Implantable device to protect tubing from puncture

Information

  • Patent Grant
  • 8992415
  • Patent Number
    8,992,415
  • Date Filed
    Friday, April 30, 2010
    14 years ago
  • Date Issued
    Tuesday, March 31, 2015
    9 years ago
Abstract
An implantable device used in a gastric band system includes an access port, a tube coupled to the access port, and a shielding device covering a portion of the tube. The shielding device is positioned adjacent to the access port and covers the end of the tube coupled to the access port. The shielding device is made from a puncture resistant material, to protect the tube from puncture by a misplaced syringe needle inserted by a physician.
Description
FIELD

The present invention generally relates to medical systems and apparatus and uses thereof for treating obesity and/or obesity-related diseases, and more specifically, relates to an implantable device used in a medical system to protect tubing from puncture.


BACKGROUND

Adjustable gastric banding apparatus have provided an effective and substantially less invasive alternative to gastric bypass surgery and other conventional surgical weight loss procedures. Despite the positive outcomes of invasive weight loss procedures, such as gastric bypass surgery, it has been recognized that sustained weight loss can be achieved through a laparoscopically-placed gastric band, for example, the LAP-BAND® (Allergan, Inc., Irvine, Calif.) gastric band or the LAP-BAND AP° (Allergan, Inc., Irvine, Calif.) gastric band. Generally, gastric bands are placed about the cardia, or upper portion, of a patient's stomach forming a stoma that restricts food's passage into a lower portion of the stomach. When the stoma is of an appropriate size that is restricted by a gastric band, food held in the upper portion of the stomach provides a feeling of satiety or fullness that discourages overeating. Unlike gastric bypass procedures, gastric band apparatus are reversible and require no permanent modification to the gastrointestinal tract.


Certain types of gastric band systems may operate through a hydraulic force. The size of the band placed around the stomach may depend on the volume of fluid in the band. An access port may be used to control the amount of fluid in the band. The access port may be located below the surface of an individual's skin. The physician accesses the access port to either increase or decrease the amount of fluid in the band. The physician inserts a long hypodermic needle through the surface of the skin and into the access port. The physician may then deposit or remove fluid from the system to control operation of the gastric band. However, the access port may be under many layers of fat, and may be difficult to locate. If the physician cannot properly locate the access port, the physician may improperly insert the hypodermic needle into the individual's body.


If the physician improperly inserts the hypodermic needle into the individual's body, the hypodermic needle may puncture the tube leading from the access port to the gastric band. The tube contains fluid that may leak causing the gastric band to eventually fail. The entire gastric band system may then need to be removed from the individual's body, or the physician may need to perform an operation to mend the punctured tube.


SUMMARY

Generally described herein is an implantable shielding device that protects tubing used in a gastric band system. A protective system placed over the tubing may protect the tube from errant needle sticks.


In one embodiment, the implantable device comprises an access port configured to attach to body tissue, a tube coupled to the access port, and a shielding device coupled to the tube. The shielding device is positioned adjacent to the access port and covers the end of the tube coupled to the access port. The shielding device is made from a puncture resistant material. The shielding device protects the tube from puncture, by blocking the movement of a needle directed towards the tube.


In one embodiment, the shielding device comprises a plurality of individual shields. Each individual shield may have a bell-like shape, a cone-like shape, a cylindrical shape, a bullet-like shape, or a ball and socket shape. The individual shields are positioned adjacent to each other along the tube. Each individual shield may be independently moveable to allow the tube to bend. Portions of adjacent individual shields overlap each other to assure no portion of the tube is exposed to an incoming needle. In addition, multiple different shapes of individual shields may be alternatively placed along the tube.


In one embodiment, the shielding device comprises a coil wrapped around the outer circumference of the tube. The coil is wrapped such that no portion of the tube is exposed to the needle. The coil may include a single wire, or multiple wires wrapped around the tube. In addition, multiple layers of wire may be wrapped over each other around the tube to further assure a needle cannot puncture the tube. Furthermore, the coil may have a size that is small enough to be integrated within the tube, as an alternative to placing it around the tube. The coil may be made from metal or a hard plastic or polymer.


In one embodiment, the shielding device has a flattened disk-like shape and is coupled to the access port. The flattened disk extends outward from the access port in a radial dimension to cover a portion of the tube. The shielding device may comprise multiple flattened disks extending outward from the access port, or a half-disk shape extending from the access port in a direction towards the tube. In addition, the shielding device may have multiple layers of material pressed together, or sandwiched together to increase puncture resistance. The flattened disk may be a flexible disk, made from a flexible puncture resistant fabric or a hard material such as plastic.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a gastric band system according to an embodiment of the present invention.



FIG. 2 illustrates a perspective view of the inner diameter of the band corresponding to a decreased volume of fluid in the gastric band according to an embodiment of the present invention.



FIG. 3 illustrates a perspective view of the inner diameter of the band corresponding to an increased volume of fluid in the gastric band according to an embodiment of the present invention.



FIG. 4 illustrates a perspective view of the gastric band system removed from an individual's body according to an embodiment of the present invention.



FIG. 5 illustrates a side, cut-away view of the access port attached to the muscle wall of an individual according to an embodiment of the present invention.



FIG. 6 illustrates a perspective, close-up view of the shielding device and the access port according to an embodiment of the present invention.



FIG. 7 illustrates a side, cut-away view of the shielding device in operation according to an embodiment of the present invention.



FIG. 8 illustrates a side, cross-sectional view of the shielding device according to an embodiment of the present invention.



FIG. 9 illustrates a side, cross-sectional view of the shielding device according to an embodiment of the present invention.



FIG. 10 illustrates a side, cross-sectional view of the shielding device according to an embodiment of the present invention.



FIG. 11 illustrates a side, cross-sectional view of the shielding device according to an embodiment of the present invention.



FIG. 12 illustrates a side, cross-sectional view of the shielding device according to an embodiment of the present invention.



FIG. 13 illustrates a side, cross-sectional view of the shielding device according to an embodiment of the present invention.



FIG. 14 illustrates a side view of the shielding device according to an embodiment of the present invention.



FIG. 15 illustrates a side, close-up view of the shielding device according to an embodiment of the present invention.



FIG. 16 illustrates a side, cross-sectional view of the shielding device according to an embodiment of the present invention.



FIG. 17 illustrates a perspective view of the shielding device according to an embodiment of the present invention.



FIG. 18 illustrates a top view of the shielding device according to an embodiment of the present invention.



FIG. 19 illustrates a side, cut-away view of the shielding device in operation according to an embodiment of the present invention.



FIG. 20 illustrates a top view of the shielding device according to an embodiment of the present invention.



FIG. 21 illustrates a side, cut-away view of the shielding device in operation according to an embodiment of the present invention.



FIG. 22 illustrates a side, cross-sectional view of the shielding device according to an embodiment of the present invention.



FIG. 23 illustrates a side, cross-sectional view of the shielding device according to an embodiment of the present invention.



FIG. 24 illustrates a side, cross-sectional view of the shielding device according to an embodiment of the present invention.



FIG. 25 illustrates a side, cross-sectional view of the shielding device according to an embodiment of the present invention.





DETAILED DESCRIPTION

The present invention relates to a shielding device that protects a tube used in a gastric band system. Specifically, the shielding device protects a tube from puncture by a syringe needle inserted near the tube.


As shown in FIG. 1, the gastric band system 10 includes a band 12 (e.g., a gastric band 12), a tube 14, an access port 16, and a shielding device 18 placed over a portion of the tube 14. The gastric band system 10 is surgically implanted within an individual's body 20. A physician places the band 12 around the upper portion 22 of an individual's stomach 24 and fixes the access port 16 to a portion of the individual's body 20. Preferably, the access port 16 is securely fixed to the muscle wall of the abdomen inside the individual's body 20. The tube 14 connects the band 12 to the access port 16. The shielding device 18 is positioned completely around the tube 14, adjacent to the access port 16.


