In situ oxide removal, dispersal and drying

Information

  • Patent Grant
  • 9119309
  • Patent Number
    9,119,309
  • Date Filed
    Monday, December 6, 2010
    14 years ago
  • Date Issued
    Tuesday, August 25, 2015
    9 years ago
  • Inventors
    • Lehman; Stephen Edward (Spartanburg, SC, US)
  • Original Assignees
  • Examiners
    • Deo; Duy
    • Dahimene; Mahmoud
    Agents
    • Morrison & Foerster LLP
Abstract
A method of removing oxide from metallic powder. The method comprises: providing a powder defined by a plurality of particles, each particle in the plurality of particles having a metallic core and an oxide layer surrounding the metallic core; etching the plurality of particles, wherein the oxide layer is removed from each particle in the plurality of particles, leaving only the metallic core; coating each particle in the etched plurality of particles with an organic layer; dispersing the etched plurality of particles; and providing the powder as dispersed particles that are absent an oxide layer surrounding the metallic core, each metallic core being coated with an organic layer. The steps of etching, coating and dispersing are performed in situ with the plurality of particles disposed in liquid, absent any exposure of the metallic cores to air.
Description
FIELD OF THE INVENTION

The present invention relates generally to the field of powder material production. More specifically, the present invention relates to a process for removing oxide from produced metallic powders.


BACKGROUND OF THE INVENTION

This disclosure refers to both particles and powders. These two terms are equivalent, except for the caveat that a singular “powder” refers to a collection of particles. The present invention may apply to a wide variety of powders and particles. Powders that fall within the scope of the present invention may include, but are not limited to, any of the following: (a) nano-structured powders (nano-powders), having an average grain size less than 250 nanometers and an aspect ratio between one and one million; (b) submicron powders, having an average grain size less than 1 micron and an aspect ratio between one and one million; (c) ultra-fine powders, having an average grain size less than 100 microns and an aspect ratio between one and one million; and (d) fine powders, having an average grain size less than 500 microns and an aspect ratio between one and one million.


Powders are used in a wide variety of applications. Currently, metallic powders (particles having a core that is either a pure metal or a metal alloy) are offered having an oxide shell. FIG. 1 is a cross-sectional side view of a metallic particle 100 having a metal, or metal alloy, core 102 covered by an oxide layer 104. As seen in FIG. 1, the oxide layer 104 can be quite thick, accounting for approximately 60% (sometimes more) of the entire size of the particle 100. This substantial oxide shell may be useful in certain applications. However, in other situations, it may be undesirable to have such a significant oxide presence.


SDC Materials, LLC has developed an in situ process that employs the use of flowing plasma and a vacuum system in order to produce particles having a reduced oxide layer. FIG. 2 is a cross-sectional side view of a metallic particle 200 resulting from such a process. The particle 200 has a metal, or metal alloy, core 202 covered by an oxide shell 204. As can be seen by comparing FIG. 2 to FIG. 1, the thickness of oxide layer 204 for particle 200 is significantly reduced from the thickness of oxide layer 104 for particle 100. Using this process, the thickness of the oxide layer can be reduced to less than 10% of the entire particle thickness. While providing a considerable improvement over the particle of FIG. 1, this process still does not achieve complete oxide removal from the particle. As a result, this nano-particle 200 may still prove to be undesirable for certain applications.


Currently, there is no way to create metallic particles having no oxygen. Even the best vacuum system has oxygen in it. As a result, the end product might not be sufficient for those who want oxide-free metallic powder.


What is needed in the art is a method for producing metallic powders that do not contain any oxygen.


SUMMARY OF THE INVENTION

The present invention provides a process for producing metallic powders that do not contain any oxygen. FIG. 3 is a cross-sectional side view of a powder particle 300 that is produced using the process of the present invention. Particle 300 comprises a metal, or metal alloy, core 302, and is characterized by the absence of an oxide shell, in contrast to the particles of FIGS. 1 and 2.


In one embodiment, the process of the present invention comprises providing a powder defined by a plurality of particles. Each particle in the plurality of particles has a metallic core and an oxide layer surrounding the metallic core. The plurality of particles are then etched. This etching serves to remove the oxide layer from each particle in the plurality of particles, leaving only the metallic core. In this fashion, bare metallic powder has been provided free of any oxide.


Additional steps may then be taken to prepare the powder for its eventual application. Each particle in the etched plurality of particles can be coated with an organic layer. The etched powder may also be dispersed using a dispersing solution.


The steps of etching, coating and dispersing are performed in situ with the plurality of particles disposed in liquid, absent any exposure of the metallic cores to air both during and in between these steps.


The final product may be provided as a dispersion of particles stored in a liquid. Alternatively, the final product may be provided as a dried and settled powder absent any liquid.


In another embodiment, a method for removing silicon-dioxide from silicon powder is provided. The method comprises providing a silicon powder defined by a plurality of particles. Each particle in the plurality of particles has a silicon core and a silicon dioxide layer surrounding the silicon core. The plurality of particles is dispersed in a dispersing solution, preferably methanol. An etching solution, preferably hydrofluoric acid, is added to the dispersing solution. The etching solution removes the silicon dioxide layer from each particle.


