The disclosed embodiments relate to dielectrically-resistant system having an in-situ foam core and method of manufacturing of same.
Manufacturers of aerial tower equipment attempt to insulate workers engaged with high-voltage electrical transmission lines from electrical arcs attempting to reach ground. At present, dielectrically-resistant fiberglass buckets provide structural strength to a dielectrically-resistant system, but need to be coupled with a sacrificial thermoplastic liner which has better dielectric resistance properties. Having two structures, the fiberglass bucket and the sacrificial thermoplastic liner is expensive.
In at least one embodiment, a dielectrically-resistant system includes a first component of a first plastic shell having opposed and spaced apart walls, defining a first cavity. The first plastic shell includes a first rib. Disposed within the first cavity is a first in-situ foam core including expanded polymer beads. The first in-situ foam core has a thermal bond with the first plastic shell. A second plastic shell and in-situ foam core component essentially mirroring the first component is connected to the first component by a connection. The dielectrically-resistant system is capable of resisting an electric potential difference of at least 50 kV.
In another embodiment, a dielectrically-resistant system includes a first component of a first plastic shell having opposed and spaced apart walls, defining a first cavity. Disposed within the first cavity is a first in-situ foam core including expanded polymer beads. The first in-situ foam core has a thermal bond with the first plastic shell. A second plastic shell and in-situ foam core component essentially mirroring the first component is connected to the first component by a connection. The dielectrically-resistant system is capable of supporting 3500 lbs.
In yet another embodiment, a dielectrically-resistant system includes a first component of a first shell having opposed and spaced apart walls, defining a first cavity. The first shell has a composition of at least one of a polyolefin polymer, a vinyl resin polymer, or a polystyrene polymer. The first shell has a rib and a step. Disposed within the first cavity is a first in-situ foam core including expanded polymer beads. The expanded polymer beads composition is capable of being recyclable with the first shell composition. A component having a second plastic shell and a second in-situ foam core is connected to the first component by a connection. The dielectrically-resistant system is capable of passing ANSI 92.2 specifications.
Except where expressly indicated, all numerical quantities seen the descriptions in claims, indicated amounts of material or conditions of reaction and/or use are to be understood as modified by the word “about” in describing the broadest scope of the present invention. Practice within the numerical limits stated should be desired and independently embodied. Ranges of numerical limits may be independently selected from data provided in the tables and description. The description of the group or class of materials as suitable for the purpose in connection with the present invention implies that the mixtures of any two or more of the members of the group or classes are suitable. The description of constituents in chemical terms refers to the constituents at the time of addition to any combination specified in the description and does not necessarily preclude chemical interaction among constituents of the mixture once mixed. The first definition of an acronym or other abbreviation applies to all subsequent uses herein of the same abbreviation and applies mutatis mutandis to normal grammatical variations of the initially defined abbreviation. Unless expressly stated to the contrary, measurement of a property is determined by the same techniques previously or later referenced for the same property. Also, unless expressly stated to the contrary, percentage, “parts of,” and ratio values are by weight, and the term “polymer” includes “oligomer,” “co-polymer,” “terpolymer,” “pre-polymer,” and the like.
It is also to be understood that the invention is not limited to specific embodiments and methods described below, as specific composite components and/or conditions to make, of course, vary. Furthermore, the terminology used herein is used only for the purpose of describing particular embodiments of the present invention and is not intended to be limiting in any way.
It must also be noted that, as used in the specification and the pending claims, the singular form “a,” “an,” and “the,” comprise plural reference unless the context clearly indicates otherwise. For example, the reference to a component in the singular is intended to comprise a plurality of components.
Throughout this application, where publications are referenced, the disclosure of these publications in their entirety are hereby incorporated by reference into this application to more fully describe the state-of-art to which the invention pertains.
In at least one embodiment, wall 14 thickness may range from 0.02 inches to 0.5 inches. In another embodiment, wall 14 thickness may range from 0.125 inches to 0.25 inches.
In at least one embodiment, in-situ foam core 16 thickness may range from 0.15 inches to 6 inches. In another embodiment, in-situ foam core 16 thickness may range from 0.2 inches to 4 inches. In another embodiment, in-situ foam core 16 thickness may range from 0.5 inches to 1 inch.
In at least one embodiment dielectrically-resistant bucket 10 supports greater than 3500 lbs. In another embodiment, dielectrically-resistant bucket 10 supports greater than 6500 lbs. In yet another embodiment dielectrically-resistant bucket 10 supports greater than 8000 lbs.
