The invention relates generally to implantable medical monitoring and/or stimulation systems and methods, and more particularly to monitoring and/or stimulation systems and methods that detect electromyogram information for use in disease/pathological condition diagnosis and treatment.
Lack of sleep and/or decreased sleep quality may have a number of causal factors including, e.g., nerve or muscle disorders, respiratory disturbances, and emotional conditions, such as depression and anxiety. Chronic, long-term sleep-related disorders e.g., chronic insomnia, sleep-disordered breathing, and sleep-related movement disorders, including restless leg syndrome (RLS), periodic limb movement disorder (PLMD) and bruxism, may significantly affect a patient's sleep quality and quality of life. Restless leg syndrome and periodic limb movement disorder are closely associated disorders also known as Myoclonus and Ekbom Syndrome, respectively. RLS and PLMD affect 2-8% of the population in the United States.
RLS and PLMD are emerging as one of the more common sleep disorders, especially among older patients. Restless leg syndrome is a disorder causing unpleasant crawling, prickling, or tingling sensations in the legs and feet and an urge to move them for relief. RLS leads to constant leg movement during the day and insomnia or fragmented sleep at night. Severe RLS is most common in elderly people, although symptoms may develop at any age. In some cases, it may be linked to other conditions such as anemia, pregnancy, or diabetes.
Many RLS patients also have PLMD, a disorder that causes repetitive jerking movements of the limbs, especially the legs. PLMD movements may be characterized, for example, by periodic flexion of one or both legs involving bending at the hip and knee with upward bending of the foot and the great toe, resembling a flexion reflex. A normal healthy person may have five of these movements per hour. The diagnosis of PLMD is given when more than five movements per hour occur. These movements cause repeated arousals and severely fragmented sleep. Because RLS patients may also suffer from sleep-related PLMD, these patients are often awakened, and their ability to return to sleep is delayed by RLS.
Both genders are affected, with a slightly higher incidence in women. These conditions are seen more commonly with advancing age. The prevalence of PLMD or RLS is 2% of the population of ages less than 30, 5% of ages 30 to 50, and 25% of ages 50-60. The highest prevalence is seen in age 65 or older, with 44% of the population affected. While usually diagnosed in older groups, these disorders may be traced to childhood. Hyperactive, fidgeting children or youths often labeled with “growing pains” may actually be showing the early manifestations of PLMD and RLS.
For both PLMD and RLS patients, sleep quality deteriorates. When a patient tries to fall asleep, the leg discomfort begins. In severe cases, patients only sleep a few hours at night, resulting in excessive daytime sleepiness and disruption of the normal daily routine. RLS and PLMD patients often complain of irritability, anxiety, and depression. The severity of RLS and/or PLMD ranges from infrequent minor discomfort to daily agony that leads some patients to contemplate suicide.
Symptoms of PLMD may come and go through the night and over the course of one's life. PLMD episodes may last a few minutes or several hours. There may be an interval of days, weeks or months between episodes. PLMD patients may experience sudden but rhythmic limb jerks occurring periodically, e.g., every 20 to 40 seconds. PLMD episodes may be seen primarily in the first third of the night, during non-REM sleep. Patients with RLS often have PLMD, but patients with PLMD do not always have RLS. Polysomnographic studies indicate that about 70% to 90% of patients with RLS have PLMD. Polysomnographic studies are also used to detect disordered breathing. Patients with RLS and/or PLMD may also have a disordered breathing disorder contributing to their deterioration of sleep quality.
Disordered breathing refers to a wide spectrum of respiratory conditions that involve disruption of the normal respiratory cycle. Although disordered breathing typically occurs during sleep, the condition may also occur while the patient is awake. Unfortunately, disordered breathing is often undiagnosed. If left untreated, the effects of disordered breathing may result in serious health consequences for the patient.
Various types of disordered respiration have been identified, including, for example, apnea, hypopnea, dyspnea, hyperpnea, tachypnea, and periodic breathing, including Cheyne-Stokes respiration (CSR). Apnea is a fairly common disorder characterized by periods of interrupted breathing. Apnea is typically classified based on its etiology.
One type of apnea, denoted obstructive apnea, occurs when the patient's airway is obstructed by the collapse of soft tissue in the rear of the throat. Central apnea is caused by a derangement of the central nervous system control of respiration. The patient ceases to breathe when control signals from the brain to the respiratory muscles are absent or interrupted. Mixed apnea is a combination of the central and obstructive apnea types.
Regardless of the type of apnea, people experiencing an apnea event stop breathing for a period of time. The cessation of breathing may occur repeatedly during sleep, sometimes hundreds of times a night and sometimes for a minute or longer. In addition to apnea, other types of disordered respiration have been identified, including hypopnea (shallow breathing), tachypnea (rapid breathing), hyperpnea (heavy breathing), and dyspnea (labored breathing). Combinations of the respiratory cycles described above may be observed, including, for example, periodic breathing and Cheyne-Stokes breathing.
Periodic breathing is characterized by cyclic respiratory patterns that may exhibit rhythmic rises and falls in tidal volume. Cheyne-Stokes respiration is a specific form of periodic breathing wherein the tidal volume decreases to zero resulting in apneic intervals. The breathing interruptions of periodic breathing and CSR may be associated with central apnea, or may be obstructive in nature. CSR is frequently observed in patients with congestive heart failure (CHF) and is associated with an increased risk of accelerated CHF progression. Because of the cardiovascular implications, therapy for respiration-related sleep disorders is of particular interest.
Disordered breathing affects a significant percentage of people. Sleep-disordered breathing is particularly prevalent and is associated with excessive daytime sleepiness, systemic hypertension, increased risk of stroke, angina and myocardial infarction. Respiratory disruption may be particularly serious for patients concurrently suffering from cardiovascular deficiencies, such as congestive heart failure.
An adequate duration and quality of sleep is required to maintain physiological homeostasis. Untreated, sleep disturbances may have a number of adverse health and quality of life consequences ranging from cognitive impairment, headaches, degradation of social and work-related activities, and increased risk of automobile and other accidents.
The present invention is directed to systems and methods for detecting sleep-related disorders involving sensing physiological signals including at least muscle movement signals. Sleep-related disorders are detected using the sensed physiological signals. The sleep-related disorders include at least an involuntary muscle movement disorder and sleep-disordered breathing. The physiological signals may include movement signals, such as electromyogram signals, at least some of which may be sensed from one or more intramuscular and/or skin/surface locations. The physiological signals may include transthoracic impedance signals, which may be sensed implantably.
Embodiments of methods of detecting sleep-related disorders may involve detecting one or more sleep stages using muscle movement signals. Methods may also involve delivering and/or controlling a therapy to treat one or more of the detected sleep-related disorders, such as a respiratory therapy, a cardiac pacing therapy, a nerve stimulation therapy, and/or a drug therapy.
Embodiments of methods of the present invention may involve detecting the sleep-related disorders patient-externally and/or patient-internally. Detecting the sleep-related disorders may involve detecting a first sleep-related disorder patient-internally and detecting a second sleep-related disorder patient-externally. Methods may further involve detecting one or more sleep stages using the muscle movement signals.
Sleep-disordered breathing may include sleep apnea, hypopnea, and/or Cheyne-Stokes respiration, and sleep-related disorders may include bruxism, periodic limb movement disorder, and/or restless leg syndrome. One or both of the physiological signals and information associated with the detected sleep-related disorders may be communicated to a patient-external processing system or an implantable medical device. Methods may further involve delivering and/or controlling a therapy to treat one or more of the detected sleep-related disorders, such as by delivering a respiratory therapy, a cardiac pacing therapy, a nerve stimulation therapy, and/or a drug therapy.
According to another embodiment, a system for detecting sleep-related disorders includes one or more movement sensors, such as electromyogram (EMG) sensors, configured for sensing (internally and/or externally) movement of skeletal musculature and a sensor configured to sense a parameter associated with sleep-disordered breathing (SDB). A processor may be communicatively coupled to the movement sensors and the SDB sensor for detecting sleep-disordered breathing based on the sensed parameter and detecting an involuntary muscle movement disorder using signals produced by the movement sensors. The processor may be disposed in an implantable housing.
The processor may be disposed in a patient-external and/or patient-internal processing system. For example, the processor may be a networked processor, a component of a cardiac rhythm management system, a component of a respiratory therapy system, and/or a component of a positive airway pressure device.
The SDB sensor and/or sleep detector may include a transthoracic impedance sensor. The sleep detector may be communicatively coupled to the processor. Conditions detected by the processor include hypopnea, bruxism, involuntary muscle movement disorder, periodic limb movement disorder, and/or restless leg syndrome. A therapy delivery system may be configured to treat the sleep-disordered breathing and involuntary muscle movement disorder. A cardiac rhythm management system, a drug delivery device, a nerve stimulation device, and/or a positive airway pressure device may be configured to treat the sleep-related disorder.
Movement sensors may include one or more accelerometers, one or more electromyogram (EMG) sensors, or a combination of these sensors. The system may include a communications interface for communicating acquired movement data and/or detection information to a patient-external and/or patient-internal processing system. Control signals may also be communicated unidirectionally or bidirectionally between the system and a remote processing system.
The above summary of the present invention is not intended to describe each embodiment or every implementation of the present invention. Advantages and attainments, together with a more complete understanding of the invention, will become apparent and appreciated by referring to the following detailed description and claims taken in conjunction with the accompanying drawings.
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail below. It is to be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.
In the following description of the illustrated embodiments, references are made to the accompanying drawings, which form a part hereof, and in which are shown by way of illustration, various embodiments by which the invention may be practiced. It is to be understood that other embodiments may be utilized, and structural and functional changes may be made without departing from the scope of the invention.
Methods, devices and systems in accordance with the present invention may include one or more of the features, structures, methods, or combinations thereof described herein. It is intended that methods, devices and systems in accordance with the present invention need not include all of the features and functions described herein, but may be implemented to include selected features and functions that provide for useful structures and/or functionality.
Disorders and diseases affecting the interdependent physiological systems of the human body may be more effectively diagnosed and treated using a coordinated approach. Various embodiments of the invention are implemented using medical systems employing one or a number of patient-external and/or patient-internal medical devices. Medical devices may communicate or otherwise operate in concert or in a stand-alone manner to provide more comprehensive patient monitoring, diagnosis, and therapy.
A number of disorders, for example, sleep-disordered breathing and movement disorders such as PLMD, occur primarily while the patient is asleep. Information about the patient's sleep stage may be used to enhance sleep monitoring and/or diagnosis of a variety of disorders. In addition, it may be useful to provide a first therapy while the patient is awake and a second therapy while the patient is asleep. Detection of muscle movement, such as indicated by EMG, may be used to diagnose disorders as well as trigger the sleep-time therapy in a respiratory and/or cardiac device. Data acquired during sleep may assist in diagnosing various sleep-related disorders. The collected data may be stored, displayed, printed, or transmitted to a separate device.
The present invention is directed to systems and methods that acquire and process electromyogram signals in an implantable or partially implantable device. Information acquired from electromyogram sensors may be used in connection with patient monitoring, diagnosis, and therapy. An implantable system may incorporate EMG and SDB detection for various purposes, including disease/disorder diagnosis, sleep detection, and therapy control, among other functions. The system may include one or more EMG sensors, which may be implemented as one or more patient-internal and/or one or more patient external EMG sensors.
An electromyogram sensor detects the electrical activity of muscles during muscle activity. When muscles are active, they produce an electrical current that is proportional to the level of the muscle activity. The use of EMG sensing devices is helpful in the diagnosis of many pathological conditions.
Electromyogram sensing devices of the present invention may facilitate diagnosis of many pathological conditions. These conditions include, for example, muscular dystrophy, inflammation of muscles, pinched nerves, peripheral nerve damage (damage to nerves in the arms and legs), amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig disease), myasthenia gravis, disc herniation, sleep-disordered breathing, and movement disorders such as periodic limb movement, restless limb movement, and bruxism.
Embodiments of the present invention are directed to systems and methods for screening and/or diagnosing and subsequently treating an involuntary limb movement condition, such as RLS or PLMD. In accordance with embodiments of the invention, PLMD, RLS, and/or other movement disorders such as bruxism, for example, may be diagnosed using a system that is fully or partially implantable. A partially or fully implantable device, such as a cardiac rhythm management system, may incorporate a movement detector. One or more movement sensors are coupled to the movement detector within the implantable device. The movement sensors may include any sensor or any combination of sensors capable of detecting motion and/or muscle activity associated with motion, such as accelerometers, electromyogram (EMG) sensors, and/or a combination of one or more accelerometers and one or more EMG sensors.
Signals from the movement sensors may be received and processed by the movement detector in the implantable device. The movement data may be stored in the implantable device or communicated to an external processing system, either of which may process the sensed movement information. Movement information may be processed, trended, displayed, etc. locally or remotely to detect presence of an involuntary limb movement condition.
A significant percentage of patients between the ages of 30 and 60 years experience some symptoms of disordered breathing as well as sleep-related muscle disorders. Although disordered breathing may occur while the patient is awake, it more often occurs during sleep. Sleep-disordered breathing is associated with excessive daytime sleepiness, systemic hypertension, increased risk of stroke, angina and myocardial infarction. Disordered breathing is particularly prevalent among congestive heart failure patients, and may contribute to the progression of heart failure.
