The present invention relates to an imprint apparatus, an imprint method, and an article manufacturing method.
An imprint technique is a technique of forming a pattern on a substrate (wafer) by using a mold on which a pattern has been formed. An example of the imprint technique is a photo-curing method. In the imprint technique using this photo-curing method, a fluidable resin as an imprint material is supplied to a shot region which is an imprint region on the substrate. The supplied resin is cured by irradiation with light in a state in which a pattern of a mold is pressed against (imprinted on) the resin. The pattern of the cured resin is transferred onto the substrate by separating (releasing) the mold from the resin.
In the manufacture of a semiconductor chip, it is necessary to accurately align the substrate and the mold when imprinting the mold on the resin on the substrate. As a method of aligning the substrate and the mold in an imprint apparatus, a so-called die-by-die method is known in which alignment is performed by detecting a mark formed on the mold and a mark formed in each shot region of the substrate.
Japanese Patent Laid-Open No. 2008-522412 describes an imprint apparatus which calculates a relative displacement between a mold and a substrate by detecting an alignment mark, and relatively moves stages (a mold stage and a substrate stage).
In an imprint technique, a gap between a mold and a substrate at the time of imprinting is 1 μm or less. A resin which fills this gap has viscoelasticity having both characteristics of viscosity and elasticity. If both of the mold and the substrate are relatively moved for their alignment at the time of imprinting, the viscoelasticity of the resin causes a force to act between them. Since this force also acts on a mold pattern, the micropattern may deform. The relative moved amount between the mold and the substrate at the time of alignment changes for each shot region. Therefore, a force acting on a portion between the mold and the substrate, and mold pattern deformation also vary for each shot region. For example, in the imprint of a semiconductor chip, a defective chip is produced, resulting in a decrease in a yield.
The present invention provides an imprint apparatus which reduces the deformation of a mold pattern.
The present invention in its one aspect provide an imprint apparatus for performing an imprint process of forming a pattern on a substrate by bringing a mold and an imprint material supplied onto the substrate into contact with each other, the apparatus comprising: a substrate stage configured to hold the substrate; a mold stage configured to hold the mold; a detector configured to detect a relative position of the substrate to the mold in a direction parallel to a surface of the substrate; a vibration unit configured to transmit a vibration to the imprint material; and a controller configured to control the imprint process to align the substrate and the mold based on a detection result by the detector while the vibration unit transmits the vibration to the imprint material after bringing the imprint material and the mold into contact with each other.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
The first embodiment of the present invention will be described below.
Although the wafer stage 4 is illustrated simply as one stage and wheels in
A laser interferometer 5 provided in the main body 1 and a reflecting mirror (not shown) which is provided on the wafer stage 4 and reflects a laser beam measures the position of the wafer stage 4 in the X direction. Similarly, a laser interferometer which measures the position of the wafer stage 4 in the Y direction is also provided. A scale substrate provided in the main body 1 and an encoder system constituted by an optical devices provided on the wafer stage 4 may be used to measure the position of the wafer stage 4.
A vibration unit 6 which generates a high-frequency vibration and transmits it to the resin is arranged on the wafer stage 4. A photo-curing type resin (imprint material) used at the time of an imprint process is supplied onto the wafer 3 by a dispenser 7 provided in the main body 1. A mold 8 (also referred to as a template) on which a micropattern has been formed is held by a mold stage (imprint head mechanism) 9 arranged in the main body 1. The mold stage 9 can move the mold 8 in a Z direction while holding it. Here, as shown in
A detector 10 provided in the main body 1 detects the relative position of the wafer 3 to the mold 8 in the direction (the X direction and the Y direction) parallel to the surface of the wafer 3. On the wafer 3, an alignment mark is transferred to the position in each shot region by a previous process step. An alignment mark corresponding to this is also provided on the mold 8. The detector 10 irradiates the mold 8 and the wafer 3 with alignment light to detect their alignment marks by an alignment scope. A controller C calculates the relative displacement between the mold 8 and the wafer 3 by performing an image process on the detection result by the alignment scope. An irradiation system 11 which irradiates the resin with ultraviolet rays to cure is mounted on the main body 1.
