation, alternative configurations of the present invention may be utilized in accordance with the teachings herein. Accordingly, the present invention is not limited to that precisely as shown and described.
This application is a continuation in part of, and claims priority to and the benefit of U.S. patent application Ser. No. 12/772,039, entitled “SYSTEM INCLUDING ACCESS PORT AND APPLICATOR TOOL” filed on Apr. 30, 2010, which claims priority to and the benefit of U.S. Provisional Patent Application No. 61/237,641, filed on Aug. 27, 2009, and U.S. Provisional Patent Application No. 61/236,869, filed on Aug. 26, 2009, all of these applications are hereby expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
586113 | Bott | Jul 1897 | A |
2163048 | McKee | Jun 1939 | A |
2737954 | Knapp | Mar 1956 | A |
3569660 | Houldcroft | Mar 1971 | A |
3587115 | Shiley | Jun 1971 | A |
3596660 | Melone | Aug 1971 | A |
3667081 | Burger | Jun 1972 | A |
3688764 | Reed | Sep 1972 | A |
3731352 | Okamoto et al. | May 1973 | A |
3840018 | Heifetz | Oct 1974 | A |
3958562 | Hakim et al. | May 1976 | A |
3971376 | Wichterle | Jul 1976 | A |
4019499 | Fitzgerald | Apr 1977 | A |
4118805 | Reimels | Oct 1978 | A |
4151835 | Showell et al. | May 1979 | A |
4161943 | Nogier | Jul 1979 | A |
4164943 | Hill et al. | Aug 1979 | A |
4190040 | Schulte | Feb 1980 | A |
4233992 | Bisping | Nov 1980 | A |
4265252 | Chubbuck et al. | May 1981 | A |
4280722 | Guptil et al. | Jul 1981 | A |
4413985 | Wellner | Nov 1983 | A |
4474572 | McNaughton et al. | Oct 1984 | A |
4502335 | Wamstad et al. | Mar 1985 | A |
4543088 | Bootman et al. | Sep 1985 | A |
4557722 | Harris | Dec 1985 | A |
4569675 | Prosl et al. | Feb 1986 | A |
4588394 | Schulte et al. | May 1986 | A |
4592339 | Kuzmak et al. | Jun 1986 | A |
4592355 | Antebi | Jun 1986 | A |
4634427 | Hannula et al. | Jan 1987 | A |
4655765 | Swift | Apr 1987 | A |
4673394 | Fenton et al. | Jun 1987 | A |
4692146 | Hilger | Sep 1987 | A |
4696288 | Kuzmak et al. | Sep 1987 | A |
4704103 | Stober et al. | Nov 1987 | A |
4710174 | Moden et al. | Dec 1987 | A |
4738657 | Hancock et al. | Apr 1988 | A |
4767410 | Moden et al. | Aug 1988 | A |
4772270 | Wiita et al. | Sep 1988 | A |
4778452 | Moden et al. | Oct 1988 | A |
4781680 | Redmond et al. | Nov 1988 | A |
4796641 | Mills et al. | Jan 1989 | A |
4802885 | Weeks et al. | Feb 1989 | A |
4832054 | Bark | May 1989 | A |
4840615 | Hancock et al. | Jun 1989 | A |
4850227 | Luettgen et al. | Jul 1989 | A |
4858623 | Bradshaw et al. | Aug 1989 | A |
4861341 | Woodburn | Aug 1989 | A |
4881939 | Newman | Nov 1989 | A |
4886501 | Johnston et al. | Dec 1989 | A |