The gastric band system 10 shown in FIG. 1 operates in response to a hydraulic force. The band 12 includes an inner bladder 26 defining an inner diameter 28 (shown in FIG. 2) with a size that varies based on the volume of fluid inside the inner bladder 26. The volume of fluid in the inner bladder 26 may be controlled by a physician through the access port 16. The access port 16 may include a septum 30, a fluid chamber 32 (shown in FIG. 8), and an access port housing 34 holding the fluid chamber 32 and the septum 30. The septum 30 is configured as a membrane located over the fluid chamber 32, to allow a syringe needle 36 to pass through the septum 30 and into the fluid chamber 32 to deposit or remove fluid. The septum 30 is preferably made from a soft needle-penetrable material such as silicone. The tube 14 has two ends, with one end coupled to the fluid chamber 32 and one end coupled to the inner bladder 26 of the band 12. The tube 14 transfers the fluid from the fluid chamber 32 to the inner bladder 26 of the band 12. In this configuration, a physician can control the size of the inner bladder 26 by inserting a syringe needle 36, or long hypodermic needle, through the surface of the individual's skin, through the septum 30, and into the fluid chamber 32, to either deposit or inject fluid into or remove fluid from the gastric band 12.


If the physician deposits or injects fluid into the fluid chamber 32, the inner bladder's 26 inner diameter 28 decreases, and the band 12 constricts the upper portion 22 of the stomach 24. The constricted upper portion 22 of the stomach 24 reduces the flow of food passing to the lower part of the stomach 24, ideally causing the individual to lose weight over time. If the physician removes fluid from the fluid chamber 32, the inner bladder's 26 inner diameter 28 increases, and band 12 loosens around the upper portion 22 of the stomach 24. The flow of food passing to the lower part of the stomach 24 correspondingly increases.



FIG. 2 illustrates an increased size of the inner diameter 28 corresponding to a decreased volume of fluid in the inner bladder 26 of the gastric band 12.



FIG. 3 illustrates a decreased size of the inner diameter 28 corresponding to an increased volume of fluid in the inner bladder 26 of the gastric band 12.



FIG. 4 illustrates a perspective view of the gastric band system 10 when it is not installed within the interior of the individual's body 20.


To adjust the size of the inner bladder 26, the physician may need to repeatedly insert a syringe needle 36 into the individual's body 20 to add or remove fluid from the gastric band system 10. Also, the physician may need to insert a syringe needle 36 on a periodic basis to adjust the size of the inner bladder 26, or to assure the fluid pressure is sufficient in the gastric band system 10. As such, it is important that the physician be able to easily identify and locate the precise position of the septum 30.



FIG. 5 shows a side, cut-away view of the access port 16 attached to or engaged with the abdominal muscle wall 38 of the individual. As discussed above, a physician may surgically implant the access port 16 to the muscle wall 38 of an individual. The muscle wall 38 provides a secure attachment point to assure the access port 16 does not travel throughout the individual's body 20 and potentially disengage from the tube 14. The access port 16 is configured to attach to body tissue. A plurality of anchors 40 may be used to fix the access port 16 to the muscle wall 38. These anchors 40 may comprise hooks or barbs that penetrate the muscle wall 38 and fix the access port 16 in place.


When the physician attaches the access port 16 to the muscle wall 38, the physician also passes the tube 14 inside the individual's body 20 to connect to the inner bladder 26. It is important that the tube 14 remains flexible to allow the physician to easily manipulate the tube 14 during insertion. Accordingly, the tube 14 may be made of a durable, flexible material such as silicone or other equivalent material.


A drawback to fixing the access port 16 to the muscle wall 38 is that the position of the septum 30 may change over time relative to the surface 42 of the skin 43. The amount of fat 44 located around the access port 16 may vary, shifting the position of the access port 16 relative to the surface 42 of the skin 43. In this situation, the physician may not be able to detect the exact position of the septum 30. Therefore, it may be difficult for the physician to repeatedly determine the exact position of the septum 30 over an extended period of time, if the patient's weight is changing. A physician can place a mark on the skin 43 to indicate the position of the septum 30, however, the mark may deviate from the septum 30 over time. To properly locate the septum 30, the physician can also palpate the area around the access port 16 to generally feel where the septum 30 is located. However, even a skilled physician may not correctly determine the precise location of the septum 30 because it may be under many layers of fat 44.


The physician may therefore incorrectly insert the syringe needle 36 through the skin 43 and contact the muscle wall 38. Although this result would be painful, another problem would occur if the syringe needle 36 penetrated the tube 14. As discussed above, the tube 14 is typically made from a soft, flexible material such as silicone, which may be easily penetrated by a syringe needle 36. If the tube 14 is punctured, the pressurized fluid in the tube 14 would leak out into the individual's body 20. The gastric band system 10 would then be inoperable, and the physician would either need to surgically remove the gastric band system 10 or perform an operation to mend the punctured tube 14. To alleviate the problem of a punctured tube 14, the shielding device 18 may be placed over a portion of the tube 14 located adjacent to the access port 16. In one embodiment, the shielding device 18 is placed completed around the tube 14 so that the tube 14 is protected from all sides.



FIG. 6 displays a perspective view of one embodiment of the shielding device 18. The shielding device 18 may comprise a plurality of individual shields 46, or beads, coupled to the tube 14 and spaced adjacent to one another. Each individual shield 46 has a generally cylindrical shape that entirely wraps around an outer circumference 48 of the tube 14. Each individual shield 46 may be made from a hard, puncture resistant material that is impenetrable by the needle 36 inserted by the physician. The material may be a hard plastic, a light-weight metal, a ceramic, or a hardened polymer, or a thermoplastic such as polysulfone. Generally, the material is hard enough that the syringe needle 36 is incapable of piercing the puncture resistant material, beyond merely placing a small divot or scratch on the surface of the material. The shielding device 18 covers the end of the tube and is positioned close enough to the access port 16 to block a misplaced needle 36 inserted by the physician. For example, the shielding device 18 may be attached to and positioned adjacent to the access port housing 34 such that no gap exists between the shielding device 18 and the access port housing 34. In addition, the access port housing 34 may include a protective canopy structure 50 to assure a needle 36 traveling towards the tube 14 can not contact an area of exposed tube 14 between the shielding device 18 and the access port housing 34. The shielding device 18 protects the tubing from needle sticks while remaining flexible and provides strain relief for the tubing.


The operation of the shielding device 18 is shown in FIG. 7. When a physician inserts the needle 36, the shielding device 18 blocks the motion of the needle 36 and prevents it from penetrating the tube 14. Because the shielding device 18 is made from a hard material, the physician may feel the syringe needle 36 hit a hard surface and will know the needle 36 is not contacting the septum 30. The physician may then retract the syringe and attempt to find the septum 30 again. The tube 14 will be protected from puncture.


In an alternative operation, the shielding device 18 may be composed of a puncture resistant material that merely resists penetration by a needle 36. The puncture resistant material may deform when contacted by a needle 36, but the energy required to pass through the shielding device 18 and contact the tube 14 may be great. The physician will notice the increased resistance and realize the needle 36 is not contacting the septum 30.



FIG. 8 illustrates a cross-section view of the shielding device 18 showing the shape and position of each individual shield 46 along the tube 14. In this embodiment, each individual shield 46 has a generally bell-like shape, with a curved outer surface 52 and curved inner surface 54. Each individual shield 46 has a neck portion 56 and an extended portion 58. Both the neck portion 56 and extended portion 58 have an associated diameter, with the diameter 60 of the neck portion 56 being smaller than the diameter 62 of the extended portion 58. The different diameters 60, 62 allow the extended portion 58 to form a hollow cavity 64 defining the inner surface 54. Thus, the extended portion 58 defines the hollow cavity 64 for receiving the neck portion 56 from an adjacent shield 46. The neck portion 56 of an adjacent individual shield 46 may enter into a portion of the hollow cavity 64. The neck portion 56 and the extended portion 58 of the adjacent individual shields 46 therefore overlap slightly and are moveably connected to one another. The curved shape of the outer surface 52 and inner surface 54 allow the neck portion 56 to more easily enter the hollow cavity 64. The neck portion 56 of an individual shield 46 enters into the hollow cavity 64 to assure a syringe needle 36 can not directly contact the tube 14 if it is inserted in a perpendicular direction towards the tube 14. If the extended portion 58 did not extend over the neck portion 56 of the adjacent individual shield 46, a small gap of exposed tube 14 may exist between the individual shields 46. The needle 36 could then penetrate the tube 14 at the exposed areas.


