Implantable fasteners, applicators, and methods for brachytherapy

Information

  • Patent Grant
  • 11559700
  • Patent Number
    11,559,700
  • Date Filed
    Wednesday, April 29, 2020
    4 years ago
  • Date Issued
    Tuesday, January 24, 2023
    a year ago
Abstract
A fastener applicator includes a body portion including a handle assembly, a cartridge assembly supported within the body portion, the cartridge assembly including implantable fasteners, a drive assembly supported within the body portion and operatively coupled to the cartridge assembly to engage the implantable fasteners, and an actuation assembly supported within the handle assembly and operatively coupled to the drive assembly to fire a distal-most implantable fastener upon actuation of the actuation assembly. At least one of the implantable fasteners includes a body including a tissue facing surface, a tissue penetrating portion extending from the body, and a capsule affixed to the tissue facing surface of the body, the capsule including radioactive material.
Description
BACKGROUND
1. Technical Field

The present disclosure relates to surgical implants, staples, clips or fasteners and, more particularly, to implantable fasteners including low dose brachytherapy capsules, and fastener applicators therefor.


2. Background of Related Art

Generally, brachytherapy is an advanced form of cancer treatment. Specifically, radioactive seeds (alone or incorporated within sutures, buttresses or the like) are placed in or near the cancer site itself, where they emit a relatively low dose of radiation directly to the cancer site while reducing exposure of surrounding healthy tissue to the radiation.


Depending on the underlying cancer to be treated and on the underlying tissue, particular dosimetry guidelines have been developed for the placement of radioactive seeds and for the radiation levels emitted by the radioactive seeds. Generally, the radioactive seeds are placed at predefined distances relative to one another in order to enable effective dosimetry.


Accordingly, improved structures incorporating radioactive seeds and methods of placing those structures at or near cancer sites may be advantageous.


SUMMARY

Implantable fasteners having brachytherapy capsules including radioactive seeds are provided in accordance with the present disclosure. The implantable fasteners having brachytherapy capsules are individually placed at a cancer site using fastener applicators in accordance with the present disclosure.


According to an aspect of the present disclosure, a fastener applicator is provided and includes a body portion including a handle assembly, a cartridge assembly supported within the body portion, the cartridge assembly including implantable fasteners, a drive assembly supported within the body portion and operatively coupled to the cartridge assembly to engage the implantable fasteners, and an actuation assembly supported within the handle assembly and operatively coupled to the drive assembly to fire a distal-most implantable fastener upon actuation of the actuation assembly. At least one of the implantable fasteners includes a body including a tissue facing surface, a tissue penetrating portion extending from the body, and a capsule affixed to the tissue facing surface of the body, the capsule including radioactive material.


In certain embodiments, at least one of the implantable fasteners may be a surgical staple and include a radioactive material configured to provide a dose of radiation to a target surgical site.


In some embodiments, the body of at least one of the implantable fasteners includes a backspan having the tissue facing surface, the tissue facing surface defining a flattened surface extending along at least a portion thereof, the flattened surface providing an increased surface area for affixing the capsule onto the tissue facing surface of the backspan.


In embodiments, the tissue penetrating portion of at least one of the implantable fasteners includes a first leg extending from a first end portion of the backspan and a second leg extending from a second end portion of the backspan, wherein the first leg and the second leg extend substantially in a same direction from the backspan.


In certain embodiments, the tissue penetrating portion of at least one of the implantable fasteners includes an unformed condition wherein the first leg and the second leg are substantially parallel to one another and spaced a relative distance from one another, and a formed condition wherein the first leg and the second leg are radiused and in relative close approximation to one another and the backspan.


In some embodiments, radioactive material is dispersed throughout at least one of the implantable fasteners such that the entirety of at least one of the implantable fasteners emits radiation.


In embodiments, the implantable fasteners includes a first implantable fastener having sufficient mechanical strength to hold tissue together, and a second implantable fastener having the capsule affixed thereon for providing the dose of radiation to the target surgical site.


In certain embodiments, each of the first leg and the second leg of the surgical staple includes a first portion and a second portion, the first portion of the first leg and the first portion of the second leg extending away from the backspan at an angle such that the first portions of the first leg and the second leg overlap, the second portions of the first leg and the second leg extending from the first portions of each of the first leg and the second leg, respectively, towards the backspan.


According to another aspect of the present disclosure, a method of performing a surgical procedure at a surgical site includes positioning a fastener applicator within an opening in tissue, the fastener applicator loaded with implantable fasteners, each implantable fastener having a body including a tissue facing surface, a tissue penetrating portion extending from the body, and a capsule affixed to the tissue facing surface of the body, the capsule including radioactive material. The method further includes locating a first target of the surgical site, and firing the fastener applicator to secure a first implantable fastener to the first target of the surgical site such that the capsule affixed thereon is in contact with tissue adjacent the first target of the surgical site.


In embodiments, the method further includes locating a second target of the surgical site, relocating the fastener applicator to the second target of the surgical site, and firing the fastener applicator to secure a second implantable fastener to the second target such that the capsule affixed thereon is in contact with tissue adjacent the second target of the surgical site.


In certain embodiments, the method further includes locating a plurality of targets of the surgical site, relocating the fastener applicator to the plurality of targets of the surgical site, and arranging the implantable fasteners in any configuration, in any pattern, or in any quantity.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will be further described with reference to the accompanying drawings, wherein like reference numerals refer to like parts in the several views, and wherein:



FIG. 1A is a perspective view of an implantable fastener in accordance with an embodiment of the present disclosure in an unformed condition;



FIG. 1B is a perspective view of the implantable fastener of FIG. 1A in a formed condition;



FIG. 1C is a perspective view of a backspan of the implantable fastener of FIG. 1A, illustrating a tissue facing surface thereof;



FIGS. 2A and 2B are perspective views of the implantable fastener of FIG. 1A, illustrating a capsule affixed thereon at various locations of the backspan;



FIG. 3A is a perspective view of an implantable fastener in accordance with another embodiment of the present disclosure in an unformed condition;



FIG. 3B is a perspective view of the implantable fastener of FIG. 3A in a formed condition;



FIG. 4A is a perspective view of an implantable fastener in accordance with another embodiment of the present disclosure in an unformed condition;



FIG. 4B is a perspective view of the implantable fastener of FIG. 4A in a formed condition;



FIG. 5 is a perspective view of an implantable fastener in accordance with another embodiment of the present disclosure;



FIG. 6 is a perspective view of an implantable fastener in accordance with another embodiment of the present disclosure;



FIG. 7 is a perspective view of an implantable fastener in accordance with another embodiment of the present disclosure;



FIG. 8 is a perspective view of an implantable fastener in accordance with another embodiment of the present disclosure;



FIG. 9 is a perspective view of a fastener applicator in accordance with an embodiment of the present disclosure, for applying the implantable fasteners of FIGS. 1A-2B;



FIG. 10 is an exploded view, with parts separated, of an endoscopic shaft assembly of the fastener applicator of FIG. 9;



FIG. 11 is an exploded view, with parts separated, of a cartridge assembly of the fastener applicator of FIG. 9;



FIG. 12 is a side cross-sectional view of a distal end portion of the cartridge assembly of FIG. 11 prior to firing the implantable fastener;



FIG. 13 is a top cross-sectional view of the distal end portion of the cartridge assembly of FIG. 11, illustrating the implantable fastener formed in tissue;



FIG. 14 is a perspective view of a fastener applicator in accordance with another embodiment of the present disclosure, for applying the implantable fasteners of FIGS. 3A-4B;



FIG. 15 is a perspective view of a fastener applicator in accordance with another embodiment of the present disclosure, for applying the implantable fasteners of FIGS. 5-8, including an embodiment of a cartridge assembly for loading the implantable fasteners of FIGS. 5-8; and



FIG. 16 is a perspective view of another embodiment of a cartridge assembly of the fastener applicator of FIG. 15 for loading the implantable fastener of FIG. 8.





DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the presently disclosed implantable fasteners and fastener applicators will now be described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. In the drawings and in the description that follows, the term “proximal” will refer to the end of the implantable fasteners and fastener applicator which are closest to the operator, while the term “distal” will refer to the end of the implantable fasteners and fastener applicator which are farthest from the operator.


In accordance with the present disclosure, as illustrated in FIGS. 1A-1C, an embodiment of an implantable fastener 100 is provided and generally includes a body 102 and a tissue penetrating portion 104 extending from the body 102. The body 102 includes a crown or backspan 106 and the tissue penetrating portion 104 includes a first leg 108 extending from a first end portion 106a of the backspan 106 and a second leg 110 extending from a second end portion 106b of the backspan 106. The first leg 108 and the second leg 110 may extend in a same direction such as, for example, distally from the backspan 106.


The backspan 106 includes a top or tissue facing surface 106c configured for fixedly supporting a capsule 112 thereon. It is envisioned that capsule 112 includes a radiation source, as will be detailed below. The capsule 112 is affixed to the tissue facing surface 106c of the backspan 106 using laser welding or other suitable methods. In some embodiments, as illustrated in FIG. 1C, the tissue facing surface 106c may include a flattened surface 106d extending along at least a portion thereof and configured to provide an increased surface area for affixing the capsule 112 thereon. In embodiments, the capsule 112 may be affixed to a portion of the backspan 106, such as, for example, the flattened surface 106d of the tissue facing surface 106c, using a snap-fit engagement. The backspan 106 may then be heated or crimped to reduce the probability of the dislocation and migration of capsule 112 from implantable fastener 100. It is contemplated that affixing the capsule 112 on the tissue facing surface 106c of the backspan 106 may be advantageous since it enables the capsule 112 to be in direct contact with a target surgical site, such as, for example, tissue or the like (see FIG. 13). For example, it is contemplated that direct contact between capsule 112 and the target surgical site may provide a controlled, homogeneous dosing of radiation to the target surgical site, while avoiding substantial dosing of normal surrounding structures. It is further contemplated that direct contact between capsule 112 and the target surgical site may provide reduced attenuation of dosing from the radiation source to the target surgical site. Alternatively, as shown in FIGS. 2A and 2B, the capsule 112 may be affixed to a bottom surface 106e or a lateral surface 106f of the backspan 106. Though not specifically shown in the figures, it is contemplated that the first leg 108, the second leg 110 may be affixed directly onto the capsule 112 using laser welding, crimping, or other suitable methods.


Implantable fastener 100 may have an unformed condition, as shown in FIG. 1A, wherein the first leg 108 and the second leg 110 are parallel, or substantially parallel, to one another and spaced a relative distance from one another. Implantable fastener 100 may have a formed condition, as shown in FIG. 1B, wherein the first leg 108 and the second leg 110 are radiused and in relative close approximation to one another and backspan 106.


Implantable fastener 100 may be fabricated from a formable material, such as, for example, titanium, stainless steel or polymers. In this manner, implantable fastener 100 may be introduced over a target vessel or tissue while in an unformed condition, and then formed or fastened onto the target vessel or tissue to secure the implantable fastener 100 to the target vessel or tissue. It is contemplated that implantable fasteners 100 may be fabricated from any non-degradable, biocompatible material known by those having skill in the art. It is further contemplated that the implantable fasteners 100, or any parts thereof, may be formed from a degradable material such as magnesium.


In accordance with the present disclosure, as illustrated in FIGS. 1A-2B, and noted above, implantable fastener 100 may include the capsule 112 having a radiation source. Capsule 112 may be a brachytherapy capsule or seed and include a radioactive material 112a disposed therein. The radioactive material 112a may include any of a number of radioactive isotopes. Possible low dose isotopes include, but are not limited to, Cesium-131 (131Cs), Iridium-192 (192Ir), Iodine-125 (125I), Palladium-103 (103Pd), and Ytterbium-169 (169Yb). Therapeutic dosages may range from 80 to 150 Gy depending on the isotope and desired exposure. Implantable fastener 100 may have various target energies to provide flexibility in planning the treatment. It is envisioned that a particular strength of the radiation field and/or a particular geometry of the radiation field may be a function of the radioactive material 112a. It is further envisioned that capsule 112 may be dimensioned so as to determine the geometry of the emitted radiation or the strength of the emitted radiation. It is contemplated that a length of capsule 112 may be less than a length of backspan 106 so as to not interfere with the formation of implantable fastener 100.


Though not specifically shown in the figures, it is contemplated that the first leg 108, the second leg 110, and/or backspan 106 may include one or more cavities for receiving capsules 112 or radioactive material 112a. Any other combinations of placement of capsule 112, as well as integration of capsule 112 in implantable fastener 100 is also contemplated and within the scope of the present disclosure.


It is further envisioned, that implantable fastener 100 may be processed such that the entirety of implantable fastener 100 emits radiation from radioactive material 112a dispersed throughout implantable fastener 100. For example, and within the purview of the present disclosure, implantable fastener 100 may be processed so as to determine the strength of the emitted radiation. Specifically, in an embodiment, implantable fastener 100 may be a polymeric surgical clip fabricated from a radioactive biocompatible material.