Wall 14 in at least one embodiment, is formed of a composition of any moldable composition. Non-limiting examples of the composition include, but not limited to, a liquid silicone rubber, a synthetic rubber, a natural rubber, a liquid crystal polymer, a synthetic polymer resin, and a natural polymer resin. In another embodiment, wall 14 is a formed of a composition of a thermoplastic polymer, a thermoset polymer, or blends thereof having a viscosity ranging from 0.1 grams/10 min to 40 grams/10 min. The viscosity is measured according to ASTM D-1238 at 190° C. with a 2.16 kg weight. In yet another embodiment, wall 14 is formed of a composition of a polyolefin including polypropylene and polyethylene having a viscosity ranging from 1 grams/10 min to 30 grams/10 min.
Dielectrically-resistant bucket component 12, in at least one embodiment, may comprise a plurality of walls 14, such as an inner wall and an outer wall, the plurality of walls being joined at a joint by methods known in the art.
In-situ foam core 16, in at least one embodiment, is formed of a composition of any fluid-expandable material. Examples of fluid-expandable material include, but are not limited to, a polyolefin polymer composition, a biopolymer expandable bead, an alkenyl aromatic polymer or copolymer, a vinyl aromatic polymer resin composition, and a polystyrene polymer composition. In at least one embodiment, the polyolefin polymer composition includes polyolefin homopolymers, such as low-density, medium-density, and high-density polyethylenes, isotactic polypropylene, and polybutylene-1, and copolymers of ethylene or polypropylene with other: polymerized bull monomers such as ethylene-propylene copolymer, and ethylene-vinyl acetate copolymer, and ethylene-acrylic acid copolymer, and ethylene-ethyl acrylate copolymer, and ethylene-vinyl chloride copolymer. These polyolefin resins may be used alone or in combination. Preferably, expanded polyethylene (EPE) particles, cross-linked expanded polyethylene (xEPE) particles, polyphenyloxide (PPO) particles, biomaterial particles, such as polylactic acid (PLA), and polystyrene particles are used. In at least one embodiment, the polyolefin polymer is a homopolymer providing increased strength relative to a copolymer. It is also understood that some of the particles may be unexpanded, also known as pre-puff, partially and/or wholly pre-expanded without exceeding the scope or spirit of the contemplated embodiments.
Pre-expanded beads, in at least one embodiment, are the resultant bead after raw bead has undergone a first expansion step of a two-step expansion process for beads. During the first expansion step, raw bead is expanded to 2% to 95% of the fully expanded bead size. The fully expanded bead is the bead that forms in-situ foam core. In another embodiment, pre-expanded bead is result of the first expansion step where raw bead is expanded from 25% to 90% of the fully-expanded bead size.
A fluid for the second expansion step of the two-step expansion process for beads causes the pre-expanded beads to expand completely to form the fully expanded beads. Examples of the fluid include, but are not limited to, steam and superheated steam.
Polyolefin beads and methods of manufacture of pre-expanded polyolefin beads suitable for making the illustrated embodiments are described in Japanese patents JP60090744, JP59210954, JP59155443, JP58213028, and U.S. Pat. No. 4,840,973 all of which are incorporated herein by reference. Non-limiting examples of expanded polyolefins are ARPLANK® and ARPRO® available from JSP, Inc. (Madison Heights, Mich.). The expanded polypropylene, such as the JSP ARPRO™ EPP, has no external wall.
In at least one embodiment, dielectrically-resistant bucket 10 weight ranges from 35 to 220 lbs. In another embodiment, dielectrically-resistant bucket 10 weight ranges from 60 lbs. to 180 lbs. In yet another embodiment, dielectrically-resistant bucket 10 weight ranges from 80 lbs. to 160 lbs.
In at least one embodiment, in-situ foam core 16 density, after expansion by steam ranges from 1 lb/ft3 to 25 lbs/ft3. In at least one embodiment, in-situ foam core 16 density ranges from 1.5 lbs/ft3 to 15 lbs/ft3. In at least one embodiment, in-situ foam core 16 density ranges from 2 lbs/ft3 to 9 lbs/ft3. In at least one embodiment, in-situ foam core 16 density ranges from 3 lbs/ft3 to 6 lbs/ft3.
In at least one embodiment, wall 14 with a range of 0.025 inch thickness to 0.1 inch thickness is comprised of a metallocene polypropylene. Such a combination is found to improve adhesion between wall 14 and in-situ foam core from 16 formed of EPP.
In at least one embodiment, dielectrically-resistant bucket 10 passes ANSI A92.2 testing for dielectric resistance at greater than 50 kV when in-situ foam core 16 thickness ranges from 1.2 inches to 2 inches at a density range from 1.5 lbs/ft3 to 5 lbs/ft3.