Various therapies have been used to treat central and/or obstructive disordered breathing episodes, and may further be used to treat sleep-related muscle disorders. Obstructive sleep apnea has been associated with prolapse of the tongue and its surrounding structure into the pharynx, thus occluding the respiratory pathway. A commonly prescribed treatment for obstructive apnea is continuous positive airway pressure (CPAP). A CPAP device delivers air pressure through a nasal mask worn by the patient. The application of continuous positive airway pressure keeps the patient's throat open, reducing or eliminating the obstruction causing apnea. The term xPAP is used herein as a generic term for any method, system, or device useful for positive airway pressure therapy, including devices using forms of positive airway pressure, whether continuous pressure or variable pressure, as well as gas therapy and/or oxygen therapy devices.
The following discussion, with reference to
The EMG sensor or sensors 120 may be positioned in or on the patient's body at one or more selected locations to sense electrical muscular activity at the one or more selected locations. The location of the EMG sensor or sensors 120 depends on the specific application. For example, one or more EMG sensors 120 may be positioned intramuscularly or on the surface of the skin above the muscle to detect the electrical activity of the muscle.
Intramuscular placement of EMG sensors involves inserting a needle electrode through the skin into the muscle whose electrical activity is to be measured. Because skeletal muscles are often large, several needle electrodes may need to be placed at various locations to obtain an accurate reading of muscle activity.
Signals from EMG sensor or sensors 120 may be transmitted to an EMG detector 112 of the implanted device 110 through leads or using a wireless communications link. The EMG detector 112 receives signals from the EMG sensor or sensors 120 and processes the signals for use by a diagnosis processor 116 and/or a sleep detector 114, for example.
The sleep detector 114 may use EMG information to determine various sleep stages, including REM sleep. The sleep detector 114 may also provide information from the EMG detector 112 to a sleep disordered breathing detector 113, which may use the EMG sensors 120 to detect sleep disordered breathing episodes, and/or may be coupled to one or more SDB sensors 115. It is understood that other component connection/communication architectures are possible in addition to those shown in
In another implementation, one or more EMG sensors 120 and/or SDB sensors 115 may be placed on the housing, header, or lead of an implanted device 110 positioned in the pectoral region of the patient. In one configuration, the EMG sensors 120 may be used to detect atonia of the pectoral muscles during REM sleep. A sleep detector 114 may use information from the EMG detector 112 to facilitate the detection of sleep onset and offset, and to determine the various stages of sleep. Detection of sleep stages may be used, for example, in patient monitoring, diagnosis and/or therapy for various disorders, including sleep-disordered breathing. Techniques involving EMG sensors 120 positioned on an implantable device 110, such as a CRM device, are described in commonly owned U.S. Patent Publication No. 20050043652, which is incorporated by reference herein in its entirety.
The diagnosis processor 116 may use EMG-related information and SDB detection to diagnose a variety of diseases or disorders such as those listed above. Disease/disorder diagnosis may be facilitated using information acquired from the EMG detector 112 associated with the patient's muscle activity, limb movements, and respiratory motions, for example. The diagnosis processor 116 may also use information about the patient's sleep stages to aid in diagnosis.
In various embodiments, the diagnosis processor 116 may use EMG-related information and SDB detection to diagnose disorders and diseases involving muscle dysfunction, such as those caused by muscle inflammation and/or muscular dystrophy for example. The EMG information may be used to diagnose muscle weakness due to nerve disorders, including pinched nerves, peripheral nerve damage, amyotrophic lateral sclerosis (ALS), myasthenia gravis, and disc herniation, for example. The EMG- and SDB-related information may be used to diagnose a variety of movement disorders, such as periodic limb movement disorders and/or restless legs syndrome.
In other embodiments, the diagnosis processor may use information from the EMG detector 112 to diagnose disordered breathing. For example, EMG sensor or sensors 120 may be used to sense activity of the intercostal muscles produced by expansion of the chest during respiration. As previously described, the absence or presence of chest motion may be used to discriminate between central or obstructive apnea.
Alternatively, or additionally, an EMG sensor 120 may be used to detect obstructive apnea based on the degree of patency of the upper airway. Obstructive apnea is caused by upper airway occlusion due to the collapse of soft tissue in the rear of the throat. One or more EMG sensors 120 placed on the patient's chin or jaw may be used to detect muscle activity associated with tongue movement opening the upper airway.
A majority of disordered breathing episodes occur while the patient is sleeping. Sleep-related disorders such as sleep-disordered breathing may be more prevalent during particular sleep stages. Information about sleep stages, and about the frequency, number, and degree of arousals from sleep may be useful in the diagnosis of disordered breathing. Thus, a diagnosis of disordered breathing may be enhanced using sleep information from the sleep detector 114.
In yet another embodiment, diagnosis of various movement disorders, such as periodic limb movement disorder (PLMD), restless leg syndrome (RLS), and bruxism (nighttime teeth grinding) may be facilitated using one or more EMG sensors 120 coupled to an implantable device 110. Periodic limb movement disorder and restless leg syndrome are disorders that involve undesirable movements of the limbs as described in more detail below.
One or more EMG sensors 120 may be placed in or on the muscles of the limbs or other muscles to detect limb movements. For example, EMG sensors 120 placed on or in the anterior tibialis muscles may be used to identify leg movements associated with PLMD and/or RLS. EMG sensors 120 placed on the jaw may be used to identify tempomanidibular disorders such as nighttime teeth grinding or other involuntary jaw movements.
EMG-related information may be trended, stored, displayed, or transmitted from the implantable device 110 to another device. In one embodiment, information from the EMG detector 112, the sleep detector 114, and/or the diagnosis processor 116 is downloaded to a remote device, such as a programmer 160 or advanced patient management system 130 for further analysis by the remote device 130, 160 and/or the patient's physician. Information from the EMG detector, 112 the sleep detector 114, the SDB detector 113, and/or the diagnosis processor 116 may optionally be used to adjust therapy provided to a patient. Therapy provided by the implanted device 110 may be adjusted by the patient's physician or by a remote device, such as an APM 130 device or programmer 160. In one example, the patient's physician may send a command through the programmer 160 or APM device 130 to a therapy control unit 118 in the implanted device 110 to initiate, terminate, or modify therapy. In another example, the APM device 130, 160 may automatically command the implanted device 110 to adjust therapy based on analysis performed in the remote device 130, 160. In another embodiment, the therapy control unit 118 of the implanted device 110 may use information from the EMG detector 112, the sleep detector 114, and/or the diagnosis processor 116, to automatically adjust therapy provided to a patient.
The EMG-related information and SDB detection information acquired by the implantable device 110 may be transferred to other therapy devices, such as drug delivery devices 150, respiration therapy devices 140, and/or nerve stimulation therapy devices 155, such as devices that deliver a transcutaneous electric nerve stimulation therapy.
The EMG-related information acquired by the implantable device 110 may be transferred to other therapy devices (internal or external), such as drug delivery devices 150 and/or nerve stimulation therapy devices 155. For example, transcutaneous electric nerve stimulation may improve symptoms in some RLS sufferers who also have PLMD. Electrical stimulation may be applied to an area of the legs or feet, usually before bedtime, for about 15 to 30 minutes. Transcutaneous electric nerve stimulation therapy has been found to be helpful in reducing nighttime leg jerking.
The transferred information may be used to adjust the therapy delivered by one or more of the therapy devices 140, 150, 155, or used in further diagnosis and/or monitoring functions, for example. Examples of drugs useful with the drug therapy device 150 include dopamine agents (muscle relaxers), benzodiazepines (sedatives), anti-convulsants (to reduce muscle activity), and opioids (narcotics to reduce motor activity).
Although the sleep detector 114, the diagnosis processor 116, and the therapy control unit 118 are illustrated internal to the implantable device 110, it is contemplated that any or all of these components may be patient-external in alternate embodiments, and may be incorporated into other components such as the APM 130, for example. Similarly, the respiration therapy devices 140, drug delivery devices 150, and/or nerve stimulation therapy devices 155 illustrated as patient-external in
The following discussion, with reference to
In accordance with embodiments of the invention, PLMD, RLS, and/or other movement disorders such as bruxism, for example, may be diagnosed using a system that is fully or partially implantable.
The movement/SDB sensor(s) 220 may include any sensor or any combination of sensors capable of detecting motion and/or muscle activity associated with motion. For example, the patient's movements may be detected using one or more accelerometers, one or more EMG sensors, and/or a combination of one or more accelerometers and one or more EMG sensors.
In one embodiment, one or more movement sensors (e.g., accelerometers and/or EMG sensors) are coupled to the patient at appropriate locations to detect movements of the extremities, e.g., limb movements, or other movements. Signals from the movement/SDB sensor(s) 220 are received and processed by a movement/SDB detector 212 in the implantable device 210. The movement/SDB detector 212 may cooperate with a memory in a monitoring unit 214 to store information about the detected movements. Movement information may be stored, trended, displayed, and/or transmitted to a separate device, such as an APM system 230 or a programmer 240 for further operations.
In another embodiment, illustrated in
In one example, the movement/SDB sensor(s) 220 may include one or more EMG sensors placed on or in the anterior tibialis. Typical EMG bursts due to PLMD movements may last between 0.5-5 seconds and may recur every 20-40 seconds, for example. The movement disorder diagnosis processor 215 may make a diagnosis of PLMD if at least about 40 EMG bursts are detected within an 8-hour sleep period, for example. Sleep disruption caused by the PLMD movements may be determined by any or a combination of the sleep detection techniques described herein, including, for example, brain wave (EEG) sensing and/or a combination of respiration (MV) and activity sensing, among others. Movement disorder diagnosis may be downloaded to a programmer 240, an APM system 230, or other therapeutic or diagnostic device.
In accordance with another embodiment of the invention, RLS diagnosis may involve patient input regarding their symptoms. For example, as illustrated in
For example, if the patient input is acquired over a period of six days, the maximum score is 24, i.e., a score of four for each or six days. In this scenario, a score greater than about 12 suggests a diagnosis of severe RLS. A score of about six to about twelve suggests a diagnosis of moderate RLS.
In the embodiment illustrated in
Embodiments of the present invention are directed to methods and systems for diagnosis of SDB and movement disorders such as PLMD and RLS. RLS diagnosis may be complicated due to the symptom based nature of the RLS diagnosis. The use of patient input through a patient-input device provides a system for collection of symptom based information. Because PLMD and RLS are related disorders, the diagnosis of PLMD through movement detection techniques described herein may be used to enhance the RLS diagnosis.
Use of the methods and systems of the invention may reduce the need for in-clinic sleep studies typically used for movement disorder diagnosis. Further, daily measurements may be made over a number of days, which is not practical for in-clinic studies. Earlier and more frequent diagnosis of movement disorders may be enabled using the systems and methods of the invention.
A movement sensor may be implemented, for example, to include an EMG sensor that employs one or more EMG electrodes 326 or a force responsive sensor 330 positioned on the housing 322 of the medical device 320 as illustrated in
If the patient is determined to be sleeping at block 404, the muscle activity sensed at block 402 provides information recorded at block 406. For example, date, time, sensor data, sense signal amplitudes or other information may be useful for updating, developing, and/or determining an muscle disorder index, a diagnosis, a sleep-related muscle activity history, and other parameters useful for patient diagnosis and treatment. The information recorded at block 406 may be useful, for example, to predict, verify, classify, and/or determine the existence of a sleep-related muscle disorder and sleep disordered breathing.
If intervention and/or treatment is desired at determination block 408, the intervention and/or treatment may be performed at block 410 before re-starting the method 400. For example, the intervention at block 410 may be the automatic activation of a medical process, modification of a disordered breathing therapy, notification to a patient-external device and/or a physician, or other desirable action.
Referring now to
The impedance 530 increases 570 during any respiratory inspiration 520 and decreases 560 during any respiratory expiration 510. The impedance signal 500 is also proportional to the amount of air inhaled, denoted by a tidal volume 540, illustrated on the abscissa of the right side of the graph in
Breathing disorders may be determined using the impedance signal 530. During non-REM sleep, a normal respiration pattern includes regular, rhythmic inspiration-expiration cycles without substantial interruptions. When the tidal volume of the patient's respiration, as indicated by the transthoracic impedance signal, falls below a hypopnea threshold, then a hypopnea event is declared. For example, a hypopnea event may be declared if the patient's tidal volume falls below about 50% of a recent average tidal volume or other baseline tidal volume value. If the patient's tidal volume falls further to an apnea threshold, e.g., about 10% of the recent average tidal volume or other baseline value, an apnea event is declared.
An adequate quality and quantity of sleep is required to maintain physiological homeostasis. Prolonged sleep deprivation or periods of highly fragmented sleep ultimately has serious health consequences. Chronic lack of sleep may be associated with various cardiac or respiratory disorders affecting a patient's health and quality of life. Methods and systems for collecting and assessing sleep quality data are described in commonly owned U.S. Patent Publication No. 20050042589, and incorporated herein by reference. Evaluation of the patient's sleep patterns and sleep quality may be an important aspect of providing coordinated therapy to the patient, including respiratory and cardiac therapy.
Detection of sleep disordered breathing events such as sleep apnea and severe sleep apnea is illustrated in
Hypopnea is a condition of sleep disordered breathing characterized by abnormally shallow breathing.
Hypopnea is detected by comparing a patient's respiratory tidal volume 803 to a hypopnea tidal volume 801. The tidal volume for each respiration cycle may be derived from transthoracic impedance measurements acquired in the manner described previously. The hypopnea tidal volume threshold may be established by, for example, using clinical results providing a representative tidal volume and duration of hypopnea events. In one configuration, hypopnea is detected when an average of the patient's respiratory tidal volume taken over a selected time interval falls below the hypopnea tidal volume threshold. Furthermore, various combinations of hypopnea cycles, breath intervals, and non-breathing intervals may be used to detect hypopnea, where the non-breathing intervals are determined as described above.