It is contemplated that implantable fasteners 100 having radioactive material 112a disposed therein may be locatable using imaging techniques, such as, for example, X-ray or the like. In embodiments where implantable fasteners 100 do not include radioactive material 112a, implantable fasteners 100 may be coated with a material, such as, for example, gold, or coated with a colored oxide layer to make implantable fasteners 100 relatively more visible. Gold coatings or other coatings may be utilized to enable radiographic location of implantable fasteners 100 during follow-up procedures. In this manner, implantable fasteners 100 may serve as fiduciary markers.


In accordance with the present disclosure, by fastening the implantable fastener 100 onto a target vessel or tissue, a therapeutic dose of radiation can be applied to a set location and known volume of tissue based on the activity and isotope material of the capsule 112.


In embodiments, implantable fasteners 100 including the capsule 112 serve the purpose of applying a local therapeutic dose of radiation to, for example, a tumor or to a resection site after removal of a cancerous tumor. As such, those implantable fasteners 100 that include the capsule 112 only require sufficient mechanical strength to secure the capsule 112 in place and may not be intended to hold tissue together. However, the plurality of implantable fasteners 100 may include one or more implantable fasteners 100 that are designed with sufficient mechanical strength to hold tissue together. Alternatively, implantable fasteners 100 including the capsule 112 may be designed with sufficient mechanical strength to hold tissue together while also securing the capsule 112 in place.


Implantable fasteners 100 may be applied or fastened to any number of tissues having a tumorous growth or suspected of including cancer cells, such as, for example lung tissue, solid organs, gastro-intestinal tissue, and soft tissues.


In accordance with the present disclosure, it is envisioned that implantable fasteners 100 may be applied separately, and individually, at a predetermined location by a clinician. It is contemplated that capsule 112 has a set three-dimensional field of known radiation strength and geometry, as such, multiple implantable fasteners 100 including capsule 112 may be applied to the target tissue to provide a controlled, homogeneous dosing of the radiation source to the target surgical site.


It is contemplated that implantable fasteners 100 may be applied or arranged in any configuration, pattern, or quantity to achieve the intended purpose. For example, implantable fasteners 100 may be arranged in, for example, a straight line, arcuate, triangular, rectangular, circular or other configuration. It is further contemplated that implantable fasteners 100 may be fastened to the target tissue a uniform distance from one another, to achieve the desired dosimetry. Alternatively, implantable fasteners 100 may be fastened to the target tissue at various distances from one another, or a combination thereof.


In accordance with the present disclosure, while an implantable fastener in the form of implantable fastener 100 has been shown and described in detail, it is contemplated that the implantable fastener may include, and is not limited to, a surgical staple, a surgical coil or the like. As mentioned above, and as contemplated herein, any of the implantable fasteners may be fabricated from a biocompatible material, such as, for example, titanium, stainless steel or polymers. Likewise, as mentioned above, and as contemplated herein, any of the implantable fasteners may incorporate therein or support thereon a capsule 112 having radioactive material 112a, or may be processed such that the entirety of the implantable fastener emits radiation.


For example, with reference to FIGS. 3A and 3B, an implantable fastener in the form of a “B-shaped” surgical staple is shown and generally designated as 200. Similar to implantable fastener 100, implantable fastener 200 may generally include a body 202 and a tissue penetrating portion 204 extending from the body 202. The body 202 includes a crown or backspan 206 and the tissue penetrating portion 204 includes a first leg 208 extending from a first end portion 206a of the backspan 206 and a second leg 210 extending from a second end portion 206b of the backspan 206.


In accordance with the present disclosure, at least one capsule 212, similar to capsule 112, may be affixed to a tissue facing surface 206c of backspan 206. Capsule 212 may include a radioactive material 212a. Additionally or alternatively, it is further envisioned that implantable fastener 200 may be processed such that the entirety of implantable fastener 200 emits radiation from radioactive material dispersed throughout implantable fastener 200. For example, implantable fastener 200 may be processed so as to determine the strength of the emitted radiation.


Implantable fastener 200 may have an unformed condition, as shown in FIG. 3A, wherein the first leg 208 and the second leg 210 are parallel, or substantially parallel, to one another and spaced a relative distance from one another. Implantable fastener 200 may have a formed condition, as shown in FIG. 3B, wherein at least a portion of the first leg 208 and the second leg 210 are radiused and in relative close approximation to one another and backspan 206 to define a substantially B-shaped structure.


Implantable fastener 200 may be fabricated from, for example, titanium, stainless steel or polymers. In an embodiment, implantable fastener 200 may be a polymeric surgical pin fabricated from a radioactive biocompatible material. Some examples of non-degradable biocompatible polymers include polyolefins such as polyethylenes and polypropylenes, nylons, polyesters, silicones, polyimides, polymethylmethacrylates, polyphthalamides, polyurethanes, PTFE, polyethersulfone, polysulfone, PEEK, to name a few.


As an additional example, with reference to FIGS. 4A and 4B, an implantable fastener in the form of a “W-shaped” surgical staple is shown and generally designated as 300. Similar to implantable fasteners 100, 200, implantable fastener 300 may generally include a body 302 and a tissue penetrating portion 304 extending from the body 302. The body 302 includes a crown or backspan 306 and the tissue penetrating portion 304 includes a first leg 308 having a first portion 308a and a second portion 308b, and a second leg 310 having a first portion 310a and a second portion 310b. The first portion 308a of the first leg 308 extends from a first end portion 306a of backspan 306 and is coupled to a proximal end portion 309a of the second portion 308b of the first leg 308. Similarly, the first portion 310a of the second leg 310 extends from a second end portion 306b of backspan 306 and is coupled to a proximal end portion 311a of the second portion 3010b of the second leg 310.


In accordance with the present disclosure, at least one capsule 312, similar to capsules 112, 212, may be affixed to a tissue facing surface 306c of backspan 306. Capsule 312 may include a radioactive material 312a. Additionally or alternatively, it is further envisioned that implantable fastener 300 may be processed such that the entirety of implantable fastener 300 emits radiation from radioactive material dispersed throughout implantable fastener 300. It is contemplated that, implantable fastener 300 may be processed so as to determine the strength of the emitted radiation.


In an unformed condition, as shown in FIG. 4A, the backspan 306 is in a distal position relative to the proximal end portions 309a, 311a of the first and second legs 308, 310, respectively. Specifically, backspan 306 is in relative close proximity to a distal end portion 309b of the second portion 308b of the first leg 308 and a distal end portion 311b of the second portion 310b of the second leg 310. In the unformed condition, the first portions 308a, 310a of the first and second legs 308, 310, respectively, extend away from the backspan 306 at an angle such that the first portions 308a, 310a overlap one another, as shown in FIG. 4A. Further, in the unformed condition, the second portions 308b, 310b of the first and second legs 308, 310, respectively, are spaced a relative distance from one another and extend towards backspan 306.


In accordance with the present disclosure, implantable fastener 300 may have a formed condition, as shown in FIG. 4B, wherein the backspan 306 is in a proximal position relative to the distal end portions 309b, 311b of the first and second legs 308, 310, respectively. In the formed condition, at least a portion of the second portions 308b, 310b of the first and second legs 308, 310, respectively, are radiused and in relative close approximation to one another. In the formed condition, as shown in FIG. 4B, the first portions 308a, 310a of the first and second legs 308, 310, respectively, and the backspan 306 are parallel, or substantially parallel, to one another and, and in relative close approximation to one another and backspan 306. Further, in the formed condition, the backspan 306 is spaced a relative distance from the distal end portions 309b,311b of the second portions 308b, 310b of the first and second legs 308, 310, respectively.


As an additional example, with reference to FIG. 5, an implantable fastener in the form of a surgical coil is shown and generally designated as 400. Specifically, implantable fastener 400 is a helical-shaped coil fastener. Implantable fastener 400 is designed for application to tissue by rotating implantable fastener 400 into and through the target tissue. Implantable fastener 400 generally includes a coil body portion 402 terminating in a tissue penetrating portion 404. The tissue penetrating portion 404 includes a penetrating point 404a. It is contemplated that the coil body portion 402 may include one or more turns or coils.


Implantable fastener 400 includes a tang 406 at an opposite end of coil body portion 402 from tissue penetrating portion 404. Tang 406 extends generally inwardly toward the center of coil body portion 402 and includes a cavity 406a defined therein. The cavity 406a is capped or closed with a plug 408 having a size and shape corresponding to a size and shape of an opening of the cavity 406a of tang 406.


In accordance with the present disclosure, at least one capsule 410 may be disposed within cavity 406a of tang 406. Similar to capsules 112, 212, 312, capsule 410 includes a radioactive material 410a. Additionally or alternatively, the radioactive material 410a may be disposed within or onto coil body portion 402 of implantable fastener 400. It is further envisioned that implantable fastener 400 may be processed such that the entirety of implantable fastener 400 emits radiation from radioactive material 410a dispersed throughout implantable fastener 400. For example, and within the purview of the present disclosure, implantable fastener 400 may be processed so as to determine the strength of the emitted radiation.


With reference to FIG. 6, in embodiments, implantable fastener 400 may include at least one capsule 410′ affixed to an outer surface of tang 406′ using laser welding or other suitable methods. Specifically, tang 406′ may include a flattened surface 406b extending along at least a portion thereof and configured to provide an increased surface area for affixing the capsule 410′. Additionally or alternatively, the at least one capsule 410′ may be affixed to an outer surface of the coil body portion 402. Similar to capsules 112, 212, 312, 410, capsule 410′ includes a radioactive material 410a′ disposed therein. Capsule 410′ is capped or closed with a plug 412 having a size and shape corresponding to a size and shape of an opening of the capsule 410′. In embodiments, plug 412 is an inverted cap affixed to opposite ends of capsule 410′ using laser welding, adhesives, or other suitable methods. Alternatively, plug 412 may include any suitable configuration configured to retain the radioactive material 410a′ disposed within the at least one capsule 410′.


In embodiments, an implantable fastener 800 is provided as illustrated in FIG. 7. Implantable fastener 800 is a helical-shaped coil fastener similar to the implantable fastener 400 illustrated in FIGS. 5 and 6. Accordingly, implantable fastener 800 generally includes a coil body portion 802 terminating in a tissue penetrating portion 804. The tissue penetrating portion 804 includes a penetrating point 804a. It is contemplated that the coil body portion 802 may include one or more turns or coils.


Implantable fastener 800 includes a tang 806 at an opposite end of coil body portion 802 from tissue penetrating portion 804. Tang 806 extends generally inwardly toward the center of coil body portion 802 and includes a crimped portion 808 configured to capture and retain at least one capsule 810 within a cavity 812 adjacent tang 806. In embodiments, the capsule 810 may be disposed adjacent tang 806 and the crimped portion 808 formed thereabout to secure the capsule 810 within cavity 812 via a friction fit engagement between the tang 806 and the crimped portion 808. Alternatively, the crimped portion 808 may be formed about tang 806 to define cavity 812 and the capsule 810 may be disposed therein. Additionally or alternatively, the capsule 810 may be secured within cavity 812 using laser welding or other suitable methods. In embodiments, at least one of the crimped portion 808 and the tang 806 may include a groove 814 extending along at least a portion thereof and configured to provide an increased surface area for affixing the capsule 810. Capsule 810 is similar to capsule 410′ and is configured to retain a radioactive material 810a disposed therein.


Implantable fasteners 400, 800 may be fabricated from, for example, titanium, stainless steel or polymers. In an embodiment, implantable fasteners 400, 800 may be a polymeric surgical coil fabricated from a radioactive biocompatible material.


With reference to FIG. 8, an implantable fastener in the form of an “S-shaped” fastener is shown and generally designated as 900. Implantable fastener 900 generally includes a body 902, a first leg 904, and a second leg 906. Body 902 defines a longitudinal axis “A1-A1” and includes a first end portion 902a, an opposing second end portion 902b, and a cannula 902c extending longitudinally therebetween.


The first leg 904 includes a first tissue penetrating portion 908 having a first tissue penetrating tip 908a and the second leg 906 includes a second tissue penetrating portion 910 having a second tissue penetrating tip 910a. The first leg 904 extends generally from the first end portion 902a of body 902 and radially towards the second end portion 902b of body 902 such that the first tissue penetrating tip 908a is disposed adjacent the second end portion 902b of body 902. Similarly, second leg 906 extends generally from the second end portion 902b of body 902 and radially towards the first end portion 902a of body 902 such that the second tissue penetrating tip 910a is disposed adjacent the first end portion 902a of body 902. It is contemplated that the first and second tissue penetrating tips 908a, 910a may be disposed on either the same lateral side of longitudinal axis “A1-A1”, or as shown in FIG. 8, on opposing lateral sides of longitudinal axis “A1-A1”.


In accordance with the present disclosure, at least one capsule 912 may be disposed within cannula 902c of body 902 and secured therein via a press fit engagement, a friction fit engagement, or other suitable methods. Capsule 912 is similar to capsules 410′, 810 and is configured to retain a radioactive material 912a disposed therein. With brief reference to FIG. 16, in embodiments, capsule 912′ is disposed within cannula 902c′ of implantable fastener 900′ before the implantable fastener 900′ is loaded into a cartridge assembly 720′. Alternatively, capsule 912 may be disposed within cannula 902c of body 902 after the implantable fastener 900 is loaded into the cartridge assembly, as will be detailed below.


