The present description relates generally to integrated circuits, and more particularly, but not exclusively, to increasing breakdown voltage of laterally-diffused MOS (LDMOS) devices for foundry processes.
As the operating voltage applied to a transistor (e.g., an MOS transistor) increases, the transistor may eventually breakdown allowing an uncontrollable increase in current to pass through devices of a circuit. Breakdown voltage is the voltage level where this uncontrollable increase in the current occurs. Examples of breakdown can include punch-through, avalanche breakdown, and gate oxide breakdown to provide some examples. Operating above the breakdown voltage for a significant duration reduces the lifetime of the transistor. In CMOS and BiCMOS processes, the device breakdown voltage is limited by P-well to N-well junction breakdown voltage (e.g., ˜12V) and can be improved by spacing the P-well and N-well apart.
Certain features of the subject technology are set forth in the appended claims. However, for purpose of explanation, several embodiments of the subject technology are set forth in the following figures.
The detailed description set forth below is intended as a description of various configurations of the subject technology and is not intended to represent the only configurations in which the subject technology can be practiced. The appended drawings are incorporated herein and constitute a part of the detailed description. The detailed description includes specific details for the purpose of providing a thorough understanding of the subject technology. However, it will be clear and apparent to those skilled in the art that the subject technology is not limited to the specific details set forth herein and can be practiced using one or more implementations. In one or more instances, well-known structures and components are shown in block diagram form in order to avoid obscuring the concepts of the subject technology.
In some aspects of the subject disclosure, methods and implementations for increasing breakdown voltage of LDMOS devices for foundries are disclosed. The subject technology enables increased breakdown voltage by lowering the effective doping of the DNW regions by layout techniques. It is understood that secondary foundries can provide a fairly matched process with respect to core and input/output (I/O) devices. These foundries, however, may use different DNW isolation profiles, which can result in variation in the breakdown voltage of LDMOS devices. The layout techniques of the disclosed solution, improves the breakdown voltage of LDMOS devices without the need to change foundry processes (e.g., DNW process), which is not easy to change.
LDMOS devices with breakdown voltage greater than ˜12V have been developed for a number of analog applications implemented in 65 nanometer (nm) technology node. For LDMOS devices, the breakdown voltage limitation is due to P-well to deep N-well (DNW) junction breakdown voltage. The subject technology enables creation of LDMOS devices with breakdown voltages of 15V in technology nodes such as 40 nm technology.
In one or more implementations, a breakdown voltage of the LDMOS device 100A can be improved (e.g., increased, for example, to 15 V for the 40 nm technology node) by using an implant layout technique, as described herein with respect to LDMOS device 100B of
As a result of the employed implant layout technique, initially non-doped (e.g., via implant process) regions 125 are formed in the second region 124 of the DNW 120 that is in contact with the P-well 140 (e.g., a source region of the N-LDMOS 100B). The first region 122 that is in contact with the N-well 130 (e.g., a drain region of the N-LDMOS 100B) is fully doped with high doping concentration (e.g., 1×1017-˜5×1018cm−3 of phosphorus). The drain region (e.g., N-well 130) is formed in contact with the first region 122 of the deep well, and the source region (e.g., P-well 140) is formed in contact with the second region 124 of the deep well.
In one or more implementations, as shown in
The two-dimensional stripe configurations of the masks 300 and 350 are not limited to the configurations shown in
As explained above, the stripes of the masks 300 and 350 enable initial formation of high-doping concentration implant regions adjacent to non-doped regions in the DNW and the P-well that are blocked by the stripes. The initially formed non-doped regions are changed to low-doping concentration regions after diffusion of dopants from the high-doping concentration implant regions to non-doped regions. The higher breakdown voltage of the LDMOS device is due to a lower doping concentration in a deep-well region in contact with the P-well region, and the P-well regions having a gradient of dopant concentration, resulting from using the implant layout technique of the subject technology. In some implementations, the dimensions of the stripes are determined by the smallest feature size of the applied technology node and the desired dopant concentration in the low doping concentration regions created by the implant layout technique.
In the P-LDMOS device 400C of
In one or more implementations, the P-well region 440 can also be created using the implant layout technique as described with respect to P-well regions 140 of
According to the method 500, a substrate (e.g., 110 of
The RF antenna 610 can be suitable for transmitting and/or receiving RF signals (e.g., wireless signals) over a wide range of frequencies. Although a single RF antenna 610 is illustrated, the subject technology is not so limited.
The receiver 620 comprises suitable logic circuitry and/or code that can be operable to receive and process signals from the RF antenna 610. The receiver 620 may, for example, be operable to amplify and/or down-convert received wireless signals. In various embodiments of the subject technology, the receiver 620 is operable to cancel noise in received signals and can be linear over a wide range of frequencies. In this manner, the receiver 620 is suitable for receiving signals in accordance with a variety of wireless standards such as Wi-Fi, WiMAX, Bluetooth, and various cellular standards.
The transmitter 630 comprises suitable logic circuitry and/or code that can be operable to process and transmit signals from the RE antenna 610. The transmitter 630 may, for example, be operable to up-convert baseband signals to RF signals and amplify RF signals. In various embodiments of the subject technology, the transmitter 630 is operable to up-convert and to amplify baseband signals processed in accordance with a variety of wireless standards. Examples of such standards include Wi-Fi, WiMAX, Bluetooth, and various cellular standards. In various embodiments of the subject technology, the transmitter 630 is operable to provide signals for further amplification by one or more power amplifiers.
In some implementations, the transmitter 630 includes an RF power amplifier that can be a high-voltage power amplifier fabricated using the LDMOS device (e.g. as shown in
The duplexer 612 provides isolation in the transmit band to avoid saturation of the receiver 620 or damaging parts of the receiver 620, and to relax one or more design requirements of the receiver 620. Furthermore, the duplexer 612 can attenuate the noise in the receive band. The duplexer is operable in multiple frequency bands of various wireless standards.
