The present disclosure generally relates to transducer arrays for use in medical ultrasound, and more particularly, to a method and apparatus for implementing an IC mounted sensor with a high attenuation backing.
In medical ultrasound, state of the art transducers are generally built on the surface of an integrated circuit (IC). The acoustic elements of the transducers are attached and individually electrically connected to a surface the IC. Typical technology used to accomplish that is flip chip. The IC provides electrical control of the elements, such as, for beam forming, signal amplifying, etc.
One example of a typical design of an ultrasound transducer is illustrated in
A disadvantage of the flip-chip approach is the effect of the IC on the acoustic attenuation of the transducer. During operation of the transducer, some of the acoustic energy generated by the piezoelectric element is directed in the desired direction of operation of the device. The remaining energy is directed in the opposite direction. In a typical ultrasound transducer, an acoustically absorbing backing is used to absorb this unwanted energy. However, with respect to IC mounted sensors, this has not been possible due to the location of the IC behind the acoustic elements.
Accordingly, an improved transducer probe and method for operating a transducer probe for overcoming the problems in the art is desired.
According to an embodiment of the present disclosure, an ultrasound transducer probe includes an attenuation backing substrate, an integrated circuit, and an array of piezoelectric elements, wherein the integrated circuit couples to the attenuation backing substrate and wherein the integrated circuit is translucent to acoustic waves. The array of piezoelectric and matching layer elements couples to the integrated circuit.
According to one embodiment, the integrated circuit 88 is substantially translucent to acoustic waves, wherein the IC thickness is made to be in the range of between 5-50 microns. The particular desired IC thickness also depends upon an intended ultrasound application. In one embodiment, a thickness of the integrated circuit is decreased by a mechanical grinding process, followed by chemical milling. Furthermore, the IC can include, for example, a silicon based IC.
In addition, transducer 80 includes attenuating backing material 94. Acoustic energy generated by a piezoelectric element is indicated by reference numeral 96 and remaining energy directed in the opposite direction is indicated by reference numeral 98. The remaining energy 98 passes through integrated circuit 88 and is attenuated by attenuating backing material 94.
According to one embodiment of the present disclosure, the ultrasound transducer provides a solution for implementing an IC mounted sensor with high attenuation backing. The IC thickness is made to be in the range of between 5-50 microns (depending on application), thereby causing the IC to become translucent to acoustic waves. As discussed, in one embodiment, a thickness of the integrated circuit (IC) can be decreased by a mechanical grinding process, followed by chemical milling. Additionally, an acoustically absorbing material that is positioned behind the thin layer of the IC material provides adequate attenuation.
An example of an application for the embodiments of the present disclosure includes a two-dimensional transducer. The embodiments of the present disclosure can also be advantageous in other IC mounted transducer designs. For example, in one-dimensional (1D) transducer applications, such as an intra-cardiac application, an IC can provide routing densities not achievable in conventional interconnection technologies, such as, printed circuit board (PCB), flex circuit, etc.
According to an embodiment of the present disclosure, an ultrasound transducer probe includes an attenuation backing substrate, an integrated circuit, and an array of piezoelectric elements. The integrated circuit couples to the attenuation backing substrate, wherein the integrated circuit is translucent to acoustic waves. The array of piezoelectric elements couple to the integrated circuit, wherein the array of piezoelectric elements have an acoustic matching layer disposed on a first surface of the array thereof.
The attenuation backing substrate can include any material capable of providing attenuation on the order of approximately 10 dB/cm (at 5 MHz) to 50 dB/cm (at 5 MHz). In addition, the attenuation backing substrate can include epoxy composite materials that consist of epoxy and a mixture of very high and very low acoustic impedance particles, having a thickness on the order of 0.125 inches.
In one embodiment, the ultrasound transducer probe includes an integrated circuit having a thickness sufficiently small for causing the integrated circuit to be translucent to acoustic waves. Still further, the thickness of the integrated circuit is on the order of approximately 5-50 μm. Still further, the integrated circuit includes at least one of a silicon based, a gallium based, and a germanium based integrated circuit. In addition, in one embodiment, the array of piezoelectric elements includes a two-dimensional array. In another embodiment, the array of piezoelectric elements includes a one-dimensional array.
In yet another embodiment, an ultrasound transducer probe includes an attenuation backing substrate, an integrated circuit coupled to the backing substrate, and an array of piezoelectric elements. The attenuation backing substrate includes a material capable of providing attenuation on the order of approximately 10 dB/cm at 5 MHz to 50 dB/cm at 5 Mhz. As discussed herein, in one embodiment, the integrated circuit is translucent to acoustic waves, wherein the integrated circuit includes a thickness on the order of approximately 5-50 μm and is sufficiently small for causing the integrated circuit to be translucent to acoustic waves. Still further, an array of piezoelectric elements couples to the integrated circuit; wherein the array of piezoelectric elements includes an acoustic matching layer disposed on a first surface of the array thereof.
In yet another embodiment, a method of fabricating an ultrasound transducer probe comprises providing an attenuation backing substrate. An integrated circuit couples to the attenuation backing substrate, wherein the integrated circuit is translucent to acoustic waves. In addition, an array of piezoelectric elements couples to the integrated circuit; the array of piezoelectric elements having an acoustic matching layer disposed on a first surface of the array thereof. For example, the attenuation backing substrate includes a material capable of providing attenuation on the order of approximately 10 dB/cm at 5 MHz to 50 dB/cm at 5 MHz.
According to one embodiment of the present disclosure, a method of making an ultrasound transducer probe includes providing an attenuation backing substrate, wherein the attenuation backing substrate includes a material capable of providing attenuation on the order of approximately 10 dB/cm at 5 MHz to 50 dB/cm at 5 MHz. An integrated circuit is coupled to the attenuation backing substrate, wherein the integrated circuit is translucent to acoustic waves and wherein the integrated circuit includes a thickness on the order of approximately 5-50 μm and is sufficiently small for causing the integrated circuit to be translucent to acoustic waves. Lastly, an array of piezoelectric elements couple to the integrated circuit, further wherein; the array of piezoelectric elements having an acoustic matching layer disposed on a first surface of the array thereof.
Although only a few exemplary embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the embodiments of the present disclosure. Accordingly, all such modifications are intended to be included within the scope of the embodiments of the present disclosure as defined in the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB04/52626 | 12/1/2004 | WO | 6/2/2006 |
Number | Date | Country | |
---|---|---|---|
60527013 | Dec 2003 | US |