Implantable fastener 900 may be fabricated from, for example, titanium, stainless steel or polymers. In embodiments, the polymer may include a biodegradable polymer with an approximately four to five week in vivo strength retention profile.


While implantable fasteners in the form of a surgical staple and, a surgical coil or the like, have been illustrated and described herein, it is within the scope of the present disclosure that the implantable fasteners may also include two-part fasteners, tacks, locking hinged fasteners, staples or the like. For example, in one embodiment, the implantable fastener may include a two-part polymeric fastener having a coating of polymeric and/or radioactive material.


In order to place implantable fasteners 100 disclosed herein, in accordance with the present disclosure, as illustrated in FIG. 9, a surgical apparatus in the form of a fastener applicator 500 is provided. For a more detailed description of the construction and operation of an example of fastener applicator 500, reference may be made to U.S. Pat. No. 7,624,903, the entire content of which is incorporated herein by reference.


Fastener applicator 500 includes a body portion 510 having a handle assembly 520, an endoscopic shaft assembly 530 extending from handle assembly 520, a cartridge assembly 540 extending from endoscopic shaft assembly 530, and an actuation assembly 550 at least partially supported within the handle assembly 520.


Endoscopic shaft assembly 530 is rotatably connected to handle assembly 520 such that endoscopic shaft assembly 530 is rotatable about a longitudinal axis “X1-X1” thereof. Cartridge assembly 540 is pivotably connected to a distal end portion of endoscopic shaft assembly 530 and is pivotable relative to the longitudinal axis “X1-X1” of endoscopic shaft assembly 530. In FIG. 9, cartridge assembly 540 is shown in general alignment with the longitudinal axis “X1-X1” of endoscopic shaft assembly 530 and additionally in phantom to illustrate a range of movement or articulation. The total range of pivotal motion of cartridge assembly 540 as shown is approximately 90 degrees, i.e. 45 degrees to each side of neutral.


Referring to FIG. 10, the endoscopic shaft assembly 530 is shown in an exploded view with parts separated for convenience of illustration and includes an upper housing half section 530a and a lower housing half section 530b. Positioned within the upper and lower housing half sections 530a, 530b, is a drive assembly 531. Drive assembly 531 generally includes a pusher or drive beam 532 and an anvil extension 533, and is operatively coupled to the cartridge assembly 540 to engage implantable fasteners 100 supported in the cartridge assembly 540.


With additional reference to FIG. 11, drive beam 532 has a pusher plate 534 configured to engage a distal-most implantable fastener 100 of the implantable fasteners 100 upon actuation of the actuation assembly 550. As shown in FIG. 11, anvil extension 533 includes a distal end portion 533a that is provided to pivotably couple the cartridge assembly 540 via a pivot pin 533b.


With continued reference to FIG. 11, cartridge assembly 540 is adapted to support the implantable fasteners 100. In accordance with the present disclosure, the implantable fasteners 100 are positioned in adjacent stacked relation. In one embodiment, the implantable fasteners 100 are stacked such that an angle of approximately 45 degrees is formed relative to the longitudinal axis “X1-X1” (see FIG. 12). Cartridge assembly 540 further includes an anvil plate 542, for forming the implantable fastener 100 therearound.


Referring now to FIGS. 12 and 13, advancing and firing of an implantable fastener 100 is illustrated. Upon initial actuation of the actuation assembly 550, the pusher plate 534 is advanced distally and the distal-most implantable fastener 100 is advanced distally of the implantable fasteners 100 in a manner such that pusher plate 534 replaces the distal-most implantable fastener 100 thereby preserving the integrity and position of the stack of the implantable fasteners 100. It is contemplated that pusher plate 534 engages only one implantable fastener 100 at a time.


Upon further actuation of the actuation assembly 550, plusher plate 534 is advanced distally sufficient to cause the distal-most implantable fastener 100 to penetrate tissue and form thereon to secure capsule 112. Specifically, pusher plate 534 includes a pair of lands 534a, 534b to facilitate transmission of advancing force to the first and second end portions 106a, 106b of the backspan 106. Anvil plate 542 is positioned for engagement with backspan 106 such that engagement of implantable fastener 100 by the pair of lands 534a, 534b of pusher plate 534 with the first and second end portions 106a, 106b of the implantable fastener 100 will cause the implantable fastener 100 to form and secure about tissue in a predetermined manner.


In order to place implantable fasteners 200, 300 disclosed herein, in accordance with the present disclosure, as illustrated in FIG. 14, a surgical apparatus in the form of a fastener applicator 600 is provided. For a more detailed description of the construction and operation of an example of fastener applicator 600, reference may be made to U.S. Pat. No. 8,403,946, the entire content of which is incorporated herein by reference.


Fastener applicator 600 includes a handle assembly 610, and an endoscopic shaft assembly 620 extending from handle assembly 610. Endoscopic shaft assembly 620 is rotatably connected to handle assembly 610 such that endoscopic shaft assembly 620 is rotatable about a longitudinal axis “X2-X2” thereof. Endoscopic shaft assembly 620 may include a proximal portion 622, and a distal portion 624. An end effector 626 is pivotably connected to distal portion 624, wherein end effector 626 may be articulated relative to distal portion 624.


End effector 626 of endoscopic shaft assembly 620 may include a quantity of implantable fasteners 200, 300 (not shown) pre-loaded therein, or may be configured to selectively receive a cartridge assembly (not shown) which is loaded with a quantity of implantable fasteners 200, 300 therein. For example, the cartridge assembly may be loaded with ten or fewer implantable fasteners 200, 300, or any quantity of implantable fasteners 200, 300.


End effector 626 of endoscopic shaft assembly 620 may include a drive assembly configured to load a single, distal-most implantable fastener 200, 300 into a pair of jaws 628, and to form the implantable fastener 200, 300 loaded into the pair of jaws 628. Fastener applicator 600 is configured to fire and form a single implantable fastener 200, 300 during a complete firing sequence. In any of the embodiments disclosed herein, the fastener instrument can be an open stapler, an endoscopic stapler, clip applier instrument, or other types of surgical instruments. In certain embodiments, the fasteners disclosed herein can be used in a robotic surgical system or with motorized surgical instruments to apply one fastener at a time, or multiple fasteners at a time. In any of the embodiments disclosed herein, the fastener applier can be configured to allow the surgeon to decide how many fasteners to apply, and where, and how many radioactive capsules to apply, or other types of medically or pharmaceutically active capsules to apply.


In order to place implantable fasteners 400, 800, 900 in accordance with the present disclosure, as illustrated in FIG. 15, a surgical apparatus in the form of a fastener applicator 700 is provided. For a more detailed description of the construction and operation of an example of a fastener applicator 700 capable of firing implantable fasteners 400, 800, 900 reference may be made to U.S. Pat. No. 5,830,221, the entire content of which is incorporated herein by reference. Fastener applicator 700 may be provided either pre-loaded with implantable fasteners 400, 800, or may be configured to selectively receive a cartridge assembly 720 loaded with implantable fasteners 400, 800.


With reference to FIG. 16, in embodiments, the fastener applicator 700 (FIG. 15) may be configured to selectively receive cartridge assembly 720′ preloaded with a plurality of implantable fasteners 900. Cartridge assembly 720′ includes a plurality of ports 740 extending through an outer surface thereof. Each port 740 is configured and dimensioned to longitudinally align with the respective cannula 902c of body 902 of each implantable fastener 900 preloaded into the cartridge assembly 720′. With the plurality of implantable fasteners 900 preloaded into the cartridge assembly 720′, the plurality of capsules 912 may be inserted through the plurality of ports 740 and disposed within the respective cannulas 902c of the plurality of implantable fasteners 900. This configuration facilitates efficient loading of the plurality of implantable fasteners 900 with the plurality of capsules 912 without having to handle each implantable fastener 900 individually. It is contemplated that this configuration may facilitate field customization of the payload.


The fastener applicator 700 may be configured to fire or deliver implantable fasteners 400, 800, 900 during a full firing sequence. The fastener applicator 700 may also be configured to articulate in order to facilitate the firing of implantable fasteners 400, 800, 900 therefrom.


In accordance with the present disclosure, the combination of implantable fasteners and fastener applicators disclosed herein provides a clinician a relatively great deal of flexibility and customization in placing radiation emitting implants, such as, for example, implantable fasteners 100, 200, 300, 400, 800, 900 at desired target surgical sites, whereby the fastener applicator, such as, for example, fastener applicator 500 is articulatable and/or rotatable to provide the clinician with increased flexibility and precision in placing the radiation emitting implants. It is also contemplated that the fasteners could dispense other types of medical treatments such as pharmaceutically active agents.


It is contemplated for example, that a geometry of implantable fasteners 100, 200, 300, 400, 800, 900; and a geometry of a fastener applicator 500, 600, 700 may be optimized to work together as location guides to optimally place implantable fasteners 100, 200, 300, 400, 800, 900 adjacent to one another, wherein the capsules 112, 212, 316, 410, 410′, 810, 912 has a known geometry and radiation field strength, to achieve effective dosimetry.


In accordance with the present disclosure, the location of placement of implantable fasteners 100, 200, 300, 400, 800, 900 is not limited to a predefined geometry, pattern, density, or the like. In particular, as mentioned above, implantable fasteners 100, 200, 300, 400, 800, 900 may be fastened to a target tissue site in any geometry, pattern and/or density, as the clinician desires or needs.


By way of example, the ability to fasten implantable fasteners 100, 200, 300, 400, 800, 900 to a target tissue site, such as, for example, lung tissue in a lung resection procedure, in any geometry, pattern and/or density, may be quite useful in a lung cancer patient, where many lung cancer patients suffer from impaired lung volume and cannot tolerate unnecessary loss of lung volume, and may need multiple rows of brachytherapy sources to ensure treatment of an inadequately narrow surgical margin.


In any of the embodiments disclosed herein, the implantable fasteners 100, 200, 300, 400, 800, 900 may be incorporated into, or configured for use with, devices that are part of a powered surgical system or robotic surgical system.


It will be understood that various modifications may be made to the embodiments disclosed herein. Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended thereto.

Claims
  • 1. An implantable fastener comprising: a body defining a longitudinal axis, the body defining a lumen between an open first end of the body and a second end of the body;a first leg extending from the first end of the body and radially towards the second end of the body, the first leg including a first tissue penetrating portion;a second leg extending from the second end of the body and radially towards the first end of the body, the second leg including a second tissue penetrating portion;a capsule associated with the body through a press-fit engagement or a friction-fit engagement formed upon insertion into the lumen of the body through the open first end, the capsule including a radioactive material;wherein the body and the first and second legs define an S-shaped profile; andwherein the capsule is insertable into the lumen of the body through a port in a cartridge of an applicator.
  • 2. The implantable fastener according to claim 1, wherein the first tissue penetrating portion is disposed adjacent the second end of the body.
  • 3. The implantable fastener according to claim 1, wherein the second tissue penetrating portion is disposed adjacent the first end of the body.
  • 4. The implantable fastener according to claim 1, wherein the body and the first and second legs are formed of titanium, stainless steel, or polymer.
  • 5. The implantable fastener according to claim 1, wherein the S shaped profile is defined with respect to the longitudinal axis of the body.
  • 6. The implantable fastener according to claim 5, wherein the first leg is disposed on a first lateral side of the longitudinal axis of the body and the second leg is disposed on a second and different lateral side of the longitudinal axis of the body.
  • 7. The implantable fastener according to claim 1, wherein the implantable fastener is configured for use in a cartridge of an applicator.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/835,853, filed Dec. 8, 2017, now U.S. Pat. No. 10,709,901, which claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/514,089, filed Jun. 2, 2017, U.S. Provisional Patent Application Ser. No. 62/451,936, filed Jan. 30, 2017, and U.S. Provisional Patent Serial Application No. 62/442,610, filed Jan. 5, 2017, the entire disclosure of each of which is incorporated by reference herein.