Dielectrically-resistant bucket 10, in at least one embodiment, passes ANSI A92.2 testing for resistance to arcing at a range of 50 kV to 70 kV when in-situ foam core 16 thickness ranges from 1.2 inches to 2 inches at a density ranges from 1.5 lbs/ft3 to 5 lbs/ft3. The unitized dielectrically-resistant bucket 10 replaces, in many embodiments, the structural fiberglass bucket and the sacrificial plastic liners at a reduced cost. Wall 14, in certain embodiments is made thicker than 0.25″ so as to extend the useful life of the dielectrically-resistant bucket 10.
Turning now to
In at least one embodiment, at least one of cooperative regions 22 and 24 have an embossment in foam core 16 of dielectrically-resistant bucket component 12 that cooperates with at least one cooperative region 22 and 24 having a protrusion in-situ foam core 16.
In at least one embodiment, the cooperative region includes the dielectrically-resistant adhesive comprising, but not limited to, a polyurethane composition, a methmethacrylate composition, a polyester composition, a vinyl ester composition, and an epoxy composition. In at least one embodiment, an inch-thick layer of dielectrically-resistant adhesive resists an electrical potential difference greater than 50 kV.
In another embodiment, an interlocking metal fastener is embedded in wall 14 and/or in-situ foam core 16. The metal fastener interlocks with a mating portion positioned on the mirror image unit, in one embodiment. The metal fastener has dielectrically-resistant material disposed between the metal fastener and the dielectrically-resistant bucket 12 interior.
In another embodiment, one or more metal bands 17 wrap around dielectrically-resistant bucket 10 fastening the mirror image dielectrically-resistant bucket components 12 together.
In yet another embodiment, one or more connections may secure at least one of a pair of ribs 18 and/or steps 20 together. In at least one embodiment, the connector is a fiberglass or an aramid plate fastened with metal fasteners or adhesive. In another embodiment, the connector is a least one of a metal plate and/or a metal compressive force application connector.
The steps of
In
In
The steps of
Turning now to
In
In
The heating mechanism, such as steam, is supplied in
wherein D1 is the minimum distance in inches between steam pins 428 and D2 is the maximum distance in inches between steam pins 428, ABD is an average app-arent bulk density of unexpanded and/or partially expanded polymer particles suitable for comprising in-situ foam core 468.
In at least one embodiment, the average apparent bulk density of the pre-expanded beads 426 ranges from 0.15 lbs/ft3 to 4 lbs/ft3. In another embodiment, the average apparent bulk density of the pre-expanded beads 426 ranges from 0.2 lbs/ft3 to 2 lbs/ft3.
In at least one embodiment, steam pin 428 may include a plurality of apertures along the steam pin 428 shaft, thereby distributing steam at a plurality of locations along the shaft. In another embodiment, steam pin 428 may include a plurality of concentric shafts capable of telescoping out in and retracting in, thereby distributing steam at a plurality of locations along the path of the shafts. In yet another embodiment, steam pin 428 includes a plurality concentric shafts, as above, with each shaft section having a plurality of apertures along the shaft section.
In
In
In
EPP introduction device (not shown) is withdrawn from apertures 570, 572, and 574. The apertures 570, 572, and 574 are plugged. Steam injection needles 576, 278, 580, 582 are inserted through blow mold section 542 and shell 562 into the filled cavity 564.
In
It should be understood that other embodiments may use a heating medium other than steam without exceeding the scope of contemplated embodiments. It is further understood that the expanded polyolefin may be formed using a heating medium in cooperation with a blowing agent, such as pentane.
At least one embodiment illustrated in
Referring now to
In step 736, a second mold portion having a second mold surface and second flange adjacent to the second mold surface is provided. In step 738, a second thermoplastic sheet is secured on to the second flange. In step 740, the second thermoplastic sheet is thermoformed to be adjacent to the second mold surface to form a second thermoformed thermoplastic skin.
The first and second thermoformed thermoplastic skins are connected along the first and second flange in step 742, closing the mold. Portions of the first and second skins are spaced apart defining a cavity. In step 744, unexpanded polymer particles are introduced into the cavity. In step 746, steam is introduced into the cavity. The unexpanded polymer particles expand to form expanded polymer particles in step 748. After the polymer particles cease substantially to expand, the first and second mold portions are opened. In step 752, the thermoformed structural plastic article is removed from the mold portions.