An organic solvent, such as cyclohexane or toluene, is then added to the mixture of the dispersing solution and the etching solution. The addition of the organic solvent produces an organic phase and an aqueous phase. The organic phase comprises substantially all of the silicon cores and substantially all of the organic solvent, and the aqueous phase comprises substantially all of the dispersing solution, substantially all of the etching solution, and substantially all of the by-products resulting from the silicon dioxide removal. Each silicon core in the plurality of particles is then coated with an organic material from the organic solvent. The aqueous phase is drained out and the organic phase is washed, removing substantially all of the remaining aqueous phase material from the organic phase. The silicon powder can then be provided as a plurality of silicon cores that are absent a silicon dioxide layer surrounding each silicon core, with each silicon core having an organic coating. The steps of dispersing, adding an etching solution, adding an organic solvent, coating, draining, and washing are performed in situ with the plurality of particles disposed in liquid, absent any exposure of the silicon cores to air.


In yet another embodiment, a method for removing copper-oxide from copper powder is provided. The method comprises providing a copper powder defined by a plurality of particles, with each particle in the plurality of particles having a copper core and a copper-oxide layer surrounding the copper core. The plurality of particles are disposed in an etching solution in a container. The etching solution, preferably comprising acetic acid and water, removes the copper-oxide layer from each particle. The etching solution and the by-products resulting from the copper-oxide removal are then decanted, and the plurality of particles are washed, removing substantially all of the remaining etching solution and substantially all of the by-products from the container holding the plurality of particles.


The washed plurality of particles is disposed in an organic solvent, preferably comprising tetraethylene glycol and water. Each copper core in the plurality of particles is then coated with an organic material from the organic solvent, and the plurality of particles is dispersed in the organic solvent. The copper powder may then be provided as a plurality of dispersed copper cores that are absent a copper-oxide layer surrounding each copper core, with each copper core having an organic coating. The steps of dispersing in the etching solution, decanting, washing, disposing in the organic solvent, coating, and dispersing are performed in situ with the plurality of particles disposed in liquid, absent any exposure of the copper cores to air.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional side view of a powder particle having an oxide shell.



FIG. 2 is a cross-sectional side view of a powder particle having a reduced oxide shell.



FIG. 3 is a cross-sectional side view of a powder particle having no oxide shell in accordance with the principles of the present invention.



FIG. 4 is a flowchart illustrating one embodiment of a general work flow in accordance with the present invention.



FIGS. 5A-F illustrate exemplary embodiments of the different powder states during the general work flow in accordance with the present invention.



FIG. 6 is a flowchart illustrating one embodiment of a work flow for silicon powder in accordance with the present invention.



FIGS. 7A-F illustrate exemplary embodiments of the different powder states during the silicon powder work flow in accordance with the present invention.



FIG. 8 is a flowchart illustrating one embodiment of a work flow for copper powder in accordance with the present invention.



FIGS. 9A-H illustrate exemplary embodiments of the different powder states during the copper powder work flow in accordance with the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the described embodiments will be readily apparent to those skilled in the art and the generic principles herein may be applied to other embodiments. Thus, the present invention is not intended to be limited to the embodiment shown but is to be accorded the widest scope consistent with the principles and features described herein.



FIG. 4 is a flowchart illustrating one embodiment of a general work flow 400 in accordance with the principles of the present invention. At step 402, a powder is provided in the form of a plurality of particles having a metallic core and an oxide layer surrounding the metallic core. As previously mentioned, this metallic core may be a pure metal or a metal alloy. The powder is preferably provided in a dry state. FIG. 5A illustrates one embodiment of the powder 500 being provided in a container as a plurality of particles having a metallic core 502 and an oxide layer 504. Typically, the dry powder 500 is settled at the bottom of the container as shown. It is to be understood that FIGS. 5A-F are only provided to illustrate the general principles of the present invention and should not be used to limit the scope of the claims with respect to details such as size, shape and quantity.


At step 404, the particles are then etched in situ. This etching serves to remove the oxide layer from each particle in the plurality of particles, leaving only the metallic core. Preferably, each one of the plurality of particles retains substantially all of its metallic core. In this fashion, a metallic powder has been produced free of any oxide. In a preferred embodiment, the etching is achieved by disposing the powder in an etching solution. FIG. 5B illustrates one embodiment of an etching solution 506 being introduced into the container and interacting with the oxide layer 504 of each particle. The powder 500 can be stirred in the etching solution 506 in order to assist with this interaction. The application of the etching solution 506 may cause the particles to become slightly suspended for a period of time before settling. FIG. 5C illustrates one embodiment of the resulting removal of the oxide layer 504 from the metallic core 502 of each particle.