4898585 | Borsanyi et al. | Feb 1990 | A |
4902278 | Maget et al. | Feb 1990 | A |
4904241 | Bark | Feb 1990 | A |
4913702 | Yum et al. | Apr 1990 | A |
4915690 | Cone et al. | Apr 1990 | A |
4929230 | Pfleger | May 1990 | A |
4929236 | Sampson | May 1990 | A |
4966588 | Rayman et al. | Oct 1990 | A |
4967755 | Pohndorf | Nov 1990 | A |
4978338 | Melsky et al. | Dec 1990 | A |
5006115 | McDonald | Apr 1991 | A |
5013298 | Moden et al. | May 1991 | A |
5026344 | Dijkstra et al. | Jun 1991 | A |
5041098 | Loiterman et al. | Aug 1991 | A |
5045060 | Melsky et al. | Sep 1991 | A |
5074868 | Kuzmak | Dec 1991 | A |
5090954 | Geary | Feb 1992 | A |
5092897 | Forte | Mar 1992 | A |
5094244 | Callahan et al. | Mar 1992 | A |
5098397 | Svensson | Mar 1992 | A |
5108377 | Cone et al. | Apr 1992 | A |
5125408 | Basser | Jun 1992 | A |
5133753 | Bark et al. | Jul 1992 | A |
5137529 | Watson et al. | Aug 1992 | A |
5147483 | Melsky et al. | Sep 1992 | A |
5152747 | Olivier | Oct 1992 | A |
5167638 | Felix et al. | Dec 1992 | A |
5185003 | Brethauer | Feb 1993 | A |
5207644 | Strecker | May 1993 | A |
5213574 | Tucker | May 1993 | A |
5226429 | Kuzmak | Jul 1993 | A |
5226894 | Haber et al. | Jul 1993 | A |
5250026 | Ehrlich et al. | Oct 1993 | A |
5273537 | Haskvitz et al. | Dec 1993 | A |
5281205 | McPherson | Jan 1994 | A |
5284479 | de Jong | Feb 1994 | A |
5318545 | Tucker | Jun 1994 | A |
5336194 | Polaschegg et al. | Aug 1994 | A |
5337747 | Neftel | Aug 1994 | A |
5360407 | Leonard et al. | Nov 1994 | A |
5368040 | Carney | Nov 1994 | A |
5387192 | Glantz et al. | Feb 1995 | A |
5391164 | Giampapa | Feb 1995 | A |
5449368 | Kuzmak | Sep 1995 | A |
5476460 | Montalvo | Dec 1995 | A |
5514174 | Heil, Jr. et al. | May 1996 | A |
5540648 | Yoon | Jul 1996 | A |
5556388 | Johlin, Jr. | Sep 1996 | A |
5558641 | Glantz et al. | Sep 1996 | A |
5562617 | Finch, Jr. et al. | Oct 1996 | A |
5571104 | Li | Nov 1996 | A |
5575777 | Cover et al. | Nov 1996 | A |
5601604 | Vincent | Feb 1997 | A |
5637102 | Tolkoff et al. | Jun 1997 | A |
5653755 | Ledergerber | Aug 1997 | A |
5658298 | Vincent et al. | Aug 1997 | A |
5674397 | Pawlak et al. | Oct 1997 | A |
5683447 | Bush et al. | Nov 1997 | A |
5688237 | Rozga et al. | Nov 1997 | A |
5695490 | Flaherty et al. | Dec 1997 | A |
5716342 | Dumbraveanu et al. | Feb 1998 | A |
5718682 | Tucker | Feb 1998 | A |
5722957 | Steinbach | Mar 1998 | A |
5748200 | Funahashi | May 1998 | A |
5810735 | Halperin et al. | Sep 1998 | A |
5814019 | Steinbach et al. | Sep 1998 | A |
5833654 | Powers et al. | Nov 1998 | A |
5843033 | Ropiak | Dec 1998 | A |