The individual shields 46 are spaced along the tube 14 equidistantly, at regular intervals from each other. However, the spacing between the individual shields 46 may vary in different embodiments. In the embodiment shown in FIG. 8, each individual shield 46 is spaced such that the neck portion 56 contacts or very nearly contacts the inner surface 54 of an adjacent individual shield 46. In this configuration, no gap exists between the adjacent individual shields 46. However, in the embodiment shown in FIG. 9, the individual shields 46 may be spaced such that a small gap 66 exists between the neck portion 56 of an individual shield 46 and the inner surface 54 of an adjacent individual shield 46. The gap 66 increases the flexibility of the portion of the tube 14 protected by the shielding device 18. The gap 66 may be formed by gluing the individual shields 46 at a distance from each other, or spacers may be used, as discussed in relation to FIG. 22. As discussed above, it may be beneficial to have the tube 14 be flexible during insertion into an individual 20. A size or shape of the extended portion 58 of an individual shield 46 may be modified to assure the exposed tube portion 68 between the individual shields 46 is still protected from an incoming needle 36.



FIG. 10 illustrates the flexibility of the shielding device 18 for the embodiment shown in FIG. 8. Each individual shield 46 may rotate with respect to the position of an adjacent individual shield 46. The angle of rotation 70 may be based on a plurality of factors, including the length and shape of the extended portion 58, the distance of the individual shields 46 to each other, and the overall flexibility of the material comprising the tube 14 and the individual shields 46. The flexibility of the shielding device 18 is an advantage over an embodiment simply including a hard metal or plastic sheath placed over a portion of the tube 14. A hard sheath placed over a portion of the tube 14 would not allow a physician to easily manipulate the tube 14 when inserted into an individual 20. The plurality of individual shields 46 allow a hard, inflexible, material to be attached to the tube 14, yet allow the tube 14 to remain flexible for easy manipulation. In addition, a flexible tube is also important for patient comfort. For example, if the patient were to bend over, a rigid shielding device may exert more pressure on the surrounding tissues than a flexible one, resulting in pain.


Referring back to FIG. 8, each individual shield 46 may be individually coupled to the outer surface 72 of the tube 14. In one embodiment, the individual shields 46 are not directly coupled to each other but rather coupled to the outer surface 72 of the tube 14. The individual shield 46 may be slid onto the tube 14 and then fixed in place along the tube 14 with silicone glue or other equivalent attachment means. An individual shield 46 may therefore not slide along the tube 14 or move laterally relative to another individual shield 46. The individual shields 46 may be immovably fixed to the tube 14. In addition, if the individual shields 46 are coupled directly to the tube 14, the access port housing 34 does not need to be modified. The tube 14 may be disengaged from the access port housing 34, and the shielding device 18 will remain attached to the tube 14.


However, in one embodiment, the individual shields 46 may be fixed to the tube 14 in another manner. For example, each individual shield 46 may be fixed to a flexible sleeve (not shown), and the flexible sleeve may be slid over the tube 14. The flexible sleeve may be directly attached to the access port housing 34 or glued to the outer surface 72 of the tube 14. The flexible sleeve may allow the shielding device 18 to be entirely disengaged from the tube 14 and the access port housing 34 during assembly or disassembly of the gastric band system 10.



FIG. 11 illustrates a cross-section view of an embodiment of the shielding device 18 with each individual shield 46 having a generally cone-like shape. Similar to the embodiment shown in FIG. 8, each individual shield 46 has a neck portion 56 and an extended portion 58. However, in this embodiment, the outer surface 52 of the individual shield 46 has a flattened shape, and the hollow cavity 64 has a conical shape. The neck portion 56 of the individual shield 46 extends into the extended portion 58 of an adjacent individual shield 46. Similar to the embodiment shown in FIG. 8, the overlap of the extended portion 58 over the neck portion 56 protects the tube 14 from contact with an incoming syringe needle 36. In addition, similar to the embodiment shown in FIG. 8, the size of an extended portion 58 and the distance between adjacent individual shields 46 may be varied to offer different levels of flexibility and protection for the tube 14.



FIG. 12 illustrates a cross-section view of an embodiment of the shielding device 18 with each individual shield 46 having a more cylindrical shape than the embodiment shown in FIG. 8. Similar to the embodiment shown in FIG. 8, each individual shield 46 has a neck portion 56 and an extended portion 58. However, in this embodiment, the outer surface 52 of the individual shield 46 has a more flattened shape, and the hollow cavity 64 has a cylindrical shape. The neck portion 56 of the individual shield 46 extends into the extended portion 58 of an adjacent individual shield 46. Similar to the embodiment shown in FIG. 8, the overlap of the extended portion 58 over the neck portion 56 protects the tube 14 from contact with an incoming syringe needle 36. In addition, similar to the embodiment shown in FIG. 8, the size of an extended portion 58 and the distance between adjacent individual shields 46 may be varied to offer different levels of flexibility and protection for the tube 14.



FIG. 13 illustrates one embodiment of the shielding device 18 utilizing a combination of cone-shaped individual shields 46 and bell-shaped individual shields 46. The cone-shaped individual shields 46 and bell-shaped individual shields 46 may be alternatively placed along the length of the tube 14. In addition, similarly shaped individual shields 46 may be placed in a different orientation with respect to one another. For example, a cone-shaped individual shield 46 may have an extended portion 58 directed towards an extended portion 58 of an adjacent cone-shaped individual shield 46. The embodiment shown in FIG. 13 also illustrates an individual shield 46 may have no defined extended portion 58 or neck portion 56. As shown in FIG. 13, the shape, orientation, and position of the individual shields 46 may be varied to produce alternative degrees of flexibility and protection for the tube 14.



FIG. 14 illustrates an embodiment of the shielding device 18 utilizing a wire or hard tubing wrapped multiple times over a portion of the tube 14, forming a coil 74. The coil 74 encircles the exterior circumference 48 of the tube 14. The coil 74 may be comprised of a hard material, such as a metal wire, or a flexible hard plastic or polymer. The metal may comprise titanium, nitinol, other non-ferrous relatively flexible materials, or a similar biocompatible metal.


The coil 74 is positioned adjacent to the access port housing 34, to leave no gap between the coil 74 and the access port housing 34 for a syringe needle 36 to contact the tube 14. In addition, the tightly wound wraps 76 of the coil 74 are spaced closely, and may contact each other, to leave no gap for a syringe needle 36 to pass through the shielding device 18 and contact the tube 14.


The multiple wraps 76 of the coil 74 allow the shielding device 18 to remain flexible, yet still be comprised from a hard material. A wrap 76 of the coil 74 may rotate relative to an adjacent wrap 76 of the coil 74. The coil 74 may be fixed to the tube 14 directly, through a silicone glue or equivalent means of fixing the coil 74. In addition, a portion of the coil 74 may be coupled directly to the access port housing 34, to further secure the coil 74 in place along the tube 14.



FIG. 15 illustrates an embodiment of the shielding device 18 shown in FIG. 14 utilizing two different wires 78, 80 wrapped around the tube 14 to form an inner coil 82. A secondary or outer coil 84 is also placed over and around the inner coil 82. The secondary coil 84 is wrapped multiple times around an exterior circumference of the inner coil 82. The two different wires 78, 80 may be wrapped alternatively around the tube 14. The wraps may be spaced near each other or in direct contact with each other. It is beneficial to utilize two wires 78, 80 if, for example, one of the wires 78, 80 breaks. The other wire may hold the coil 74 in place around the tube 14. In addition, each wire 78, 80 may be composed of a different material. One wire may be made from a more flexible material and one wire may be made from a material that is harder but less flexible. The different materials may provide a varying amount of flexibility and strength for the coil 74.


The secondary coil 84 comprises a wire 86 wrapped over the surface of the inner coil 82. The wire 86 of the secondary coil 84 includes wraps positioned close to or in contact with each other. The wire 86 of the secondary coil 84 may have a narrower diameter than a wire 78, 80 of the inner coil 82 to allow the secondary coil 86 to more easily flex when the tube 14 is manipulated. The secondary coil 84 may be placed along the entire length of the inner coil 82 or over a portion of the inner coil 82 adjacent to the access port housing 34. Although FIG. 15 illustrates three wires 78, 80, 86 wrapped around the exterior circumference 48 of the tube 14, many more layers or many more wires may be used to form a coil 74 around the tube 14.



FIG. 16 illustrates an embodiment of the shielding device 18 including a cylindrical sheath 88 placed over the entirety of the shielding device 18. The cylindrical sheath 88 may comprise an overmolding of silicone placed over the shielding device 18. The silicone overmolding may provide a greater degree of biocompatibility for the shielding device 18 and provides further strain relief for the tube 14. In addition, the cylindrical sheath 88 may smooth the surface of the shielding device 18 to allow the tube 14 to be more easily inserted into an individual's body 20. The cylindrical sheath 88 may be combined with any of the embodiments discussed herein, including the embodiments shown in FIGS. 17 and 20.