In
In the example above, if the tidal volume falls below 50% of the respiratory tidal volume 803, the breathing episode may be identified as a hypopnea event, originating the measurement of the hypopnea episode 805.
The patient's transthoracic impedance is measured 905 as described in more detail above. If the transthoracic impedance exceeds 910 the inspiration threshold, the beginning of an inspiration interval is detected 915. If the transthoracic impedance remains below 910 the inspiration threshold, then the impedance signal is checked 905 periodically until inspiration 915 occurs.
During the inspiration interval, the patient's transthoracic impedance is monitored until a maximum value of the transthoracic impedance is detected 920. Detection of the maximum value signals an end of the inspiration period and a beginning of an expiration period 935.
The expiration interval is characterized by decreasing transthoracic impedance. When, at determination 940, the transthoracic impedance falls below the expiration threshold, a non-breathing interval is detected 955.
If the transthoracic impedance determination 960 does not exceed the inspiration threshold within a first predetermined interval, denoted the sleep apnea interval 965, then a condition of sleep apnea is detected 970. Severe sleep apnea 980 is detected if the non-breathing period extends beyond a second predetermined interval, denoted the severe sleep apnea interval 975.
When the transthoracic impedance determination 960 exceeds the inspiration threshold, the tidal volume from the peak-to-peak transthoracic impedance is calculated, along with a moving average of past tidal volumes 985. The peak-to-peak transthoracic impedance provides a value proportional to the tidal volume of the respiration cycle. This value is compared at determination 990 to a hypopnea tidal volume threshold. If, at determination 990, the peak-to-peak transthoracic impedance is consistent with the hypopnea tidal volume threshold for a predetermined time 992, then a hypopnea cycle 995 is detected.
In the example illustrated in
The CPAP device 1020 develops a positive air pressure that is delivered to the patient's airway through a tube system 1052 and a mask 1054 connected to the CPAP device 1020. The mask 1054 may include EMG sensors, such as an EMG sensor 1056 attached to a strap 1057 that is placed around a head 1055 of the patient. Positive airway pressure devices are often used to treat disordered breathing. In one configuration, for example, the positive airway pressure provided by the CPAP device 1020 acts as a pneumatic splint keeping the patient's airway open and reducing the severity and/or number of occurrences of disordered breathing due to airway obstruction.
The CPAP device 1020 may directly control the delivery of respiration therapy to the patient, and may contribute to the control of the CRM device 1010. In addition, the CPAP device 1020 may provide a number of monitoring and/or diagnostic functions in relation to the respiratory system and/or other physiological systems.
The CRM 1010 and CPAP 1020 devices may communicate directly through a wireless communications link 1017, for example. Alternatively, or additionally, the CRM 1010 and CPAP 1020 devices may communicate with and/or through an APM such as an APM system 1030, as will be described further below with reference to
The CRM 1010 may provide a first set of monitoring, diagnostic, and/or therapeutic functions to a patient 1055. The CRM 1010 may be electrically coupled to a patient's heart 1040 through one or more cardiac electrodes 1015 terminating in, on, or about the heart 1040. The cardiac electrodes 1015 may sense cardiac signals produced by the heart 1040 and/or provide therapy to one or more heart chambers. For example, the cardiac electrodes 1015 may deliver electrical stimulation to one or more heart 1040 chambers, and/or to one or multiple sites within the heart 1040 chambers. The CRM 1010 may directly control delivery of one or more cardiac therapies, such as cardiac pacing, defibrillation, cardioversion, cardiac resynchronization, and/or other cardiac therapies, for example. In addition, the CRM 1010 may facilitate the control of a mechanical respiration device 1020. Further, the CRM 1010 may perform various monitoring and/or diagnostic functions in relation to the cardiovascular system and/or other physiological systems.
Although
Referring now to
Portions of the intracardiac lead system 1110 are inserted into the patient's heart 1190. The intracardiac lead system 1110 includes one or more electrodes configured to sense electrical cardiac activity of the heart, deliver electrical stimulation to the heart, sense the patient's transthoracic impedance, and/or sense other physiological parameters, e.g., cardiac chamber pressure or temperature. Portions of the housing 1101 of the pulse generator 1105 may optionally serve as a can electrode.
Communications circuitry is disposed within the housing 1101 for facilitating communication between the pulse generator 1105 and an external communication device, such as a portable or bedside communication station, patient-carried/worn communication station, or external programmer, for example. The communications circuitry can also facilitate unidirectional or bidirectional communication with one or more implanted, external, cutaneous, or subcutaneous physiologic or non-physiologic sensors, patient-input devices and/or information systems.
The pulse generator 1105 may optionally incorporate a motion detector 1120 that may be used to sense various respiration-related conditions. For example, the motion detector 520 may be optionally configured to sense snoring, activity level, and/or chest wall movements associated with respiratory effort, for example. The motion detector 1120 may be implemented as an accelerometer positioned in or on the housing 1101 of the pulse generator 1105. If the motion sensor is implemented as an accelerometer, the motion sensor may also provide respiratory, e.g. rales, coughing, and cardiac, e.g. S1-S4 heart sounds, murmurs, and other acoustic information.
The lead system 1110 of the CRM 1100 may incorporate one or more transthoracic impedance sensors that may be used to acquire the patient's respiration waveform, or other respiration-related information. The transthoracic impedance sensor may include, for example, one or more intracardiac electrodes 1141, 1142, 1151-1155, 1163 positioned in one or more chambers of the heart 1190. The intracardiac electrodes 1141, 1142, 1151-1155, 1163 may be coupled to impedance drive/sense circuitry 1130 positioned within the housing of the pulse generator 1105.
In one implementation, impedance drive/sense circuitry 1130 generates a current that flows through the tissue between an impedance drive electrode 1151 and a can electrode on the housing 1101 of the pulse generator 1105. The voltage at an impedance sense electrode 1152 relative to the can electrode changes as the patient's transthoracic impedance changes. The voltage signal developed between the impedance sense electrode 1152 and the can electrode is detected by the impedance sense circuitry 1130. Other locations and/or combinations of impedance sense and drive electrodes are also possible.
The primary housing (e.g., the active or non-active can) of the ITCS device, for example, may be configured for positioning outside of a rib cage 1250 at an intercostal or subcostal location, within the abdomen, or in the upper chest region (e.g., subclavian location, such as above a third rib 1253). In one implementation, one or more electrodes may be located on a primary housing 1272 and/or at other locations about, but not in direct contact with the heart, great vessel or coronary vasculature.
In another implementation, one or more electrodes may be located in direct contact with the heart, great vessel or coronary vasculature, such as via one or more leads implanted by use of conventional transvenous delivery approaches. In another implementation, for example, one or more subcutaneous electrode subsystems or electrode arrays may be used to sense cardiac activity and deliver cardiac stimulation energy in an ITCS device configuration employing an active can or a configuration employing a non-active can. Electrodes may be situated at anterior and/or posterior locations relative to the heart.
In particular configurations, systems and methods may perform functions traditionally performed by pacemakers, such as providing various pacing therapies as are known in the art, in addition to cardioversion/defibrillation therapies. Exemplary pacemaker circuitry, structures and functionality, aspects of which may be incorporated in an ITCS device of a type that may benefit from multi-parameter sensing configurations, are disclosed in commonly owned U.S. Pat. Nos. 4,562,841; 5,284,136; 5,376,476; 5,036,849; 5,540,727; 5,836,987; 6,044,298; and 6,055,454, which are hereby incorporated herein by reference. It is understood that ITCS device configurations may provide for non-physiologic pacing support in addition to, or to the exclusion of, bradycardia and/or anti-tachycardia pacing therapies.
An ITCS device in accordance with various embodiments may implement diagnostic and/or monitoring functions as well as provide cardiac stimulation therapy. Diagnostics functions may involve storing, trending, displaying, transmitting, and/or evaluating various indications based on the detection of EMG. Exemplary cardiac monitoring circuitry, structures and functionality, aspects of which may be incorporated in an ITCS of the invention, are disclosed in commonly owned U.S. Pat. Nos. 5,313,953; 5,388,578; and 5,411,031, which are hereby incorporated herein by reference.
An ITCS device may be used to implement various diagnostic functions, which may involve performing rate-based, pattern and rate-based, and/or morphological tachyarrhythmia discrimination analyses. Subcutaneous, cutaneous, and/or external sensors, such as those previously described, may be employed to acquire physiologic and non-physiologic information for purposes of enhancing tachyarrhythmia detection and termination. It is understood that configurations, features, and combination of features described in the present disclosure may be implemented in a wide range of implantable medical devices, and that such embodiments and features are not limited to the particular devices described herein.
In
Communications circuitry may be disposed within the housing 1272 for facilitating communication between the ITCS device and an external communication device, such as a portable or bedside communication station, patient-carried/worn communication station, or external programmer, for example. The communications circuitry may also facilitate unidirectional or bidirectional communication with one or more external, cutaneous, or subcutaneous physiologic or non-physiologic sensors. The housing 1272 is typically configured to include one or more electrodes (e.g., can electrode and/or indifferent electrode). Although the housing 1272 is typically configured as an active can, it is appreciated that a non-active can configuration may be implemented, in which case at least two electrodes spaced apart from the housing 1272 are employed.
In the configuration shown in
In one configuration, the electrode support assembly and the housing 1272 define a unitary structure (e.g., a single housing/unit). The electronic components and electrode conductors/connectors are disposed within or on the unitary ITCS device housing/electrode support assembly. At least two electrodes are supported on the unitary structure near opposing ends of the housing/electrode support assembly. The unitary structure may have an arcuate or angled shape, for example.
According to another configuration, the electrode support assembly defines a physically separable unit relative to the housing 1272. The electrode support assembly includes mechanical and electrical couplings that facilitate mating engagement with corresponding mechanical and electrical couplings of the housing 1272. For example, a header block arrangement may be configured to include both electrical and mechanical couplings that provide for mechanical and electrical connections between the electrode support assembly and housing 1272. The header block arrangement may be provided on the housing 1272 or the electrode support assembly. Alternatively, a mechanical/electrical coupler may be used to establish mechanical and electrical connections between the electrode support assembly and housing 1272. In such a configuration, a variety of different electrode support assemblies of varying shapes, sizes, and electrode configurations may be made available for physically and electrically connecting to a standard ITCS device housing 1272.
Various embodiments described herein may be used in connection with subcutaneous monitoring, diagnosis, and/or therapy. Methods, structures, and/or techniques described herein relating to subcutaneous systems and methods may incorporate features of one or more of the following references: commonly owned US Patent Applications: “Subcutaneous Cardiac Sensing, Stimulation, Lead Delivery, and Electrode Fixation Systems and Methods,” Ser. No. 60/462,272, filed Apr. 11, 2003; U.S. Pat. No. 7,570,997; and U.S. Publication No. 20040215240; each hereby incorporated herein by reference.
Referring now to
In one embodiment, the sleep detector 1320 is incorporated as part of CRM circuitry 1310 encased and hermetically sealed in a housing 1301 suitable for implanting in a human body. Power to the CRM 1300 is supplied by an electrochemical battery power supply 1312 housed within the CRM 1300. A connector block (not shown) is additionally attached to the CRM 1300 to allow for the physical and electrical attachment of the cardiac lead system conductors to the CRM circuitry 1310.
The CRM circuitry 1310 may be configured as a programmable microprocessor-based system, with circuitry for detecting sleep in addition to providing pacing therapy to the heart. Cardiac signals sensed by one or more cardiac electrodes 1341 may be processed by the cardiac event detection circuitry 1360. Pace pulses controlled by the pacemaker control 1350 and generated by the pulse generator 1340 are delivered to the heart to treat various arrhythmias of the heart.
The memory circuit 1316 may store parameters for various device operations involved in sleep detection and/or cardiac pacing and sensing. The memory circuit 1316 may also store data indicative of sleep-related signals received by components of the CRM circuitry 1310, such as information derived from one or more impedance electrodes 1395, the cardiac signal detector system 1360, the accelerometer 1335, and/or the sleep detector 1320.
As illustrated in
Also shown in
Telemetry circuitry 1314 is coupled to the CRM circuitry 1310 to allow the CRM 1300 to communicate with a remote device such as the programmer 1380, or other device. In one embodiment, the telemetry circuitry 1314 and the programmer 1380 use a wire loop antenna and a radio frequency telemetric link to receive and transmit signals and data between the programmer 1380 and telemetry circuitry 1314. In this manner, programming commands and data may be transferred between the CRM circuitry 1310 and the one or more remote devices 1380 during and after implant.
The programming commands allow a physician to set or modify various parameters used by the CRM system 1300. These parameters may include setting sleep detection parameters for use during sleep detection, such as which sleep-related signals are to be used for sleep detection and threshold adjustment, and the initial sleep detection thresholds. In addition, the CRM system 1300 may download to the programmer 1380 stored data pertaining to sensed sleep periods, including the amount of time spent sleeping, the time of day sleep periods occurred, historical data of sleep times, and the number of arousals during the sleep periods, for example.