US Referenced Citations (1444)
Number Name Date Kind
3499591 Green Mar 1970 A
3777538 Weatherly et al. Dec 1973 A
3882854 Hulka et al. May 1975 A
4027510 Hiltebrandt Jun 1977 A
4086926 Green et al. May 1978 A
4241861 Fleischer Dec 1980 A
4244372 Kapitanov et al. Jan 1981 A
4429695 Green Feb 1984 A
4505414 Filipi Mar 1985 A
4520817 Green Jun 1985 A
4589413 Malyshev et al. May 1986 A
4596351 Fedotov et al. Jun 1986 A
4602634 Barkley Jul 1986 A
4605001 Rothfuss et al. Aug 1986 A
4608981 Rothfuss et al. Sep 1986 A
4610383 Rothfuss et al. Sep 1986 A
4633861 Chow et al. Jan 1987 A
4633874 Chow et al. Jan 1987 A
4671445 Barker et al. Jun 1987 A
4700703 Resnick et al. Oct 1987 A
4703887 Clanton et al. Nov 1987 A
4728020 Green et al. Mar 1988 A
4752024 Green et al. Jun 1988 A
4784137 Kulik et al. Nov 1988 A
4863088 Redmond et al. Sep 1989 A
4869415 Fox Sep 1989 A
4892244 Fox et al. Jan 1990 A
4955959 Tompkins et al. Sep 1990 A
4978049 Green Dec 1990 A
4991764 Mericle Feb 1991 A
5007921 Brown Apr 1991 A
5014899 Presty et al. May 1991 A
5031814 Tompkins et al. Jul 1991 A
5040715 Green et al. Aug 1991 A
5065929 Schulze et al. Nov 1991 A
5071430 de Salis et al. Dec 1991 A
5074454 Peters Dec 1991 A
5083695 Foslien et al. Jan 1992 A
5084057 Green et al. Jan 1992 A
5106008 Tompkins et al. Apr 1992 A
5111987 Moeinzadeh et al. May 1992 A
5129570 Schulze et al. Jul 1992 A
5141144 Foslien et al. Aug 1992 A
5156315 Green et al. Oct 1992 A
5156614 Green et al. Oct 1992 A
5163943 Mohiuddin et al. Nov 1992 A
5170925 Madden et al. Dec 1992 A
5171247 Hughett et al. Dec 1992 A
5173133 Morin et al. Dec 1992 A
5180092 Crainich Jan 1993 A
5188274 Moeinzadeh et al. Feb 1993 A
5220928 Oddsen et al. Jun 1993 A
5221036 Takase Jun 1993 A
5242457 Akopov et al. Sep 1993 A
5246156 Rothfuss et al. Sep 1993 A
5253793 Green et al. Oct 1993 A
5263629 Trumbull et al. Nov 1993 A
RE34519 Fox et al. Jan 1994 E
5275323 Schulze et al. Jan 1994 A
5282807 Knoepfler Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5307976 Olson et al. May 1994 A
5308576 Green et al. May 1994 A
5312023 Green et al. May 1994 A
5318221 Green et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5328077 Lou Jul 1994 A
5330486 Wilk Jul 1994 A
5332142 Robinson et al. Jul 1994 A
5336232 Green et al. Aug 1994 A
5344061 Crainich Sep 1994 A
5352238 Green et al. Oct 1994 A
5356064 Green et al. Oct 1994 A
5358506 Green et al. Oct 1994 A
5364001 Bryan Nov 1994 A
5364002 Green et al. Nov 1994 A
5364003 Williamson, IV Nov 1994 A
5366133 Geiste Nov 1994 A
5376095 Ortiz Dec 1994 A
5379933 Green et al. Jan 1995 A
5381943 Allen et al. Jan 1995 A
5382255 Castro et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5395034 Allen et al. Mar 1995 A
5397046 Savage et al. Mar 1995 A
5397324 Carroll et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5405072 Zlock et al. Apr 1995 A
5407293 Crainich Apr 1995 A
5413268 Green et al. May 1995 A
5415334 Williamson et al. May 1995 A
5415335 Knodell, Jr. May 1995 A
5417361 Williamson, IV May 1995 A
5423471 Mastri et al. Jun 1995 A
5425745 Green et al. Jun 1995 A
5431322 Green et al. Jul 1995 A
5431323 Smith et al. Jul 1995 A
5433721 Hooven et al. Jul 1995 A
5441193 Gravener Aug 1995 A
5445304 Plyley et al. Aug 1995 A
5447265 Vidal et al. Sep 1995 A
5452837 Williamson, IV et al. Sep 1995 A
5456401 Green et al. Oct 1995 A
5464300 Crainich Nov 1995 A
5465895 Knodel et al. Nov 1995 A
5467911 Tsuruta et al. Nov 1995 A
5470007 Plyley et al. Nov 1995 A
5470010 Rothfuss et al. Nov 1995 A
5472132 Savage et al. Dec 1995 A
5474566 Alesi et al. Dec 1995 A
5476206 Green et al. Dec 1995 A
5478003 Green et al. Dec 1995 A
5480089 Blewett Jan 1996 A
5482197 Green et al. Jan 1996 A
5484095 Green et al. Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5485947 Olson et al. Jan 1996 A
5485952 Fontayne Jan 1996 A
5486185 Freitas et al. Jan 1996 A
5487499 Sorrentino et al. Jan 1996 A
5487500 Knodel et al. Jan 1996 A
5489058 Plyley et al. Feb 1996 A
5490856 Person et al. Feb 1996 A
5497933 DeFonzo et al. Mar 1996 A
5501689 Green et al. Mar 1996 A
5505363 Green et al. Apr 1996 A
5507426 Young et al. Apr 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5529235 Boiarski et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5535934 Boiarski et al. Jul 1996 A
5535935 Vidal et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5551622 Yoon Sep 1996 A
5553765 Knodel et al. Sep 1996 A
5554164 Wilson et al. Sep 1996 A
5554169 Green et al. Sep 1996 A
5560530 Bolanos et al. Oct 1996 A
5560532 DeFonzo et al. Oct 1996 A
5562239 Boiarski et al. Oct 1996 A
5562241 Knodel et al. Oct 1996 A
5562682 Oberlin et al. Oct 1996 A
5562701 Huitema et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5571116 Bolanos et al. Nov 1996 A
5573169 Green et al. Nov 1996 A
5573543 Akopov et al. Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5575803 Cooper et al. Nov 1996 A
5577654 Bishop Nov 1996 A
5584425 Savage et al. Dec 1996 A
5586711 Plyley et al. Dec 1996 A
5588580 Paul et al. Dec 1996 A
5588581 Conlon et al. Dec 1996 A
5597107 Knodel et al. Jan 1997 A
5601224 Bishop et al. Feb 1997 A
5607095 Smith et al. Mar 1997 A
5615820 Viola Apr 1997 A
5618291 Thompson et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626587 Bishop et al. May 1997 A
5628446 Geiste et al. May 1997 A
5630539 Plyley et al. May 1997 A
5630540 Blewett May 1997 A
5630541 Williamson, IV et al. May 1997 A
5632432 Schulze et al. May 1997 A
5634584 Okorocha et al. Jun 1997 A
5636780 Green et al. Jun 1997 A
5645209 Green et al. Jul 1997 A
5647526 Green et al. Jul 1997 A
5651491 Heaton et al. Jul 1997 A
5653373 Green et al. Aug 1997 A
5653374 Young et al. Aug 1997 A
5653721 Knodel et al. Aug 1997 A
5655698 Yoon Aug 1997 A
5657921 Young et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5662258 Knodel et al. Sep 1997 A
5662259 Yoon Sep 1997 A
5662260 Yoon Sep 1997 A
5662662 Bishop et al. Sep 1997 A
5662666 Onuki et al. Sep 1997 A
5665085 Nardella Sep 1997 A
5667517 Hooven Sep 1997 A
5669544 Schulze et al. Sep 1997 A
5673840 Schulze et al. Oct 1997 A
5673841 Schulze et al. Oct 1997 A
5673842 Billner et al. Oct 1997 A
5676674 Bolanos et al. Oct 1997 A
5680981 Mililli et al. Oct 1997 A
5680982 Schulze et al. Oct 1997 A
5680983 Plyley et al. Oct 1997 A
5690269 Bolanos et al. Nov 1997 A
5690675 Sawyer et al. Nov 1997 A
5692668 Schulze et al. Dec 1997 A
5697542 Knodel et al. Dec 1997 A
5702409 Rayburn et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5706997 Green et al. Jan 1998 A
5709334 Sorrentino et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5713505 Huitema Feb 1998 A
5715988 Palmer Feb 1998 A
5716366 Yates Feb 1998 A
5718359 Palmer et al. Feb 1998 A
5725536 Oberlin et al. Mar 1998 A
5725554 Simon et al. Mar 1998 A
5728110 Vidal et al. Mar 1998 A
5732806 Foshee et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5743456 Jones et al. Apr 1998 A
5749893 Vidal et al. May 1998 A
5752644 Bolanos et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5762256 Mastri et al. Jun 1998 A
5769303 Knodel et al. Jun 1998 A
5769892 Kingwell Jun 1998 A
5772099 Gravener Jun 1998 A
5772673 Cuny et al. Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5779131 Knodel et al. Jul 1998 A
5779132 Knodel et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5782834 Lucey et al. Jul 1998 A
5785232 Vidal et al. Jul 1998 A
5797536 Smith et al. Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5810811 Yates et al. Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5814057 Oi et al. Sep 1998 A
5816471 Plyley et al. Oct 1998 A
5817109 McGarry et al. Oct 1998 A
5820009 Melling et al. Oct 1998 A
5823066 Huitema et al. Oct 1998 A
5826776 Schulze et al. Oct 1998 A
5829662 Allen et al. Nov 1998 A
5830221 Stein Nov 1998 A
5833695 Yoon Nov 1998 A
5836147 Schnipke Nov 1998 A
5862972 Green et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5871135 Williamson IV et al. Feb 1999 A
5873873 Smith et al. Feb 1999 A
5878938 Bittner et al. Mar 1999 A
5893506 Powell Apr 1999 A
5894979 Powell Apr 1999 A
5897562 Bolanos et al. Apr 1999 A
5901895 Heaton et al. May 1999 A
5911352 Racenet et al. Jun 1999 A
5911353 Bolanos et al. Jun 1999 A
5918791 Sorrentino et al. Jul 1999 A
5919198 Graves, Jr. et al. Jul 1999 A
5922001 Yoon Jul 1999 A
5931847 Bittner et al. Aug 1999 A
5941442 Geiste et al. Aug 1999 A
5954259 Viola et al. Sep 1999 A
5964774 McKean et al. Oct 1999 A
5980510 Tsonton et al. Nov 1999 A
5988479 Palmer Nov 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6010054 Johnson et al. Jan 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6063097 Oi et al. May 2000 A
6066083 Slater May 2000 A
6079606 Milliman et al. Jun 2000 A
6080099 Slater Jun 2000 A
6099551 Gabbay Aug 2000 A
6109500 Alli et al. Aug 2000 A
6131789 Schulze et al. Oct 2000 A
6131790 Piraka Oct 2000 A
6155473 Tompkins et al. Dec 2000 A
6197017 Brock et al. Mar 2001 B1
6202914 Geiste et al. Mar 2001 B1
6241139 Milliman et al. Jun 2001 B1
6250532 Green et al. Jun 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6279809 Nicolo Aug 2001 B1
6315183 Piraka Nov 2001 B1
6315184 Whitman Nov 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6391038 Vargas et al. May 2002 B2
6398797 Bombard et al. Jun 2002 B2
6436097 Nardella Aug 2002 B1
6439446 Perry et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6478804 Vargas et al. Nov 2002 B2
6488196 Fenton, Jr. Dec 2002 B1
6503257 Grant et al. Jan 2003 B2
6505768 Whitman Jan 2003 B2
6544274 Danitz et al. Apr 2003 B2
6554844 Lee et al. Apr 2003 B2
6565554 Niemeyer May 2003 B1
6587750 Gerbi et al. Jul 2003 B2
6592597 Grant et al. Jul 2003 B2
6594552 Nowlin et al. Jul 2003 B1
6602252 Mollenauer Aug 2003 B2
6619529 Green et al. Sep 2003 B2
D480808 Wells et al. Oct 2003 S
6644532 Green et al. Nov 2003 B2
6656193 Grant et al. Dec 2003 B2
6669073 Milliman et al. Dec 2003 B2
6681978 Geiste et al. Jan 2004 B2
6698643 Whitman Mar 2004 B2
6716232 Vidal et al. Apr 2004 B1
6722552 Fenton, Jr. Apr 2004 B2
6755338 Hahnen et al. Jun 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6817509 Geiste et al. Nov 2004 B2
6830174 Hillstead et al. Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6843403 Whitman Jan 2005 B2