The powder may then go through an in situ coating/dispersion process at step 406 in order to prepare it for its eventual application. The coating process involves coating each particle that has been etched with an organic layer. This coating may be achieved by disposing the etched powder in an organic solvent. The dispersion process involves dispersing the plurality of etched particles. This dispersion may be achieved by disposing the etched powder in a dispersing solution. While the coating and dispersing processes are grouped together at step 406, they do not necessarily need to occur at the same time. The coating may be performed prior to the dispersing, and likewise, the dispersing may be performed prior to the coating. Furthermore, the existence of one does not necessarily depend on the existence of the other. In fact, the achievement of an oxide-free metallic powder may be achieved in the absence of either or both of these operations. However, in a preferred embodiment, the powder is both coated and dispersed in order to attain optimum stability and preparation. FIG. 5D illustrates one embodiment of a coating and dispersing solution 508 being introduced into the container and interacting with each particle. As a result, the powder is dispersed, and each metallic core 502 becomes coated with an organic material 510, as seen in FIG. 5E.


At step 408, the powder may be provided as a dispersion of particles, with each particle having a metallic core and no oxide shell. Preferably, the powder is maintained as a dispersion in a storage liquid, with each particle having an organic coating surrounding its metallic core. This storage liquid may simply be the coating/dispersing solution or may be some other type of liquid appropriate for storing the powder.


For certain applications, such as sintering, it may not be desirable to provide the powder in a liquid. Instead, circumstances may dictate that the powder be provided in a dry state. In these situations, the oxide-free particles can be dried in situ at step 410. The powder may then be provided at step 412 as dried particles, each having a metallic core, preferably surrounded by an organic coating, and no oxide shell, as seen in FIG. 5F. In the example of sintering, the dried powder may then be placed in a Spark-Plasma Sintering (SPS) machine having a reducing atmosphere. The reducing atmosphere matches the organic layer and serves to reduce the organic layer by burning it off, leaving a pure metallic core and a gas by-product. The metallic cores are then fused together, resulting in an ultra-pure block of metal having nano-properties.


The present invention may be used for a wide variety of metallic powders. Such powders may include, but are not limited to, silicon and copper.



FIG. 6 is a flowchart illustrating one embodiment of a work flow 600 for removing the oxide layer from silicon powder in accordance with the present invention. At step 602, the powder is provided as-produced, with each particle having a silicon core and a silicon-dioxide shell layer. This silicon core may be pure silicon or a silicon alloy. The powder is preferably provided in a dry state. FIG. 7A illustrates one embodiment of the powder 700 being provided in a container as a plurality of particles having a silicon core 702 and a silicon-dioxide shell 704. Typically, the dry powder 700 is settled at the bottom of the container as shown. It is to be understood that FIGS. 7A-F are only provided to illustrate the general principles of the present invention and should not be used to limit the scope of the claims with respect to details such as size, shape and quantity.


At step 604, methanol 706a is added to the container and then stirred in order get a dispersion of particles, as seen in FIG. 7B.


At step 606, a hydrogen fluoride (HF) solution (i.e., hydrofluoric acid) is added to the container in order to remove the oxide. As seen in FIG. 7C, the result is a plurality of silicon cores 702 dispersed in a mixture 706b of water, HF and methanol. In a preferred embodiment, the solution contains approximately 10% HF and is applied to the particles for between approximately 1 to 5 minutes at about room temperature. However, it is contemplated that the HF concentration, time applied and environment temperature may vary according to the particular circumstances in which the present invention is being employed.


At step 608, an organic solvent is added to the container. Such organic solvents may include, but are not limited to, cyclohexane and toluene. As seen in FIG. 7D, the addition of the organic solvent produces an organic phase 708, having the organic solvent, on top of an aqueous phase 709, having the silicon cores 702 dispersed in the HF/water/methanol mixture, with a sharp interface in between the two phases. Due to their hydrophobic properties, the silicon cores 702 then diffuse up into the organic phase 708, as seen in FIG. 7E, leaving the HF/water/methanol mixture and any etching products in the aqueous phase 709.


At step 610, the aqueous phase 709 is drained out of the container, taking most, if not all, of the HF/water/methanol mixture and etching products with it, and leaving behind the organic phase 708 with the silicon cores 702 each coated with an organic layer 710, as seen in FIG. 7F.


At step 612, the organic phase 708 may be washed with water in order to remove residual HF and any other undesirable polar material. This washing step may be repeated as many times as necessary in order to achieve optimum residue removal. However, in a preferred embodiment, the organic phase is washed twice with water.


At this point, the process may take two separate paths, either drying the particles at step 614a or dispersing the particles at step 614b.


At step 614a, the organic phase is dried down to only the powder in the container. The particles are then immediately stored in a storage liquid at step 616a, where they may be re-dispersed. The storage liquid is either in the polar-organic range, such as tetraethylene glycol or other glycol solvents, or the hydrophobic range. This path allows the powder to be used in water-based applications at step 618 and/or organic coating applications at step 620.


At step 614b, a dispersant is added to the washed organic phase, thereby dispersing the particles. The dispersant may then be used as a storage liquid at step 616b. This path allows the powder to be used in organic coating applications at step 620.



