The invention is directed to dissolving gas into a liquid, more particularly to the preparation of the water-based beverages, even more particularly to the in-line carbonation of such beverages.
Prior art patent document published WO 2009/021960 A1 discloses a device for the enrichment of a liquid stream with a gas, e.g. for the carbonation of a beverage like water. The device comprises a flow mixer with a venture nozzle having a rotationally symmetrical contraction and being flown through axially by the liquid stream. The device further comprises a lateral feed of the gas into the contraction of the venture nozzle. The gas feed comprises at least one gas channel with a reduced diameter, ending laterally in the contraction of the venture nozzle in such a way that the elongated longitudinal axis thereof is offset with regard to the longitudinal axis of the venture nozzle.
This teaching is interesting in that the venture nozzle is optimized with regard to the position and orientation of the gas channels. The process of carbonation of water is however dependent on different factors like temperature and pressure. The presence of low temperature is particularly favorable for carbonating water. This is why a cooling unit is provided in this teaching, upstream of the mixing venture nozzle. The presence of such a cooling unit is however disadvantageous with regard to the manufacture and running costs of the device. In the absence of such a unit, the amount of carbon dioxide dissolved in the water by means of the device of this teaching can be too low, in particular in the presence of warmer temperatures, e.g. during summertime.
Prior art patent documents published DE 10 2012 100 844 A1 discloses a similar device for carbonating wine-based beverages. Similarly to the device of the previous document, this device comprises a cooling unit between the pump and the mixing chamber. Unlike in the previous document, this device comprises, in addition, a static mixer downstream of the mixing chamber. This static mixer comprises a tube housing a series of spiral-shaped mixing elements that are configured such that the liquid is subject to a pressure drop of about 0.5 bar between the inlet and the outlet of the static mixer. This static mixer is intended to provide a high mixing rate of the carbon dioxide with the liquid. It is also intended to avoid the formation of foam, thereby allowing a convenient drawing of the carbonated liquid at the exit of the device. The working pressure in the mixing chamber is of about 2 bar, so that the liquid exits the static mixer with a pressure of about 1.5 bar. Similarly to the above document, this device has the inconvenient that it requires a cooling unit. In addition, the static mixer is a complicated element that causes a significant pressure drop and that can be expensive in manufacture as well as in maintenance.
Prior art patent document published FR 2 949 355 B1 discloses device for carbonating water-based beverages that is similar to the device of the previous document. Indeed, it comprises also a static mixer downstream of the mixing chamber, this static mixer creating an intended progressive pressure drop to progressively bring the liquid to a pressure close to atmospheric pressure at the exit tap.
Prior art patent document published U.S. Pat. No. 5,842,600 discloses also a device for carbonating water or water-based beverages. Similarly to the device of the two previous documents (DE 10 2012 100 844 A1 and FR 2 949 355 B1), it comprises a static mixer comprising a tube housing a series of spiral-shaped mixing elements.
The invention has for technical problem to provide an improved enrichment of a liquid with gas, like carbonation of water-based beverages, i.e. an enrichment that is cheaper and achieves a satisfying amount of gas dissolved in the beverage.
The invention is directed to a device for dissolving gas like carbon dioxide into a liquid like a water-based beverage, comprising: a pump for the liquid; a mixing venture nozzle with a main inlet fluidly connected to the pump, at least one side inlet connectable to a source of pressurized gas, and an outlet; wherein the device further comprises: a conical flow restrictor fluidly connected downstream of the mixing venture nozzle; and a pipe of a length of at least 0.5 m fluidly interconnected between the mixing venture nozzle and the flow restrictor.
The cone of the flow restrictor is preferably oriented so as to diverge in the flow direction.
According to a preferred embodiment of the invention, the pipe is a corrugated pipe, preferably a flexible corrugated pipe, more preferably a flexible stainless steel corrugated pipe, even more preferably a flexible stainless steel corrugated pipe with a plastic external sleeve.
According to a preferred embodiment of the invention, the corrugated pipe forms corrugation ridges with a height h that is comprised between 5% and 20% of the internal diameter d of the pipe and/or with a distance/between adjacent ridges that is comprised between 5% and 30%, preferably between 10% and 20% of the internal diameter d of the pipe.
According to a preferred embodiment of the invention, the pipe has an internal diameter d that is comprised between 5 mm and 25 mm, preferably between 8 mm and 20 mm, more preferably between 10 mm and 15 mm.
According to a preferred embodiment of the invention, the pipe has a wall thickness e that is comprised between 0.15 mm and 0.3 mm.
According to a preferred embodiment of the invention, the pipe has a length that is of at least 0.8 m, preferably at least 1.0 m, more preferably at least 1.2 m.
According to a preferred embodiment of the invention, the pipe has a length that is less than 5 m, preferably less than 2 m, more preferably less than 1.5 m.
According to a preferred embodiment of the invention, the pipe is bent at several places over at least 90°, preferably over about 180°, so as to form a compact unit.
According to a preferred embodiment of the invention, the pump is configured to pressurize the liquid at a pressure of at least 8 bar, preferably 9 bar, more preferably 10 bar, between said pump and the mixing venture nozzle.
According to a preferred embodiment of the invention, the conical flow restrictor is configured to maintain a pressure in the pipe that is comprised between 6 bar and 10 bar, preferably between 7 bar and 9 bar, while debiting the liquid.
According to a preferred embodiment of the invention, the flow section of the conical flow restrictor progressively increases in the direction of the flow.