FIG. 17 illustrates an embodiment of the shielding device 18 having a flattened disk-like or skirt-like shape. In this configuration, the shielding device 18 is fixed directly to the access port housing 34. The access port housing 34 may define a radial dimension 92 and an axial dimension 90. The shielding device 18 extends from the access port housing 34 in a radial direction, and in the radial dimension 92, away from the access port housing 34. The shielding device 18 covers the end of the tube 14 from a syringe needle 36 traveling towards the tube 14. The size of the radius 94, or distance from the access port 16, formed by the shielding device 18 determines the extent of the tube 14 covered by the shielding device 18. In one embodiment, the size of the radius 94 may be greater than twice a diameter of the access port 16. In the embodiment shown in FIG. 17, the shielding device 18 may include two disks, a top disk 96 and a bottom disk 98. The end of the tube 14 passes between the two disks 96, 98. The distance 100 between the top disk 96 and bottom disk 98 may define the flexibility of the tube 14 and the amount of protection for the tube 14. For example, if the two disks 96, 98 are placed relatively near each other (e.g., spaced at the diameter 102 of tube 14), then the tube 14 may be trapped between the two disks 96, 98 and can not move too much. However, the disks 96, 98 will protect the tube 14 from a needle 36 passing towards the tube 14 at a relatively horizontal angle relative to the access port housing 34. If the disks 96, 98 are placed relatively far from each other (e.g., spaced at the height 104 of the access port housing 34), the tube 14 may be more flexibly manipulated, but the disks 96, 98 will offer less protection from the needle 36 being able to pass toward the tube 14 horizontally. The shielding device 18 may also comprise a single top disk 96 placed above the tube 14 to protect the tube from a needle 36 traveling in an axial direction.


The disk-like or skirt-like shaped shielding device 18 allows the tube 14 to be shielded without any attachment or modification to the tube 14, unlike the embodiment shown in FIG. 8. The tube 14 retains its flexibility, only limited by the dimensions of the shielding device 18, as discussed above. However in this embodiment, the access port housing 34 is modified. The shielding device 18 may be firmly fixed to the access port housing 34 or removably fixed to the access port housing 34. If the shielding device 18 is removably fixed, it may be snap-fit to an outer portion of the access port 16. The shielding device 18 may be made out of a puncture resistant material, including a hard plastic, metal, ceramic, or hard polymer. In addition, the shielding device 18 may be made from a fabric material such as several layers of a tightly woven nylon or polyester, woven quartz or silica fibers, or the equivalent. The fabric material would provide puncture resistance, but also allow the shielding device 18 to flex or bend to conform to the patient's body, or allow for easy insertion into the patient's body. Thus, the shielding device 18 may comprise a flexible disk-like or skirt-like shaped device. In addition, each disk 96, 98 may comprise a single layer of a puncture resistant material, or multiple layers of a puncture resistant material compressed or sandwiched together.



FIG. 18 illustrates a top view of the shielding device 18 as shown in FIG. 17. The top view illustrates the shielding device 18 extending out radially from the access port 16 and covering a portion of the tube 14. The shielding device 18 extends radially around the entirety of the access port 16, or, in other words, 360 degrees around the axis of the axial dimension 90 shown in FIG. 17.



FIG. 19 illustrates the shielding device 18 in operation. Similar to the operation of the shielding device 18 shown in FIG. 8, if a physician incorrectly inserts a syringe needle 36 towards the tube 14, the needle 36 may contact the shielding device 18. The physician may notice the syringe needle 36 has contacted a hard material, and will know the needle 36 did not contact the septum 30. The tube 14 will not be punctured.



FIG. 20 illustrates a top-view of an alternate shape of the shielding device 18 shown in FIG. 17. In this embodiment, the shielding device 18 may have a disk-like shape that does not extend radially around the entirety of the access port housing 34. The shielding device 18 only extends radially in a direction (i.e., one direction) towards the tube 14, and only extends radially around a portion of the access port 16 (e.g., half of the access port housing 34, or 180 degrees around axis of the axial dimension 90 shown in FIG. 17). The modified disk shape, or half-disk shape, may offer less protection for the tube 14 around the entire access port housing 34. However, the half-disk shape also provides the access port housing 34 with a smaller total size. The smaller size may make it easier for a physician to insert the access port 16 into an individual's body.



FIG. 21 illustrates the shielding device 18 shown in FIG. 20 in operation. The shielding device 18 blocks a syringe needle 36 from contacting the tube 14. The shielding device 18 in this embodiment only extends around a portion of the access port housing 34 in a direction towards the tube 14.



FIG. 22 illustrates an embodiment of the shielding device 18 including spacers 105 that have an annular shape, placed between the individual shields 46. The spacers 105 may extend entirely around the outer surface of the tube 14 and may be positioned between the individual shields 46. The spacers 105 may be positioned within the hollow cavity 64 that is defined by the extended portion 58. A width 107 of the spacer 105 may be used to define a distance between the individual shields 46. The spacers 105 may be made of a pliable material, such that the spacers may compress when the individual shields 46 are rotated with respect to each other. Such pliable material may include a soft plastic or the like. In addition, the spacers 105 may also be made of a hard material, but may be sized small enough to still allow the individual shields 46 to rotate. The spacers 105 may have a variety of shapes, including, but not limited to an o-ring shape, a tubular shape, or a toroid shape. The spacers are used to space the shields 46 from each other. In addition, the spacers 105 may also provide protection for the tube 14, and may be made from a needle impenetrable material. The spacer 105 may be designed to protect the exposed areas of the tube 14 positioned between the individual shields 46. The spacers 105 may be firmly fixed to the tube 14 in any manner discussed previously in this application.



FIG. 23 illustrates an embodiment of the shielding device 18 including bullet-like shaped individual shields 46. In this embodiment, each individual shield 46 has an external articulating surface 109, an internal articulating surface 111, a cylindrical surface 115, and a conical surface 113. The portion of the shield 46 near the cylindrical surface 115 generally comprises the neck portion 56 of the shield 46. The portion of the shield 46 positioned near the internal articulating surface 111 generally comprises the extended portion 58 of the individual shield 46. In this embodiment, the internal articulating surface 111 extends over the external articulating surface 109 of an adjacent shield. In this manner, the two surfaces 111, 109 form a congruent fit around the circumference of the tube 14. The two surfaces 111, 109 may contact each other, to assure a syringe needle can not penetrate through a gap in the shielding device 18. The two surfaces 111, 109 may have a corresponding arc shapes, or curved shapes, that may allow them to contact each other with a substantial amount of surface area.


The cylindrical surface 115 is shaped to wrap around the tube 14, and may grip the tube or may be glued directly to the tube 14. In addition, the cylindrical surface 115 may be slightly larger than the tube 14. The shielding device 18 in this embodiment remains flexible, in part, because of the conical surface 113 positioned between the internal articulating surface 111 and the cylindrical surface 115. A portion of the conical surface 113 may be shaped to extend in a direction away from the surface of the tube 14 with a generally conical shape. One end of the conical surface 113 is positioned near the tube 14 and another end extends away from the tube 14. The end of the conical surface 113 positioned away from the tube 14 transitions to the internal articulating surface 111, which, as discussed above, has a curved shape to conform to a curved or arc shape of the external articulating surface 109.


The shape of the conical surface 113 forms an interior cavity 117 positioned between the tube 14 and the individual shield 46. The interior cavity 117 allows the individual shield 46 to rotate, or articulate around the tube 14 when the tube 14 is flexed. No portion of an adjacent individual shield 46 extends into the interior cavity 117.


When the tube 14 is flexed, the internal articulating surface 111 and the external articulating surface 109 slide with respect to one another and compress or expand a portion of the interior cavity 117. The arc shape of the surfaces 111, 109 aids the sliding motion of the shields 46. In addition, when the tube 14 is flexed, one portion of the external articulating surface 109 slides away from the respective portion of the internal articulating surface 111, and a portion of the external articulating surface 109 slides towards the respective portion of the internal articulating surface 111 simultaneously. The two portions of the external articulating surface 109 may be positioned opposite from one another around the individual shield 46. The external articulating surface 109 and internal articulating surface 111 remain in contact, or remain close to one another when the tube 14 is flexed. This configuration allows for a closely guarded, yet flexible tube 14. The design eliminates the need for spacers between the shields 46 and minimizes any gaps between the shields 46. The sizes or particular shapes of the individual shields 46 in this embodiment may be varied to produce alternative, equivalent results. The individual shields 46 may be firmly fixed to the tube 14 in any manner discussed previously in this application.



