Not Applicable
Not Applicable
The invention relates to in-home or portable medical data collection and reporting, and in particular to in-home situations where an intelligent oxygen concentrator is present. The application is particularly directed to a system which includes a modern, portable oxygen concentrator.
The application of oxygen concentrators for therapeutic use is known, and many variants of such devices exist. A particularly useful class of oxygen concentrators is designed to be portable, allowing users to move about and to travel for extended periods of time without the need to carry a supply of stored oxygen. Most of these portable concentrators are based on Pressure Swing Adsorption (PSA) or Vacuum Pressure Swing Adsorption (VPSA) designs which feed compressed air to selective adsorption beds. In a typical oxygen concentrator, the beds selectively adsorb nitrogen, resulting in pressurized, oxygen-rich product gas.
The main elements in an oxygen concentrator are shown in
Such PSA systems are known in the art, and it is appreciated that the gas flow control through the compressor and the beds in a PSA cycle is complex and requires precise timing and control of parameters such as pressure, flow rate, and temperature to attain the desired oxygen concentration in the product gas stream. Accordingly, most modern concentrators also have a programmable controller 2, typically a microprocessor, to monitor and control the details of the PSA cycle and monitor various parameters. Typically, due to the availability of inexpensive processor hardware, the controller can be configured to have significant processing and communications capability in excess of that required to run the concentrator, with no significant cost penalty. Thus the presence of an in-home concentrator provides the possibility of significant functionality which could be applied to patient and caregiver needs.
Patients who require in-home oxygen generally need medical monitoring of other vital parameters, such as blood oxygen saturation, blood pressure, body temperature and the like. Currently, either the patient must visit a medical facility or be visited in the home by a technician to gather such information. This is both costly and inconvenient. Moreover, under these conditions, the patient monitoring may not happen frequently enough to be effective.
Thus there is clear need for a system that would provide convenient, frequent in-home patient monitoring, particularly for patients requiring supplemental oxygen.
Such a system could reduce the overall burden on the healthcare system by alerting clinicians to potential changes in health status before the health of the patient reaches the level where emergency intervention or hospitalization is required to end an acute episode.
Similarly, such a monitoring system would alert the Home Medical Equipment Provider to a potential malfunction of the device prior to the device failing and requiring an unscheduled replacement or trip to the patient's home, thus reducing the cost burden on the HME.
The invention is a system and a process for the use thereof, which includes a portable oxygen concentrator, including a programmable controller and a communications channel coupled to the controller, patient monitoring devices including at least one of a pulse oximeter, a blood pressure monitor, a temperature monitor, electronic scale, body composition analyzer or a spirometer, such that the devices interface to the controller, and a program application running on the controller adapted to prompt a patient to use one or more of the monitoring devices on a predetermined basis and to report both monitoring device results and concentrator use data over the communications channel.
In a preferred embodiment, the communications channel may be one or more wireless devices, chosen from a group including IrDA, cell phone interfaces, blue tooth interfaces, Wi-fi, Zigbee, or dedicated radios. The communications channel preferably accesses the internet directly or through a secondary communication device to provide the data report.
In another embodiment, the system also includes a program application adapted to monitor and report patient activity. One measure of patient activity is battery usage of the concentrator. Another measure of patient activity is feedback from a motion sensor, Global Positioning Device, or accelerometer.
In other embodiments, the system may include speakers for audible alerts and status, as well as microphones to accept audible commands. One such command, for the case where the system has a cellular interface is to accept an audible command to connect to 911. Also a microphone can be used to sample the audio environment, and the controller may generate a noise cancellation signal which may be output through a speaker.
In another embodiment, the system may include a GPS unit and the GPS data may be part of the reported information and a part of the emergency response feature.
The understanding of the following detailed description of the invention will be facilitated by referring to the accompanying figures.
Referring to
The controller will contain a software application to acquire data from the suite of medical monitors. This application preferably also performs other functions. A particularly useful function would be to remind the patient to use the monitors at appropriate times and intervals, possibly using the concentrator's user interface 4 or a dedicated interface system auxiliary to the concentrator.
In the preferred embodiment, the controller will have a communications channel 9 to the outside world, and will use this channel to communicate with the patient's doctor or caregiver. This interface could be a variety of wired or wireless interfaces. However in the preferred embodiment, the connection is to the internet 10. Connection to the Internet facilitates a web-page approach to presenting patient information to the Doctor. Such an approach is particularly convenient both in terms of flexibility of data management and presentation, as well as providing universal access from a wide variety of locations and connection devices, i.e. office computers, PDA's, laptops, cell phones etc, allowing for convenient patient monitoring at any time or location.
Using the Internet as the data presentation medium also allows for novel business practices, as described in a co-pending application by the same inventors.
Other patient data may be gathered from the use of the concentrator itself, which through the programmable controller is capable of a fair amount of patient monitoring due to its own operation. For instance patient activity may be inferred by battery usage of the concentrator or the output of a motion sensor or accelerometer, indicating how much moving away from a fixed power source is taking place or the general activity level of the patient. Such information may be logged by the controller as provided along with the other data to the remote caregiver. Additionally, high levels of acceleration may signal that the device has been dropped or abused, and some device inspection or inquiry may be required.
Referring to
Another useful aspect of the system possible for versions with both speaker and microphone is active noise cancellation (ANC). A controller application could sample the ambient audio environment using the microphone 12 and compute and generate a cancellation signal which could be output through the speaker 11. Such a feature could be quite effective at improving the patient environment, particularly such as reducing apparent compressor or fan noise which is generally a byproduct of the concentrator operation.
In
This Application claims priority to U.S. Provisional Application Ser. No. 60/959,690, filed Jul. 16, 2007
Number | Date | Country | |
---|---|---|---|
60959690 | Jul 2007 | US |