Still referring to
The impedance electrodes 1395 sense the patient's transthoracic impedance. The transthoracic impedance may be used to calculate various parameters associated with respiration. Impedance driver circuitry (not shown) induces a current that flows through the blood between the impedance drive electrode and a can electrode on the housing 1301 of the CRM 1300. The voltage at an impedance sense electrode relative to the can electrode changes as the transthoracic impedance changes. The voltage signal developed between the impedance sense electrode and the can electrode is detected by the impedance sense amplifier and is delivered to the sleep detector circuitry 1320 for further processing.
The patient-internal medical device 1410 is typically a fully or partially implantable device that performs measuring, monitoring, diagnosis, and/or therapy functions. The patient-external medical device 1420 performs monitoring, diagnosis and/or therapy functions external to the patient (i.e., not invasively implanted within the patient's body). The patient-external medical device 1420 may be positioned on the patient, near the patient, or in any location external to the patient. It is understood that a portion of a patient-external medical device 1420 may be positioned within an orifice of the body, such as the nasal cavity or mouth, yet may be considered external to the patient (e.g., mouth pieces/appliances, tubes/appliances for nostrils, or temperature sensors positioned in the ear canal).
The patient-internal and patient-external medical devices 1410, 1420 may be coupled to one or more sensors 1441, 1442, 1445, 1446, patient input devices 1443, 1447 and/or other information acquisition devices 1444, 1448. The sensors 1441, 1442, 1445, 1446, patient input devices 1443, 1447, and/or other information acquisition devices 1444, 1448 may be employed to detect conditions relevant to the monitoring, diagnostic, and/or therapeutic functions of the patient-internal and patient-external medical devices 1410, 1420.
The medical devices 1410, 1420 may each be coupled to one or more patient-internal sensors 1441, 1445 that are fully or partially implantable within the patient. The medical devices 1410, 1420 may also be coupled to patient-external sensors positioned on, near, or in a remote location with respect to the patient. The patient-internal and patient-external sensors are used to sense conditions, such as physiological or environmental conditions, that affect the patient.
The patient-internal sensors 1441 may be coupled to the patient-internal medical device 1410 through one or more internal leads 1453. In one example, as was described above with reference to
The medical devices 1410, 1420 may be coupled to one or more patient input devices 1443, 1447. The patient input devices are used to allow the patient to manually transfer information to the medical devices 1410, 1420. The patient input devices 1443, 1447 may be particularly useful for inputting information concerning patient perceptions, such as how well the patient feels, and information such as patient smoking, drug use, or other activities that are not automatically sensed or detected by the medical devices 1410, 1420.
One or more of sensors 1440, 1442, 1445, 1446 may be configured to detect conditions associated with sleep-related muscle disorders. For example, one or more of sensors 1440, 1442, 1445, 1446 may be implemented as an EMG sensor, and one or more of sensors 1440, 1442, 1445, 1446 may be implemented as a respiration sensor. The EMG and respiration sensors may be coupled to diagnostics unit 1414, 1424 for detection of sleep-related muscle disorders.
The medical devices 1410, 1420 may be connected to one or more information acquisition devices 1444, 1448, for example, a database that stores information useful in connection with the monitoring, diagnostic, or therapy functions of the medical devices 1410, 1420. For example, one or more of the medical devices 1410, 1420 may be coupled through a network to a patient information server 1430 that provides information about environmental conditions affecting the patient, e.g., the pollution index for the patient's location.
In one embodiment, the patient-internal medical device 1410 and the patient-external medical device 1420 may communicate through a wireless link between the medical devices 1410, 1420. For example, the patient-internal and patient-external devices 1410, 1420 may be coupled through a short-range radio link, such as Bluetooth, IEEE 802.11, and/or a proprietary wireless protocol. The communications link may facilitate uni-directional or bi-directional communication between the patient-internal 1410 and patient-external 1420 medical devices. Data and/or control signals may be transmitted between the patient-internal 1410 and patient-external 1420 medical devices to coordinate the functions of the medical devices 1410, 1420.
In another embodiment, the patient-internal and patient-external medical devices 1410, 1420 may be used within the structure of an advanced patient management system (APM) 1440. Advanced patient management systems 1440 involve a system of medical devices that are accessible through various communications technologies. For example, patient data may be downloaded from one or more of the medical devices periodically or on command, and stored at the patient information server 1430. The physician and/or the patient may communicate with the medical devices and the patient information server 1430, for example, to acquire patient data or to initiate, terminate or modify therapy.
The data stored on the patient information server 1430 may be accessible by the patient and the patient's physician through one or more terminals 1450, e.g., remote computers located in the patient's home or the physician's office. The patient information server 1430 may be used to communicate to one or more of the patient-internal and patient-external medical devices 1410, 1420 to provide remote control of the monitoring, diagnosis, and/or therapy functions of the medical devices 1410, 1420.
In one embodiment, the patient's physician may access patient data transmitted from the medical devices 1410, 1420 to the patient information server 1430. After evaluation of the patient data, the patient's physician may communicate with one or more of the patient-internal or patient-external devices 1410, 1420 through the APM system 1440 to initiate, terminate, or modify the monitoring, diagnostic, and/or therapy functions of the patient-internal and/or patient-external medical systems 1410, 1420. Systems and methods involving advanced patient management techniques are further described in U.S. Pat. Nos. 6,336,903, 6,312,378, 6,270,457, and 6,398,728, hereby incorporated herein by reference.
In another embodiment, the patient-internal and patient-external medical devices 1410, 1420 may not communicate directly, but may communicate indirectly through the APM system 1440. In this embodiment, the APM system 1440 may operate as an intermediary between two or more of the medical devices 1410, 1420. For example, data and/or control information may be transferred from one of the medical devices 1410, 1420 to the APM system 1440. The APM system 1440 may transfer the data and/or control information to another of the medical devices 1410, 1420.
In one embodiment, the APM system 1440 may communicate directly with the patient-internal and/or patient-external medical devices 1410, 1420. In another embodiment, the APM system 1440 may communicate with the patient-internal and/or patient-external medical devices 1410, 1420 through medical device programmers 1460, 1470 respectively associated with each medical device 1410, 1420.
Various embodiments described herein may be used in connection with advanced patient management. Methods, structures, and/or techniques described herein relating to advanced patient management, such as those involving remote patient/device monitoring, diagnosis, therapy, or other advanced patient management related methodologies, may incorporate features of one or more of the following references: U.S. Pat. Nos. 6,221,011; 6,277,072; 6,280,380; 6,358,203; 6,368,284; and 6,440,066 each hereby incorporated herein by reference.
According to one embodiment of the invention, illustrated in
The following commonly owned U.S. Pat. Nos. 7,189,204; 7,252,640; 7,396,333, 7,680,537; and 7,720,541 are hereby incorporated by reference. Features and aspects of these applications may be incorporated within the context of systems, devices, methods, and processes implemented in accordance with embodiments of the present invention.
A number of the examples presented herein involve block diagrams illustrating functional blocks used for coordinated monitoring, diagnosis and/or therapy functions in accordance with embodiments of the invention. It will be understood by those skilled in the art that there exist many possible configurations in which these functional blocks may be arranged and implemented. The examples depicted herein provide examples of possible functional arrangements used to implement the approaches of the invention.
Each feature disclosed in this specification (including any accompanying claims, abstract, and drawings), may be replaced by alternative features having the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
Various modifications and additions can be made to the embodiments discussed hereinabove without departing from the scope of the present invention. Accordingly, the scope of the present invention should not be limited by the particular embodiments described above, but should be defined only by the claims set forth below and equivalents thereof.
This application is a divisional of U.S. patent application Ser. No. 10/939,834 filed on Sep. 13, 2004, which claims the benefit of Provisional Patent Application Ser. No. 60/504,332, filed on Sep. 18, 2003, to which Applicant claims priority under 35 U.S.C. §120 and 35 U.S.C. §119(e), respectively. Both U.S. patent application Ser. No. 10/939,834 and Provisional Patent Application Ser. No. 60/504,332 are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3650277 | Sjostrand et al. | Mar 1972 | A |
4091818 | Brownlee et al. | May 1978 | A |
4312355 | Funke | Jan 1982 | A |
4312734 | Nichols | Jan 1982 | A |
4390405 | Hahn et al. | Jun 1983 | A |
4414982 | Durkan | Nov 1983 | A |
4648407 | Sackner | Mar 1987 | A |
4702253 | Nappholz et al. | Oct 1987 | A |
4721110 | Lampadius | Jan 1988 | A |
4777962 | Watson et al. | Oct 1988 | A |
4784162 | Ricks et al. | Nov 1988 | A |
4791931 | Slate | Dec 1988 | A |
4802485 | Bowers et al. | Feb 1989 | A |
4807629 | Baudino et al. | Feb 1989 | A |
4813427 | Schlaefke et al. | Mar 1989 | A |
4827943 | Bornn et al. | May 1989 | A |
4830008 | Meer | May 1989 | A |
4836219 | Hobson et al. | Jun 1989 | A |
4856524 | Baker, Jr. | Aug 1989 | A |
4860766 | Sackner | Aug 1989 | A |
4875477 | Waschke et al. | Oct 1989 | A |
4886064 | Strandberg | Dec 1989 | A |
4953551 | Mehra et al. | Sep 1990 | A |