FIG. 24 illustrates an embodiment of the shielding device 18 including ball and socket shaped individual shields 46. In this embodiment, each individual shield 46 has an external spherical surface 121, a narrow portion 123, and a spherical housing portion 125. The spherical housing portion 125 extends around the external spherical surface 121 and has a curved, spherical shape corresponding to a curved, spherical shape of the external spherical surface 121. Thus, the spherical housing portion 125 may contact or nearly contact the external spherical surface 121. The spherical shape of both the spherical housing portion 125 and the external spherical surface 121 allow the connection between the two components 125, 121 to serve as a ball joint, allowing the tube 14 to flex, or rotate substantially. Each individual shield 46 may rotate with respect to an adjacent individual shield 46, limited by the extent that the spherical housing portion 125 wraps around the external spherical surface 121. In other words, if the housing portion 125 wraps entirely around the external spherical surface 121, then no rotation will be possible. In this embodiment, the external spherical surface 121 comprises the neck portion 56 of the individual shield 46, and the spherical housing portion 125 comprises the extended portion 58.


The rotation of the spherical housing portion 125 is limited by the narrow portion 123, which is positioned between the external spherical surface 121 and the spherical housing portion 125. The narrow portion 123 serves as a transition point between the external spherical surface 121 and the housing portion 125. If the individual shield 46 rotates too far in one direction, a portion of the spherical housing portion 125 will contact the narrow portion 123, preventing further movement.


The individual shields 46 additionally remain flexible around the tube 14 because the ball and socket shape forms a ball cavity 119, within the interior of the individual shield 46. The ball cavity 119 provides an area of movement for the individual shield 46, similar to the internal cavity 117 shown in FIG. 23. Thus, portions of the ball cavity 119 may be variably distanced from the surface of the tube 14 during movement of the tube 14. The ball cavity 119 may be formed because the external spherical surface 121 may only contact the tube 14 at a narrow portion, or a ring portion of the external spherical surface 121. Thus, the ball cavity 119 extends outward from the surface of the tube 14. The ring portion may be firmly fixed to the tube 14 in any manner discussed previously in this application.


Similar to the embodiment shown in FIG. 23, this configuration allows for a closely guarded, yet flexible tube 14. The design eliminates a need for spacers between the shields 46 and minimizes any gaps between the shields 46. The sizes or particular shapes of the individual shields 46 in this embodiment may be varied to produce alternative, equivalent results.



FIG. 25 illustrates an embodiment of the shielding device 18 including a coil 74 wrapped around an interior surface 129 of the tube 14. This configuration is similar to the embodiment shown in FIG. 14, but in this embodiment, the coil 74 is positioned within the tube 14. In other words, the coil 74 is small enough to fit within an exterior surface 127 of the tube 14, yet is large enough to extend around an interior surface 129 of the tube 14. The multiple wraps 76 of the coil 74 entirely encircle the interior surface 129 or interior circumference of the tube 14. The benefit of this embodiment is to reduce the size of the shielding device 18 to equal, or nearly equal the diameter of the tube 14 without a shielding device 18 attached. The tube 14 including the coil 74 would then have an overall smaller cross section than the embodiment shown in FIG. 14. This may be advantageous to allow a physician to more easily insert the tube into a patient's body.


Although FIG. 25 illustrates the tube 14 sized larger than the tube shown in FIG. 14, the sizing is for illustrative purposes only. In this embodiment, the tube 14 may have an equal total diameter, or smaller total diameter than shown in FIG. 14. In addition, the coil 74 may extend along only a portion of the tube 14 or may extend along the entirety of the tube 14 (e.g., from one end near or touching the housing 34 to the other end near or touching the gastric band 12). In addition, similar to the embodiment shown in FIGS. 14 and 15, the coil 74 may include multiple wraps of wire, multiple layers of wire wraps, or multiple wires wrapped around the interior surface 129 of the tube 14. The coil 74 in this embodiment, similar to the embodiment shown in FIG. 14, may be made from a metal such as titanium, nitinol or a hard plastic. The coil 74 may be molded into the tube 14 or fixed to the interior surface 129 of the tube 14 through any manner discussed above in relation to FIGS. 14 and 15.


In light of the shielding device 18 embodiments disclosed above, the shielding device 18 may be used in a gastric band system 10 that utilizes various components different from those discussed above. For example, a physician may insert the syringe needle to fill a pump reservoir, or maintain a fluid pressure in a mechanical pump system. In addition, a physician may insert a probe near the access port 16 to measure a local property of the gastric band system 10. The shielding device 18 will still serve to protect the tube 14 from puncture in these systems that differ from the gastric band system 10 disclosed above.


The terms “a,” “an,” “the” and similar referents used in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.


Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.


Certain embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations on these described embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor expects skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.


Specific embodiments disclosed herein may be further limited in the claims using consisting of and/or consisting essentially of language. When used in the claims, whether as filed or added per amendment, the transition term “consisting of” excludes any element, step, or ingredient not specified in the claims. The transition term “consisting essentially of” limits the scope of a claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic(s). Embodiments of the invention so claimed are inherently or expressly described and enabled herein.


In closing, it is to be understood that the embodiments of the invention disclosed herein are illustrative of the principles of the present invention. Other modifications that may be employed are within the scope of the invention. Thus, by way of example, but not of limitation, alternative configurations of the present invention may be utilized in accordance with the teachings herein. Accordingly, the present invention is not limited to that precisely as shown and described.