The baseband processing module 640 comprises suitable logic, circuitry, interfaces, and/or code that can be operable to perform processing of baseband signals. The baseband processing module 640 may, for example, analyze received signals and generate control and/or feedback signals for configuring various components of the wireless communication device 600 such as the receiver 620. The baseband processing module 640 is operable to encode, decode, transcode, modulate, demodulate, encrypt, decrypt, scramble, descramble, and/or otherwise process data in accordance with one or more wireless standards.
The processor 660 comprises suitable logic, circuitry, and/or code that can enable processing data and/or controlling operations of the wireless communication device 600. In this regard, the processor 660 is enabled to provide control signals to various other portions of the wireless communication device 600. The processor 660 can also control transfers of data between various portions of the wireless communication device 600. Additionally, the processor 660 can enable implementation of an operating system or otherwise execute code to manage operations of the wireless communication device 600.
The memory 650 comprises suitable logic, circuitry, and/or code that can enable storage of various types of information such as received data, generated data, code, and/or configuration information. The memory 650 includes, for example, RAM, ROM, flash, and/or magnetic storage, In various embodiment of the subject technology, the memory 650 may include a RAM, DRAM, SRAM, T-RAM, Z-RAM, TTRAM, or any other storage media.
In some implementations, the memory 650 includes a memory chip (e.g., 400 of
The local oscillator generator (LOGEN) 670 comprises suitable logic, circuitry, interfaces, and/or code that can be operable to generate one or more oscillating signals of one or more frequencies. The LOGEN 670 can be operable to generate digital and/or analog signals. In this manner, the LOGEN 670 can be operable to generate one or more clock signals and/or sinusoidal signals. Characteristics of the oscillating signals such as the frequency and duty cycle can be determined based on one or more control signals from, for example, the processor 660 and/or the baseband processing module 640.
In operation, the processor 660 can configure the various components of the wireless communication device 600 based on a wireless standard according to which it is desired to receive signals. Wireless signals can be received via the RF antenna 610 and amplified and down-converted by the receiver 620. The baseband processing module 640 can perform noise estimation and/or noise cancellation, decoding, and/or demodulation of the baseband signals. In this manner, information in the received signal can be recovered and utilized appropriately. For example, the information can be audio and/or video to be presented to a user of the wireless communication device, data to be stored to the memory 650, and/or information affecting and/or enabling operation of the wireless communication device 600. The baseband processing module 640 can modulate, encode and perform other processing on audio, video, and/or control signals to be transmitted by the transmitter 630 in accordance to various wireless standards.
In some implementations, the sensor module 690 includes one or more sensors, such as touch sensors that receive touch signals from a touch screen of the wireless communication device 600. In some aspects, the touch sensor module 690 includes sensor circuits including, for example, sensor drivers and other circuitry that use high breakdown voltage LDMOS of the subject technology.
Those of skill in the art would appreciate that the various illustrative blocks, modules, elements, components, and methods described herein can be implemented as electronic hardware, computer software, or combinations of both. To illustrate this interchangeability of hardware and software, various illustrative blocks, modules, elements, components, and methods have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans can implement the described functionality in varying ways for each particular application. Various components and blocks can be arranged differently (e.g., arranged in a different order, or partitioned in a different way) all without departing from the scope of the subject technology.
As used herein, the phrase “at least one of” preceding a series of items, with the term “and” or “or” to separate any of the items, modifies the list as a whole, rather than each member of the list (i.e., each item). The phrase “at least one of” does not require selection of at least one of each item listed; rather, the phrase allows a meaning that includes at least one of any one of the items, and/or at least one of any combination of the items, and/or at least one of each of the items. By way of example, the phrases “at least one of A, B, and C” or “at least one of A, B, or C” each refer to only A, only B, or only C; any combination of A, B, and C; and/or at least one of each of A, B, and C.
A phrase such as “an aspect” does not imply that such aspect is essential to the subject technology or that such aspect applies to all configurations of the subject technology. A disclosure relating to an aspect can apply to all configurations, or one or more configurations. An aspect can provide one or more examples of the disclosure. A phrase such as an “aspect” refers to one or more aspects and vice versa. A phrase such as an “embodiment” does not imply that such embodiment is essential to the subject technology or that such embodiment applies to all configurations of the subject technology. A disclosure relating to an embodiment can apply to all embodiments, or one or more embodiments. An embodiment can provide one or more examples of the disclosure. A phrase such an “embodiment” can refer to one or more embodiments and vice versa. A phrase such as a “configuration” does not imply that such configuration is essential to the subject technology or that such configuration applies to all configurations of the subject technology. A disclosure relating to a configuration can apply to all configurations, or one or more configurations. A configuration can provide one or more examples of the disclosure. A phrase such as a “configuration” can refer to one or more configurations and vice versa.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” or as an “example” is not necessarily to be construed as preferred or advantageous over other embodiments. Furthermore, to the extent that the term “include,” “have,” or the like is used in the description or the claims, such term is intended to be inclusive in a manner similar to the term “comprise” as “comprise” is interpreted when employed as a transitional word in a claim.
All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein can be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but are to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” Unless specifically stated otherwise, the term “some” refers to one or more. Pronouns in the masculine (e.g., his) include the feminine and neuter gender (e,g., her and its) and vice versa. Headings and subheadings, if any, are used for convenience only and do not limit the subject disclosure.
This application claims the benefit of priority under 35 §119 from U.S. Provisional Patent Application 62/084,460 filed Nov. 25, 2014, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62084460 | Nov 2014 | US |