4958632 | Duggan | Sep 1990 | A |
4961423 | Canducci | Oct 1990 | A |
4972842 | Korten et al. | Nov 1990 | A |
4982738 | Griebel | Jan 1991 | A |
5003975 | Hafelfinger et al. | Apr 1991 | A |
5010888 | Jadvar et al. | Apr 1991 | A |
5024222 | Thacker | Jun 1991 | A |
5047930 | Martens et al. | Sep 1991 | A |
5063927 | Webb et al. | Nov 1991 | A |
5074301 | Gill | Dec 1991 | A |
5101831 | Koyama et al. | Apr 1992 | A |
5111815 | Mower | May 1992 | A |
5123425 | Shannon, Jr. et al. | Jun 1992 | A |
5133353 | Hauser | Jul 1992 | A |
5146918 | Kallok et al. | Sep 1992 | A |
5156157 | Valenta, Jr. et al. | Oct 1992 | A |
5158089 | Swezey et al. | Oct 1992 | A |
5170784 | Ramon et al. | Dec 1992 | A |
5174287 | Kallok et al. | Dec 1992 | A |
5179945 | Van Hofwegen et al. | Jan 1993 | A |
5183038 | Hoffman et al. | Feb 1993 | A |
5188106 | Nappholz et al. | Feb 1993 | A |
5190035 | Salo et al. | Mar 1993 | A |
5199424 | Sullivan et al. | Apr 1993 | A |
5199428 | Obel et al. | Apr 1993 | A |
5203326 | Collins | Apr 1993 | A |
5209229 | Gilli | May 1993 | A |
5211173 | Kallok et al. | May 1993 | A |
5215082 | Kallok et al. | Jun 1993 | A |
5243979 | Stein et al. | Sep 1993 | A |
5243980 | Mehra | Sep 1993 | A |
5245995 | Sullivan et al. | Sep 1993 | A |
5259373 | Gruenke et al. | Nov 1993 | A |
5261400 | Bardy | Nov 1993 | A |
5275159 | Griebel | Jan 1994 | A |
5280791 | Lavie | Jan 1994 | A |
5292338 | Bardy | Mar 1994 | A |
5299118 | Martens et al. | Mar 1994 | A |
5300106 | Dahl et al. | Apr 1994 | A |
5306293 | Zacouto | Apr 1994 | A |
5314430 | Bardy | May 1994 | A |
5314459 | Swanson et al. | May 1994 | A |
5318592 | Schaldach | Jun 1994 | A |
5318593 | Duggan | Jun 1994 | A |
5318594 | Limousin et al. | Jun 1994 | A |
5318597 | Hauck et al. | Jun 1994 | A |
5330505 | Cohen | Jul 1994 | A |
5330507 | Schwartz | Jul 1994 | A |
5331966 | Bennett et al. | Jul 1994 | A |
5334221 | Bardy | Aug 1994 | A |
5356425 | Bardy et al. | Oct 1994 | A |
5363842 | Mishelevich et al. | Nov 1994 | A |
5372606 | Lang et al. | Dec 1994 | A |
5376103 | Anderson et al. | Dec 1994 | A |
5376106 | Stahmann et al. | Dec 1994 | A |
5377671 | Biondi et al. | Jan 1995 | A |
5391187 | Freeman | Feb 1995 | A |
5398682 | Lynn | Mar 1995 | A |
5404877 | Nolan et al. | Apr 1995 | A |
5411525 | Swanson et al. | May 1995 | A |
5411531 | Hill et al. | May 1995 | A |
5411539 | Neisz | May 1995 | A |
5417717 | Salo et al. | May 1995 | A |
5437285 | Verrier et al. | Aug 1995 | A |
5439482 | Adams et al. | Aug 1995 | A |
5441518 | Adams et al. | Aug 1995 | A |
5466245 | Spinelli et al. | Nov 1995 | A |
5468254 | Hahn et al. | Nov 1995 | A |
5476485 | Weinberg et al. | Dec 1995 | A |
5483969 | Testerman et al. | Jan 1996 | A |
5487755 | Snell et al. | Jan 1996 | A |
5490502 | Rapoport et al. | Feb 1996 | A |
5507784 | Hill et al. | Apr 1996 | A |
5520176 | Cohen | May 1996 | A |
5520191 | Karlsson et al. | May 1996 | A |
5522382 | Sullivan et al. | Jun 1996 | A |
5522854 | Ideker et al. | Jun 1996 | A |
5522862 | Testerman et al. | Jun 1996 | A |
5527345 | Infinger | Jun 1996 | A |
5531779 | Dahl et al. | Jul 1996 | A |
5540734 | Zabara | Jul 1996 | A |
5554177 | Kieval | Sep 1996 | A |
5578061 | Stroetmann et al. | Nov 1996 | A |
5590648 | Mitchell et al. | Jan 1997 | A |
5591216 | Testerman et al. | Jan 1997 | A |
5593431 | Sheldon | Jan 1997 | A |
5601607 | Adams | Feb 1997 | A |
5603331 | Heemels et al. | Feb 1997 | A |
5605151 | Lynn | Feb 1997 | A |
5606969 | Butler et al. | Mar 1997 | A |
5607385 | Francischelli et al. | Mar 1997 | A |
5620466 | Haefner et al. | Apr 1997 | A |
5622178 | Gilham | Apr 1997 | A |
5626151 | Linden | May 1997 | A |
5632281 | Rayburn | May 1997 | A |
5634938 | Swanson et al. | Jun 1997 | A |
5641326 | Adams | Jun 1997 | A |
5645570 | Corbucci | Jul 1997 | A |
5658318 | Stroetmann et al. | Aug 1997 | A |
5662688 | Haefner et al. | Sep 1997 | A |
5690681 | Geddes et al. | Nov 1997 | A |
5693000 | Crosby et al. | Dec 1997 | A |
5697951 | Harpstead et al. | Dec 1997 | A |
5697953 | Kroll et al. | Dec 1997 | A |
5700282 | Zabara | Dec 1997 | A |
5701894 | Cherry et al. | Dec 1997 | A |
5704345 | Berthon-Jones | Jan 1998 | A |
5704365 | Albrecht et al. | Jan 1998 | A |
5707400 | Terry, Jr. et al. | Jan 1998 | A |
5713355 | Richardson et al. | Feb 1998 | A |
5713933 | Condie et al. | Feb 1998 | A |
5716377 | Rise et al. | Feb 1998 | A |
5720771 | Snell | Feb 1998 | A |
5724984 | Arnold et al. | Mar 1998 | A |
5740797 | Dickson | Apr 1998 | A |
5782883 | Kroll et al. | Jul 1998 | A |
5792188 | Starkweather et al. | Aug 1998 | A |
5794615 | Estes | Aug 1998 | A |
5797967 | KenKnight | Aug 1998 | A |
5800470 | Stein et al. | Sep 1998 | A |
5802188 | McDonough | Sep 1998 | A |
5814079 | Kieval | Sep 1998 | A |
5826579 | Remmers et al. | Oct 1998 | A |
5827326 | Kroll et al. | Oct 1998 | A |
5839430 | Cama | Nov 1998 | A |
5844680 | Sperling | Dec 1998 | A |
5860918 | Schradi et al. | Jan 1999 | A |
5861011 | Stoop | Jan 1999 | A |
5869970 | Palm et al. | Feb 1999 | A |
5891023 | Lynn | Apr 1999 | A |
5895414 | Sanchez-Zambrano | Apr 1999 | A |
5902250 | Verrier et al. | May 1999 | A |
5911218 | DiMarco | Jun 1999 | A |
5916239 | Geddes et al. | Jun 1999 | A |
5919141 | Money et al. | Jul 1999 | A |
5957861 | Combs et al. | Sep 1999 | A |
5957956 | Kroll et al. | Sep 1999 | A |
5961446 | Beller et al. | Oct 1999 | A |
5961450 | Merchant et al. | Oct 1999 | A |
5964788 | Greenhut | Oct 1999 | A |
5970975 | Estes et al. | Oct 1999 | A |
5974349 | Levine | Oct 1999 | A |
5981011 | Overcash et al. | Nov 1999 | A |
5997526 | Giba et al. | Dec 1999 | A |
6006134 | Hill et al. | Dec 1999 | A |
6015388 | Sackner et al. | Jan 2000 | A |
6021351 | Kadhiresan et al. | Feb 2000 | A |
6044297 | Sheldon et al. | Mar 2000 | A |
6047203 | Sackner et al. | Apr 2000 | A |
6050940 | Braun et al. | Apr 2000 | A |
6058331 | King | May 2000 | A |
6059725 | Steinschneider | May 2000 | A |
6073048 | Kieval et al. | Jun 2000 | A |
6091986 | Keimel | Jul 2000 | A |
6099479 | Christopherson et al. | Aug 2000 | A |
6105575 | Estes et al. | Aug 2000 | A |
6115628 | Stadler et al. | Sep 2000 | A |
6117092 | Weinstein et al. | Sep 2000 | A |
6134470 | Hartlaub | Oct 2000 | A |
6141590 | Renirie et al. | Oct 2000 | A |
6144866 | Miesel et al. | Nov 2000 | A |
6148230 | KenKnight | Nov 2000 | A |
6148233 | Owen et al. | Nov 2000 | A |
6148814 | Clemmer et al. | Nov 2000 | A |
6155976 | Sackner et al. | Dec 2000 | A |
6161042 | Hartley et al. | Dec 2000 | A |
6168568 | Gavriely | Jan 2001 | B1 |
6178349 | Kieval | Jan 2001 | B1 |
6181961 | Prass | Jan 2001 | B1 |
6181966 | Nigam | Jan 2001 | B1 |
6200265 | Walsh et al. | Mar 2001 | B1 |
6205357 | Ideker et al. | Mar 2001 | B1 |
6212435 | Lattner et al. | Apr 2001 | B1 |
6227072 | Ritchey et al. | May 2001 | B1 |
6236873 | Holmstrom | May 2001 | B1 |
6240314 | Plicchi et al. | May 2001 | B1 |
6240316 | Richmond et al. | May 2001 | B1 |
6253103 | Baura | Jun 2001 | B1 |
6261238 | Gavriely | Jul 2001 | B1 |
6263244 | Mann et al. | Jul 2001 | B1 |
6264606 | Ekwall et al. | Jul 2001 | B1 |
6269269 | Ottenhoff et al. | Jul 2001 | B1 |
6275727 | Hopper et al. | Aug 2001 | B1 |
6280462 | Hauser et al. | Aug 2001 | B1 |
6286508 | Remmers et al. | Sep 2001 | B1 |
6287264 | Hoffman | Sep 2001 | B1 |
6292693 | Darvish et al. | Sep 2001 | B1 |
6292695 | Webster et al. | Sep 2001 | B1 |
6299581 | Rapoport et al. | Oct 2001 | B1 |
6303270 | Flaim et al. | Oct 2001 | B1 |
6306088 | Krausman | Oct 2001 | B1 |
6310085 | Willis | Oct 2001 | B1 |
6314319 | Kroll et al. | Nov 2001 | B1 |
6317627 | Ennen | Nov 2001 | B1 |
6327499 | Alt | Dec 2001 | B1 |
6331536 | Radulovacki et al. | Dec 2001 | B1 |
6351670 | Kroll | Feb 2002 | B1 |
6357444 | Parker | Mar 2002 | B1 |
6360127 | Ding et al. | Mar 2002 | B1 |
6361494 | Lindenthaler | Mar 2002 | B1 |
6361522 | Scheiner et al. | Mar 2002 | B1 |
6366813 | DiLorenzo | Apr 2002 | B1 |
6375614 | Braun et al. | Apr 2002 | B1 |
6375623 | Gavriely | Apr 2002 | B1 |
6387907 | Hendricks et al. | May 2002 | B1 |
6397845 | Burton | Jun 2002 | B1 |
6398727 | Bui et al. | Jun 2002 | B1 |
6398739 | Sullivan et al. | Jun 2002 | B1 |
6400982 | Sweeney et al. | Jun 2002 | B2 |
6409675 | Turcott | Jun 2002 | B1 |
6411845 | Mower et al. | Jun 2002 | B1 |
6411850 | Kay et al. | Jun 2002 | B1 |
6414183 | Sakamoto et al. | Jul 2002 | B1 |
6415174 | Bebehani et al. | Jul 2002 | B1 |
6421557 | Meyer | Jul 2002 | B1 |
6431171 | Burton | Aug 2002 | B1 |
6438407 | Ousdigian et al. | Aug 2002 | B1 |
6442413 | Silver | Aug 2002 | B1 |
6442433 | Linberg | Aug 2002 | B1 |
6447459 | Larom | Sep 2002 | B1 |
6449503 | Hsu | Sep 2002 | B1 |
6449507 | Hill et al. | Sep 2002 | B1 |
6450957 | Yoshimi | Sep 2002 | B1 |
6454708 | Ferguson et al. | Sep 2002 | B1 |
6454719 | Greenhut | Sep 2002 | B1 |
6463326 | Hartley et al. | Oct 2002 | B1 |
6467333 | Lewis et al. | Oct 2002 | B2 |
6468219 | Njemanze | Oct 2002 | B1 |
6473644 | Terry, Jr. et al. | Oct 2002 | B1 |
6477420 | Struble et al. | Nov 2002 | B1 |
6487450 | Chen et al. | Nov 2002 | B1 |
6491639 | Turcott | Dec 2002 | B1 |
6493585 | Plicchi et al. | Dec 2002 | B2 |
6496715 | Lee et al. | Dec 2002 | B1 |
6497658 | Roizen et al. | Dec 2002 | B2 |
6505067 | Lee et al. | Jan 2003 | B1 |
6511500 | Rahme | Jan 2003 | B1 |
6512940 | Brabec et al. | Jan 2003 | B1 |
6514218 | Yamamoto | Feb 2003 | B2 |
6522915 | Ceballos et al. | Feb 2003 | B1 |
6522926 | Kieval et al. | Feb 2003 | B1 |
6527729 | Turcott | Mar 2003 | B1 |
6532388 | Hill et al. | Mar 2003 | B1 |
6542774 | Hill et al. | Apr 2003 | B2 |
6544199 | Morris | Apr 2003 | B1 |
6547743 | Brydon | Apr 2003 | B2 |
6564096 | Mest | May 2003 | B2 |
6564106 | Guck et al. | May 2003 | B2 |
6572543 | Christopherson et al. | Jun 2003 | B1 |
6580944 | Katz et al. | Jun 2003 | B1 |
6584351 | Ekwall | Jun 2003 | B1 |
6587727 | Osorio et al. | Jul 2003 | B2 |
6595927 | Pitts-Crick | Jul 2003 | B2 |
6595928 | Mansy et al. | Jul 2003 | B2 |
6606993 | Wiesmann et al. | Aug 2003 | B1 |
6607509 | Bobroff et al. | Aug 2003 | B2 |
6611713 | Schauerte | Aug 2003 | B2 |
6615083 | Kupper | Sep 2003 | B2 |
6618618 | Kalgren et al. | Sep 2003 | B2 |
6622041 | Terry, Jr. et al. | Sep 2003 | B2 |
6622046 | Fraley et al. | Sep 2003 | B2 |
6628986 | Mouchawar et al. | Sep 2003 | B1 |
6628987 | Hill et al. | Sep 2003 | B1 |
6628988 | Kramer et al. | Sep 2003 | B2 |
6656960 | Puskas | Dec 2003 | B2 |
6658292 | Kroll et al. | Dec 2003 | B2 |
6662032 | Gavish et al. | Dec 2003 | B1 |
6679250 | Walker et al. | Jan 2004 | B2 |
6684105 | Cohen et al. | Jan 2004 | B2 |
6690971 | Schauerte et al. | Feb 2004 | B2 |
6694186 | Bardy | Feb 2004 | B2 |
6704590 | Haldeman | Mar 2004 | B2 |
6708058 | Kim et al. | Mar 2004 | B2 |
6723055 | Hoffman | Apr 2004 | B2 |
6741885 | Park et al. | May 2004 | B1 |
6748252 | Lynn et al. | Jun 2004 | B2 |
6748271 | Spinelli et al. | Jun 2004 | B2 |
6752765 | Jensen et al. | Jun 2004 | B1 |
6752766 | Kowallik et al. | Jun 2004 | B2 |
6760615 | Ferek-Petric | Jul 2004 | B2 |