Claims
  • 1. An implantable gastric band system comprising: an access port configured to attach to body tissue, the access port including a septum;a flexible elongated tube having a first end and a second end, the first end coupled to the access port; anda shielding device covering only the first end of the tube and leaving a large majority of said flexible elongated tube uncovered by the shielding device, the shielding device coupled to the tube and being made of a puncture resistant biocompatible material, the shielding device having a first shield and a second shield, wherein the first shield has an extended portion and the second shield has a neck portion, the first shield positioned adjacent to the second shield such that the extended portion of the first shield overlaps the neck portion of the second shield, and the first shield being independently moveable relative to the second shield.
  • 2. The implantable device of claim 1 wherein a needle is incapable of piercing the puncture resistant material.
  • 3. The implantable device of claim 1 wherein the puncture resistant material is a hard plastic material.
  • 4. The implantable device of claim 1 wherein the first shield is moveably coupled to the second shield.
  • 5. The implantable device of claim 1 wherein the shielding device is immovably fixed to the tube.
  • 6. The implantable device of claim 1 wherein the first shield has a shape selected from a group consisting of a cone-shape, a bell-shape, a cylindrical shape, a bullet-like shape, a ball and socket shape, and combinations thereof.
  • 7. The implantable device of claim 1 wherein the shielding device wraps entirely around an outer circumference of the tube.
  • 8. The implantable device of claim 1 wherein the shielding device is coupled to the tube at a position adjacent to the access port such that no gap exists between the shielding device and the access port.
  • 9. The implantable device of claim 1 wherein the extended portion of the first individual shield defines a hollow cavity.
  • 10. An implantable gastric band system comprising: an access port configured to attach to body tissue, the access port defining a radial dimension and an axial dimension, the access port including a septum;a flexible elongated tube having a first end and a second end, the first end coupled to the access port; anda shielding device covering the first end of the flexible elongated tube, the shielding device coupled to the access port and extending outward from the access port in the radial dimension and around a portion of the access port, the shielding device being made of a puncture resistant material, wherein the shielding device comprises two spaced apart flattened disks, the first end of the tube positioned between the two spaced apart flattened disks.
  • 11. The implantable device of claim 10 wherein a needle is incapable of piercing the puncture resistant material.
  • 12. The implantable device of claim 10 wherein the puncture resistant material is a hard plastic.
  • 13. The implantable device of claim 10 wherein the shielding device has a shape selected from a group consisting of a disk-like shape, a skirt-like shape, a half-disk shape, and combinations thereof.
  • 14. The implantable device of claim 10 wherein the shielding device extends radially around the entirety of the access port.
US Referenced Citations (433)
Number Name Date Kind
586113 Bott Jul 1897 A
982482 Donelly Jan 1911 A
2163048 McKee Jun 1939 A
2737954 Knapp Mar 1956 A
2829671 Ernst Apr 1958 A
3109461 Wolff Nov 1963 A
3371352 Siposs et al. Mar 1968 A
3569660 Houldcroft Mar 1971 A
3587115 Shiley Jun 1971 A
3596660 Melone Aug 1971 A
3667081 Burger Jun 1972 A
3688764 Reed Sep 1972 A
3840018 Heifetz Oct 1974 A
3958562 Hakim et al. May 1976 A
3971376 Wichterle Jul 1976 A
4019499 Fitzgerald Apr 1977 A
4118805 Reimels Oct 1978 A
4151835 Showell et al. May 1979 A
4161943 Nogier Jul 1979 A
4164943 Hill et al. Aug 1979 A
4190040 Schulte Feb 1980 A
4233992 Bisping Nov 1980 A
4265252 Chubbuck et al. May 1981 A
4280722 Guptil et al. Jul 1981 A
4413985 Wellner et al. Nov 1983 A
4474572 McNaughton et al. Oct 1984 A
4502335 Wamstad et al. Mar 1985 A
4543088 Bootman et al. Sep 1985 A
4557722 Harris Dec 1985 A
4569675 Prosl et al. Feb 1986 A
4588394 Schulte et al. May 1986 A
4592339 Kuzmak et al. Jun 1986 A
4592355 Antebi Jun 1986 A
4634427 Hannula et al. Jan 1987 A
4655765 Swift Apr 1987 A
4673394 Fenton, Jr. et al. Jun 1987 A
4692146 Hilger Sep 1987 A
4696288 Kuzmak et al. Sep 1987 A
4704103 Stober et al. Nov 1987 A
4710174 Moden et al. Dec 1987 A
4738657 Hancock et al. Apr 1988 A
4767410 Moden et al. Aug 1988 A
4772270 Wiita et al. Sep 1988 A
4778452 Moden et al. Oct 1988 A
4781680 Redmond et al. Nov 1988 A
4796641 Mills et al. Jan 1989 A
4802885 Weeks et al. Feb 1989 A
4832054 Bark May 1989 A
4840615 Hancock et al. Jun 1989 A
4850227 Luettgen et al. Jul 1989 A
4858623 Bradshaw et al. Aug 1989 A
4861341 Woodburn Aug 1989 A
4881939 Newman Nov 1989 A
4886501 Johnston et al. Dec 1989 A
4902278 Maget et al. Feb 1990 A
4904241 Bark Feb 1990 A
4913702 Yum et al. Apr 1990 A
4915690 Cone et al. Apr 1990 A
4929230 Pfleger May 1990 A
4929236 Sampson May 1990 A
4966588 Rayman et al. Oct 1990 A
4967755 Pohndorf Nov 1990 A
4978338 Melsky et al. Dec 1990 A
5006115 McDonald Apr 1991 A
5013298 Moden et al. May 1991 A
5026344 Dijkstra et al. Jun 1991 A
5041098 Loiterman et al. Aug 1991 A
5045060 Melsky et al. Sep 1991 A
5074868 Kuzmak Dec 1991 A
5090954 Geary Feb 1992 A
5092897 Forte Mar 1992 A
5094244 Callahan et al. Mar 1992 A
5108377 Cone et al. Apr 1992 A
5125408 Basser Jun 1992 A
5133753 Bark et al. Jul 1992 A
5137529 Watson et al. Aug 1992 A
5147483 Melsky et al. Sep 1992 A
5152747 Olivier Oct 1992 A
5167638 Felix et al. Dec 1992 A
5185003 Brethauer Feb 1993 A
5207644 Strecker May 1993 A
5213574 Tucker May 1993 A
5226429 Kuzmak Jul 1993 A
5226894 Haber et al. Jul 1993 A
5250026 Ehrlich et al. Oct 1993 A
5273537 Haskvitz et al. Dec 1993 A
5281205 McPherson Jan 1994 A
5284479 de Jong Feb 1994 A
5318545 Tucker Jun 1994 A
5336194 Polaschegg et al. Aug 1994 A
5337747 Neftel Aug 1994 A
5360407 Leonard et al. Nov 1994 A
5368040 Carney Nov 1994 A
5387192 Glantz et al. Feb 1995 A
5391164 Giampapa Feb 1995 A
5449368 Kuzmak Sep 1995 A
5476460 Montalvo Dec 1995 A
5514174 Heil, Jr. et al. May 1996 A
5540648 Yoon Jul 1996 A
5556388 Johlin, Jr. Sep 1996 A
5558641 Glantz et al. Sep 1996 A
5562617 Finch, Jr. et al. Oct 1996 A
5571104 Li Nov 1996 A
5575777 Cover et al. Nov 1996 A
5582212 Tanzosh Dec 1996 A
5601604 Vincent Feb 1997 A
5637102 Tolkoff et al. Jun 1997 A
5653755 Ledergerber Aug 1997 A
5658298 Vincent et al. Aug 1997 A
5674397 Pawlak et al. Oct 1997 A