RE36176 | Kuzmak | Mar 1999 | E |
5883654 | Katsuyama | Mar 1999 | A |
5902598 | Chen et al. | May 1999 | A |
5906596 | Tallarida | May 1999 | A |
5910149 | Kuzmak | Jun 1999 | A |
5911704 | Humes | Jun 1999 | A |
5931829 | Burbank et al. | Aug 1999 | A |
5932460 | Mills et al. | Aug 1999 | A |
5935083 | Williams | Aug 1999 | A |
5938669 | Klaiber et al. | Aug 1999 | A |
5951512 | Dalton | Sep 1999 | A |
6024704 | Meador et al. | Feb 2000 | A |
6030369 | Engelson et al. | Feb 2000 | A |
6039712 | Fogarty et al. | Mar 2000 | A |
6074341 | Anderson et al. | Jun 2000 | A |
6090066 | Schnell | Jul 2000 | A |
6098405 | Miyata et al. | Aug 2000 | A |
6102678 | Peclat | Aug 2000 | A |
6102922 | Jakobsson et al. | Aug 2000 | A |
6123700 | Mills et al. | Sep 2000 | A |
6152885 | Taepke | Nov 2000 | A |
6171252 | Roberts | Jan 2001 | B1 |
6183449 | Sibbitt | Feb 2001 | B1 |
6213973 | Eliasen et al. | Apr 2001 | B1 |
6221024 | Miesel | Apr 2001 | B1 |
6234973 | Meador et al. | May 2001 | B1 |
6258079 | Burbank et al. | Jul 2001 | B1 |
6264676 | Gellman et al. | Jul 2001 | B1 |
6270475 | Bestetti | Aug 2001 | B1 |
6283949 | Roorda | Sep 2001 | B1 |
6321124 | Cigaina | Nov 2001 | B1 |
6349740 | Cho et al. | Feb 2002 | B1 |
6432040 | Meah | Aug 2002 | B1 |
6450946 | Forsell | Sep 2002 | B1 |
6453907 | Forsell | Sep 2002 | B1 |
6454699 | Forsell | Sep 2002 | B1 |
6459917 | Gowda et al. | Oct 2002 | B1 |
6461293 | Forsell | Oct 2002 | B1 |
6464628 | Forsell | Oct 2002 | B1 |
6470213 | Alley | Oct 2002 | B1 |
6470892 | Forsell | Oct 2002 | B1 |
6478783 | Moorehead | Nov 2002 | B1 |
6511490 | Robert | Jan 2003 | B2 |
6547801 | Dargent et al. | Apr 2003 | B1 |
6572587 | Lerman et al. | Jun 2003 | B2 |
6589184 | Noren et al. | Jul 2003 | B2 |
6648849 | Tenhuisen et al. | Nov 2003 | B2 |
6666845 | Hooper et al. | Dec 2003 | B2 |
6689100 | Connelly et al. | Feb 2004 | B2 |
6723053 | Ackerman et al. | Apr 2004 | B2 |
6733519 | Lashinski et al. | May 2004 | B2 |
6792309 | Noren | Sep 2004 | B1 |
6810880 | Jennings, Jr. et al. | Nov 2004 | B1 |
6813964 | Clark et al. | Nov 2004 | B1 |
6860857 | Noren et al. | Mar 2005 | B2 |
6915162 | Noren et al. | Jul 2005 | B2 |
6921267 | van Oostrom et al. | Jul 2005 | B2 |
6929631 | Brugger et al. | Aug 2005 | B1 |
6939299 | Petersen et al. | Sep 2005 | B1 |
6953444 | Rosenberg | Oct 2005 | B2 |
6964204 | Clark et al. | Nov 2005 | B2 |
6966875 | Longobardi | Nov 2005 | B1 |
6997914 | Smith et al. | Feb 2006 | B2 |
7017583 | Forsell | Mar 2006 | B2 |
7020531 | Colliou et al. | Mar 2006 | B1 |
7056286 | Ravenscroft et al. | Jun 2006 | B2 |
7063669 | Brawner et al. | Jun 2006 | B2 |