RE38708 Bolanos et al. Mar 2005 E
6877647 Green et al. Apr 2005 B2
6889116 Jinno May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6945444 Gresham et al. Sep 2005 B2
6953138 Dworak et al. Oct 2005 B1
6953139 Milliman et al. Oct 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6962594 Thevenet Nov 2005 B1
6964363 Wales et al. Nov 2005 B2
6978921 Shelton, IV et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
6994714 Vargas et al. Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7000819 Swayze et al. Feb 2006 B2
7032799 Viola et al. Apr 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044353 Mastri et al. May 2006 B2
7055730 Ehrenfels et al. Jun 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7070083 Jankowski Jul 2006 B2
7083075 Swayze et al. Aug 2006 B2
7097089 Marczyk Aug 2006 B2
7111769 Wales et al. Sep 2006 B2
7114642 Whitman Oct 2006 B2
7121446 Arad et al. Oct 2006 B2
7128253 Mastri et al. Oct 2006 B2
7128254 Shelton, IV et al. Oct 2006 B2
7140527 Ehrenfels et al. Nov 2006 B2
7140528 Shelton, IV Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143924 Scirica et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7159750 Racenet et al. Jan 2007 B2
7168604 Milliman et al. Jan 2007 B2
7172104 Scirica et al. Feb 2007 B2
7188758 Viola et al. Mar 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7213736 Wales et al. May 2007 B2
7225963 Scirica Jun 2007 B2
7225964 Mastri et al. Jun 2007 B2
7238195 Viola Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7258262 Mastri et al. Aug 2007 B2
7267682 Bender et al. Sep 2007 B1
7278562 Mastri et al. Oct 2007 B2
7278563 Green Oct 2007 B1
7287682 Ezzat et al. Oct 2007 B1
7293685 Ehrenfels et al. Nov 2007 B2
7296722 Ivanko Nov 2007 B2
7296724 Green et al. Nov 2007 B2
7296772 Wang Nov 2007 B2
7300444 Nielsen et al. Nov 2007 B1
7303107 Milliman et al. Dec 2007 B2
7303108 Shelton, IV Dec 2007 B2
7308998 Mastri et al. Dec 2007 B2
7326232 Viola et al. Feb 2008 B2
7328828 Ortiz et al. Feb 2008 B2
7328829 Arad et al. Feb 2008 B2
7334717 Rethy et al. Feb 2008 B2
7354447 Shelton, IV et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7364061 Swayze et al. Apr 2008 B2
7367485 Shelton, IV et al. May 2008 B2
7377928 Zubik et al. May 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7396356 Mollenauer Jul 2008 B2
7398907 Racenet et al. Jul 2008 B2
7399310 Edoga et al. Jul 2008 B2
7401720 Durrani Jul 2008 B1
7401721 Holsten et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7404509 Ortiz et al. Jul 2008 B2
7407074 Ortiz et al. Aug 2008 B2
7407075 Holsten et al. Aug 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7419080 Smith et al. Sep 2008 B2
7419081 Ehrenfels et al. Sep 2008 B2
7419495 Menn et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7424965 Racenet et al. Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7431730 Viola Oct 2008 B2
7434715 Shelton, IV et al. Oct 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7438208 Larson Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7441684 Shelton, IV et al. Oct 2008 B2
7441685 Boudreaux Oct 2008 B1
7448525 Shelton, IV et al. Nov 2008 B2
7451904 Shelton, IV Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7455676 Holsten et al. Nov 2008 B2
7458494 Matsutani et al. Dec 2008 B2
7461767 Viola et al. Dec 2008 B2
7462185 Knodel Dec 2008 B1
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464848 Green et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7467740 Shelton, IV et al. Dec 2008 B2
7472814 Mastri et al. Jan 2009 B2
7472815 Shelton, IV et al. Jan 2009 B2
7472816 Holsten et al. Jan 2009 B2
7473258 Clauson et al. Jan 2009 B2
7481347 Roy Jan 2009 B2
7481348 Marczyk Jan 2009 B2
7481349 Holsten et al. Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7490749 Schall et al. Feb 2009 B2
7494039 Racenet et al. Feb 2009 B2
7500979 Hueil et al. Mar 2009 B2
7503474 Hillstead et al. Mar 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7513408 Shelton, IV et al. Apr 2009 B2
7517356 Heinrich Apr 2009 B2
7537602 Whitman May 2009 B2
7543729 Ivanko Jun 2009 B2
7543730 Marczyk Jun 2009 B1
7543731 Green et al. Jun 2009 B2
7552854 Wixey et al. Jun 2009 B2
7556185 Viola Jul 2009 B2
7556186 Milliman Jul 2009 B2
7559450 Wales et al. Jul 2009 B2
7559452 Wales et al. Jul 2009 B2
7559453 Heinrich et al. Jul 2009 B2
7559937 de la Torre et al. Jul 2009 B2
7565993 Milliman et al. Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7568604 Ehrenfels et al. Aug 2009 B2
7571845 Viola Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7584880 Racenet et al. Sep 2009 B2
7588174 Holsten et al. Sep 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7597229 Boudreaux et al. Oct 2009 B2
7597230 Racenet et al. Oct 2009 B2
7600663 Green Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7604151 Hess et al. Oct 2009 B2
7607557 Shelton, IV et al. Oct 2009 B2
7611038 Racenet et al. Nov 2009 B2
7617961 Viola Nov 2009 B2
7624902 Marczyk et al. Dec 2009 B2
7624903 Green et al. Dec 2009 B2
7631793 Rethy et al. Dec 2009 B2
7631794 Rethy et al. Dec 2009 B2
7635073 Heinrich Dec 2009 B2
7635074 Olson et al. Dec 2009 B2
7635373 Ortiz Dec 2009 B2
7637409 Marczyk Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7641091 Olson et al. Jan 2010 B2
7641095 Viola Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7648055 Marczyk Jan 2010 B2
7651017 Ortiz et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7658311 Boudreaux Feb 2010 B2
7658312 Vidal et al. Feb 2010 B2
7665646 Prommersberger Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7669746 Shelton, IV Mar 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7673781 Swayze et al. Mar 2010 B2
7673782 Hess et al. Mar 2010 B2
7673783 Morgan et al. Mar 2010 B2
7678121 Knodel Mar 2010 B1
7681772 Green et al. Mar 2010 B2
7682367 Shah et al. Mar 2010 B2
7682368 Bombard et al. Mar 2010 B1
7690547 Racenet et al. Apr 2010 B2
7694865 Scirica Apr 2010 B2
7699205 Ivanko Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7721933 Ehrenfels et al. May 2010 B2
7721935 Racenet et al. May 2010 B2
7726537 Olson et al. Jun 2010 B2
7726538 Holsten et al. Jun 2010 B2
7726539 Holsten et al. Jun 2010 B2
7731072 Timm et al. Jun 2010 B2
7735703 Morgan et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7740160 Viola Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7744628 Viola Jun 2010 B2
7753245 Boudreaux et al. Jul 2010 B2
7753248 Viola Jul 2010 B2
7757924 Gerbi et al. Jul 2010 B2
7757925 Viola et al. Jul 2010 B2
7762445 Heinrich et al. Jul 2010 B2
7766209 Baxter, III et al. Aug 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7766924 Bombard et al. Aug 2010 B1
7766928 Ezzat et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7780055 Scirica et al. Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7789283 Shah Sep 2010 B2
7789889 Zubik et al. Sep 2010 B2
7793812 Moore et al. Sep 2010 B2
7793814 Racenet et al. Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7798385 Boyden et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7810690 Bilotti et al. Oct 2010 B2
7810692 Hall et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7815090 Marczyk Oct 2010 B2
7815091 Marczyk Oct 2010 B2
7815092 Whitman et al. Oct 2010 B2
7819296 Hueil et al. Oct 2010 B2
7819297 Doll et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7819896 Racenet Oct 2010 B2
7823760 Zemlok et al. Nov 2010 B2
7823761 Boyden et al. Nov 2010 B2
7824426 Racenet et al. Nov 2010 B2
7828186 Wales Nov 2010 B2
7828187 Green et al. Nov 2010 B2
7828188 Jankowski Nov 2010 B2
7828189 Holsten et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832611 Boyden et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7834630 Damadian et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7841503 Sonnenschein et al. Nov 2010 B2
7845533 Marczyk et al. Dec 2010 B2
7845534 Viola et al. Dec 2010 B2
7845535 Scircia Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7845538 Whitman Dec 2010 B2
7850703 Bombard et al. Dec 2010 B2
7857183 Shelton, IV Dec 2010 B2
7857184 Viola Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7857186 Baxter, III et al. Dec 2010 B2
7861906 Doll et al. Jan 2011 B2
7861907 Green et al. Jan 2011 B2
7866524 Krehel Jan 2011 B2
7866525 Scirica Jan 2011 B2
7866526 Green et al. Jan 2011 B2
7866527 Hall et al. Jan 2011 B2
7866528 Olson et al. Jan 2011 B2
7870989 Viola et al. Jan 2011 B2
7886952 Scirica et al. Feb 2011 B2
7891532 Mastri et al. Feb 2011 B2
7891533 Green et al. Feb 2011 B2
7891534 Wenchell et al. Feb 2011 B2
7896214 Farascioni Mar 2011 B2
7900805 Shelton, IV et al. Mar 2011 B2
7901416 Nolan et al. Mar 2011 B2
7905380 Shelton, IV et al. Mar 2011 B2
7905381 Baxter, III et al. Mar 2011 B2
7909039 Hur Mar 2011 B2
7909220 Viola Mar 2011 B2
7909221 Viola et al. Mar 2011 B2
7909224 Prommersberger Mar 2011 B2
7913891 Doll et al. Mar 2011 B2
7913893 Mastri et al. Mar 2011 B2
7914543 Roth et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922063 Zemlok et al. Apr 2011 B2
7922064 Boyden et al. Apr 2011 B2
7926691 Viola et al. Apr 2011 B2
7926692 Racenet et al. Apr 2011 B2
7934628 Wenchell et al. May 2011 B2
7934630 Shelton, IV et al. May 2011 B2
7934631 Balbierz et al. May 2011 B2
7942300 Rethy et al. May 2011 B2
7942303 Shah May 2011 B2
7950560 Zemlok et al. May 2011 B2
7950561 Aranyi May 2011 B2
7950562 Beardsley et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7954683 Knodel et al. Jun 2011 B1
7954684 Boudreaux Jun 2011 B2
7954685 Viola Jun 2011 B2
7954686 Baxter, III et al. Jun 2011 B2
7954687 Zemlok et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7963431 Scirica Jun 2011 B2
7963432 Knodel et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7967180 Scirica Jun 2011 B2
7975894 Boyden et al. Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
3002795 Beetel Aug 2011 A1
3006885 Marczyk Aug 2011 A1
3006887 Marczyk Aug 2011 A1
3007505 Weller et al. Aug 2011 A1
3007513 Nalagatla et al. Aug 2011 A1
7988026 Knodel et al. Aug 2011 B2
7988027 Olson et al. Aug 2011 B2
7988028 Farascioni et al. Aug 2011 B2
7992758 Whitman et al. Aug 2011 B2
7997468 Farascioni Aug 2011 B2
7997469 Olson et al. Aug 2011 B2
3020743 Shelton, IV Sep 2011 A1