6766190 | Ferek-Petric | Jul 2004 | B2 |
6770029 | Iliff | Aug 2004 | B2 |
6786866 | Odagiri et al. | Sep 2004 | B2 |
6799072 | Ries et al. | Sep 2004 | B2 |
6810287 | Zhu et al. | Oct 2004 | B2 |
6811538 | Westbrook et al. | Nov 2004 | B2 |
6824538 | Chen | Nov 2004 | B2 |
6850801 | Kieval et al. | Feb 2005 | B2 |
6857428 | Thornton | Feb 2005 | B2 |
6875418 | Hampton | Apr 2005 | B2 |
6884218 | Olson | Apr 2005 | B2 |
6892095 | Salo | May 2005 | B2 |
6910481 | Kimmel et al. | Jun 2005 | B2 |
6912419 | Hill et al. | Jun 2005 | B2 |
6922589 | Stahmann et al. | Jul 2005 | B2 |
6934583 | Weinberg et al. | Aug 2005 | B2 |
6944579 | Shimizu | Sep 2005 | B2 |
6959214 | Pape et al. | Oct 2005 | B2 |
6964641 | Cho et al. | Nov 2005 | B2 |
6973349 | Salo et al. | Dec 2005 | B2 |
6983264 | Shimizu | Jan 2006 | B2 |
6985774 | Kieval et al. | Jan 2006 | B2 |
6988498 | Berthon-Jones et al. | Jan 2006 | B2 |
6990372 | Perron et al. | Jan 2006 | B2 |
6999817 | Park et al. | Feb 2006 | B2 |
7010345 | Hill et al. | Mar 2006 | B2 |
7025729 | de Chazal et al. | Apr 2006 | B2 |
7027871 | Burnes et al. | Apr 2006 | B2 |
7039468 | Freed et al. | May 2006 | B2 |
7062308 | Jackson | Jun 2006 | B1 |
7072720 | Puskas | Jul 2006 | B2 |
7089936 | Madaus et al. | Aug 2006 | B2 |
7092755 | Florio | Aug 2006 | B2 |
7094207 | Koh | Aug 2006 | B1 |
7110820 | Tcheng et al. | Sep 2006 | B2 |
7115097 | Johnson | Oct 2006 | B2 |
7117036 | Florio | Oct 2006 | B2 |
7123959 | Cates | Oct 2006 | B2 |
7127290 | Girouard | Oct 2006 | B2 |
7130687 | Cho et al. | Oct 2006 | B2 |
7136704 | Schulman | Nov 2006 | B2 |
7142917 | Fukui | Nov 2006 | B2 |
7149574 | Yun et al. | Dec 2006 | B2 |
7154962 | Cangiani et al. | Dec 2006 | B2 |
7158832 | Kieval et al. | Jan 2007 | B2 |
7160252 | Cho et al. | Jan 2007 | B2 |
7162303 | Levin et al. | Jan 2007 | B2 |
7179229 | Koh | Feb 2007 | B1 |
7184817 | Zhu et al. | Feb 2007 | B2 |
7189204 | Ni et al. | Mar 2007 | B2 |
7194313 | Libbus | Mar 2007 | B2 |
7204805 | Dean | Apr 2007 | B2 |
7207945 | Bardy | Apr 2007 | B2 |
7212862 | Park et al | May 2007 | B2 |
7215890 | Tegge, Jr. et al. | May 2007 | B2 |
7218964 | Hill et al. | May 2007 | B2 |
7225013 | Geva et al. | May 2007 | B2 |
7225809 | Bowen et al. | Jun 2007 | B1 |
7231250 | Band et al. | Jun 2007 | B2 |
7235050 | Schulman et al. | Jun 2007 | B2 |
7252640 | Ni et al. | Aug 2007 | B2 |
7263399 | Carlson | Aug 2007 | B2 |
7269459 | Koh | Sep 2007 | B1 |
7277757 | Casavant et al. | Oct 2007 | B2 |
7277761 | Shelchuk | Oct 2007 | B2 |
7289854 | Bardy et al. | Oct 2007 | B2 |
7292890 | Whitehurst | Nov 2007 | B2 |
7302295 | Stahmann et al. | Nov 2007 | B2 |
7305265 | Fukui | Dec 2007 | B2 |
7308311 | Sorensen | Dec 2007 | B2 |
7310552 | Puskas | Dec 2007 | B2 |
7395115 | Poezevera | Jul 2008 | B2 |
7396333 | Stahmann et al. | Jul 2008 | B2 |
7400928 | Hatlestsad | Jul 2008 | B2 |
7428468 | Takemura et al. | Sep 2008 | B2 |
7460906 | Libbus | Dec 2008 | B2 |
7468040 | Hartley et al. | Dec 2008 | B2 |
7481759 | Whitehurst et al. | Jan 2009 | B2 |
7486991 | Libbus et al. | Feb 2009 | B2 |
7499742 | Bolea et al. | Mar 2009 | B2 |
7509166 | Libbus | Mar 2009 | B2 |
7542800 | Libbus et al. | Jun 2009 | B2 |
7570997 | Lovett et al. | Aug 2009 | B2 |
7570999 | Libbus | Aug 2009 | B2 |
7587238 | Moffitt | Sep 2009 | B2 |
7616990 | Chavan et al. | Nov 2009 | B2 |
7616997 | Kieval et al. | Nov 2009 | B2 |
7623926 | Rossing et al. | Nov 2009 | B2 |
7657312 | Pastore et al. | Feb 2010 | B2 |
7660628 | Libbus | Feb 2010 | B2 |
7662101 | Lee et al. | Feb 2010 | B2 |
7689276 | Dobak | Mar 2010 | B2 |
7747323 | Libbus et al. | Jun 2010 | B2 |
7769450 | Libbus et al. | Aug 2010 | B2 |
7778703 | Gross et al. | Aug 2010 | B2 |
7778711 | David et al. | Aug 2010 | B2 |
7840266 | Libbus | Nov 2010 | B2 |
7887493 | Stahmann et al. | Feb 2011 | B2 |
7988640 | Berthon-Jones et al. | Aug 2011 | B2 |
8024050 | Libbus et al. | Sep 2011 | B2 |
8069852 | Burton et al. | Dec 2011 | B2 |
20010000346 | Ruton et al. | Apr 2001 | A1 |
20010018547 | Mechlenburg et al. | Aug 2001 | A1 |
20020035376 | Bardy et al. | Mar 2002 | A1 |
20020035377 | Bardy et al. | Mar 2002 | A1 |
20020035378 | Bardy et al. | Mar 2002 | A1 |
20020035379 | Bardy et al. | Mar 2002 | A1 |
20020035380 | Rissmann et al. | Mar 2002 | A1 |
20020035381 | Bardy et al. | Mar 2002 | A1 |
20020042629 | Bardy et al. | Apr 2002 | A1 |
20020042630 | Bardy et al. | Apr 2002 | A1 |
20020042634 | Bardy et al. | Apr 2002 | A1 |
20020049475 | Bardy et al. | Apr 2002 | A1 |
20020049476 | Bardy et al. | Apr 2002 | A1 |
20020052636 | Bardy et al. | May 2002 | A1 |
20020058877 | Baumann et al. | May 2002 | A1 |
20020068958 | Bardy et al. | Jun 2002 | A1 |
20020072773 | Bardy et al. | Jun 2002 | A1 |
20020082652 | Wentkowski et al. | Jun 2002 | A1 |
20020082658 | Heinrich et al. | Jun 2002 | A1 |
20020091414 | Bardy et al. | Jul 2002 | A1 |
20020095184 | Bardy et al. | Jul 2002 | A1 |
20020103510 | Bardy et al. | Aug 2002 | A1 |
20020107544 | Ostroff et al. | Aug 2002 | A1 |
20020107545 | Rissmann et al. | Aug 2002 | A1 |
20020107546 | Ostroff et al. | Aug 2002 | A1 |
20020107547 | Erlinger et al. | Aug 2002 | A1 |
20020107548 | Bardy et al. | Aug 2002 | A1 |
20020107549 | Bardy et al. | Aug 2002 | A1 |
20020107553 | Hill et al. | Aug 2002 | A1 |
20020107559 | Sanders et al. | Aug 2002 | A1 |
20020120299 | Ostroff et al. | Aug 2002 | A1 |
20020138563 | Trivedi | Sep 2002 | A1 |
20020143264 | Ding et al. | Oct 2002 | A1 |
20020169384 | Kowallik et al. | Nov 2002 | A1 |
20020169485 | Pless et al. | Nov 2002 | A1 |
20020193685 | Mate et al. | Dec 2002 | A1 |
20020193697 | Cho et al. | Dec 2002 | A1 |
20020193839 | Cho et al. | Dec 2002 | A1 |
20030004546 | Casey et al. | Jan 2003 | A1 |
20030004549 | Hill et al. | Jan 2003 | A1 |
20030004552 | Plombon et al. | Jan 2003 | A1 |
20030023175 | Arzbaecher et al. | Jan 2003 | A1 |
20030023184 | Pitts-Crick et al. | Jan 2003 | A1 |
20030036778 | Ostroff et al. | Feb 2003 | A1 |
20030045904 | Bardy et al. | Mar 2003 | A1 |
20030050538 | Naghavi et al. | Mar 2003 | A1 |
20030055348 | Chazal et al. | Mar 2003 | A1 |
20030055461 | Girouard et al. | Mar 2003 | A1 |
20030060848 | Kieval et al. | Mar 2003 | A1 |
20030069609 | Thompson | Apr 2003 | A1 |
20030073919 | Hampton et al. | Apr 2003 | A1 |
20030083241 | Young | May 2003 | A1 |
20030088027 | Chin et al. | May 2003 | A1 |
20030088278 | Bardy et al. | May 2003 | A1 |
20030088279 | Rissmann et al. | May 2003 | A1 |
20030088280 | Ostroff | May 2003 | A1 |
20030088281 | Ostroff et al. | May 2003 | A1 |
20030088282 | Ostroff | May 2003 | A1 |
20030088283 | Ostroff | May 2003 | A1 |
20030088286 | Ostroff et al. | May 2003 | A1 |
20030097153 | Bardy et al. | May 2003 | A1 |
20030100924 | Foreman et al. | May 2003 | A1 |
20030100925 | Pape et al. | May 2003 | A1 |
20030121519 | Estes et al. | Jul 2003 | A1 |
20030139780 | Markowitz et al. | Jul 2003 | A1 |
20030149450 | Mayberg | Aug 2003 | A1 |
20030149457 | Tcheng et al. | Aug 2003 | A1 |
20030153953 | Park et al. | Aug 2003 | A1 |
20030153954 | Park et al. | Aug 2003 | A1 |
20030153955 | Park et al. | Aug 2003 | A1 |
20030153956 | Park et al. | Aug 2003 | A1 |
20030163059 | Poezevera et al. | Aug 2003 | A1 |
20030171687 | Irie et al. | Sep 2003 | A1 |
20030176894 | Stahmann et al. | Sep 2003 | A1 |
20030178031 | Du Pen et al. | Sep 2003 | A1 |
20030187336 | Odagiri et al. | Oct 2003 | A1 |
20030199945 | Ciulla | Oct 2003 | A1 |
20030204216 | Ries et al. | Oct 2003 | A1 |
20030209246 | Schroeder et al. | Nov 2003 | A1 |
20030212436 | Brown | Nov 2003 | A1 |
20030212440 | Boveja | Nov 2003 | A1 |
20030216789 | Deem et al. | Nov 2003 | A1 |
20040002742 | Florio | Jan 2004 | A1 |
20040030362 | Hill et al. | Feb 2004 | A1 |
20040039605 | Bardy | Feb 2004 | A1 |
20040059240 | Cho et al. | Mar 2004 | A1 |
20040064177 | Bardy et al. | Apr 2004 | A1 |
20040073093 | Hatlestad | Apr 2004 | A1 |
20040088015 | Casavant et al. | May 2004 | A1 |
20040088027 | Burnes et al. | May 2004 | A1 |
20040102814 | Sorensen et al. | May 2004 | A1 |
20040111040 | Ni et al. | Jun 2004 | A1 |
20040116981 | Mazar | Jun 2004 | A1 |
20040122487 | Hatlestad et al. | Jun 2004 | A1 |
20040122488 | Mazar et al. | Jun 2004 | A1 |
20040128161 | Mazar et al. | Jul 2004 | A1 |
20040133079 | Mazar et al. | Jul 2004 | A1 |
20040138719 | Cho et al. | Jul 2004 | A1 |
20040163648 | Burton | Aug 2004 | A1 |
20040176695 | Poezevara | Sep 2004 | A1 |
20040176809 | Cho et al. | Sep 2004 | A1 |
20040186523 | Florio | Sep 2004 | A1 |
20040210154 | Kline | Oct 2004 | A1 |
20040210155 | Takemura et al. | Oct 2004 | A1 |
20040210261 | King et al. | Oct 2004 | A1 |
20040215240 | Lovett et al. | Oct 2004 | A1 |
20040215258 | Lovett et al. | Oct 2004 | A1 |
20040230229 | Lovett et al. | Nov 2004 | A1 |
20040230230 | Lindstrom | Nov 2004 | A1 |
20040230243 | Haefner | Nov 2004 | A1 |
20040249416 | Yun et al. | Dec 2004 | A1 |
20050004615 | Sanders | Jan 2005 | A1 |
20050039745 | Stahmann et al. | Feb 2005 | A1 |
20050042589 | Hatlestad et al. | Feb 2005 | A1 |
20050043644 | Stahmann et al. | Feb 2005 | A1 |
20050043652 | Lovett et al. | Feb 2005 | A1 |
20050043772 | Stahmann et al. | Feb 2005 | A1 |
20050061315 | Lee et al. | Mar 2005 | A1 |
20050065447 | Lee et al. | Mar 2005 | A1 |
20050065567 | Lee et al. | Mar 2005 | A1 |
20050065572 | Hartley et al. | Mar 2005 | A1 |
20050101841 | Kaylor et al. | May 2005 | A9 |
20050107838 | Lovett et al. | May 2005 | A1 |
20050119711 | Cho et al. | Jun 2005 | A1 |
20050131467 | Boveja | Jun 2005 | A1 |
20050137645 | Voipio et al. | Jun 2005 | A1 |
20050142070 | Hartley et al. | Jun 2005 | A1 |
20050143779 | Libbus | Jun 2005 | A1 |
20050143787 | Boveja et al. | Jun 2005 | A1 |
20050145246 | Hartley et al. | Jul 2005 | A1 |
20050149128 | Heil Jr. et al. | Jul 2005 | A1 |
20050149129 | Libbus et al. | Jul 2005 | A1 |
20050149132 | Libbus | Jul 2005 | A1 |
20050149133 | Libbus et al. | Jul 2005 | A1 |
20050149143 | Libbus | Jul 2005 | A1 |
20050149155 | Scheiner et al. | Jul 2005 | A1 |
20050159784 | Arceta | Jul 2005 | A1 |
20050165323 | Montgomery et al. | Jul 2005 | A1 |
20050197675 | David et al. | Sep 2005 | A1 |
20050240240 | Park et al. | Oct 2005 | A1 |
20050288728 | Libbus et al. | Dec 2005 | A1 |
20060047333 | Tockman et al. | Mar 2006 | A1 |
20060079945 | Libbus | Apr 2006 | A1 |
20060106429 | Libbus et al. | May 2006 | A1 |
20060116737 | Libbus | Jun 2006 | A1 |
20060122675 | Libbus et al. | Jun 2006 | A1 |
20060178569 | Dean | Aug 2006 | A1 |
20060293714 | Salo et al. | Dec 2006 | A1 |
20070005114 | Salo et al. | Jan 2007 | A1 |
20070112388 | Salo | May 2007 | A1 |
20070150014 | Kramer et al. | Jun 2007 | A1 |
20070161873 | Ni et al. | Jul 2007 | A1 |
20070282215 | Ni et al. | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
0547734 | Jun 1993 | EP |
0750920 | Jan 1997 | EP |
0770407 | May 1997 | EP |
1038498 | Sep 2000 | EP |
15 2011 | Dec 2001 | EP |
1172125 | Jan 2002 | EP |
1234597 | Aug 2002 | EP |
1304137 | Apr 2003 | EP |
1317943 | Jun 2003 | EP |
1486232 | Dec 2004 | EP |
1541193 | Jun 2005 | EP |