7073387 | Zdeblick et al. | Jul 2006 | B2 |
7082843 | Clark et al. | Aug 2006 | B2 |
7131945 | Fink et al. | Nov 2006 | B2 |
7144400 | Byrum et al. | Dec 2006 | B2 |
7149587 | Wardle et al. | Dec 2006 | B2 |
7191007 | Desai et al. | Mar 2007 | B2 |
7195774 | Carvalho et al. | Mar 2007 | B2 |
7223239 | Schulze | May 2007 | B2 |
7226419 | Lane et al. | Jun 2007 | B2 |
7261003 | McDonald et al. | Aug 2007 | B2 |
7267645 | Anderson et al. | Sep 2007 | B2 |
7282023 | Frering | Oct 2007 | B2 |
7311716 | Byrum | Dec 2007 | B2 |
7311717 | Egle | Dec 2007 | B2 |
7351198 | Byrum et al. | Apr 2008 | B2 |
7351226 | Herskowitz | Apr 2008 | B1 |
7351240 | Hassler, Jr. et al. | Apr 2008 | B2 |
7353747 | Swayze et al. | Apr 2008 | B2 |
7364542 | Jambor et al. | Apr 2008 | B2 |
7367937 | Jambor et al. | May 2008 | B2 |
7374557 | Conlon | May 2008 | B2 |
7374565 | Hassler, Jr. et al. | May 2008 | B2 |
7390294 | Hassler, Jr. | Jun 2008 | B2 |
7413547 | Lichtscheidl et al. | Aug 2008 | B1 |
7416528 | Crawford et al. | Aug 2008 | B2 |
7437951 | McDonald et al. | Oct 2008 | B2 |
7438718 | Milliman et al. | Oct 2008 | B2 |
7445614 | Bunodiere et al. | Nov 2008 | B2 |
7468038 | Ye et al. | Dec 2008 | B2 |
7500944 | Byrum et al. | Mar 2009 | B2 |
7510530 | Hashimoto et al. | Mar 2009 | B2 |
7513892 | Haarala et al. | Apr 2009 | B1 |
7530943 | Lechner | May 2009 | B2 |
7553298 | Hunt | Jun 2009 | B2 |
7561916 | Hunt | Jul 2009 | B2 |
7580746 | Gilkerson et al. | Aug 2009 | B2 |
7591185 | Mothilal et al. | Sep 2009 | B1 |
7593777 | Gerber | Sep 2009 | B2 |
7634319 | Schneider et al. | Dec 2009 | B2 |
7651483 | Byrum | Jan 2010 | B2 |
7658196 | Ferreri et al. | Feb 2010 | B2 |
7699770 | Hassler, Jr. et al. | Apr 2010 | B2 |
7708722 | Glenn | May 2010 | B2 |
7762998 | Birk et al. | Jul 2010 | B2 |
7762999 | Byrum | Jul 2010 | B2 |
7775215 | Hassler, Jr. et al. | Aug 2010 | B2 |
7775966 | Dlugos et al. | Aug 2010 | B2 |
7811275 | Birk et al. | Oct 2010 | B2 |
7850660 | Uth et al. | Dec 2010 | B2 |
7862546 | Conlon et al. | Jan 2011 | B2 |
7901381 | Birk et al. | Mar 2011 | B2 |
7909754 | Hassler, Jr. et al. | Mar 2011 | B2 |
7909804 | Stats | Mar 2011 | B2 |
7972315 | Birk et al. | Jul 2011 | B2 |
8007474 | Uth et al. | Aug 2011 | B2 |
8079989 | Birk et al. | Dec 2011 | B2 |
8231609 | Pang et al. | Jul 2012 | B2 |
8366687 | Girard et al. | Feb 2013 | B2 |
20010052141 | Andersen | Dec 2001 | A1 |
20020013545 | Soltanpour et al. | Jan 2002 | A1 |
20020058969 | Noren et al. | May 2002 | A1 |
20020087147 | Hooper et al. | Jul 2002 | A1 |
20020095181 | Beyar | Jul 2002 | A1 |
20020139208 | Yatskov | Oct 2002 | A1 |
20020198548 | Robert | Dec 2002 | A1 |