8011550 Aranyi et al. Sep 2011 B2
8011551 Marczyk et al. Sep 2011 B2
8011552 Ivanko Sep 2011 B2
8011553 Mastri et al. Sep 2011 B2
8011555 Farinelli et al. Sep 2011 B2
8012170 Whitman et al. Sep 2011 B2
8015976 Shah Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8020742 Marczyk Sep 2011 B2
8028882 Viola Oct 2011 B2
8028883 Stopek Oct 2011 B2
8028884 Sniffin et al. Oct 2011 B2
8033438 Scirica Oct 2011 B2
8033440 Wenchell et al. Oct 2011 B2
8033441 Marczyk Oct 2011 B2
8033442 Racenet et al. Oct 2011 B2
8034077 Smith et al. Oct 2011 B2
8038044 Viola Oct 2011 B2
8038045 Bettuchi et al. Oct 2011 B2
3052024 Viola et al. Nov 2011 A1
8056787 Boudreaux et al. Nov 2011 B2
8056788 Mastri et al. Nov 2011 B2
8056791 Whitman Nov 2011 B2
8061577 Racenet et al. Nov 2011 B2
8066166 Demmy et al. Nov 2011 B2
8070033 Milliman et al. Dec 2011 B2
8070034 Knodel Dec 2011 B1
8070035 Holsten et al. Dec 2011 B2
8074858 Marczyk Dec 2011 B2
8074859 Kostrzewski Dec 2011 B2
8074862 Shah Dec 2011 B2
8083118 Milliman et al. Dec 2011 B2
8083119 Prommersberger Dec 2011 B2
8083120 Shelton, IV et al. Dec 2011 B2
8087563 Milliman et al. Jan 2012 B2
8091753 Viola Jan 2012 B2
8091754 Ehrenfels et al. Jan 2012 B2
8091756 Viola Jan 2012 B2
8092493 Marczyk Jan 2012 B2
8096459 Ortiz et al. Jan 2012 B2
8096460 Blier et al. Jan 2012 B2
8100309 Marczyk Jan 2012 B2
8100310 Zemlok Jan 2012 B2
8102008 Wells Jan 2012 B2
8113406 Holsten et al. Feb 2012 B2
8113407 Holsten et al. Feb 2012 B2
8113408 Wenchell et al. Feb 2012 B2
8113409 Cohen et al. Feb 2012 B2
8113410 Hall et al. Feb 2012 B2
8123101 Racenet et al. Feb 2012 B2
8127975 Olson et al. Mar 2012 B2
8127976 Scirica et al. Mar 2012 B2
8132703 Milliman et al. Mar 2012 B2
8132705 Viola et al. Mar 2012 B2
8132706 Marczyk et al. Mar 2012 B2
8136713 Hathaway et al. Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8152041 Kostrzewski Apr 2012 B2
8157148 Scirica Apr 2012 B2
8157150 Viola et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8157152 Holsten et al. Apr 2012 B2
8162197 Mastri et al. Apr 2012 B2
8167185 Shelton, IV et al. May 2012 B2
8167186 Racenet et al. May 2012 B2
8172121 Krehel May 2012 B2
8172124 Shelton, IV et al. May 2012 B2
8181837 Roy May 2012 B2
8186555 Shelton, IV et al. May 2012 B2
8186557 Cohen et al. May 2012 B2
8186558 Sapienza May 2012 B2
8186559 Whitman May 2012 B1
8186560 Hess et al. May 2012 B2
8193044 Kenneth Jun 2012 B2
8196795 Moore et al. Jun 2012 B2
8196796 Shelton, IV et al. Jun 2012 B2
8201721 Zemlok et al. Jun 2012 B2
8205619 Shah et al. Jun 2012 B2
8205780 Sorrentino et al. Jun 2012 B2
8205781 Baxter, III et al. Jun 2012 B2
8210412 Marczyk Jul 2012 B2
8210416 Milliman et al. Jul 2012 B2
8215532 Marczyk Jul 2012 B2
8216236 Heinrich et al. Jul 2012 B2
8220688 Laurent et al. Jul 2012 B2
8220690 Hess et al. Jul 2012 B2
8225979 Farascioni et al. Jul 2012 B2
8231040 Zemlok et al. Jul 2012 B2
8231041 Marczyk et al. Jul 2012 B2
8235272 Nicholas et al. Aug 2012 B2
8235273 Olson et al. Aug 2012 B2
8235274 Cappola Aug 2012 B2
8236010 Ortiz et al. Aug 2012 B2
8240536 Marczyk Aug 2012 B2
8240537 Marczyk Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8245897 Tzakis et al. Aug 2012 B2
8245898 Smith et al. Aug 2012 B2
8245899 Swensgard et al. Aug 2012 B2
8245931 Shigeta Aug 2012 B2
8252009 Weller et al. Aug 2012 B2
8256653 Farascioni Sep 2012 B2
8256654 Bettuchi et al. Sep 2012 B2
8256655 Sniffin et al. Sep 2012 B2
8256656 Milliman et al. Sep 2012 B2
8267300 Boudreaux Sep 2012 B2
8272551 Knodel et al. Sep 2012 B2
8272553 Mastri et al. Sep 2012 B2
8272554 Whitman et al. Sep 2012 B2
8276594 Shah Oct 2012 B2
8276801 Zemlok et al. Oct 2012 B2
8281973 Wenchell et al. Oct 2012 B2
8286847 Taylor Oct 2012 B2
8286848 Wenchell et al. Oct 2012 B2
8286850 Viola Oct 2012 B2
8292146 Holsten et al. Oct 2012 B2
8292147 Viola Oct 2012 B2
8292148 Viola Oct 2012 B2
8292149 Ivanko Oct 2012 B2
8292150 Bryant Oct 2012 B2
8292151 Viola Oct 2012 B2
8292152 Milliman et al. Oct 2012 B2
8292153 Jankowski Oct 2012 B2
8292154 Marczyk Oct 2012 B2
8292155 Shelton, IV et al. Oct 2012 B2
8292156 Kostrzewski Oct 2012 B2
8292158 Sapienza Oct 2012 B2
8308040 Huang et al. Nov 2012 B2
8308041 Kostrzewski Nov 2012 B2
8308042 Aranyi Nov 2012 B2
8308043 Bindra et al. Nov 2012 B2
8308044 Viola Nov 2012 B2
8308046 Prommersberger Nov 2012 B2
8308757 Hillstead et al. Nov 2012 B2
8317070 Hueil et al. Nov 2012 B2
8317071 Knodel Nov 2012 B1
8322455 Shelton, IV et al. Dec 2012 B2
8322589 Boudreaux Dec 2012 B2
8328061 Kasvikis Dec 2012 B2
8328065 Shah Dec 2012 B2
8333313 Boudreaux et al. Dec 2012 B2
8336751 Scirica Dec 2012 B2
8336753 Olson et al. Dec 2012 B2
8336754 Cappola et al. Dec 2012 B2
8342377 Milliman et al. Jan 2013 B2
8342378 Marczyk et al. Jan 2013 B2
8342379 Whitman et al. Jan 2013 B2
8342380 Viola Jan 2013 B2
8348123 Scirica et al. Jan 2013 B2
8348124 Scirica Jan 2013 B2
8348125 Viola et al. Jan 2013 B2
8348126 Olson et al. Jan 2013 B2
8348127 Marczyk Jan 2013 B2
8348129 Bedi et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8348131 Omaits et al. Jan 2013 B2
8353437 Boudreaux Jan 2013 B2
8353440 Whitman et al. Jan 2013 B2
8356740 Knodel Jan 2013 B1
8357174 Roth et al. Jan 2013 B2
8360294 Scirica Jan 2013 B2
8360297 Shelton, IV et al. Jan 2013 B2
8360298 Farascioni et al. Jan 2013 B2
8360299 Zemlok et al. Jan 2013 B2
8365971 Knodel Feb 2013 B1
8365972 Aranyi et al. Feb 2013 B2
8365973 White et al. Feb 2013 B1
8365976 Hess et al. Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8371493 Aranyi et al. Feb 2013 B2
8381828 Whitman et al. Feb 2013 B2
8381961 Holsten et al. Feb 2013 B2
8387848 Johnson et al. Mar 2013 B2
8387849 Buesseler et al. Mar 2013 B2
8387850 Hathaway et al. Mar 2013 B2
8388652 Viola Mar 2013 B2
8393513 Jankowski Mar 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8393516 Kostrzewski Mar 2013 B2
8397971 Yates et al. Mar 2013 B2
8397972 Kostrzewski Mar 2013 B2
8403195 Beardsley et al. Mar 2013 B2
8403196 Beardsley et al. Mar 2013 B2
8403197 Vidal et al. Mar 2013 B2
8403198 Sorrentino et al. Mar 2013 B2
8403946 Whitfield et al. Mar 2013 B2
8403956 Thompson et al. Mar 2013 B1
8408439 Huang et al. Apr 2013 B2
8408440 Olson et al. Apr 2013 B2
8408442 Racenet et al. Apr 2013 B2
8413868 Cappola Apr 2013 B2
8413869 Heinrich Apr 2013 B2
8413871 Racenet et al. Apr 2013 B2
8418904 Wenchell et al. Apr 2013 B2
8418905 Milliman Apr 2013 B2
8418906 Farascioni et al. Apr 2013 B2
8418907 Johnson et al. Apr 2013 B2
8418908 Beardsley Apr 2013 B1
8419768 Marczyk Apr 2013 B2
8424735 Viola et al. Apr 2013 B2
8424736 Scirica et al. Apr 2013 B2
8424737 Scirica Apr 2013 B2
8424739 Racenet et al. Apr 2013 B2
8424740 Shelton, IV et al. Apr 2013 B2
8439244 Holcomb et al. May 2013 B2
8439245 Knodel et al. May 2013 B2
8439246 Knodel May 2013 B1
8444036 Shelton, IV May 2013 B2
8444037 Nicholas et al. May 2013 B2
8444038 Farascioni et al. May 2013 B2
8448832 Viola et al. May 2013 B2
8453652 Stopek Jun 2013 B2
8453905 Holcomb et al. Jun 2013 B2
8453906 Huang et al. Jun 2013 B2
8453907 Laurent et al. Jun 2013 B2
8453908 Bedi et al. Jun 2013 B2
8453909 Olson et al. Jun 2013 B2
8453910 Bettuchi et al. Jun 2013 B2
8453912 Mastri et al. Jun 2013 B2
8453913 Milliman Jun 2013 B2
8453914 Laurent et al. Jun 2013 B2
8454628 Smith et al. Jun 2013 B2
8459520 Giordano et al. Jun 2013 B2
8459521 Zemlok et al. Jun 2013 B2
8459522 Marczyk Jun 2013 B2
8459523 Whitman Jun 2013 B2
8459524 Pribanic et al. Jun 2013 B2
8459525 Yates et al. Jun 2013 B2
8464922 Marczyk Jun 2013 B2
8464923 Shelton, IV Jun 2013 B2
8469252 Holcomb et al. Jun 2013 B2
8469254 Czernik et al. Jun 2013 B2
8474677 Woodard, Jr. et al. Jul 2013 B2
8479967 Marczyk Jul 2013 B2
8479968 Hodgkinson et al. Jul 2013 B2
8479969 Shelton, IV Jul 2013 B2
8485412 Shelton, IV et al. Jul 2013 B2
8490852 Viola Jul 2013 B2
8496152 Viola Jul 2013 B2
8496154 Marczyk et al. Jul 2013 B2
8496156 Sniffin et al. Jul 2013 B2
8496683 Prommersberger et al. Jul 2013 B2
8499993 Shelton, IV et al. Aug 2013 B2
8505799 Viola et al. Aug 2013 B2
8505802 Viola et al. Aug 2013 B2
8511575 Cok Aug 2013 B2
8512359 Whitman et al. Aug 2013 B2
8512402 Marczyk et al. Aug 2013 B2
8517240 Mata et al. Aug 2013 B1
8517241 Nicholas et al. Aug 2013 B2
8517243 Giordano et al. Aug 2013 B2
8517244 Shelton, IV et al. Aug 2013 B2
8523041 Ishitsuki et al. Sep 2013 B2
8523042 Masiakos et al. Sep 2013 B2
8523043 Ullrich et al. Sep 2013 B2
8534528 Shelton, IV Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8540129 Baxter, III et al. Sep 2013 B2
8540130 Moore et al. Sep 2013 B2
8540131 Swayze Sep 2013 B2
8540733 Whitman et al. Sep 2013 B2
8544711 Ma et al. Oct 2013 B2
8550325 Cohen et al. Oct 2013 B2
8556151 Viola Oct 2013 B2
8561870 Baxter, III et al. Oct 2013 B2
8561873 Ingmanson et al. Oct 2013 B2
8561874 Scirica Oct 2013 B2
8567656 Shelton, IV et al. Oct 2013 B2
8573461 Shelton, IV et al. Nov 2013 B2
8573463 Scirica et al. Nov 2013 B2
8573465 Shelton, IV Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579177 Beetel Nov 2013 B2
8584919 Hueil et al. Nov 2013 B2
8584920 Hodgkinson Nov 2013 B2
8590762 Hess et al. Nov 2013 B2
8596515 Okoniewski Dec 2013 B2
8602288 Shelton, IV et al. Dec 2013 B2
8608045 Smith et al. Dec 2013 B2
8608046 Laurent et al. Dec 2013 B2
8608047 Holsten et al. Dec 2013 B2
8613383 Beckman et al. Dec 2013 B2
8613384 Pastorelli et al. Dec 2013 B2
8616427 Viola Dec 2013 B2
8616430 (Prommersberger) Stopek et al. Dec 2013 B2
8627994 Zemlok et al. Jan 2014 B2
8628544 Farascioni Jan 2014 B2
8631988 Viola Jan 2014 B2
8631989 Aranyi et al. Jan 2014 B2
8631991 Cropper et al. Jan 2014 B2
8632525 Kerr et al. Jan 2014 B2
8632535 Shelton, IV et al. Jan 2014 B2
8636187 Hueil et al. Jan 2014 B2
8636190 Zemlok et al. Jan 2014 B2
8636192 Farascioni et al. Jan 2014 B2
8636762 Whitman et al. Jan 2014 B2
8636766 Milliman et al. Jan 2014 B2
8640940 Ohdaira Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8657178 Hueil et al. Feb 2014 B2
8662371 Viola Mar 2014 B2
8668129 Olson Mar 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8672208 Hess et al. Mar 2014 B2
8672209 Crainich Mar 2014 B2
8678263 Viola Mar 2014 B2
8678990 Wazer et al. Mar 2014 B2
8679155 Knodel et al. Mar 2014 B2