According to a preferred embodiment of the invention, the conical flow restrictor comprises a housing with a circular internal surface that diverges in the direction of the flow, and a conical element inside said housing delimiting with said diverging internal surface an annular flow section.
According to a preferred embodiment of the invention, the minimal flow section of the conical flow restrictor is comprised between 1 mm2 and 10 mm2, preferably between 2 mm2 and 8 mm2, more preferably between 2.8 mm2 and 5.6 mm2.
According to a preferred embodiment of the invention, it comprises a shut-off valve fluidly between the conical flow restrictor and the mixing venture nozzle.
According to a preferred embodiment of the invention, it further comprises a mixing chamber fluidly connected to the outlet of the mixing venture nozzle, the mixing chamber being preferably directly coupled to the mixing venture nozzle so that said chamber is a direct extension of the outlet of said venture nozzle.
The invention is also directed to a process for dissolving a gas into a liquid like carbonating a water based beverage, comprising the following steps:
(a) pressurizing the liquid in a circuit comprising a mixing venture nozzle; and (b) adding the gas to said liquid flowing through the mixing venture nozzle by connecting at least one side inlet of said venture nozzle to a source of the pressurized gas; wherein the process comprises providing: a conical flow restrictor fluidly downstream of the mixing venture nozzle; and a pipe of a length of at least 0.5 m fluidly interconnected between the mixing venture nozzle and the flow restrictor.
According to a preferred embodiment of the invention, the process comprises using a device in accordance with the invention.
According to a preferred embodiment of the invention, step (b) comprises keeping the pressure in the pipe between 6 bar and 10 bar, preferably between 7 bar and 9 bar, by means of the flow restrictor. Advantages of the invention
The invention is particularly interesting in that it permits to in-line dissolve gas into a liquid, e.g. carbonate water or water-base beverages, by means of a device of a simple construction and still achieving a high grade of gas dissolved.
The device 1 that is schematically illustrated in
A mixing chamber 18 is connected to the outlet 16 of the mixing venture nozzle 8. In the present case, the mixing chamber 18 is coupled directly to the body of the mixing venture nozzle 8 so that the outlet 16 of said nozzle is fed directly in the chamber 18. This chamber 18 is preferably elongate so as to allow the liquid and the gas to mix with each other and thereby to allow at least a portion of the gas to be dissolved in the liquid.
The exit of the mixing chamber 18 is connected to a unit 20 that is essentially made of a corrugated flexible pipe that is bent at several places so as to form a compact unit. The details of the pipe will be provided later in connection with
A shut-off valve 22 is connected at the exit of the piping unit 20 and a compensator or flow restrictor 24 is connected at the exit of the shut-off valve 22. The shut-off valve 22 can be manually or electromagnetically operated.
A pressure-reducer 26 between the source of pressurized carbon dioxide 6 and the inlets 14 on the mixing venture nozzle 8. This pressure-reducer is a proportional one in that it adapts the pressure of the gas to the pressure of the liquid that is pressurized by the pump 4.
Still in the present example, the flow section passed the diverging surfaces, i.e. along the cylindrical surfaces is essentially constant.
The diverging surfaces allow a progressive deceleration of the liquid flow which avoids foaming. Indeed, a rapid pressure drop will release dissolved gas in a sudden manner, leading to foaming up of the liquid. The liquid exits therefore the diverging surfaces at a reduced speed can therefore gently exit the flow restrictor without splashing.
The position of the conical element 34 can be adjusted within the housing so as to adjust the flow section. The more the element 34 is inserted into the housing, the lower the flow section will be and vice versa. This position can be adjusted by inserting reference washers or any other spacer(s) between the element 34 and the cap 282. Alternatively, a lever acting on a cam abutting against the conical element could be provided for manually adjusting the position of the element without opening the flow restrictor 24. The end of the element 34 that abuts against the cap 282 is plate-shaped and comprises apertures for permitting the liquid to flow to the outlet 32.
The presence of the flow restrictor 24 is particularly interesting for it permits to keep a certain level of pressure upstream, i.e. in the mixing chamber 18 (
The mixing unit 20 of
We can observe that the mixing unit formed by the pipe 20 comprises a series of bends along the length of the pipe in order to be compact. These bends can be of at least 90° or 180°.
The pump 4 is configured to pressurize the liquid at a pressure at the entry of the mixing venture nozzle that is of at least 8 bar, preferably 9 bar, more preferably 10 bar. Due to the pressure drop that is inherent of the mixing venture nozzle, the mixing chamber 18 and the pipe 20, the pressure at the exit of the pipe 24, i.e. before the flow restrictor 24 is of about 8 bar when the pressure at the entry of the mixing venture nozzle of about 10 bar. Under such conditions, the liquid mixed with the carbon dioxide can therefore circulate along a substantial length of corrugated pipe at a relatively high pressure, thereby permitting a progressive dissolving of the gas into the liquid with however a very reduced pressure drop. The presence of the flow restrictor permits the pressure of the liquid to be reduced to atmospheric pressure when being tapped, with a progressive deceleration. This deceleration avoids rapid escape of the dissolved carbon dioxide and consequent splashing at the tap exit.
The above described device and corresponding carbonating process permits to achieve a high level of carbonation, i.e. at least 5 gr/liter and even of 8 gr/liter, with a device of simple construction. The device can achieve this carbonation level at room temperature, i.e. without cooling system.
Number | Date | Country | Kind |
---|---|---|---|
LU92380 | Feb 2014 | LU | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/053358 | 2/18/2015 | WO | 00 |