20030045800 | Noren et al. | Mar 2003 | A1 |
20030045910 | Sorensen et al. | Mar 2003 | A1 |
20030073880 | Polsky et al. | Apr 2003 | A1 |
20030078506 | Noren et al. | Apr 2003 | A1 |
20030139690 | Aebli et al. | Jul 2003 | A1 |
20040064110 | Forsell | Apr 2004 | A1 |
20040065615 | Hooper et al. | Apr 2004 | A1 |
20040068233 | DiMatteo | Apr 2004 | A1 |
20040082908 | Whitehurst et al. | Apr 2004 | A1 |
20040111050 | Smedley et al. | Jun 2004 | A1 |
20040204692 | Eliasen | Oct 2004 | A1 |
20040254536 | Conlon et al. | Dec 2004 | A1 |
20040254537 | Conlon | Dec 2004 | A1 |
20040260229 | Meir | Dec 2004 | A1 |
20040260319 | Egle | Dec 2004 | A1 |
20040267288 | Byrum et al. | Dec 2004 | A1 |
20040267291 | Byrum et al. | Dec 2004 | A1 |
20040267292 | Byrum et al. | Dec 2004 | A1 |
20040267293 | Byrum et al. | Dec 2004 | A1 |
20040267377 | Egle | Dec 2004 | A1 |
20050010177 | Tsai | Jan 2005 | A1 |
20050049578 | Tu et al. | Mar 2005 | A1 |
20050070875 | Kulessa | Mar 2005 | A1 |
20050070937 | Jambor et al. | Mar 2005 | A1 |
20050085778 | Parks | Apr 2005 | A1 |
20050092093 | Kang et al. | May 2005 | A1 |
20050131325 | Chen et al. | Jun 2005 | A1 |
20050131352 | Conlon | Jun 2005 | A1 |
20050131383 | Chen et al. | Jun 2005 | A1 |
20050148956 | Conlon | Jul 2005 | A1 |
20050149143 | Libbus et al. | Jul 2005 | A1 |
20050209573 | Brugger et al. | Sep 2005 | A1 |
20050240155 | Conlon | Oct 2005 | A1 |
20050240156 | Conlon | Oct 2005 | A1 |
20050267500 | Hassler, Jr. et al. | Dec 2005 | A1 |
20050277899 | Conlon | Dec 2005 | A1 |
20050283041 | Egle | Dec 2005 | A1 |
20050283118 | Uth | Dec 2005 | A1 |
20050283119 | Uth | Dec 2005 | A1 |
20060074439 | Garner et al. | Apr 2006 | A1 |
20060122578 | Lord et al. | Jun 2006 | A1 |
20060161186 | Hassler, Jr. et al. | Jul 2006 | A1 |
20060173423 | Conlon | Aug 2006 | A1 |
20060173424 | Conlon | Aug 2006 | A1 |
20060178647 | Stats | Aug 2006 | A1 |
20060178648 | Barron et al. | Aug 2006 | A1 |
20060184141 | Smith et al. | Aug 2006 | A1 |
20060189887 | Hassler, Jr. et al. | Aug 2006 | A1 |
20060189888 | Hassler, Jr. et al. | Aug 2006 | A1 |
20060190039 | Birk | Aug 2006 | A1 |
20060199997 | Hassler, Jr. et al. | Sep 2006 | A1 |
20060211912 | Dlugos et al. | Sep 2006 | A1 |
20060211913 | Dlugos et al. | Sep 2006 | A1 |
20060211914 | Hassler, Jr. et al. | Sep 2006 | A1 |
20060217668 | Schulze et al. | Sep 2006 | A1 |
20060217673 | Schulze et al. | Sep 2006 | A1 |
20060235445 | Birk | Oct 2006 | A1 |
20060235448 | Roslin et al. | Oct 2006 | A1 |
20060247539 | Schugt et al. | Nov 2006 | A1 |
20060266128 | Clark et al. | Nov 2006 | A1 |
20060293625 | Hunt et al. | Dec 2006 | A1 |