8684247 Scirica et al. Apr 2014 B2
8684249 Racenet et al. Apr 2014 B2
8684253 Giordano et al. Apr 2014 B2
8690039 Beardsley et al. Apr 2014 B2
8695865 Smith et al. Apr 2014 B2
8695866 Leimbach et al. Apr 2014 B2
8701958 Shelton, IV et al. Apr 2014 B2
8701959 Shah Apr 2014 B2
8701961 Ivanko Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8714429 Demmy May 2014 B2
8715277 Weizman May 2014 B2
8720766 Hess et al. May 2014 B2
8721630 Ortiz et al. May 2014 B2
8727197 Hess et al. May 2014 B2
8727200 Roy May 2014 B2
8733612 Ma May 2014 B2
8740034 Morgan et al. Jun 2014 B2
8740039 Farascioni Jun 2014 B2
8746529 Shelton, IV et al. Jun 2014 B2
8746530 Giordano et al. Jun 2014 B2
8746535 Shelton, IV et al. Jun 2014 B2
8752748 Whitman et al. Jun 2014 B2
8752749 Moore et al. Jun 2014 B2
8757465 Woodard, Jr. et al. Jun 2014 B2
8758391 Swayze et al. Jun 2014 B2
8763876 Kostrzewski Jul 2014 B2
8763877 Schall et al. Jul 2014 B2
8763879 Shelton, IV et al. Jul 2014 B2
8770458 Scirica Jul 2014 B2
8777082 Scirica Jul 2014 B2
8783541 Shelton, IV et al. Jul 2014 B2
8783542 Riestenberg et al. Jul 2014 B2
8789737 Hodgkinson et al. Jul 2014 B2
8789738 Knodel et al. Jul 2014 B2
8789739 Swensgard Jul 2014 B2
8800838 Shelton, IV Aug 2014 B2
8800840 Jankowski Aug 2014 B2
8800841 Ellerhorst et al. Aug 2014 B2
8808311 Heinrich et al. Aug 2014 B2
8814024 Woodard, Jr. et al. Aug 2014 B2
8814025 Miller et al. Aug 2014 B2
8820603 Shelton, IV et al. Sep 2014 B2
8820605 Shelton, IV Sep 2014 B2
8820607 Marczyk Sep 2014 B2
8827133 Shelton, IV et al. Sep 2014 B2
8827134 Viola et al. Sep 2014 B2
8833631 Munro, III et al. Sep 2014 B2
8833632 Swensgard Sep 2014 B2
8840003 Morgan et al. Sep 2014 B2
8840603 Shelton, IV et al. Sep 2014 B2
8844788 Knodel Sep 2014 B2
8851354 Swensgard et al. Oct 2014 B2
8851355 Aranyi et al. Oct 2014 B2
8857693 Schuckmann et al. Oct 2014 B2
8864007 Widenhouse et al. Oct 2014 B2
8864009 Shelton, IV et al. Oct 2014 B2
8875971 Hall et al. Nov 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8893949 Shelton, IV et al. Nov 2014 B2
8893950 Marczyk Nov 2014 B2
8899461 Farascioni Dec 2014 B2
8899463 Schall et al. Dec 2014 B2
8899464 Hueil et al. Dec 2014 B2
8900616 Belcheva et al. Dec 2014 B2
8920435 Smith et al. Dec 2014 B2
8925782 Shelton, IV Jan 2015 B2
8926598 Mollere et al. Jan 2015 B2
8931682 Timm et al. Jan 2015 B2
8931693 Kumar et al. Jan 2015 B1
8955732 Zemlok et al. Feb 2015 B2
8958429 Shukla et al. Feb 2015 B2
8960517 Lee Feb 2015 B2
8967443 McCuen Mar 2015 B2
8973803 Hall et al. Mar 2015 B2
8978954 Shelton, IV et al. Mar 2015 B2
8978956 Schall et al. Mar 2015 B2
8998060 Bruewer et al. Apr 2015 B2
9005230 Yates et al. Apr 2015 B2
9010607 Kostrzewski Apr 2015 B2
9016539 Kostrzewski et al. Apr 2015 B2
9016541 Viola et al. Apr 2015 B2
9016542 Shelton, IV et al. Apr 2015 B2
9016546 Demmy et al. Apr 2015 B2
9022271 Scirica May 2015 B2
9027817 Milliman et al. May 2015 B2
9033203 Woodard, Jr. et al. May 2015 B2
9044228 Woodard, Jr. et al. Jun 2015 B2
9044229 Scheib et al. Jun 2015 B2
9050084 Schmid et al. Jun 2015 B2
9055941 Schmid et al. Jun 2015 B2
9060770 Shelton, IV et al. Jun 2015 B2
9072535 Shelton, IV et al. Jul 2015 B2
9089326 Krumanaker et al. Jul 2015 B2
9101359 Smith et al. Aug 2015 B2
9107663 Swensgard Aug 2015 B2
9107664 Marczyk Aug 2015 B2
9113862 Morgan et al. Aug 2015 B2
9113864 Morgan et al. Aug 2015 B2
9113870 Viola Aug 2015 B2
9113872 Viola Aug 2015 B2
9113880 Zemlok et al. Aug 2015 B2
9125649 Bruewer et al. Sep 2015 B2
9138225 Huang et al. Sep 2015 B2
9155537 Katre et al. Oct 2015 B2
9179912 Yates et al. Nov 2015 B2
9192378 Aranyi et al. Nov 2015 B2
9192379 Aranyi et al. Nov 2015 B2
9192384 Bettuchi Nov 2015 B2
9198644 Balek et al. Dec 2015 B2
9198661 Swensgard Dec 2015 B2
9204876 Cappola et al. Dec 2015 B2
9216019 Schmid et al. Dec 2015 B2
9216020 Zhang et al. Dec 2015 B2
9220500 Swayze et al. Dec 2015 B2
9220501 Baxter, III et al. Dec 2015 B2
9220502 Zemlok et al. Dec 2015 B2
9232941 Mandakolathur Vasudevan et al. Jan 2016 B2
9232944 Cappola et al. Jan 2016 B2
9237891 Shelton, IV Jan 2016 B2
9254180 Huitema et al. Feb 2016 B2
9265585 Wingardner et al. Feb 2016 B2
9271728 Gupta et al. Mar 2016 B2
9277919 Timmer et al. Mar 2016 B2
9282962 Schmid et al. Mar 2016 B2
9283054 Morgan et al. Mar 2016 B2
9289209 Gurumurthy et al. Mar 2016 B2
9289210 Baxter, III et al. Mar 2016 B2
9289225 Shelton, IV et al. Mar 2016 B2
9295464 Shelton, IV et al. Mar 2016 B2
9295465 Farascioni Mar 2016 B2
9301752 Mandakolathur Vasudevan et al. Apr 2016 B2
9301753 Aldridge et al. Apr 2016 B2
9301757 Williams Apr 2016 B2
9307965 Ming et al. Apr 2016 B2
9307986 Hall et al. Apr 2016 B2
9307989 Shelton, IV et al. Apr 2016 B2
9314246 Shelton, IV et al. Apr 2016 B2
9320518 Henderson et al. Apr 2016 B2
9320521 Shelton, IV et al. Apr 2016 B2
9326767 Koch, Jr. et al. May 2016 B2
9332987 Leimbach et al. May 2016 B2
9345477 Anim et al. May 2016 B2
9345478 Knodel May 2016 B2
9345481 Hall et al. May 2016 B2
9345780 Manoharan et al. May 2016 B2
9351727 Leimbach et al. May 2016 B2
9351732 Hodgkinson May 2016 B2
9358003 Hall et al. Jun 2016 B2
9364217 Kostrzewski et al. Jun 2016 B2
9364218 Scirica Jun 2016 B2
9364219 Olson et al. Jun 2016 B2
9364220 Williams Jun 2016 B2
9364233 Alexander, III et al. Jun 2016 B2
9370358 Shelton, IV et al. Jun 2016 B2
9370362 Petty et al. Jun 2016 B2
9386983 Swensgard et al. Jul 2016 B2
9386988 Baxter, III et al. Jul 2016 B2
9393018 Wang et al. Jul 2016 B2
9398911 Auld Jul 2016 B2
9402604 Williams et al. Aug 2016 B2
9421014 Ingmanson et al. Aug 2016 B2
9433419 Gonzalez et al. Sep 2016 B2
9433420 Hodgkinson Sep 2016 B2
9445810 Cappola Sep 2016 B2
9445813 Shelton, IV et al. Sep 2016 B2
9451959 Patankar et al. Sep 2016 B2
9468438 Baber et al. Oct 2016 B2
9468439 Cappola et al. Oct 2016 B2
9480476 Mdridge et al. Nov 2016 B2
9480492 Aranyi et al. Nov 2016 B2
9492171 Patenaude Nov 2016 B2
9498212 Racenet et al. Nov 2016 B2
9510827 Kostrzewski Dec 2016 B2
9517065 Simms et al. Dec 2016 B2
9517066 Racenet et al. Dec 2016 B2
9539007 Dhakad et al. Jan 2017 B2
9549735 Shelton, IV et al. Jan 2017 B2
9554796 Kostrzewski Jan 2017 B2
10709901 Kostrzewski et al. Jul 2020 B2
20030220533 Pedersen Nov 2003 A1
20040108357 Milliman et al. Jun 2004 A1
20040199180 Knodel et al. Oct 2004 A1
20040199181 Knodel et al. Oct 2004 A1
20040243151 Demmy et al. Dec 2004 A1
20040267310 Racenet et al. Dec 2004 A1
20050006429 Wales et al. Jan 2005 A1
20050216055 Scirica et al. Sep 2005 A1
20060049229 Milliman et al. Mar 2006 A1
20060180634 Shelton et al. Aug 2006 A1
20060289602 Wales et al. Dec 2006 A1
20070073341 Smith et al. Mar 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070093839 Beckendorf Apr 2007 A1
20070102472 Shelton May 2007 A1
20070106317 Shelton et al. May 2007 A1
20070119901 Ehrenfels et al. May 2007 A1
20070145096 Viola et al. Jun 2007 A1
20070170225 Shelton et al. Jul 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070179528 Soltz et al. Aug 2007 A1
20070194079 Hueil et al. Aug 2007 A1
20070194082 Morgan et al. Aug 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080078802 Hess et al. Apr 2008 A1
20080110961 Voegele et al. May 2008 A1
20080169328 Shelton Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080200950 Wohlert Aug 2008 A1
20080255537 Voegele Oct 2008 A1
20080287987 Boyden et al. Nov 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20080308602 Timm et al. Dec 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090090766 Knodel Apr 2009 A1
20090112256 Boyden et al. Apr 2009 A1
20090242610 Shelton, IV et al. Oct 2009 A1
20090255974 Viola Oct 2009 A1
20090308907 Nalagatla et al. Dec 2009 A1
20100012703 Calabrese et al. Jan 2010 A1
20100069942 Shelton, IV Mar 2010 A1
20100127041 Morgan et al. May 2010 A1
20100133317 Shelton, IV et al. Jun 2010 A1
20100147921 Olson Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100155453 Bombard et al. Jun 2010 A1
20100193566 Scheib et al. Aug 2010 A1
20100224668 Fontayne et al. Sep 2010 A1
20100249802 May et al. Sep 2010 A1
20100252611 Ezzat et al. Oct 2010 A1
20110006101 Hall et al. Jan 2011 A1
20110024477 Hall Feb 2011 A1
20110024478 Shelton, IV Feb 2011 A1
20110036891 Zemlok et al. Feb 2011 A1
20110087276 Bedi et al. Apr 2011 A1
20110101069 Bombard et al. May 2011 A1
20110114702 Farascioni May 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110147433 Shelton, IV et al. Jun 2011 A1
20110155787 Baxter, III et al. Jun 2011 A1
20110163146 Ortiz et al. Jul 2011 A1
20110163149 Viola Jul 2011 A1
20110192881 Balbierz et al. Aug 2011 A1
20110192882 Hess et al. Aug 2011 A1
20110192883 Whitman et al. Aug 2011 A1
20110204119 McCuen Aug 2011 A1
20110245578 Wazer Oct 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20120016362 Heinrich et al. Jan 2012 A1
20120053406 Conlon et al. Mar 2012 A1
20120061446 Knodel et al. Mar 2012 A1
20120074200 Schmid et al. Mar 2012 A1
20120080478 Morgan et al. Apr 2012 A1
20120080495 Holcomb et al. Apr 2012 A1
20120080498 Shelton, IV et al. Apr 2012 A1
20120091183 Manoux et al. Apr 2012 A1
20120138659 Marczyk et al. Jun 2012 A1
20120175399 Shelton et al. Jul 2012 A1
20120181322 Whitman et al. Jul 2012 A1
20120187179 Gleiman Jul 2012 A1
20120193394 Holcomb et al. Aug 2012 A1
20120193399 Holcomb et al. Aug 2012 A1
20120199632 Spivey et al. Aug 2012 A1
20120211542 Racenet Aug 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120234895 O'Connor et al. Sep 2012 A1
20120234897 Shelton, IV et al. Sep 2012 A1
20120241492 Shelton, IV et al. Sep 2012 A1
20120241493 Baxter, III et al. Sep 2012 A1
20120241504 Soltz et al. Sep 2012 A1
20120248169 Widenhouse et al. Oct 2012 A1
20120286021 Kostrzewski Nov 2012 A1
20120286022 Olson et al. Nov 2012 A1
20120298722 Hess et al. Nov 2012 A1
20130008937 Viola Jan 2013 A1
20130012983 Kleyman Jan 2013 A1
20130015231 Kostrzewski Jan 2013 A1
20130020375 Shelton, IV et al. Jan 2013 A1
20130020376 Shelton, IV et al. Jan 2013 A1
20130026208 Shelton, IV et al. Jan 2013 A1
20130026210 Shelton, IV et al. Jan 2013 A1
20130032626 Smith et al. Feb 2013 A1
20130037595 Gupta et al. Feb 2013 A1
20130041406 Bear et al. Feb 2013 A1
20130068815 Bruewer et al. Mar 2013 A1