FIG. 8 is a flowchart illustrating one embodiment of a work flow 800 for removing the oxide layer from copper powder in accordance with the present invention. At step 802, the powder is provided as produced, with each particle having a copper core and a copper-oxide shell layer. This copper core may be pure copper or a copper alloy. The powder is black and is preferably provided in a dry state. FIG. 9A illustrates one embodiment of the powder 900 being provided in a container as a plurality of particles having a copper core 902 and a copper-oxide shell 904. Typically, the dry powder 900 is settled at the bottom of the container as shown. It is to be understood that FIGS. 9A-H are only provided to illustrate the general principles of the present invention and should not be used to limit the scope of the claims with respect to details such as size, shape and quantity.


At step 804, the powder is treated with acetic acid in water. The mixture of acetic acid and water forms an etching solution that is used to remove the oxide layer 904 from the copper core 902. In a preferred embodiment, the solution contains approximately 0.1% to 1% acetic acid. However, it is contemplated that a variety of different concentrations may be employed. FIG. 9B illustrates one embodiment of the acetic acid solution 906 being introduced into the container and interacting with the oxide layer 904 of each particle. The application of the solution 906 may cause the particles to become slightly suspended for a period of time before settling at the bottom of the container. FIG. 9C illustrates one embodiment of the resulting removal of the oxide layer 904 from the copper core 902 of each particle. The etching products (removed copper-oxide, etc.) rise to the upper portion of the mixture, while the resulting copper-colored powder resides on the bottom, typically in a non-dispersed arrangement.


At step 806, one or more decantations is performed in order to remove a majority, if not all, of the etching solution and products. As seen in FIG. 9D, any remaining etching solution 906 and/or etching products is minimal.


At step 808, the powder may then be washed with water 907, as seen in FIG. 9E, in order to remove any remaining etching solution or etching products. This washing step may be repeated as many times as necessary in order to achieve optimum residue removal. However, in a preferred embodiment, the powder is washed twice. Preferably, a minimal amount of the washing water 907 is left in the container, as seen in FIG. 9F.


At step 810, the powder is treated with a tetraethylene glycol (or some other glycol solvent) and water solution 908, as seen in FIG. 9G. The interaction of this solution 908 with the copper cores 902 forms a dispersion of copper cores 902 each having an organic coating 910, as seen in FIG. 9H.


At step 812, the resulting copper particles may be stored in the glycol solvent and water solution. This powder can maintain the same copper coloring for weeks without any discoloration.


The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of principles of construction and operation of the invention. Such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be readily apparent to one skilled in the art that other various modifications may be made in the embodiment chosen for illustration without departing from the spirit and scope of the invention as defined by the claims.

Claims
  • 1. A method of removing oxide from metallic powder, the method comprising: providing a powder defined by a plurality of particles, wherein the particles comprise a metallic core and an oxide layer surrounding the metallic core;etching the plurality of particles in an etching solution, wherein the oxide layer is removed from the particles, leaving the metallic core;decanting the etching solution;after decanting the etching solution, disposing the plurality of particles in an organic solvent;directly coating the surface of the particles in the etched plurality of particles with an organic layer;dispersing the etched plurality of particles; andproviding the powder as dispersed particles that are absent an oxide layer surrounding the metallic core, wherein the metallic cores comprise an organic layer,wherein the etching, coating and dispersing are performed in situ with the plurality of particles disposed in liquid, absent any exposure of the metallic cores to air.
  • 2. The method of claim 1, wherein the step of providing the powder comprises providing the powder in a dry state.
  • 3. The method of claim 1, wherein the step of etching further comprises disposing the plurality of particles in an etching solution.
  • 4. The method of claim 1, wherein the step of etching further comprises the particles retaining substantially all of the metallic core.
  • 5. The method of claim 1, wherein the step of dispersing further comprises disposing the plurality of particles in a dispersing solution.
  • 6. The method of claim 1, further comprising the steps of: drying the etched and coated plurality of particles; andproviding the powder as a plurality of dry particles that are absent an oxide layer surrounding the metallic core.
  • 7. The method of claim 1, wherein the metallic core is selected from the group consisting of a pure metal and a metal alloy.
  • 8. The method of claim 1, wherein the metallic core is copper and the oxide layer is copper oxide.
  • 9. The method of claim 1, wherein the powder is a nano-powder having an average grain size less than 250 nanometers.
  • 10. The method of claim 1, wherein the powder is a submicron powder having an average grain size less than 1 micron.
  • 11. The method of claim 1, wherein the powder is ultra-fine powder having an average grain size less than 100 microns.
  • 12. The method of claim 1, wherein the powder is fine powder having an average grain size less than 500 microns.
  • 13. The method of claim 1, further comprising washing the etched plurality of particles before disposing the plurality of particles in an organic solvent.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application Ser. No. 61/284,329, filed Dec. 15, 2009 and entitled “MATERIALS PROCESSING,” which is hereby incorporated herein by reference in its entirety as if set forth herein.