It is understood that unexpanded polymer particles may include partially expanded polymer particles. It is also understood that the polymer particles may cease substantially to expand when the pressure in the mold in certain embodiments is 0.5 lbf/in2 or less. In other embodiments, the pressure in the mold when the polymer particles may cease to expand substantially, may range from 0.1 lbf/in2 to 1 lbf/in2.
In
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.
This application claims the benefit of U.S. provisional Application No. 61/617,046 filed Mar. 29, 2012, the disclosure of which is incorporated in its entirety by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1588778 | Sorensen | Jun 1926 | A |
3062337 | Zittle | Nov 1962 | A |
3111787 | Chamberlain | Nov 1963 | A |
3468097 | Mack | Sep 1969 | A |
3598312 | Hamilton | Aug 1971 | A |
3745998 | Rose | Jul 1973 | A |
3813040 | Heinemeyer | May 1974 | A |
4651494 | Van Wagoner | Mar 1987 | A |
4680909 | Stewart | Jul 1987 | A |
4840973 | Kuwabara et al. | Jun 1989 | A |
5018329 | Hasan et al. | May 1991 | A |
5055350 | Neefe | Oct 1991 | A |
5366674 | Hattori et al. | Nov 1994 | A |
5665285 | Hattori et al. | Sep 1997 | A |
5713518 | Fox et al. | Feb 1998 | A |
5776342 | Hiranaga | Jul 1998 | A |
5866224 | Ang et al. | Feb 1999 | A |
6179215 | Shea | Jan 2001 | B1 |
6230981 | Hill et al. | May 2001 | B1 |
6375892 | Thomas | Apr 2002 | B2 |
6605343 | Motoi et al. | Aug 2003 | B1 |
6931809 | Brown et al. | Aug 2005 | B1 |
7219479 | Durning et al. | May 2007 | B2 |
7358280 | Berghmans et al. | Apr 2008 | B2 |
7748496 | Higgins et al. | Jul 2010 | B2 |
7931210 | Pike et al. | Apr 2011 | B1 |
7950592 | Yuan | May 2011 | B2 |
20020124531 | Mossbeck et al. | Sep 2002 | A1 |
20030224675 | Yeh | Dec 2003 | A1 |
20040176001 | Yeh | Sep 2004 | A1 |
20040232254 | Kowalski | Nov 2004 | A1 |
20050001048 | Skoblenick et al. | Jan 2005 | A1 |
20050101201 | Yeh | May 2005 | A1 |
20050188637 | Yeh | Sep 2005 | A1 |
20050215138 | Yeh | Sep 2005 | A1 |
20050272323 | Yeh | Dec 2005 | A1 |
20060030467 | Mellott | Feb 2006 | A1 |
20060105650 | Yeh | May 2006 | A1 |
20060110993 | Yeh | May 2006 | A1 |
20060131437 | Thiagarajan et al. | Jun 2006 | A1 |
20060134401 | Yeh | Jun 2006 | A1 |
20060223897 | Sasaki | Oct 2006 | A1 |
20070015421 | Yeh | Jan 2007 | A1 |
20070040293 | Lane et al. | Feb 2007 | A1 |
20070160798 | Yeh | Jul 2007 | A1 |
20080081153 | Yeh | Apr 2008 | A1 |
20080083835 | Girardi et al. | Apr 2008 | A1 |
20080125502 | Reichman et al. | May 2008 | A1 |
20080142611 | Scobie | Jun 2008 | A1 |
20080166539 | Yeh | Jul 2008 | A1 |
20080242169 | Yeh | Oct 2008 | A1 |
20080305304 | Yeh | Dec 2008 | A1 |
20100028654 | Takase et al. | Feb 2010 | A1 |
20120102884 | Roberts, Jr. | May 2012 | A1 |
20120104110 | Roberts, Jr. | May 2012 | A1 |
Number | Date | Country |
---|---|---|
58213028 | Dec 1983 | JP |
59155443 | Sep 1984 | JP |
59210954 | Nov 1984 | JP |
60090744 | May 1985 | JP |
Entry |
---|
Website www.jsp.com, 2006, “Arplank, Expanded bead foam packaging materials, Material Properties, Auto/Mil Specs.” 21 Pages. |
Website, Manning, www.mmh.com Oct. 2008, Retrived on Jan. 4, 2011, “Modern Materials Handling, Choosing Plastic.” 2 Pages. |
Website, Specter, www.mmh.com Sep. 2009, “Modern Materials Handling, The Rise of the Plastic Pallet.” 4 Pages. |
Number | Date | Country | |
---|---|---|---|
20130256024 A1 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
61617046 | Mar 2012 | US |