Respective operations at the time of the imprint process will now be described. The wafer stage 4 moves to the exchange position of the wafer 3, and the wafer 3 is mounted on a wafer chuck (not shown) by a wafer exchange hand (not shown). The controller C moves the wafer stage 4 such that a shot region on the wafer 3 which performs the imprint process is located under the dispenser 7. The dispenser 7 supplies the resin to the wafer 3. After the controller C moves the wafer stage 4 such that the shot region is located under the mold 8, the mold stage 9 lowers the mold 8 to perform imprint. This imprint is an operation of filling the pattern formed on the mold 8 with the resin by driving the mold stage 9 in the Z direction to bring the mold 8 into contact with the resin on the wafer. In an initial imprint, displacement occurs in the relative position between the mold 8 and the wafer 3 in the horizontal direction (the X direction and the Y direction). The detector 10 detects this displacement as described above. A stage correction signal generated by the stage position correcting calculator 13 is sent to the wafer stage controller 12.
If the wafer stage 4 is moved at the time of imprinting, the viscoelasticity of the resin which fills a portion between the mold 8 and the wafer 3 causes a force to act between them. The force also acts between the mold 8 and the wafer 3 because a force is generated between the wafer 3 and the resin by moving the wafer stage 4 and a reaction force to the resin is transmitted to the mold. It has been found that this viscoelasticity is reduced by transmitting a high-frequency vibration to the resin. By a command from the main controller 14, the vibration unit 6 generates a high-frequency vibration to vibrate the resin at a high frequency, thereby reducing the viscoelasticity of the resin. The frequency and the magnitude of the high-frequency vibration are determined by the type of resin to be used and the spacing between the surfaces of the mold 8 and the wafer 3. It is therefore possible to measure the force acting between the mold 8 and the resin using the driving force of the wafer stage controller 12 by changing the frequency and the magnitude of the high-frequency vibration generated by the vibration unit 6 in advance, and determine a value to be actually used. Furthermore, the frequency can be 1 kHz or more because the frequency of 1 kHz or less may have an influence on the feedback system of the wafer stage controller 12.
The alignment scope of the detector 10 uses an optical sensor (not shown). The optical sensor accumulates detection light for a predetermined time and converts it into an electrical signal. As a result, an average value within an accumulation time is output. Therefore, with the high frequency of 1 kHz or more, the high-frequency vibration has no influence on a detection result by the detector 10 by virtue of this average effect. The alignment between the mold 8 and the wafer 3 is completed by moving the wafer stage 4 during vibration at a high frequency. The mold 8 and the wafer 3 are relatively moved in a state in which the viscoelasticity of the resin is extremely small. This makes it possible to prevent the force from being generated between the mold 8 and the resin at the time of alignment. After the completion of the alignment, the high-frequency vibration stops. After the resin is irradiated with ultraviolet rays by the irradiation system 11 and cured, the mold 8 is separated (released) from the cured resin by expanding the spacing between the wafer 3 and the mold 8, and an imprint process for one shot region is completed. Subsequently, the sequence of resign supply, imprint, alignment during vibration, curing, and release is performed repeatedly for each shot region. Each shot region performs alignment during vibration. As a result, the force acting between the mold 8 and the resin at the completion of the alignment, and thus a force variation are reduced. After an imprint process for the entire surface of the wafer is completed, the wafer stage 4 moves to the wafer exchange position and collects the imprinted wafer 3 by the wafer exchange hand. The next wafer 3 is mounted on the wafer chuck, and an imprint sequence for the entire surface of the wafer is performed again.
The vibration unit 6 is provided on the wafer stage 4. However, it may be provided on the mold stage 9 as long as the high-frequency vibration is transmitted to the resin. The arrangement has been employed here in which the wafer stage 4 is moved when aligning the mold 8 and the wafer 3. However, the arrangement may be employed in which a moving mechanism in the X and Y directions is provided on the mold stage 9 to move the mold 8. In this case, the mold stage 9 includes a position control system in the X and Y directions, and also receives the stage position correction signal by the stage position correcting calculator 13. Alignment of the mold 8 and the wafer 3 can be performed by moving at least one of the wafer stage 4 and the mold stage 9. Furthermore, the wafer stage 4 may be vibrated directly at a high frequency without providing the vibration unit 6 separately. In this case, a vibration signal is superimposed on a positioning signal for the control command from the wafer stage controller 12.