US Referenced Citations (236)
Number Name Date Kind
2284554 Beyerstedy May 1942 A
2419042 Todd Apr 1947 A
2519531 Worn Aug 1950 A
2562753 Trost Jul 1951 A
2689780 Rice Sep 1954 A
3001402 Koblin Sep 1961 A
3067025 Chisholm Dec 1962 A
3145287 Siebein et al. Aug 1964 A
3178121 Wallace, Jr. Apr 1965 A
3179782 Matvay Apr 1965 A
3313908 Unger et al. Apr 1967 A
3401465 Larwill Sep 1968 A
3450926 Kieman Jun 1969 A
3457788 Nobuo Miyajima Jul 1969 A
3537513 Austin Nov 1970 A
3741001 Fletcher et al. Jun 1973 A
3752172 Cohen et al. Aug 1973 A
3774442 Gustavsson Nov 1973 A
3830756 Sanchez et al. Aug 1974 A
3892882 Guest et al. Jul 1975 A
3914573 Muehlberger Oct 1975 A
3959420 Geddes et al. May 1976 A
4008620 Narato et al. Feb 1977 A
4018388 Andrews Apr 1977 A
4139497 Castor et al. Feb 1979 A
4157316 Thompson et al. Jun 1979 A
4171288 Keith et al. Oct 1979 A
4174298 Antos Nov 1979 A
4248387 Andrews Feb 1981 A
4284609 deVries Aug 1981 A
4388274 Rourke et al. Jun 1983 A
4431750 McGinnis et al. Feb 1984 A
4436075 Campbell et al. Mar 1984 A
4505945 Dubust et al. Mar 1985 A
4513149 Gray et al. Apr 1985 A
4731517 Cheney Mar 1988 A
4764283 Ashbrook et al. Aug 1988 A
4824624 Palicka et al. Apr 1989 A
4855505 Koll Aug 1989 A
4866240 Webber Sep 1989 A
4885038 Anderson et al. Dec 1989 A
4983555 Roy et al. Jan 1991 A
4987033 Abkowitz et al. Jan 1991 A
5041713 Weidman Aug 1991 A
5043548 Whitney et al. Aug 1991 A
5070064 Hsu et al. Dec 1991 A
5073193 Chaklader et al. Dec 1991 A
5157007 Domesle et al. Oct 1992 A
5369241 Taylor et al. Nov 1994 A
5371049 Moffett et al. Dec 1994 A
5372629 Anderson et al. Dec 1994 A
5392797 Welch Feb 1995 A
5439865 Abe et al. Aug 1995 A
5442153 Marantz et al. Aug 1995 A
5460701 Parker et al. Oct 1995 A
5485941 Guyomard et al. Jan 1996 A
5534149 Birkenbeil et al. Jul 1996 A
5553507 Basch et al. Sep 1996 A
5611896 Swanepoel et al. Mar 1997 A
5630322 Heilmann et al. May 1997 A
5726414 Kitahashi et al. Mar 1998 A
5749938 Coombs May 1998 A
5776359 Schultz et al. Jul 1998 A
5788738 Pirzada et al. Aug 1998 A
5811187 Anderson et al. Sep 1998 A
5837959 Muehlberger et al. Nov 1998 A
5851507 Pirzada et al. Dec 1998 A
5853815 Muehlberger Dec 1998 A
5905000 Yadav et al. May 1999 A
5935293 Detering et al. Aug 1999 A
5989648 Phillips Nov 1999 A
5993967 Brotzman, Jr. et al. Nov 1999 A
5993988 Ohara et al. Nov 1999 A
6012647 Ruta et al. Jan 2000 A
6033781 Brotzman, Jr. et al. Mar 2000 A
6059853 Coombs May 2000 A
6102106 Manning et al. Aug 2000 A
6213049 Yang Apr 2001 B1
6214195 Yadav et al. Apr 2001 B1
6228904 Yadav et al. May 2001 B1
6254940 Pratsinis et al. Jul 2001 B1
6261484 Phillips et al. Jul 2001 B1
6267864 Yadav et al. Jul 2001 B1
6342465 Klein et al. Jan 2002 B1
6344271 Yadav et al. Feb 2002 B1
6379419 Celik et al. Apr 2002 B1
6387560 Yadav et al. May 2002 B1
6395214 Kear et al. May 2002 B1
6398843 Tarrant Jun 2002 B1
6409851 Sethuram et al. Jun 2002 B1
6413781 Geis et al. Jul 2002 B1
6416818 Aikens et al. Jul 2002 B1
RE37853 Detering et al. Sep 2002 E
6444009 Liu et al. Sep 2002 B1
6517800 Cheng et al. Feb 2003 B1
6524662 Jang et al. Feb 2003 B2
6531704 Yadav et al. Mar 2003 B2
6548445 Buysch et al. Apr 2003 B1
6554609 Yadav et al. Apr 2003 B2
6562495 Yadav et al. May 2003 B2
6569397 Yadav et al. May 2003 B1
6569518 Yadav et al. May 2003 B2
6572672 Yadav et al. Jun 2003 B2
6596187 Coll et al. Jul 2003 B2
6603038 Hagemeyer et al. Aug 2003 B1
6607821 Yadav et al. Aug 2003 B2
6610355 Yadav et al. Aug 2003 B2
6623559 Huang Sep 2003 B2
6635357 Moxson et al. Oct 2003 B2
6641775 Vigliotti et al. Nov 2003 B2