WO 84002080 | Jul 1984 | WO |
WO 8605965 | Oct 1986 | WO |
WO 92003983 | Mar 1992 | WO |
WO 9217240 | Oct 1992 | WO |
WO 92020402 | Nov 1992 | WO |
WO 93001862 | Feb 1993 | WO |
WO 99004841 | Apr 1999 | WO |
WO 0009206 | Feb 2000 | WO |
WO 0017615 | Mar 2000 | WO |
WO 0124876 | Apr 2001 | WO |
WO 0143804 | Jun 2001 | WO |
WO 0176689 | Oct 2001 | WO |
WO 0226318 | Apr 2002 | WO |
WO 0234327 | May 2002 | WO |
WO 02085448 | Oct 2002 | WO |
WO 03003905 | Jan 2003 | WO |
WO 03011388 | Feb 2003 | WO |
WO 03041559 | May 2003 | WO |
WO 03075744 | Sep 2003 | WO |
WO 03076008 | Sep 2003 | WO |
WO 03082080 | Oct 2003 | WO |
WO 03099373 | Dec 2003 | WO |
WO 03099377 | Dec 2003 | WO |
WO 2004012814 | Feb 2004 | WO |
WO 2004062485 | Jul 2004 | WO |
WO 2004084990 | Oct 2004 | WO |
WO 2004084993 | Oct 2004 | WO |
WO 2004103455 | Dec 2004 | WO |
WO 2004105870 | Dec 2004 | WO |
WO 2004110549 | Dec 2004 | WO |
WO 2005018739 | Mar 2005 | WO |
WO 2005028029 | Mar 2005 | WO |
WO 2005042091 | May 2005 | WO |
WO 2005053788 | Jun 2005 | WO |
WO 2005063332 | Jul 2005 | WO |
WO 2005065771 | Jul 2005 | WO |
WO 2006031331 | Mar 2006 | WO |
Entry |
---|
Aug. 13, 2012, File History for U.S. Appl. No. 13/215,592. |
Feb. 13, 2011, File History for U.S. Appl. No. 10/642,998. |
Feb. 13, 2011, File History for U.S. Appl. No. 10/939,834. |
Feb. 13, 2011, File History for U.S. Appl. No. 10/939,639. |
Aircraft Noise and Sleep Disturbance: Final Report', prepared by the Civil Aviation Authority London on behalf of the Department of Trade, Aug. 1980 (CAA Report). |
Alijore et al., Nightcap: Laboratory and home-based evaluation of a portable sleep monitor, 32 Psychophysiology, 32-98 (1995). Abstract only. |
Altshule et al., The Effect of Position on Periodic Breathing in Chronic Cardiac Decomposition, New Eng. Journal of Med., vol. 259, No. 22, pp. 1064-1066, Nov. 27, 1958. |
Andersen, Long-term follow-up of patients from a randomized trial of atrial versus ventricular pacing for sick-sinus syndrome, Lancet, 350(9086), Oct. 25, 1997, 1210-6. |
Balaban et al., Feasibility of Screening for Sleep Apnea Using Pacemaker Impedance Sensor, NASPE (2001). |
Baratz et al., Effect of Nasal Continuous Positive Airway Pressure on Cardiac Output and Oxygen Delivery in Patients With Congestive Heart Failure, 102 Chest, 1992, 397-401. |
Benchimol, Cardiac hemodynamics during stimulation of the right atrium, right ventricle, and left ventricle in normal and abnormal hearts, Circulation, 33(6), Jun. 1966, 933-44. |
Bevan et al., Sympathetic nerve-free vascular muscle, Journal of Pharmacology & Experimental Therapeutics, 157(1), Jul. 1967, 117-24. |
Bevan et al., Postganglionic sympathetic delay in vascular smooth muscle, Journal of Pharmacology & Experimental Therapeutics, 152(2), May 1966, 211-30. |
Bilgutay et al., Vagal tuning for the control of supraventricular arrhythmias, Surgical Forum, 16, 1965, 151-3. No copy available. |
Bilgutay et al. A new concept in the treatment of hypertension utilizing an implantable electronical device: Baropacer. Trans. Am. Society Artificial Internal Organs. 1964. vol. 10, pp. 387-395. (No copy available). |
Borst et al., Optimal frequency of carotid sinus nerve stimulation in treatment of angina pectoris, Cardiovascular Research, 8(5), Sep. 1974, 674-80. No copy available. |
Bradley et al, Cardiac Output Response to Continuous Positive Airway Pressure in Congestive Heart Failure, 145 Am. Rev. Respir. Dis. 377-382 (1992). |
Bradley et al., Sleep Apnea and Heart Failure, Part I: Obstructive Sleep Apnea, 107 Circulation 1671-1678 (2003). |
Bradley et al., Pathophysiologic and Therapeutic Implications of Sleep Apnea in Congestive Heart Failure, 3 J. Cardiac Failure 223-240 (1996). |
Braunwald et al., Carotid sinus nerve stimulation in the treatment of angina pectoris and supraventricular trachycardia, California Medicine, 112(3), Mar. 1970, 41-50. |
Braunwald et al., Relief of angina pectoris by electrical stimulation of the carotid—sinus nerves, New England Journal of Medicine, 277(24), Dec. 14, 1967, 1278-83. No copy available. |
Buda et al., Effect of Intrathoracic Pressure on Left Ventricular Performance, 301 Engl. J. Med. 453-459 (1979). |
Calvin et al., Positive End—Expiratory Pressure (PEEP) Does Not Depress Left Ventricular Function in Patients With Pulmonary Edema, 124 Am. Rev. Respir. Dis. 121-128 (1981). |
Chapleau, Contrasting effects of static and pulsatile pressure on carotid baroreceptor activity in dogs, Circulation, vol. 61, No. 5, Nov. 1987, pp. 648-658. |
Coleridge et al. “The distribution, connexions and histology of baroreceptors in the pulmonary artery, with some observations on the sensory innervation of the ductus arteriosus.” Physiology. May 1961. vol. 156, pp. 591-602. |
Cooper et al., Neural effects on sinus rate and atrioventricular conduction produced by electrical stimulation from a transvenous electrode catheter in the canine right pulmonary artery, Circulation Research, 46(1), Jan. 1980, 48-57. |
Dark et al., Breathing Pattern Abnormalities and Arterial Oxygen Desaturation During Sleep in the Congestive Heart Failure Syndrome, Chest, Jun. 1987, 6:833-6. |
Dart Jr. et al., Carotid sinus nerve stimulation treatment of angina refractory to other surgical procedures, Annals of Thoracic Surgery, 11(4), Apr. 1971, 348-59. No copy available. |
De Hoyos et al., Haemodynamic Effects of Continuous Positive Airway Pressure in Humans With Normal and Impaired Left Ventricular Function, 88 Clin. Sci. (Lond). 173-8 (1995). |
De Landsheere et al., Effect of spinal cord stimulation on regional myocardial perfusion assessed by positron emission tomography, American Journal of Cardiology, 69(14), May 1, 1992, 1143-9. |
Dunning, Electrostimulation of the Carotid Sinus Nerve in Angina Pectoris, University Department of Medicine, Binnengasthuis, Amsterdam: Printed by Royal VanGorcum, Assen, Netherlands, 1971, 1-92, No copy available. |
Farrehi, Stimulation of the carotid sinus nerve in treatment of angina pectoris, American Heart Journal, 80(6), Dec. 1970, 759-65. No copy available. |
Feliciano et al., Vagal nerve stimulation releases vasoactive intestinal peptide which significantly increases coronary artery blood flow, Cardiovascular Research, 40(1), Oct. 1998, 45-55. |
Fromer et al., Ultrarapid subthreshold stimulation for termination of atrioventricular node reentrant tachycardia, Journal of the American College of Cardiology, 20(4), Oct. 1992, 879-83,. |
Garrigue, Night Atrial Overdrive with DDD Pacing Results in a Significant Reduction of Sleep Apnea Episodes and QOL Improvement in Heart Failure Patients, Hosp. Cardiologique du Haut-Leveque, Bordeaux-Pessac, France, Abstract Session 25, p. 145. |
Garrigue et al., Night Atrial Overdrive with DDD Pacing: a New Therapy for Sleep Apnea Syndrome, NASPE (2000). |
Garrigue et al., Benefit of Atrial Pacing in Sleep Apnea Syndrome, 346 N. Engl. J. Med. 404-412 (2002). |
Giardino et al., Respiratory Sinus Arrhythmia is Associated with the Efficiency of Pulmonary Gas Exchange in Healthy Humans, 284 Am. J. Physiol. H1585- 1591 (2003). |
Gradaus et al., Nonthoracotomy Implantable Cardioverter Defibrillator Placement in Children: Use of a Subcutaneous Array Leads and Abdominally Placed Implantable Cardioverter Defibrillators in Children, J. Of Cardiovascular Electrophysiology, vol. 12, No. 3, pp. 356-360 (Mar. 2001). |
Grassi et al., Baroreflex and non-baroreflex modulation of vagal cardiac control after myocardial infarction, Am J Cardiol, 84(5), Sep. 1, 1999, 525-9,. |
Griffith et al., Electrical Stimulation of the Carotid Sinus Nerve in Normotensive and Renal Hypertensive Dogs, Circulation, 28, Jul.-Dec. 1963, 730, No copy available. |
Hanson et al., Cardiac Gated Ventilation, 2433 SPIE 303-308 (1995). |
Hartz et al., New Approach to Defibrillator Insertion, J. Thoracic Cardiovascular Surgery, vol. 97, pp. 920-922 (1989). |
Henning, Effects of autonomic nerve stimulation, asynchrony, and load on dP/dtmax and on dP/dtmin, American Journal of Physiology, 260(4PT2), Apr. 1991, H1290-8. |
Henning et al., Vagal nerve stimulation increases right ventricular contraction and relaxation and heart rate, Cardiovascular Research, 32(5), Nov. 1996, 846-53. |
Hilton et al., Evaluation of Frequency and Time-frequency Spectral Analysis of Heart Rate Variability as a Diagnostic Marker of the Sleep Apnea Syndrome. Med Biol Eng Comput 1999 Nov, 37(6), 760-9. |
Hoffman et al., Cheyne—Stokes Respiration in Patients Recovering from Acute Cardiogenic Pulmonary Edema, Chest 1990, 97:410-12. |
Hood Jr. et al., Asynchronous contraction due to late systolic bulging at left ventricular pacing sites, American Journal of Physiology, 217(1), Jul. 1969, 215-21. |
Ishise, Time course of sympathovagal imbalance and left ventricular dysfunction in conscious dogs with heart failure, Journal of Applied Physiology 84(4), Apr. 1998, 1234-41. |
Janes, Anatomy of human extrinsic cardiac nerves and ganglia, Am J Cardiol., 57(4), Feb. 1, 1986, 299-309. |
Javaheri et al., “Sleep Apnea in 81 Ambulatory Male Patients with Stable Heart Failure”, from the Sleep Disorders Laboratory, Department of Veterans Affairs Medical Center, and the Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, pp. 2154-2159. |
Jessurun et al., Coronary blood flow dynamics during transcutaneous electrical nerve stimulation for stable angina pectoris associated with severe narrowing of one major coronary artery, American Journal of Cardiology, 82(8), erratum appears in Am J Cardiol, Feb. 1999, 15;83(4):642, Oct. 15, 1998, 921-6. |
Junyu et al., Posture Detection Algorithm Using Multi Axis DC-Accelerometer, Pace vol. 22, Apr. 1999, No copy available. |
Kandel et al., Part VII: Arousal, Emotion, and Behavioral Homeostasis, In: Principles of neural science, New York:McGraw-Hill, Health Professions Division, 2000, 966-969, No copy available. |
Karpawich et al., Altered cardiac histology following apical right ventricular pacing in patients with congenital atrioventricular block, Pacing Clin Electrophysiol, 22(9), Sep. 1999, 1372-7. |
Kaye et al., Acute Effects of Continuous Positive Airway Pressure on Cardiac Sympathetic Tone in Congestive Heart Failure, 103 Circulation 2336-24338 (2001). |
Kolettis et al., Submammary Implantation of a Cardioverter—Defibrillator with a Nonthoractomy Lead System, Am. Heart J., vol. 126, pp. 1222-1223 (Nov. 1993). |
Krahn et al. Recurrent syncope. Experience with an implantable loop record. Cardiol. Clin., vol. 15(2), May 1997, pp. 316-326. |
Laude et al., Effects of Breathing Pattern on Blood Pressure and Heart Rate Oscillations in Humans, 20 Clin. Exp. Pharmol. Phisiol 619, 625 (1993). |
Leclercq et al., Hemodynamic importance of preserving the normal sequence of ventricular activation in permanent cardiac pacing, Am Heart J., 129(6), Jun. 1995, 1133-41. |
Leng et al., Lead Configuration for Defibrillator Implantation in a Patient with Congenital Heart Disease and a Mechanical Prosthetic Tricuspid Valve, PACE, vol. 24, pp. 1291-1292, Aug. 2001. |