An imprint apparatus according to the second embodiment is obtained by omitting a vibration unit 6 from the apparatus shown in
A point B in
The characteristics of the relative moved amount between the mold 8 and the wafer 3, and the force between the mold 8 and the wafer 3 shown in
The arrangement has been employed here in which the wafer stage 4 is moved when aligning the mold 8 and the wafer 3. As in the first embodiment, however, the arrangement may be employed in which a moving mechanism in the X and Y directions is provided on the mold stage 9 to move the mold 8. Furthermore, in both of the first and the second embodiments described above, the arrangement has been employed in which the mold stage 9 is moved in the Z direction when bringing (imprinting) the mold 8 and the resin on the wafer 3 into contact with each other. However, the arrangement may be employed in which a moving mechanism in the Z direction is provided on the wafer stage 4 to move the wafer 3. Furthermore, the mold 8 and the resin on the wafer 3 may be brought into contact with each other by moving the wafer stage 4 and the mold stage 9 sequentially or simultaneously.
An imprint apparatus according to the third embodiment includes a mold stage 9 of an imprint apparatus shown in
When the shape correction of a pattern is required at high accuracy, the shape of the pattern portion 81 is corrected to match the shape of the pattern portion 81 on the mold 8 with the shape of a shot region on a substrate in a state in which the mold 8 and a resin are brought into contact with each other. A detector 10 can obtain the mismatch between the shape of the pattern portion 81 and the shape of the shot region on the substrate by detecting a plurality of alignment marks within a shot. The correction distance of the pattern portion 81 (the driving amount of the shape correcting mechanism 91) can be determined by obtaining the displacement of the alignment marks detected by the detector 10. The driving amount (driving distance) of the shape correcting mechanism 91 can be obtained in accordance with the obtained deformation amount (correction value) of the pattern portion 81. If the shape correcting mechanism 91 corrects the shape of the pattern portion 81, the viscoelasticity of the resin causes a force to act between the mold and the resin. Since this force also acts on a mold pattern, the micropattern may deform. Also, when the shape correcting mechanism 91 corrects the shape of the pattern portion 81, the driving amount of the shape correcting mechanism 91 changes for each shot region. Accordingly, a force acting between the pattern of the mold 8 and the resin at the end of shape correction also changes.
To cope with this, as the same characteristic as in
Furthermore, the shape correcting mechanism 91 may be driven to correct the shape of the pattern portion 81 on the mold 8 while vibrating a wafer stage 4 at a high frequency as has been described in the first embodiment. Alignment by the wafer stage 4 may be performed in parallel with correction of the shape of the pattern portion 81, or alignment by shape correction may be performed after the alignment by the wafer stage 4 is performed.
Also, the shape correcting mechanism 91 may correct the shape of the pattern portion 81 after, as in the second embodiment, alignment is performed by driving the wafer stage 4 by a predetermined driving distance beyond a target driving position, and then returning it to a target position. The alignment by the wafer stage 4 may be performed in parallel with the correction of the shape of the pattern portion 81.
In all the embodiments described above, the characteristics of the relative moved amount between the mold 8 and the wafer 3, and the force between the mold 8 and the wafer 3 shown in
[Article Manufacturing Method]
A manufacturing method of a device (a semiconductor integrated circuit device, a liquid crystal display device, an MEMS, or the like) as an article includes a step of transferring (forming) a pattern onto a substrate (a wafer, a glass plate, a film-like substrate, or the like) using the above-described imprint apparatus. The manufacturing method can also include a step of etching the substrate onto which the pattern has been transferred. Note that when manufacturing another article such as a patterned media (storage medium) or an optical element, the manufacturing method can include, instead of the etching step, another processing step of processing the substrate onto which the pattern has been transferred.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2014-019767, filed Feb. 4, 2014, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2014-019767 | Feb 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/051947 | 1/20/2015 | WO | 00 |