6652822 Phillips et al. Nov 2003 B2
6652967 Yadav et al. Nov 2003 B2
6669823 Sarkas et al. Dec 2003 B1
6682002 Kyotani Jan 2004 B2
6689192 Phillips et al. Feb 2004 B1
6699398 Kim Mar 2004 B1
6706097 Zornes Mar 2004 B2
6710207 Bogan, Jr. et al. Mar 2004 B2
6713176 Yadav et al. Mar 2004 B2
6716525 Yadav et al. Apr 2004 B1
6746791 Yadav et al. Jun 2004 B2
6772584 Chun et al. Aug 2004 B2
6786950 Yadav et al. Sep 2004 B2
6813931 Yadav et al. Nov 2004 B2
6817388 Tsangaris et al. Nov 2004 B2
6832735 Yadav et al. Dec 2004 B2
6838072 Kong et al. Jan 2005 B1
6855426 Yadav Feb 2005 B2
6855749 Yadav et al. Feb 2005 B1
6886545 Holm May 2005 B1
6896958 Cayton et al. May 2005 B1
6902699 Fritzemeier et al. Jun 2005 B2
6916872 Yadav et al. Jul 2005 B2
6919527 Boulos et al. Jul 2005 B2
6933331 Yadav et al. Aug 2005 B2
6986877 Takikawa et al. Jan 2006 B2
6994837 Boulos et al. Feb 2006 B2
7007872 Yadav et al. Mar 2006 B2
7022305 Drumm et al. Apr 2006 B2
7052777 Brotzman, Jr. et al. May 2006 B2
7073559 O'Larey et al. Jul 2006 B2
7081267 Yadav Jul 2006 B2
7101819 Rosenflanz et al. Sep 2006 B2
7147544 Rosenflanz Dec 2006 B2
7147894 Zhou et al. Dec 2006 B2
7166198 Van Der Walt et al. Jan 2007 B2
7166663 Cayton et al. Jan 2007 B2
7172649 Conrad et al. Feb 2007 B2
7172790 Koulik et al. Feb 2007 B2
7178747 Yadav et al. Feb 2007 B2
7208126 Musick et al. Apr 2007 B2
7211236 Stark et al. May 2007 B2
7217407 Zhang May 2007 B2
7220398 Sutorik et al. May 2007 B2
7307195 Polverejan et al. Dec 2007 B2
7323655 Kim Jan 2008 B2
7384447 Kodas et al. Jun 2008 B2
7417008 Richards et al. Aug 2008 B2
7494527 Jurewicz et al. Feb 2009 B2
7541012 Yeung et al. Jun 2009 B2
7572315 Boulos et al. Aug 2009 B2
7611686 Alekseeva et al. Nov 2009 B2
7615097 McKechnie et al. Nov 2009 B2
7622693 Foret Nov 2009 B2
7803210 Sekine et al. Sep 2010 B2
7955583 Tsuzukihashi et al. Jun 2011 B2
20010042802 Youds Nov 2001 A1
20020018815 Sievers et al. Feb 2002 A1
20020068026 Murrell et al. Jun 2002 A1
20020079620 DuBuis et al. Jun 2002 A1
20020102674 Anderson Aug 2002 A1
20020143417 Ito et al. Oct 2002 A1
20020182735 Kibby et al. Dec 2002 A1
20030036786 Duren et al. Feb 2003 A1
20030042232 Shimazu Mar 2003 A1
20030066800 Saim et al. Apr 2003 A1
20030108459 Wu et al. Jun 2003 A1
20030139288 Cai et al. Jul 2003 A1
20030172772 Sethuram et al. Sep 2003 A1
20030223546 McGregor et al. Dec 2003 A1
20040009118 Phillips et al. Jan 2004 A1
20040023302 Archibald et al. Feb 2004 A1
20040023453 Xu et al. Feb 2004 A1
20040077494 LaBarge et al. Apr 2004 A1
20040103751 Joseph et al. Jun 2004 A1
20040119064 Narayan et al. Jun 2004 A1
20040127586 Jin et al. Jul 2004 A1
20040167009 Kuntz et al. Aug 2004 A1
20040176246 Shirk et al. Sep 2004 A1
20040213998 Hearley et al. Oct 2004 A1
20040251017 Pillion et al. Dec 2004 A1
20050000321 O'Larey et al. Jan 2005 A1
20050000950 Schroder et al. Jan 2005 A1
20050077034 King Apr 2005 A1
20050097988 Kodas et al. May 2005 A1
20050199739 Kuroda et al. Sep 2005 A1
20050220695 Abatzoglou et al. Oct 2005 A1
20050233380 Persiri et al. Oct 2005 A1
20050240069 Polverejan et al. Oct 2005 A1
20050258766 Kim Nov 2005 A1
20060051505 Kortshagen et al. Mar 2006 A1
20060068989 Ninomiya et al. Mar 2006 A1
20060094595 Labarge May 2006 A1
20060105910 Zhou et al. May 2006 A1
20060108332 Belashchenko May 2006 A1
20060153728 Schoenung et al. Jul 2006 A1
20060153765 Pham-Huu et al. Jul 2006 A1
20060159596 De La Veaux et al. Jul 2006 A1
20060231525 Asakawa et al. Oct 2006 A1
20070048206 Hung et al. Mar 2007 A1
20070063364 Hsiao et al. Mar 2007 A1
20070084308 Nakamura et al. Apr 2007 A1