5683447 Bush et al. Nov 1997 A
5688237 Rozga et al. Nov 1997 A
5695490 Flaherty et al. Dec 1997 A
5716342 Dumbraveanu et al. Feb 1998 A
5718682 Tucker Feb 1998 A
5722957 Steinbach Mar 1998 A
5748200 Funahashi May 1998 A
5810735 Halperin et al. Sep 1998 A
5814019 Steinbach et al. Sep 1998 A
5833654 Powers et al. Nov 1998 A
5843033 Ropiak Dec 1998 A
RE36176 Kuzmak Mar 1999 E
5883654 Katsuyama Mar 1999 A
5902598 Chen et al. May 1999 A
5906596 Tallarida May 1999 A
5910149 Kuzmak Jun 1999 A
5911704 Humes Jun 1999 A
5931829 Burbank et al. Aug 1999 A
5932460 Mills et al. Aug 1999 A
5935083 Williams Aug 1999 A
5938669 Klaiber et al. Aug 1999 A
5951512 Dalton Sep 1999 A
6024704 Meador et al. Feb 2000 A
6030369 Engelson et al. Feb 2000 A
6039712 Fogarty et al. Mar 2000 A
6068622 Sater May 2000 A
6074341 Anderson et al. Jun 2000 A
6090066 Schnell Jul 2000 A
6098405 Miyata et al. Aug 2000 A
6102678 Peclat Aug 2000 A
6102922 Jakobsson et al. Aug 2000 A
6123700 Mills et al. Sep 2000 A
6152885 Taepke Nov 2000 A
6171252 Roberts Jan 2001 B1
6183449 Sibbitt Feb 2001 B1
6213973 Eliasen et al. Apr 2001 B1
6221024 Miesel Apr 2001 B1
6234973 Meador et al. May 2001 B1
6258079 Burbank et al. Jul 2001 B1
6264676 Gellman et al. Jul 2001 B1
6270475 Bestetti et al. Aug 2001 B1
6283949 Roorda Sep 2001 B1
6321124 Cigaina Nov 2001 B1
6349740 Cho et al. Feb 2002 B1
6432040 Meah Aug 2002 B1
6450946 Forsell Sep 2002 B1
6453907 Forsell Sep 2002 B1
6454699 Forsell Sep 2002 B1
6459917 Gowda et al. Oct 2002 B1
6461293 Forsell Oct 2002 B1
6464628 Forsell Oct 2002 B1
6470213 Alley Oct 2002 B1
6470892 Forsell Oct 2002 B1
6478783 Moorehead Nov 2002 B1
6511490 Robert Jan 2003 B2
6547801 Dargent et al. Apr 2003 B1
6563045 Goett May 2003 B2
6572587 Lerman et al. Jun 2003 B2
6589184 Noren et al. Jul 2003 B2
6648849 Tenhuisen et al. Nov 2003 B2
6666845 Hooper et al. Dec 2003 B2
6689100 Connelly et al. Feb 2004 B2
6723053 Ackerman et al. Apr 2004 B2
6733519 Lashinski et al. May 2004 B2
6792309 Noren Sep 2004 B1
6810880 Jennings, Jr. et al. Nov 2004 B1
6813964 Clark et al. Nov 2004 B1
6860857 Noren et al. Mar 2005 B2
6915162 Noren et al. Jul 2005 B2
6921267 van Oostrom et al. Jul 2005 B2
6929631 Brugger et al. Aug 2005 B1
6939299 Petersen et al. Sep 2005 B1
6953444 Rosenberg Oct 2005 B2
6964204 Clark et al. Nov 2005 B2
6966875 Longobardi Nov 2005 B1
6997914 Smith et al. Feb 2006 B2
7017583 Forsell Mar 2006 B2
7020531 Colliou et al. Mar 2006 B1
7056286 Ravenscroft et al. Jun 2006 B2
7063669 Brawner et al. Jun 2006 B2
7073387 Zdeblick et al. Jul 2006 B2
7082843 Clark et al. Aug 2006 B2
7131945 Fink et al. Nov 2006 B2
7144400 Byrum et al. Dec 2006 B2
7149587 Wardle et al. Dec 2006 B2
7191007 Desai et al. Mar 2007 B2
7195774 Carvalho et al. Mar 2007 B2
7198066 Kagenow Apr 2007 B2
7223239 Schulze et al. May 2007 B2
7226419 Lane et al. Jun 2007 B2
7261003 McDonald et al. Aug 2007 B2
7267645 Anderson et al. Sep 2007 B2
7282023 Frering Oct 2007 B2
7311716 Byrum Dec 2007 B2
7311717 Egle Dec 2007 B2
7351198 Byrum et al. Apr 2008 B2
7351226 Herskowitz Apr 2008 B1
7351240 Hassler, Jr. et al. Apr 2008 B2
7353747 Swayze et al. Apr 2008 B2
7364542 Jambor et al. Apr 2008 B2
7367937 Jambor et al. May 2008 B2
7374557 Conlon et al. May 2008 B2
7374565 Hassler, Jr. et al. May 2008 B2
7390294 Hassler, Jr. Jun 2008 B2
7413547 Lichtscheidl et al. Aug 2008 B1
7416528 Crawford et al. Aug 2008 B2
7437951 McDonald et al. Oct 2008 B2
7438718 Milliman et al. Oct 2008 B2
7445614 Bunodiere et al. Nov 2008 B2
7468038 Ye et al. Dec 2008 B2
7500944 Byrum et al. Mar 2009 B2
7510530 Hashimoto et al. Mar 2009 B2
7530943 Lechner May 2009 B2
7553298 Hunt et al. Jun 2009 B2
7561916 Hunt et al. Jul 2009 B2
7580746 Gilkerson et al. Aug 2009 B2
7591185 Mothilal et al. Sep 2009 B1
7593777 Gerber Sep 2009 B2
7634319 Schneider et al. Dec 2009 B2
7651483 Byrum et al. Jan 2010 B2
7658196 Ferreri et al. Feb 2010 B2
7699770 Hassler, Jr. et al. Apr 2010 B2
7708722 Glenn May 2010 B2
7762998 Birk et al. Jul 2010 B2
7762999 Byrum Jul 2010 B2
7775215 Hassler, Jr. et al. Aug 2010 B2
7775966 Dlugos et al. Aug 2010 B2
7811275 Birk et al. Oct 2010 B2
7850660 Uth et al. Dec 2010 B2
7862546 Conlon et al. Jan 2011 B2
7909754 Hassler, Jr. et al. Mar 2011 B2
7909804 Stats Mar 2011 B2
8007474 Uth et al. Aug 2011 B2
20010052141 Andersen Dec 2001 A1
20020013545 Soltanpour et al. Jan 2002 A1
20020058969 Noren et al. May 2002 A1
20020087147 Hooper et al. Jul 2002 A1
20020095181 Beyar Jul 2002 A1
20020139208 Yatskov Oct 2002 A1
20020198548 Robert Dec 2002 A1
20030045800 Noren et al. Mar 2003 A1
20030045910 Sorensen et al. Mar 2003 A1
20030073880 Polsky et al. Apr 2003 A1
20030078506 Noren et al. Apr 2003 A1
20030139690 Aebli et al. Jul 2003 A1
20040064110 Forsell Apr 2004 A1
20040065615 Hooper et al. Apr 2004 A1
20040068233 DiMatteo Apr 2004 A1
20040082908 Whitehurst et al. Apr 2004 A1
20040111050 Smedley et al. Jun 2004 A1
20040204692 Eliasen Oct 2004 A1
20040254536 Conlon et al. Dec 2004 A1
20040254537 Conlon et al. Dec 2004 A1
20040260229 Meir Dec 2004 A1
20040260319 Egle Dec 2004 A1
20040267288 Byrum et al. Dec 2004 A1
20040267291 Byrum et al. Dec 2004 A1
20040267292 Byrum et al. Dec 2004 A1
20040267293 Byrum et al. Dec 2004 A1
20040267377 Egle Dec 2004 A1
20050010177 Tsai Jan 2005 A1
20050049578 Tu et al. Mar 2005 A1
20050070875 Kulessa Mar 2005 A1
20050070937 Jambor et al. Mar 2005 A1
20050085778 Parks Apr 2005 A1
20050092093 Kang et al. May 2005 A1
20050131325 Chen et al. Jun 2005 A1
20050131352 Conlon et al. Jun 2005 A1
20050131383 Chen et al. Jun 2005 A1
20050148956 Conlon et al. Jul 2005 A1
20050149143 Libbus et al. Jul 2005 A1
20050209573 Brugger et al. Sep 2005 A1
20050240155 Conlon Oct 2005 A1
20050240156 Conlon Oct 2005 A1
20050267500 Hassler, Jr. et al. Dec 2005 A1
20050277899 Conlon et al. Dec 2005 A1
20050283041 Egle Dec 2005 A1
20050283118 Uth et al. Dec 2005 A1
20050283119 Uth et al. Dec 2005 A1
20060074439 Garner et al. Apr 2006 A1
20060122578 Lord et al. Jun 2006 A1
20060161186 Hassler, Jr. et al. Jul 2006 A1
20060173423 Conlon Aug 2006 A1
20060173424 Conlon Aug 2006 A1
20060178647 Stats Aug 2006 A1
20060178648 Barron et al. Aug 2006 A1
20060184141 Smith et al. Aug 2006 A1
20060189887 Hassler, Jr. et al. Aug 2006 A1
20060189888 Hassler, Jr. et al. Aug 2006 A1
20060190039 Birk et al. Aug 2006 A1
20060199997 Hassler, Jr. et al. Sep 2006 A1
20060211912 Dlugos et al. Sep 2006 A1
20060211913 Dlugos et al. Sep 2006 A1
20060211914 Hassler, Jr. et al. Sep 2006 A1
20060217668 Schulze et al. Sep 2006 A1
20060217673 Schulze et al. Sep 2006 A1
20060235445 Birk et al. Oct 2006 A1
20060235448 Roslin et al. Oct 2006 A1
20060247539 Schugt et al. Nov 2006 A1
20060266128 Clark et al. Nov 2006 A1
20060293625 Hunt et al. Dec 2006 A1
