The present invention relates to in-circuit testing and repairing systems, more particularly to an in-circuit testing and repairing system for testing printed circuit board (PCB) online and showing information of products having flaws.
In-circuit testing is the most popular method for testing a printed circuit board in the manufacturing industry. The in-circuit testing system is used for checking the quality of the components on the PCB and finding short or open circuits on the PCB and providing a report of the flaws needing repair.
A typical in-circuit testing and repairing system includes an in-circuit testing device, a data collecting machine, a scanner connected to the data collecting machine, a shop floor control (SFC) system connected to the data collecting machine via a network, and a data storing module connected to the SFC system via the network. After a PCB is tested, the result is displayed on the testing device. Operators use the scanner to scan a barcode of the tested PCB and a special barcode representing different test data according to the test results. Then, the test data of the PCB is collected by the data collecting machine and is transmitted to the SFC system and the data storing module via the network, for controlling the manufacturing instance of the PCBs and checking the test results of the tested PCBs. The in-circuit testing and repairing system further includes a printer connected to the in-circuit testing device. Failed test results are printed out by the printer. Then an operator of a repair station repairs the faulty PCBs according to the printed results.
However, the test data is scanned into the data collecting machine manually, and is inefficient for a product line manufacturing mode. Furthermore, the manual operation may return imprecise test results. And, the printed data may be misunderstood by the operator or even misplaced.
What is needed, therefore, is an in-circuit testing and repairing system which can transmit the testing data automatically allowing repair of the faulty PCBs in a more efficient manner.
An in-circuit testing and repairing system for printed circuit boards includes an in-circuit testing device for testing printed circuit boards, a shop floor control system connected to the in-circuit testing device via a network for collecting and processing the test data produced by the testing device, and a repair station including an electronic device for displaying information of a faulty printed circuit board. The electronic device connected to the shop floor control system. The test data from the in-circuit testing device is automatically transferred to the shop floor via the network for processing, and the processed test data is sent back to the in-circuit testing device, the test data of the faulty printed circuit board is sent from the shop floor controlling system to the repair station.
Other advantages and novel features will be drawn from the following detailed description of preferred embodiments with attached drawings, in which:
Referring to
Referring also to
The SFC system 30 is connected to the first computer 15 via a network 20. Referring also to
The data storing module 50 is connected to the SFC system 30 via the network 20. The test results produced by the data processing equipment 35 are transmitted to the data storing module 50 to form a database.
The repairing system 70 includes a second computer 71, a second barcode scanner 73, and a repair station 75. The second computer 71 is connected to the SFC 30 also via the network 20 for displaying the test results of the faulty PCB 60. The second barcode scanner 73 is connected to the second computer 71 for reading the barcodes of the faulty PCBs 60 into the second computer 71. The faulty PCBs 60 are repaired at the repair station 75 according to the data displayed by the second computer 71.
Referring also to
Using the first barcode scanner 16 to scan the barcode of the PCB 60 for getting a series of static test data (step 200). The static test data includes the machine number of the testing device, product material numbers, operator numbers etc. The static test data is transferred via the network 20 according to the following steps: a. the static test data is transmitted to the SFC system; b. the SFC system collects and processes the static test data; c. the processed static test data is transmitted back to the first computer 15 for displaying; d. the static test data is stored in the data storing module 50.
Testing the PCB 60 (step 201). The components of the PCB 60 needing to be tested are respectively connected to the corresponding testing circuits 13, and the testing device 10 begins to test the selected components of the PCB 60 according to the predetermined parameters of a suite of software in the testing device 10. For instance, testing the resistance of a resistor or testing the capacitance of a capacitor, and etc. During the testing process, the in-circuit testing electronic device 10 produces a series of dynamic test data. The dynamic test data includes serial numbers of products, testing time, and testing position number etc. The dynamic data is transmitted via the network 20 according to the following steps: a. the dynamic test data is transmitted to the SFC system; b. the SFC system collects and processes the dynamic test data; c. the processed dynamic test data is transmitted back to the first computer 15; d. the dynamic test data is stored in the data storing module 50.
An operator decides if the PCB 60 is faulty according to the test data transmitted back to the first computer 15 (step 202).
If the PCB 60 tests good, then the PCB 60 can enter a next manufacturing step (step 203).
If the PCB 60 tests bad, it will be removed to the repairing system 70 for repairing (step 204).
Using the second barcode scanner 73 of the repairing system 70 to scan the barcode of the faulty PCB 60. The test data of the faulty PCB 60 will be displayed on the second computer 71 (step 205).
Repairing the faulty PCB 60 according to the data displayed on the second computer 71 of the repairing system 70 (step 206). Then, the system returns to the step 201 for testing the repaired PCB 60 again.
Referring to
It is to be understood, however, that even though numerous characteristics and advantages have been set forth in the foregoing description of preferred embodiments, together with details of the structures and functions of the preferred embodiments, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
200510101538.2 | Nov 2005 | CN | national |