20070084834 Hanus et al. Apr 2007 A1
20070087934 Martens et al. Apr 2007 A1
20070173403 Koike et al. Jul 2007 A1
20070253874 Foret Nov 2007 A1
20070292321 Plischke et al. Dec 2007 A1
20080031806 Gavenonis et al. Feb 2008 A1
20080038578 Li Feb 2008 A1
20080064769 Sato et al. Mar 2008 A1
20080105083 Nakamura et al. May 2008 A1
20080116178 Weidman May 2008 A1
20080138651 Doi et al. Jun 2008 A1
20080206562 Stucky et al. Aug 2008 A1
20080207858 Kowaleski et al. Aug 2008 A1
20080274344 Vieth et al. Nov 2008 A1
20090010801 Murphy et al. Jan 2009 A1
20090088585 Schammel et al. Apr 2009 A1
20090114568 Trevino et al. May 2009 A1
20090162991 Beneyton et al. Jun 2009 A1
20090168506 Han et al. Jul 2009 A1
20090170242 Lin et al. Jul 2009 A1
20090181474 Nagai Jul 2009 A1
20090274903 Addiego Nov 2009 A1
20090286899 Hofmann et al. Nov 2009 A1
20120045383 Matheson et al. Feb 2012 A1
Foreign Referenced Citations (7)
Number Date Country
56-146804 Nov 1981 JP
7031873 Feb 1995 JP
493241 Mar 1976 SU
201023207 Jun 2010 TW
WO 02092503 Nov 2002 WO
WO 2004052778 Jun 2004 WO
WO 2006079213 Aug 2006 WO
Non-Patent Literature Citations (39)
Entry
Fojtik et al. (Surface Chemistry of Luminescent Colloidal Silicon Nanaparticles, J. Phys. Chem. B, 110, (2006) pp. 1994-1998).
Fojtik (Fojtik et al. Chemical Physics Letters 221 (1994) pp. 363-367) used only as evidence.
A. Gutsch et al., “Gas-Phase Production of Nanoparticles”, Kona No. 20, 2002, pp. 24-37.
Dr. Heike Mühlenweg et al., “Gas-Phase Reactions—Open Up New Roads to Nanoproducts”, Degussa ScienceNewsletter No. 08, 2004, pp. 12-16.
Coating Generation: Vaporization of Particles in Plasma Spraying and Splat Formation, M. Vardelle, A. Vardelle,K-I li P. Fauchais, Universite de Limoges, 123 Avenue A. Thomas 87000, Limoges, F. , Pure & Chem, vol. 68, No. 5, pp. 1093-1099, 1996.
H. Konrad et al., “Nanostructured Cu-Bi Alloys Prepared by Co-Evaporation in a Continuous Gas Flow,” NanoStructured Materials, vol. 7, No. 6, 1996, pp. 605-610.
Kenvin et al. “Supported Catalysts Prepared from Mononuclear Copper Complexes: Catalytic Properties”, Journal of Catalysis, pp. 81-91, (1992).
J. Heberlein, “New Approaches in Thermal Plasma Technology”, Pure Appl. Chem., vol. 74, No. 3, 2002, pp. 327-335.
M.Vardelle et al., “Experimental Investigation of Powder Vaporization in Thermal Plasma Jets,” Plasma Chemistry and Plasma Processing, vol. 11, No. 2, Jun. 1991, pp. 185-201.
National Aeronautics and Space Administration, “Enthalpy”, http://www.grc.nasa.gov/WWW/K-12/airplane/enthalpy.html, Nov. 23, 2009, 1 page.
P. Fauchais et al., “Plasma Spray: Study of the Coating Generation,” Ceramics International, Elsevier, Amsterdam, NL, vol. 22, No. 4, Jan. 1996, pp. 295-303.
P. Fauchais et al., “Les Dép{hacek over (o)}ts Par Plasma Thermique,” Revue Generale De L'Electricitie, RGE. Paris, FR, No. 2, Jan. 1993, pp. 7-12.
P. Fauchais et al, “La Projection Par Plasma: Une Revue,” Annales De Physique, vol. 14, No. 3, Jun. 1989, pp. 261-310.
T. Yoshida, “The Future of Thermal Plasma Processing for Coating”, Pure & Appl. Chem., vol. 66, No. 6, 1994 pp. 1223-1230.
Hanet al., Deformation Mechanisms and Ductility of Nanostructured Al Alloys, Mat. Res. Soc. Symp. Proc. vol. 821, Jan. 2004, Material Research Society, http://www.mrs.org/s—mrs/bin.asp?CID=2670&DOC=FILE.PDF., 6 pages.
Nagai, Yasutaka, et al., “Sintering Inhibition Mechanism of Plantinum Supported on Ceria-based Oxide and Pt-oxide-support Interaction,”Journal of Catalysis 242 (2006), pp. 103-109, Jul. 3, 2006, Elsevier.