20130068816 Mandakolathur Vasudevan et al. Mar 2013 A1
20130068818 Kasvikis Mar 2013 A1
20130075447 Weisenburgh, II et al. Mar 2013 A1
20130092717 Marczyk et al. Apr 2013 A1
20130098964 Smith et al. Apr 2013 A1
20130098966 Kostrzewski et al. Apr 2013 A1
20130098970 Racenet et al. Apr 2013 A1
20130105545 Burbank May 2013 A1
20130105548 Hodgkinson et al. May 2013 A1
20130105552 Weir et al. May 2013 A1
20130105553 (Tarinelli) Racenet et al. May 2013 A1
20130112730 Whitman et al. May 2013 A1
20130119109 Farascioni et al. May 2013 A1
20130146641 Shelton, IV et al. Jun 2013 A1
20130146642 Shelton, IV et al. Jun 2013 A1
20130153636 Shelton, IV et al. Jun 2013 A1
20130153641 Shelton, IV et al. Jun 2013 A1
20130161374 Swayze et al. Jun 2013 A1
20130175316 Thompson et al. Jul 2013 A1
20130193188 Shelton, IV et al. Aug 2013 A1
20130256380 Schmid et al. Oct 2013 A1
20130277410 Fernandez et al. Oct 2013 A1
20130334280 Krehel et al. Dec 2013 A1
20140014704 Onukuri et al. Jan 2014 A1
20140014707 Onukuri et al. Jan 2014 A1
20140021242 Hodgkinson et al. Jan 2014 A1
20140046349 Warner Feb 2014 A1
20140048580 Merchant et al. Feb 2014 A1
20140061280 Ingmanson et al. Mar 2014 A1
20140076955 Lorenz Mar 2014 A1
20140131419 Bettuchi May 2014 A1
20140138423 Whitfield et al. May 2014 A1
20140151431 Hodgkinson et al. Jun 2014 A1
20140166720 Chowaniec et al. Jun 2014 A1
20140166721 Stevenson et al. Jun 2014 A1
20140166724 Schellin et al. Jun 2014 A1
20140166725 Schellin et al. Jun 2014 A1
20140166726 Schellin et al. Jun 2014 A1
20140175146 Knodel Jun 2014 A1
20140175150 Shelton, IV et al. Jun 2014 A1
20140203062 Viola Jul 2014 A1
20140239036 Zerkle et al. Aug 2014 A1
20140239037 Boudreaux et al. Aug 2014 A1
20140239038 Leimbach et al. Aug 2014 A1
20140239040 Fanelli et al. Aug 2014 A1
20140239041 Zerkle et al. Aug 2014 A1
20140239043 Simms et al. Aug 2014 A1
20140239044 Hoffman Aug 2014 A1
20140239047 Hodgkinson et al. Aug 2014 A1
20140246471 Jaworek et al. Sep 2014 A1
20140246472 Kimsey et al. Sep 2014 A1
20140246475 Hall et al. Sep 2014 A1
20140246478 Baber et al. Sep 2014 A1
20140252062 Mozdzierz Sep 2014 A1
20140252064 Mozdzierz et al. Sep 2014 A1
20140252065 Hessler et al. Sep 2014 A1
20140263539 Leimbach et al. Sep 2014 A1
20140263540 Covach et al. Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263542 Leimbach et al. Sep 2014 A1
20140263544 Ranucci et al. Sep 2014 A1
20140263546 Aranyi Sep 2014 A1
20140263550 Aranyi et al. Sep 2014 A1
20140263552 Hall et al. Sep 2014 A1
20140263553 Leimbach et al. Sep 2014 A1
20140263554 Leimbach et al. Sep 2014 A1
20140263555 Hufnagel et al. Sep 2014 A1
20140263557 Schaller Sep 2014 A1
20140263558 Hausen et al. Sep 2014 A1
20140263562 Patel et al. Sep 2014 A1
20140263564 Leimbach et al. Sep 2014 A1
20140263565 Lytle, IV et al. Sep 2014 A1
20140263566 Williams et al. Sep 2014 A1
20140263570 Hopkins et al. Sep 2014 A1
20140276830 Cheney Sep 2014 A1
20140284371 Morgan et al. Sep 2014 A1
20140291379 Schellin et al. Oct 2014 A1
20140291380 Meaner et al. Oct 2014 A1
20140291383 Spivey et al. Oct 2014 A1
20140303668 Nicholas et al. Oct 2014 A1
20140309665 Parihar et al. Oct 2014 A1
20140332578 Fernandez et al. Nov 2014 A1
20140339286 Motooka et al. Nov 2014 A1
20140353358 Shelton, IV et al. Dec 2014 A1
20140367445 Ingmanson et al. Dec 2014 A1
20140367446 Ingmanson et al. Dec 2014 A1
20150031935 Wazer et al. Jan 2015 A1
20150048143 Scheib et al. Feb 2015 A1
20150053740 Shelton, IV Feb 2015 A1
20150053742 Shelton, IV et al. Feb 2015 A1
20150053744 Swayze et al. Feb 2015 A1
20150060517 Williams Mar 2015 A1
20150076205 Zergiebel Mar 2015 A1
20150076211 Irka et al. Mar 2015 A1
20150080912 Sapre Mar 2015 A1
20150129633 Shariati May 2015 A1
20150133996 Shelton, IV et al. May 2015 A1
20150134076 Shelton, IV et al. May 2015 A1
20150150556 McCuen Jun 2015 A1
20150157321 Zergiebel et al. Jun 2015 A1
20150173744 Shelton, IV et al. Jun 2015 A1
20150173745 Baxter, III et al. Jun 2015 A1
20150173746 Baxter, III et al. Jun 2015 A1
20150173747 Baxter, III et al. Jun 2015 A1
20150173748 Marczyk et al. Jun 2015 A1
20150173749 Shelton, IV et al. Jun 2015 A1
20150173750 Shelton, IV et al. Jun 2015 A1
20150173755 Baxter, III et al. Jun 2015 A1
20150173756 Baxter, III et al. Jun 2015 A1
20150173760 Shelton, IV et al. Jun 2015 A1
20150173761 Shelton, IV et al. Jun 2015 A1
20150182220 Yates et al. Jul 2015 A1
20150209040 Whitman et al. Jul 2015 A1
20150250474 Abbott et al. Sep 2015 A1
20150297225 Huitema et al. Oct 2015 A1
20150316431 Collins et al. Nov 2015 A1
20150351765 Valentine et al. Dec 2015 A1
20150359534 Gibbons, Jr. Dec 2015 A1
20150366560 Chen et al. Dec 2015 A1
20150374371 Richard et al. Dec 2015 A1
20150374372 Zergiebel et al. Dec 2015 A1
20150374376 Shelton, IV Dec 2015 A1
20160030040 Calderoni et al. Feb 2016 A1
20160051259 Hopkins et al. Feb 2016 A1
20160058443 Yates et al. Mar 2016 A1
20160066907 Cheney et al. Mar 2016 A1
20160067074 Thompson et al. Mar 2016 A1
20160089137 Hess et al. Mar 2016 A1
20160095585 Zergiebel et al. Apr 2016 A1
20160100835 Linder et al. Apr 2016 A1
20160106406 Cabrera et al. Apr 2016 A1
20160113647 Hodgkinson Apr 2016 A1
20160113648 Zergiebel et al. Apr 2016 A1
20160113649 Zergiebel et al. Apr 2016 A1
20160120542 Westling et al. May 2016 A1
20160166249 Knodel Jun 2016 A1
20160166253 Knodel Jun 2016 A1
20160199064 Shelton, IV et al. Jul 2016 A1
20160199084 Takei Jul 2016 A1
20160206315 Olson Jul 2016 A1
20160206336 Frushour Jul 2016 A1
20160235494 Shelton, IV et al. Aug 2016 A1
20160242773 Sadowski et al. Aug 2016 A1
20160242774 Ebner Aug 2016 A1
20160242779 Aranyi et al. Aug 2016 A1
20160249915 Beckman et al. Sep 2016 A1
20160249916 Shelton, IV et al. Sep 2016 A1
20160249918 Shelton, IV et al. Sep 2016 A1
20160249927 Beckman et al. Sep 2016 A1
20160249929 Cappola et al. Sep 2016 A1
20160249945 Shelton, IV et al. Sep 2016 A1
20160256071 Shelton, IV et al. Sep 2016 A1
20160256152 Kostrzewski Sep 2016 A1
20160256154 Shelton, IV et al. Sep 2016 A1
20160256160 Shelton, IV et al. Sep 2016 A1
20160256161 Overmyer et al. Sep 2016 A1
20160256162 Shelton, IV et al. Sep 2016 A1
20160256163 Shelton, IV et al. Sep 2016 A1
20160256184 Shelton, IV et al. Sep 2016 A1
20160256185 Shelton, IV et al. Sep 2016 A1
20160256187 Shelton, IV et al. Sep 2016 A1
20160262750 Hausen et al. Sep 2016 A1
20160270783 Yigit et al. Sep 2016 A1
20160270788 Czernik Sep 2016 A1
20160278764 Shelton, IV et al. Sep 2016 A1
20160278765 Shelton, IV et al. Sep 2016 A1
20160278771 Shelton, IV et al. Sep 2016 A1
20160278774 Shelton, IV et al. Sep 2016 A1
20160278775 Shelton, IV et al. Sep 2016 A1
20160278777 Shelton, IV et al. Sep 2016 A1
20160278848 Boudreaux et al. Sep 2016 A1
20160287250 Shelton, IV et al. Oct 2016 A1
20160287251 Shelton, IV et al. Oct 2016 A1
20160296216 Nicholas et al. Oct 2016 A1
20160296226 Kostrzewski Oct 2016 A1
20160302791 Schmitt Oct 2016 A1
20160310134 Contini et al. Oct 2016 A1
20160324514 Srinivas et al. Nov 2016 A1
20160324518 Nicholas et al. Nov 2016 A1
20160338703 Scirica et al. Nov 2016 A1
20160345971 Bucciaglia et al. Dec 2016 A1
20160345973 Marczyk et al. Dec 2016 A1
20160354176 Schmitt Dec 2016 A1
20160374678 Becerra et al. Dec 2016 A1
20160374680 Viola et al. Dec 2016 A1
20170000483 Motai et al. Jan 2017 A1
20170020525 Shah Jan 2017 A1
20170055996 Baxter, III Mar 2017 A1
20170246476 Munro, III Aug 2017 A1
20170354408 Kostrzewski Dec 2017 A1
Foreign Referenced Citations (94)
Number Date Country
198654765 Sep 1986 AU
2773414 Nov 2012 CA
2884962 Nov 2015 CA
101035473 Sep 2007 CN
101427935 May 2009 CN
101507623 Aug 2009 CN
102686169 Sep 2012 CN
103622725 Mar 2014 CN
2744824 Apr 1978 DE
2903159 Jul 1980 DE
3114135 Oct 1982 DE
4213426 Oct 1992 DE
4300307 Jul 1994 DE
0041022 Dec 1981 EP
0136950 Apr 1985 EP
0140552 May 1985 EP
0156774 Oct 1985 EP
0213817 Mar 1987 EP
0216532 Apr 1987 EP
0220029 Apr 1987 EP
0273468 Jul 1988 EP
0324166 Jul 1989 EP
0324635 Jul 1989 EP
0324637 Jul 1989 EP
0324638 Jul 1989 EP
0365153 Apr 1990 EP
0369324 May 1990 EP
0373762 Jun 1990 EP
0380025 Aug 1990 EP
0399701 Nov 1990 EP
0449394 Oct 1991 EP
0484677 May 1992 EP
0489436 Jun 1992 EP
0503662 Sep 1992 EP
0514139 Nov 1992 EP
0536903 Apr 1993 EP
0537572 Apr 1993 EP
0539762 May 1993 EP
0545029 Jun 1993 EP
0552050 Jul 1993 EP
0552423 Jul 1993 EP
0579038 Jan 1994 EP
0589306 Mar 1994 EP
0591946 Apr 1994 EP
0592243 Apr 1994 EP
0593920 Apr 1994 EP
0598202 May 1994 EP
0598579 May 1994 EP
0600182 Jun 1994 EP
0621006 Oct 1994 EP
0621009 Oct 1994 EP
0656188 Jun 1995 EP
0666057 Aug 1995 EP
0705571 Apr 1996 EP
0760230 Mar 1997 EP
1952769 Aug 2008 EP
2090253 Aug 2009 EP
2090254 Aug 2009 EP
2583630 Apr 2013 EP
2586382 May 2013 EP
2589345 May 2013 EP
2907456 Aug 2015 EP
1496807 Jan 2017 EP
3189795 Jul 2017 EP
391239 Oct 1908 FR
2542188 Sep 1984 FR
2660851 Oct 1991 FR
2681775 Apr 1993 FR
1352554 May 1974 GB
1452185 Oct 1976 GB
1555455 Nov 1979 GB
2048685 Dec 1980 GB
2070499 Sep 1981 GB
2141066 Dec 1984 GB
2165559 Apr 1986 GB
51149985 Dec 1976 JP
2001087272 Apr 2001 JP
2007533362 Nov 2007 JP
2014533121 Dec 2014 JP
659146 Apr 1979 SU
728848 Apr 1980 SU
980703 Dec 1982 SU
990220 Jan 1983 SU
2008302247 Jul 1983 WO
8910094 Nov 1989 WO
9210976 Jul 1992 WO
9308754 May 1993 WO
9314706 Aug 1993 WO
2004032760 Apr 2004 WO
2009071070 Jun 2009 WO
2011078519 Jun 2011 WO
2012158416 Nov 2012 WO
2013039823 Mar 2013 WO
20150191887 Dec 2015 WO
Non-Patent Literature Citations (5)
Entry
Japanese Office Action issued in corresponding Japanese Application No. 2017-250408 dated Sep. 29, 2021, 10 pages.
Extended European Search Report issued in corresponding European Application No. 18150357.4 dated Mar. 29, 2018.
European Office Action issued in Application No. 18150357.4, dated Sep. 24, 2019 (6 pages).
Chinese Office Action issued in Chinese Patent Application No. 201810004362.6, dated Apr. 2, 2021.
Japanese Notice of Allowance dated Sep. 30, 2022 issued in corresponding JP Appln. No. 2017-250408.
Related Publications (1)
Number Date Country
20200254276 A1 Aug 2020 US
Provisional Applications (3)
Number Date Country
62514089 Jun 2017 US
62451936 Jan 2017 US
62442610 Jan 2017 US
Divisions (1)
Number Date Country
Parent 15835853 Dec 2017 US
Child 16861700 US