20060293626 | Byrum et al. | Dec 2006 | A1 |
20060293627 | Byrum | Dec 2006 | A1 |
20060293628 | Hunt et al. | Dec 2006 | A1 |
20070010790 | Byrum et al. | Jan 2007 | A1 |
20070015954 | Dlugos | Jan 2007 | A1 |
20070015955 | Tsonton | Jan 2007 | A1 |
20070016231 | Jambor et al. | Jan 2007 | A1 |
20070027356 | Ortiz | Feb 2007 | A1 |
20070038255 | Kieval et al. | Feb 2007 | A1 |
20070060959 | Salo et al. | Mar 2007 | A1 |
20070073250 | Schneiter | Mar 2007 | A1 |
20070078391 | Wortley | Apr 2007 | A1 |
20070088336 | Dalton | Apr 2007 | A1 |
20070088391 | McAlexander | Apr 2007 | A1 |
20070129765 | Gilkerson et al. | Jun 2007 | A1 |
20070135758 | Childers et al. | Jun 2007 | A1 |
20070149947 | Byrum | Jun 2007 | A1 |
20070156013 | Birk | Jul 2007 | A1 |
20070158769 | You | Jul 2007 | A1 |
20070161958 | Glenn | Jul 2007 | A1 |
20070167672 | Dlugos et al. | Jul 2007 | A1 |
20070173685 | Jambor et al. | Jul 2007 | A1 |
20070185462 | Byrum | Aug 2007 | A1 |
20070191717 | Rosen et al. | Aug 2007 | A1 |
20070205384 | Kurosawa | Sep 2007 | A1 |
20070208313 | Conlon | Sep 2007 | A1 |
20070213837 | Ferreri et al. | Sep 2007 | A1 |
20070219510 | Zinn et al. | Sep 2007 | A1 |
20070235083 | Dlugos | Oct 2007 | A1 |
20070250086 | Wiley et al. | Oct 2007 | A1 |
20070255165 | Uesugi et al. | Nov 2007 | A1 |
20070255234 | Haase et al. | Nov 2007 | A1 |
20070265666 | Roberts et al. | Nov 2007 | A1 |
20070282196 | Birk et al. | Dec 2007 | A1 |
20070293829 | Conlon et al. | Dec 2007 | A1 |
20080009680 | Hassler, Jr. | Jan 2008 | A1 |
20080015406 | Dlugos et al. | Jan 2008 | A1 |
20080039772 | Chantriaux et al. | Feb 2008 | A1 |
20080058632 | Tai et al. | Mar 2008 | A1 |
20080097496 | Chang et al. | Apr 2008 | A1 |
20080114308 | di Palma et al. | May 2008 | A1 |
20080119798 | Chantriaux et al. | May 2008 | A1 |
20080243093 | Kalpin et al. | Oct 2008 | A1 |
20080249806 | Dlugos et al. | Oct 2008 | A1 |
20080250340 | Dlugos et al. | Oct 2008 | A1 |
20080250341 | Dlugos et al. | Oct 2008 | A1 |
20080255403 | Voegele et al. | Oct 2008 | A1 |
20080255414 | Voegele et al. | Oct 2008 | A1 |
20080255425 | Voegele et al. | Oct 2008 | A1 |
20080255459 | Voegele et al. | Oct 2008 | A1 |
20080255537 | Voegele et al. | Oct 2008 | A1 |
20080281412 | Smith et al. | Nov 2008 | A1 |
20080287969 | Tsonton et al. | Nov 2008 | A1 |
20080287974 | Widenhouse et al. | Nov 2008 | A1 |
20080312553 | Timmons | Dec 2008 | A1 |
20080319435 | Rioux et al. | Dec 2008 | A1 |
20090018608 | Schwartz et al. | Jan 2009 | A1 |
20090048524 | Wildau et al. | Feb 2009 | A1 |
20090054914 | Lechner | Feb 2009 | A1 |
20090062825 | Pool et al. | Mar 2009 | A1 |