Bateman, James E. et al., “Alkylation of Porous Silicon by Direct Reaction with Alkenes and Alkynes,” Angew. Chem Int. Ed., Dec. 17, 1998, 37, No. 19, pp. 2683-2685.
Langner, Alexander et al., “Controlled Silicon Surface Functionalization by Alkene Hydrosilylation,” J. Am. Chem. Soc., Aug. 25, 2005, 127, pp. 12798-12799.
Liu, Shu-Man et al., “Enhanced Photoluminescence from Si Nano-organosols by Functionalization with Alkenes and Their Size Evolution,” Chem. Mater., Jan. 13, 2006, 18,pp. 637-642.
Fojtik, Anton, “Surface Chemistry of Luminescent Colloidal Silicon Nanoparticles,” J. Phys. Chem. B., Jan. 13, 2006, pp. 1994-1998.
Li, Dejin et al., “Environmentally Responsive “Hairy” Nanoparticles: Mixed Homopolymer Brushes on Silica Nanoparticles Synthesized by Living Radical Polymerization Techniques,”J.Am. Chem. Soc., Apr. 9, 2005, 127,pp. 6248-6256.
Neiner, Doinita, “Low-Temperature Solution Route to Macroscopic Amounts of Hydrogen Terminated Silicon Nanoparticles,” J. Am. Chem. Soc., Aug. 5, 2006, 128, pp. 11016-11017.
Fojtik, Anton et al., “Luminescent Colloidal Silicon Particles,”Chemical Physics Letters 221, Apr. 29, 1994, pp. 363-367.
Netzer, Lucy et al., “A New Approach to Construction of Artificial Monolayer Assemblies,” J. Am. Chem. Soc., 1983, 105, pp. 674-676.
Chen, H.-S. et al., “On the Photoluminescence of Si Nanoparticles,” Mater. Phys. Mech. 4, Jul. 3, 2001, pp. 62-66.
Kwon, Young-Soon et al. “Passivation Process for Superfine Aluminum Powders Obtained by Electrical Explosion of Wires,” Applied Surface Science 211, Apr. 30, 2003, pp. 57-67.
Liao, Ying-Chih et al., “Self-Assembly of Organic Monolayers on Aerosolized Silicon Nanoparticles,” J.Am. Chem. Soc., Jun. 27, 2006, 128, pp. 9061-9065.
Zou, Jing et al., “Solution Synthesis of Ultrastable Luminescent Siloxane-Coated Silicon Nanoparticles,” Nano Letters, Jun. 4, 2004, vol. 4, No. 7, pp. 1181-1186.
Tao, Yu-Tai, “Structural Comparison of Self-Assembled Monolayers of n-Alkanoic Acids on the surfaces of Silver, Copper, and Aluminum,” J. Am. Chem. Soc., May 1993, 115, pp. 4350-4358.
Sailor, Michael et al., “Surface Chemistry of Luminescent Silicon Nanocrystallites,” Adv. Mater, 1997, 9, No. 10, pp. 783-793.
Li, Xuegeng et al., “Surface Functionalization of Silicon Nanoparticles Produced by Laser-Driven Pyrolysis of Silane Followed by HF-HNO3 Etching,” Langmuir, May 25, 2004, pp. 4720-4727.
Carrot, Geraldine et al., “Surface-Initiated Ring-Opening Polymerization: A Versatile Method for Nanoparticle Ordering,” Macromolecules, Sep. 17, 2002, 35, pp. 8400-8404.
Jouet, R. Jason et al., “Surface Passivation of Bare Aluminum Nanoparticles Using Perfluoroalkyl Carboxylic Acids,” Chem. Mater., Jan. 25, 2005, 17, pp. 2987-2996.
Yoshida, Toyonobu, “The Future of Thermal Plasma Processing for Coating,” Pure & Appl. Chem., vol. 66, No. 6, 1994, pp. 1223-1230.
Kim, Namyong Y. et al., “Thermal Derivatization of Porous Silicon with Alcohols,” J. Am. Chem. Soc., Mar. 5, 1997, 119, pp. 2297-2298.
Hua, Fengiun et al., “Organically Capped Silicon Nanoparticles with Blue Photoluminescence Prepared by Hydrosilylation Followed by Oxidation,” Langmuir, Mar. 2006, pp. 4363-4370.
Derwent English Abstract for publication No. SU 193241 A, Application No. 1973SU1943286 filed on Jul. 2, 1973, published on Mar. 1, 1976, entitled“Catalyst for Ammonia Synthesis Contains Oxides of Aluminium, Potassium, Calcium, Iron and Nickel Oxide for Increased Activity,” 3 pgs.
U.S. Appl. No. 12/961,030, filed Dec. 6, 2010, for Lehman.
U.S. Appl. No. 12/961,108, filed Dec. 6, 2010, for Lehman.
Provisional Applications (1)
Number Date Country
61284329 Dec 2009 US