Lenique et al., Ventilatory and Hemodynamic Effects of Continuous Positive Airway Pressure in Left Heart Failure, 155 Am. J. Respir. Crit. Care Med. 500-505 (1997). |
Li, Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats, Circulation, 109(1), Epub 2003 Dec 8, Jan. 6, 2004, 1-5. |
Lugaresi et al., Snoring, 39 Electroencephalogr. Clin. Neurophysiol. 59-64 (1975). (No copy available). |
Mannheimer et al., Epidural spinal electrical stimulation in severe angina pectoris, British Heart Journal, 59(1), Jan. 1988, 56-61, Abstract only. |
Mannheimer et al., Transcutaneous electrical nerve stimulation in severe angina pectoris, European Heart Journal, 3(4), Aug. 1982, 297-302, Abstract only. |
Mannheimer et al., Transcutaneous electrical nerve stimulation (TENS) in angina pectoris, Pain, 26(3), Sep. 1986, 291-300, Abstract only. |
Mansfield, D. et al., Effects of Continuous Positive Airway Pressure on Lung Function in Patients with Chronic Obstructive Pulmonary Disease and Sleep Disordered Breathing, Respirology 365-70 (1999). Abstract only. |
Mazgalev et al., Autonomic modification of the atrioventricular node during atrial fibrillation: role in the slowing of ventricular rate, Circulation 99(21), Jun. 1, 1999, 2806-14. |
Mehta et al., Effects of Continuous Positive Airway Pressure on Cardiac Volumes in Patients With Ischemic and Dilated Cardiomyopathy, 161 Am. J. Respir. Crit. Care Med. 128-134 (2000). |
Millar-Craig et al., Circadian variation of blood-pressure, Lancet, 1(8068), Apr. 15, 1978, 795-7, Abstract only. |
Minisi et al., Regional left ventricular deafferentation increases baroreflex sensitivity following myocardial infarction, Cardiovasc Res., 58(1), Apr. 1, 2003, 136-41. |
Murphy et al., Intractable angina pectoris: management with dorsal col. stimulation, Medical Journal of Australia, 146(5), Mar. 2, 1987, 260, Abstract only. |
Naughton et al., Effects of Continuous Positive Airway Pressure on Intrathoracic and Left Ventricular Transmural Pressure in Congestive Heart Failure, 91 Circulation 1725-1731 (1995), pp. 1-25. |
Neil et al. “Effects of electrical stimulation of the aortic nerve on blood pressure and respiration in cats and rabbits under chloralose and nembutal anaesthesia.” Journal of Physiology. Sep. 1949, vol. 109 (3-4) p. 392-401. |
Park & Pollock, Use of an Implantable Cardioverter Defibrillator in an Eight—Month—Old Infant with Ventricular Fibrillation Arising from a Myocardial Fibroma, PACE, vol. 22, No. 1, pp. 138-139 Jan. 1999. |
Peters et al., Tempral and spatial summation caused by aortic nerve stimulation in rabbits. Effects of stimulation frequencies and amplitudes. Journal of the Autonomic Nervous System. 1989. vol. 27, pp. 193-205. |
Peters et al., The principle of electrical carotid sinus nerve stimulation: a nerve pacemaker system for angina pectoris and hypertension therapy, Annals of Biomedical Engineering, 8(4-6), 1980, 445-58. |
Philbin et al., Inappropriate shocks delivered by an ICD as a result of sensed potentials from a transcutaneous electronic nerve stimulation unit, Pacing & Clinical Electrophysiology, 21(10), Oct. 1998, 2010-1. |
Pinsky et al., Augmentation of Cardiac Function by Elevation of Intrathoracic Pressure, 54 J. Appl. Physiol., 1983, 950-955. |
Pinsky et al., Hemodynamic Effect of Cardiac Cycle—Specific Increases in Intrathoracic Pressure, 6 J. Appl. Physiol. 604-612 (1986). |
Potkin et al., Effect of positive end—expiratory pressure on right and left ventricular function in patients with the adult respiratory distress syndrome, 135 Am. Rev. Respir. Dis. 307-311 (1987). |
Prakash et al. Asymmetrical distribution of aortic nerve fibers in the pig, Anat Rec., 158(1), May 1967, 51-7. |
Rasanen et al., Acute Myocardial Infarction Complicated by Left Ventricular Dysfunction and Respiratory Failure. The Effects of Continuous Positive Airway Pressure, 87 Chest, 1985, 158-62. |
Reddel et al., Analysis of Adherence to Peak Flow Monitoring When Recording of Data is Electronic, BMJ 146-147 (2002). |
Rees et al., Paroxysmal Nocturnal Dyspnoea and Periodic Respiration, The Lancet, Dec. 22-29, 1979, pp. 1315-1317. |
Roche et al., Screening of Obstructive Sleep Apnea Syndrome by Heart Rate Variability Analysis, 100 Circulation 1411-1455 (1999). |
Rosenqvist, The effect of ventricular activation sequence on cardiac performance during pacing, Pacing and Electro-physiology, 19(9), 1996, 1279-1286. |
Rushmer, Chapter 5 — Systemic Arterial Pressure, In: Cardiovascular dynamics, Philadelphia: Saunders, 1976, 176-216. |
Sato et al. “Novel Therapeutic Strategy against Central Baroreflex Failure: A Bionic Baroreflex System.” Circulation. Jul. 1999 vol. 100, pp. 299-304. |
Satoh et al., “Role of Hypoxic Drive in Regulation of Postapneic Ventilation During Sleep in Patients with Obstructive Sleep Apnea”, Am Rev Respir Dis, 1991 Mar. 143 (3): 481-485. |
Scharf, Effects of Continuous Positive Airway Pressure on Cardiac Output in Experimental Heart Failure, 19 Sleep S240-2 (1996). |
Schauerte et al., Catheter stimulation of cardiac parasympathetic nerves in humans: a novel approach to the cardiac autonomic nervous system, Circulation, 104(20), Nov. 13, 2001, 2430-5. |
Schauerte, Transvenous Parasympathetic Nerve Stimulation in the Inferior Vena Cava and Atrioventricular Conduction, Journal of Cardiovascular Electrophysiology, 11(1), Jan. 2000, 64-69. |
Schauerte et al., Ventricular rate control during atrial fibrillation by cardiac parasympathetic nerve stimulation: a transvenous approach, Journal of the American College of Cariology, 34(7), Dec. 1999, 2043-50. |
Scherlag, Endovascular Neural Stimulation via a Novel Basket Electrode Catheter: Comparison of Electrode Configurations, Journal of Interventional Cardiac Electrophysiology, 4(1), Apr. 2000, 219-224. |
Schuder et al., Experimental Ventricular Defibrillation with an Automatic and Completely Implanted System, Trans. Am. Soc. Artif. Int. Organs, vol. 16, pp. 207-212 (1970). |
Schuder et al., Transthoracic Ventricular Defibrillation in the Dog with Truncated and Untruncated Exponential Stimuli, IEEE Trans. On Bio-Medical Engin., vol. BME-18, No. 6, pp. 410-415 Nov. 1971. |
Schuder et al., Ventricular Defibrillation in the Dog Using Implanted and Partially Implanted Electrode Systems, Am. J. Of Cardiology, vol. 33, pp. 243-247 Feb. 1974. |
Smits et al., Defibrillation Threshold (DFT) Model of a Fully Subcutaneous ICD System, Europace Supplements, vol. 2, Jun. 2001 at col. 778, p. B83. |
Steltner et al., Diagnosis of Sleep Apnea by Automatic Analysis of Nasal Pressure and Forced Oscillation Impedance. Am. Journal Respiratory Critical Care Medicine, vol. 165, pp. 940-944 (2002). |
Stirbis et al., Optimizing the Shape of Implanted Artificial Pacemakers, Kaunas Medical Institute. Translated from Meditsinskaya Tekhnika, No. 6, pp. 25-27, 1986. |
Takahashi, Vagal modulation of ventricular tachyarrhythmias induced by left ansae subclaviae stimulation in rabbits, Japanese Heart Journal, 39(4), Jul. 1998, 503-11. |
Thrasher et al. “Unloading arterial baroreceptors causes neurogenic hypertension.” American Journal Physiol. Regulatory Integrative Comp. Physiol. 2002. vol. 282, R1044-R1053. |
Tkacova et al., Left Ventricular Volume in Patients with Heart Failure and Cheyne—Strokes Respiration during Sleep, Am. Journal, Respir. Crit. Care Med., vol. 156, pp. 1549-1555, 1997. |
Tse et al., Long-term effect of right ventricular pacing on myocardial perfusion and function, J Am Coll Cardiol., 29(4), Mar. 15, 1997, 744-9. |
Vanninen et al., Cardiac Sympathovagal Balance During Sleep Apnea Episodes, 16 Clin. Physiol. 209-216 (1996). |
Veerman et al., Circadian profile of systemic hemodynamics, Hypertension, 26(1), Jul. 1995, 55-9. |
Verity et al., Plurivesicular nerve endings in the pulmonary artery, Nature, 211(48), Jul. 30, 1966, 537-8. |
Verity et al., Pulmonary artery innvervation: a morphopharmacologic correlation, Proceedings of the Western Pharmacology Society, 8, 1965, 57-9. no. copy available. |
Verrier et al., Sleep, dreams, and sudden death: the case for sleep as an autonomic stress test for the heart, 31 Cardiovascular Research 181-211, 1996. |
Verrier et al., Sleep Related Cardiovascular Risk: New Home-Based Monitoring Technology for Improved Diagnosis and Therapy, 2 A.N.E. 158-175, 1997. |
Waldemark et al., Detection of Apnea using Short Window FFT Technique and Artificial Neural Network, 3390 SPIE International Society for Optical Engineering 122-133 (1998). |
Wallick, Selective AV nodal vagal stimulation improves hemodynamics during acute atrial fibrillation in dogs, American Journal of Physiology—Heart & Circulatory Physiology, 281(4), Oct. 2001, H1490-7. |
Waninger et al., Electrophysiological control of ventricular rate during atrial fibrillation, Pacing & Clinical Electrophysiology, 23(8), Aug. 2000, 1239-44. |
Weber et al., Effects of CPAP and BIPAP on stroke volume in patients with obstructive sleep apnea syndrome. Pneumolgie Mar., 1995;49(3):233-5. |
Wiggers et al., The muscular reactions of the mammalian ventricles to artificial surface stimuli, American Journal of Physiology, 1925, 346-378. |
Young et al., the Occurrence of Sleep-disordered Breathing Among Middle-aged Adults, The New England Journal of Medicine, vol. 328, No. 17, pp. 1230-1235. |
Zarzoso et al., Noninvasive Fetal Electrocardiogram Extraction: Blind Separation Versus Adaptive Noise Cancellation, IEEE Transactions on Biomedical Engineering, vol. 48, No. 1, pp. 12-18, Jan. 2001. |
Zhang et al., Optimal ventricular rate slowing during atrial fibrillation by feedback AV nodal-selective vagal stimulation, American Journal of Physiology—Heart & Circulatory Physiology, 282(3), Mar. 2002, H1102-10. |
Zhou et al., Prevention of high incidence of neurally mediated ventricular arrhythmias by afferent nerve stimulation in dogs, Circulation, 101(7), Feb. 22, 2000, 819-24. |
Chapleau, Pulsatile activation of baroreceptors causes central facilitation of baroreflex, American Journal Physiol Heart Circ Physiol, Jun. 1989, 256:H1735-1741. |
Gallois et al., Multi-Channel Analysis of the EEG Signals and Statistic Particularities for Epileptic Seizure Forecast, Second Joint EMBES/BMES Conference, pp. 208-215, Oct. 23-26, 2002. |
Neistadt et al., Effects of electrical stimulation of the carotid sinus nerve in reversal of experimentally induced hypertension, Surgery, 61(6), Jun. 1967, 923-31, No copy available. |
Schauerte et al., Transvenous parasympathetic cardiac nerve stimulation: an approach for stable sinus rate control, Journal of Cardiovascular Electrophysiology, 10(11), Nov. 1999, 1517-24. |
Vanoli, Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction, Circulation Research, 68(5), May 1991, 1471-81, Abstract only. |
Apr. 10, 2012 File History for U.S. Appl. No. 13/215,592. |
May 26, 2011, File History for U.S. Appl. No. 10/642,998. |
Number | Date | Country | |
---|---|---|---|
20110137197 A1 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
60504332 | Sep 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10939834 | Sep 2004 | US |
Child | 13027445 | US |