20090071258 | Kouda et al. | Mar 2009 | A1 |
20090076466 | Quebbemann et al. | Mar 2009 | A1 |
20090082757 | Rogers et al. | Mar 2009 | A1 |
20090082793 | Birk | Mar 2009 | A1 |
20090093768 | Conlon et al. | Apr 2009 | A1 |
20090099538 | Paganon | Apr 2009 | A1 |
20090105735 | Stam et al. | Apr 2009 | A1 |
20090112308 | Kassem | Apr 2009 | A1 |
20090118572 | Lechner | May 2009 | A1 |
20090149874 | Ortiz et al. | Jun 2009 | A1 |
20090157106 | Marcotte | Jun 2009 | A1 |
20090157107 | Kierath et al. | Jun 2009 | A1 |
20090157113 | Marcotte et al. | Jun 2009 | A1 |
20090171375 | Coe et al. | Jul 2009 | A1 |
20090171378 | Coe et al. | Jul 2009 | A1 |
20090171379 | Coe et al. | Jul 2009 | A1 |
20090192404 | Ortiz et al. | Jul 2009 | A1 |
20090192415 | Ortiz et al. | Jul 2009 | A1 |
20090192533 | Dlugos, Jr. et al. | Jul 2009 | A1 |
20090192534 | Ortiz et al. | Jul 2009 | A1 |
20090192541 | Ortiz et al. | Jul 2009 | A1 |
20090198261 | Schweikert | Aug 2009 | A1 |
20090202387 | Dlugos, Jr. et al. | Aug 2009 | A1 |
20090204131 | Ortiz et al. | Aug 2009 | A1 |
20090204132 | Ortiz et al. | Aug 2009 | A1 |
20090209995 | Byrum et al. | Aug 2009 | A1 |
20090216255 | Coe et al. | Aug 2009 | A1 |
20090221974 | Paganon | Sep 2009 | A1 |
20090222031 | Axelsson | Sep 2009 | A1 |
20090222065 | Dlugos, Jr. et al. | Sep 2009 | A1 |
20090227862 | Smith et al. | Sep 2009 | A1 |
20090228028 | Coe | Sep 2009 | A1 |
20090228072 | Coe et al. | Sep 2009 | A1 |
20090248125 | Brostrom | Oct 2009 | A1 |
20090248126 | Nippoldt et al. | Oct 2009 | A1 |
20090254052 | Birk et al. | Oct 2009 | A1 |
20090259190 | Birk et al. | Oct 2009 | A1 |
20090259191 | Birk et al. | Oct 2009 | A1 |
20090259231 | Birk et al. | Oct 2009 | A1 |
20090264901 | Franklin | Oct 2009 | A1 |
20090270904 | Birk et al. | Oct 2009 | A1 |
20090299216 | Chen et al. | Dec 2009 | A1 |
20090299672 | Zhang et al. | Dec 2009 | A1 |
20090306462 | Lechner | Dec 2009 | A1 |
20090308169 | Mothilal et al. | Dec 2009 | A1 |
20100087843 | Bertolote et al. | Apr 2010 | A1 |
20100100079 | Berkcan et al. | Apr 2010 | A1 |
20100114149 | Albrecht et al. | May 2010 | A1 |
20100130941 | Conlon et al. | May 2010 | A1 |
20100152532 | Marcotte | Jun 2010 | A1 |
20100191271 | Lau et al. | Jul 2010 | A1 |
20100211085 | Uth et al. | Aug 2010 | A1 |
20100217198 | Franklin et al. | Aug 2010 | A1 |
20100217199 | Uth et al. | Aug 2010 | A1 |
20100217200 | Uth et al. | Aug 2010 | A1 |
20100228080 | Tavori et al. | Sep 2010 | A1 |
20100234808 | Uth et al. | Sep 2010 | A1 |
20110054407 | Olroyd et al. | Mar 2011 | A1 |
20110082426 | Conlon et al. | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