20060293626 Byrum et al. Dec 2006 A1
20060293627 Byrum et al. Dec 2006 A1
20060293628 Hunt et al. Dec 2006 A1
20070010790 Byrum et al. Jan 2007 A1
20070015954 Dlugos Jan 2007 A1
20070015955 Tsonton Jan 2007 A1
20070016231 Jambor et al. Jan 2007 A1
20070027356 Ortiz Feb 2007 A1
20070038255 Kieval et al. Feb 2007 A1
20070060959 Salo et al. Mar 2007 A1
20070073250 Schneiter Mar 2007 A1
20070078391 Wortley et al. Apr 2007 A1
20070088336 Dalton Apr 2007 A1
20070088391 McAlexander et al. Apr 2007 A1
20070129765 Gilkerson et al. Jun 2007 A1
20070135758 Childers et al. Jun 2007 A1
20070149947 Byrum Jun 2007 A1
20070156013 Birk Jul 2007 A1
20070158769 You Jul 2007 A1
20070161958 Glenn Jul 2007 A1
20070167672 Dlugos et al. Jul 2007 A1
20070173685 Jambor et al. Jul 2007 A1
20070185462 Byrum Aug 2007 A1
20070191717 Rosen et al. Aug 2007 A1
20070205384 Kurosawa Sep 2007 A1
20070208313 Conlon et al. Sep 2007 A1
20070213837 Ferreri et al. Sep 2007 A1
20070219510 Zinn et al. Sep 2007 A1
20070235083 Dlugos Oct 2007 A1
20070250086 Wiley et al. Oct 2007 A1
20070255165 Uesugi et al. Nov 2007 A1
20070255234 Haase et al. Nov 2007 A1
20070265666 Roberts et al. Nov 2007 A1
20070282196 Birk et al. Dec 2007 A1
20070293829 Conlon et al. Dec 2007 A1
20080009680 Hassler, Jr. Jan 2008 A1
20080015406 Dlugos et al. Jan 2008 A1
20080039772 Chantriaux et al. Feb 2008 A1
20080058632 Tai et al. Mar 2008 A1
20080097496 Chang et al. Apr 2008 A1
20080114308 di Palma et al. May 2008 A1
20080119798 Chantriaux et al. May 2008 A1
20080243093 Kalpin et al. Oct 2008 A1
20080249806 Dlugos et al. Oct 2008 A1
20080250340 Dlugos et al. Oct 2008 A1
20080250341 Dlugos et al. Oct 2008 A1
20080255403 Voegele et al. Oct 2008 A1
20080255414 Voegele et al. Oct 2008 A1
20080255425 Voegele et al. Oct 2008 A1
20080255459 Voegele et al. Oct 2008 A1
20080255537 Voegele et al. Oct 2008 A1
20080281412 Smith et al. Nov 2008 A1
20080287969 Tsonton et al. Nov 2008 A1
20080287974 Widenhouse et al. Nov 2008 A1
20080312553 Timmons Dec 2008 A1
20080319435 Rioux et al. Dec 2008 A1
20090018608 Schwartz et al. Jan 2009 A1
20090048524 Wildau et al. Feb 2009 A1
20090054914 Lechner Feb 2009 A1
20090062825 Pool et al. Mar 2009 A1
20090071258 Kouda et al. Mar 2009 A1
20090076466 Quebbemann et al. Mar 2009 A1
20090082757 Rogers et al. Mar 2009 A1
20090082793 Birk Mar 2009 A1
20090093768 Conlon et al. Apr 2009 A1
20090099538 Paganon Apr 2009 A1
20090105735 Stam et al. Apr 2009 A1
20090112308 Kassem Apr 2009 A1
20090118572 Lechner May 2009 A1
20090149874 Ortiz et al. Jun 2009 A1
20090157106 Marcotte et al. Jun 2009 A1
20090157107 Kierath et al. Jun 2009 A1
20090157113 Marcotte et al. Jun 2009 A1
20090171375 Coe et al. Jul 2009 A1
20090171378 Coe et al. Jul 2009 A1
20090171379 Coe et al. Jul 2009 A1
20090192404 Ortiz et al. Jul 2009 A1
20090192415 Ortiz et al. Jul 2009 A1
20090192533 Dlugos, Jr. et al. Jul 2009 A1
20090192534 Ortiz et al. Jul 2009 A1
20090192541 Ortiz et al. Jul 2009 A1
20090198261 Schweikert Aug 2009 A1
20090202387 Dlugos, Jr. et al. Aug 2009 A1
20090204131 Ortiz et al. Aug 2009 A1
20090204132 Ortiz et al. Aug 2009 A1
20090209995 Byrum et al. Aug 2009 A1
20090216255 Coe et al. Aug 2009 A1
20090221974 Paganon Sep 2009 A1
20090222031 Axelsson Sep 2009 A1
20090222065 Dlugos, Jr. et al. Sep 2009 A1
20090227862 Smith et al. Sep 2009 A1
20090228028 Coe et al. Sep 2009 A1
20090228072 Coe et al. Sep 2009 A1
20090248125 Brostrom Oct 2009 A1
20090248126 Nippoldt et al. Oct 2009 A1
20090254052 Birk et al. Oct 2009 A1
20090259190 Birk et al. Oct 2009 A1
20090259191 Birk et al. Oct 2009 A1
20090259231 Birk et al. Oct 2009 A1
20090264901 Franklin et al. Oct 2009 A1
20090270904 Birk Oct 2009 A1
20090299216 Chen et al. Dec 2009 A1
20090299672 Zhang et al. Dec 2009 A1
20090306462 Lechner Dec 2009 A1
20090308169 Mothilal et al. Dec 2009 A1
20100087843 Bertolote et al. Apr 2010 A1
20100100079 Berkcan et al. Apr 2010 A1
20100114149 Albrecht et al. May 2010 A1
20100130941 Conlon et al. May 2010 A1
20100152532 Marcotte Jun 2010 A1
20100191271 Lau et al. Jul 2010 A1
20100211085 Uth et al. Aug 2010 A1
20100217198 Franklin et al. Aug 2010 A1
20100217199 Uth et al. Aug 2010 A1
20100217200 Uth et al. Aug 2010 A1
20100228080 Tavori et al. Sep 2010 A1
20100234808 Uth et al. Sep 2010 A1
20110054407 Olroyd Mar 2011 A1
20110082426 Conlon et al. Apr 2011 A1
20110306826 Franklin Dec 2011 A1
20120109068 Vendely May 2012 A1
20120123198 Marcotte May 2012 A1
Foreign Referenced Citations (63)
Number Date Country
1250382 Apr 2000 CN
1367670 Sep 2002 CN
3927001 Feb 1991 DE
4211045 Oct 1993 DE
19751791 May 1997 DE
19745654 Apr 1999 DE
0343910 Nov 1989 EP
0611561 Sep 1993 EP
0858814 Aug 1998 EP
0867197 Sep 1998 EP
1057457 Dec 2000 EP
1346753 Sep 2003 EP
1396242 Mar 2004 EP
1396243 Mar 2004 EP
1488824 Dec 2004 EP
1543861 Jun 2005 EP
1547643 Jun 2005 EP
1591140 Nov 2005 EP
1591140 Nov 2005 EP
1736194 Dec 2006 EP
1736195 Dec 2006 EP
1736196 Dec 2006 EP
1736197 Dec 2006 EP
1736198 Dec 2006 EP
1736199 Dec 2006 EP
1870126 Dec 2007 EP
1985263 Oct 2008 EP
2070494 Jun 2009 EP
2095798 Sep 2009 EP
2740977 May 1997 FR
2797181 Feb 2001 FR
2823663 Oct 2002 FR
2851168 Aug 2004 FR
2855744 Dec 2004 FR
2916980 Dec 2008 FR
2119877 May 1990 JP
8107934 Apr 1996 JP
1823791 Jun 1991 SU
9220519 Nov 1992 WO
WO 9422520 Oct 1994 WO
WO 9640357 Dec 1996 WO
WO 9701370 Jan 1997 WO
WO 9920338 Apr 1999 WO
WO 9926543 Jun 1999 WO
WO 9934859 Jul 1999 WO
WO 0015158 Mar 2000 WO
WO 0033901 Jun 2000 WO
WO 0110359 Feb 2001 WO
WO 0149245 Jul 2001 WO
WO 0180926 Nov 2001 WO
WO 0195813 Dec 2001 WO
0210667 Feb 2002 WO
WO 02074381 Sep 2002 WO
WO 03105732 Dec 2003 WO
WO 2004016971 Mar 2004 WO
WO 2005037055 Apr 2005 WO
WO 2005072627 Aug 2005 WO
WO 2006021695 Mar 2006 WO
WO 2009007526 Jan 2009 WO
WO 2009129474 Oct 2009 WO
2011137036 Nov 2011 WO
2012061355 May 2012 WO
2012068190 May 2012 WO
Non-Patent Literature Citations (6)
Entry
Autumn K. et al.; “Evidence of Van Der Waals Adhesion in Gecko Setae”; PNAS; vol. 99; No. 19; pp. 12252-12256; Sep. 17, 2012.
Geim AK. et al.; “Microfabricated Adhesive Mimicking Gecko Foot-Hair”; Nature Materials Abstract only; vol. 2; No. 7; 2003.
Yamagami, Takuji; “Technical Developments: Use of Targeting Guide Wire in Left Subclavian Puncture During Percutaneous Implantation of Port-Catheter Systems Using the Catheter Tip Fixation Method” European Radiology; vol. 13; pp. 863-866; 2003.
Yurdumakan B., et al.; “Synthetic Gecko Foot-Hairs from Multiwalled Carbon Nanotubes”; The Royal Society of Chemistry; p. 3799-3801; 2005.
http://en.wikipedia.org/wiki/Injection.sub.--molding, Dated: Mar. 20, 2014.
Helioscopie Product Insert for Heliogast, pp. 1-11, Dated: Jul. 22, 2013.
Related Publications (1)
Number Date Country
20110270019 A1 Nov 2011 US