1250382 | Apr 2000 | CN |
1367670 | Sep 2002 | CN |
3927001 | Feb 1991 | DE |
4211045 | Oct 1993 | DE |
19751791 | May 1997 | DE |
19745654 | Apr 1999 | DE |
0343910 | Nov 1989 | EP |
0611561 | Sep 1993 | EP |
0858814 | Aug 1998 | EP |
0867197 | Sep 1998 | EP |
1057457 | Dec 2000 | EP |
1346753 | Sep 2003 | EP |
1396242 | Mar 2004 | EP |
1396243 | Mar 2004 | EP |
1488824 | Dec 2004 | EP |
1543861 | Jun 2005 | EP |
1547643 | Jun 2005 | EP |
1591140 | Nov 2005 | EP |
1736194 | Dec 2006 | EP |
1736195 | Dec 2006 | EP |
1736196 | Dec 2006 | EP |
1736197 | Dec 2006 | EP |
1736198 | Dec 2006 | EP |
1736199 | Dec 2006 | EP |
1870126 | Dec 2007 | EP |
1985263 | Oct 2008 | EP |
2070494 | Jun 2009 | EP |
2095798 | Sep 2009 | EP |
2740977 | May 1997 | FR |
2797181 | Feb 2001 | FR |
2823663 | Oct 2002 | FR |
2851168 | Aug 2004 | FR |
2855744 | Dec 2004 | FR |
2916980 | Dec 2008 | FR |
2119877 | May 1990 | JP |
8107934 | Apr 1996 | JP |
1823791 | Jun 1991 | SU |
WO 9220519 | Nov 1992 | WO |
WO 9422520 | Oct 1994 | WO |
WO 9640357 | Dec 1996 | WO |
WO 9701370 | Jan 1997 | WO |
WO 9920338 | Apr 1999 | WO |
WO 9926543 | Jun 1999 | WO |
WO 9934859 | Jul 1999 | WO |
WO 0015158 | Mar 2000 | WO |
WO 0033901 | Jun 2000 | WO |
WO 0110359 | Feb 2001 | WO |
WO 0149245 | Jul 2001 | WO |
WO 01080926 | Nov 2001 | WO |
WO 0195813 | Dec 2001 | WO |
WO 0210667 | Feb 2002 | WO |
WO 02074381 | Sep 2002 | WO |
WO 03105732 | Dec 2003 | WO |
WO 2004016971 | Mar 2004 | WO |
WO 2005037055 | Apr 2005 | WO |
WO 2005072627 | Aug 2005 | WO |
WO 2006021695 | Mar 2006 | WO |
WO 2009007526 | Jan 2009 | WO |
WO 2009129474 | Oct 2009 | WO |
Entry |
---|
Helioscopie Product Insert for Heliogast, pp. 1-11 (undated). |
Autumn K. et al.; “Evidence of Van Der Waals Adhesion in Gecko Setae”; PNAS; vol. 99; No. 19; pp. 12252-12256; Sep. 17, 2012. |
Geim AK. et al.; “Microfabricated Adhesive Mimicking Gecko Foot-Hair”; Nature Materials Abstract only; vol. 2; No. 7; 2003. |
Yamagami, Takuji; “Technical Developments: Use of Targeting Guide Wire in Left Subclavian Puncture During Percutaneous Implantation of Port-Catheter Systems Using the Catheter Tip Fixation Method” European Radiology; vol. 13; pp. 863-866; 2003. |
Yurdumakan B., et al.; “Synthetic Gecko Foot-Hairs from Multiwalled Carbon Nanotubes”; The Royal Society of Chemistry; p. 3799-3801; 2005. |
http://en/wikipedia.org/Injection—Molding. |
Number | Date | Country | |
---|---|---|---|
20110251453 A1 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
61237641 | Aug 2009 | US | |
61236869 | Aug 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12772039 | Apr 2010 | US |
Child | 12904422 | US |