The present invention relates generally to the field of indicia readers. More specifically, the present invention relates to acoustic housings for transmitting audible indications to a user of a fixed-position indicia reader when the reader is mounted in various mounting positions.
Generally speaking, businesses have sought to maximize efficiency by using various devices to automate data entry. As one particular example, in the area of inventory management the indicia or symbol reading device (e.g., barcode reader, barcode scanner, RFID reader, etc.) has greatly reduced the time and errors inherent to manual data entry.
Indicia readers may fall within a number of general categories including handheld readers (e.g., mobile devices employed as code symbol readers), laser scan engine barcode readers, and image sensor based barcode readers. One such general category of indicia reader includes the fixed-mount or fixed-position indicia reader which may incorporate image sensor and/or laser-based scan engines.
Fixed-position indicia readers, although also potentially usable in a handheld or unmounted arrangement, are typically directed to a hands-free functional design (i.e., are configured to be mounted or installed on any number of mounting surfaces). Fixed-position readers may be utilized in general or rugged environments for a variety of applications (e.g., retail point-of-sale (POS), kiosks, healthcare, package sorting, direct part mark (DPM), boarding pass scanning, etc.). In one particular use case, fixed-mount indicia reading systems may be employed where the indicia (e.g., barcodes) to be read are presented by an operator or by a machine in approximately the same position and orientation on each read or scan attempt.
Fixed-position indicia readers generally include mounting mechanisms (e.g., threaded inserts and mounting screws) for affixing the reader on a mounting surface such as a wall.
Indicia readers may include visual and/or audio indicators for providing information to a user relating to the present status and/or the various operations of the indicia reader (e.g., failure indications, entering a different mode, completing a successful scan, etc.). Decoding success indications may be provided whereby, for example, the illumination system of the reader is switched off and accompanied by an audible indication (i.e., a tone) from a sound source (e.g., a speaker, beeper, etc.) in response to successfully reading a barcode. Further, illumination of an indicator light (e.g., an LED) from the housing of the reader may be provided as an indicator.
In a hands-free system such as a fixed-mount system (e.g., without a user-trigger mechanism), audible indications may be particularly important for providing information relating to the indicia reader's operations (e.g., that a successful scan has occurred). In the case of an audible indication, the sound signal generally travels from a sound source within the reader's housing through openings on a surface of the housing.
For ease of use and for optimal configurability, a fixed-position reader would ideally be accessible for mounting in a broad range of different positions to a mounting surface; for example, by including mounting mechanisms on all or substantially all of the surfaces of the reader's housing. In the case of audible indications, however, the openings exiting on a surface of the housing (i.e., to “voice” the audio) can be blocked by the mounting surface in certain mounting configurations. To solve this problem, additional sound sources having sound openings on additional surfaces can be added, but the additional audio components and related structural features result in increased complexity and cost during manufacturing, as well as a greater potential for component failure during operation.
Therefore, a need exists for more effective fixed-position indicia reading systems, including but not limited to systems including efficient, cost-effective fixed-mount indicia readers for transmitting audible indications to a user when mounted in different positions to a mounting surface.
Accordingly, in one aspect, the present invention embraces an indicia reader. The indicia reader includes an indicia-capturing system for acquiring information about indicia within the indicia-capturing system's field of view; an indicia-decoding module configured for decoding indicia information within the indicia-capturing system's field of view, the indicia-decoding module having a signal processor; an audio indicator system having a sound source for providing audible indications relating to operations of the indicia reader; and a housing for supporting and at least partially enclosing the indicia-capturing system, the indicia-decoding module, and the audio indicator system. The housing includes two adjacent mounting surfaces that meet to form a common edge, and a sound port opening formed within a portion of the common edge and the two adjacent surfaces, where the sound port opening is recessed inward with respect to the common edge. The indicia reader is configured to be operatively mounted in at least two different positions by respectively attaching one of the two adjacent surfaces to a support structure, and the sound port opening is in acoustic communication with the sound source of the audio indicator for transmitting audible indications emitted via the audio indicator system when the indicia reader is mounted in either of the at least two different mounting positions.
In an exemplary embodiment, each of the two adjacent mounting surfaces includes at least one mounting insert for use in mounting the indicia reader to a support structure.
In another exemplary embodiment, a chamber is positioned within the housing and at least partially enclosing the audio indicator system and the sound source for acoustically communicating with the sound port opening.
In yet another exemplary embodiment, the chamber encloses the sound source, and the chamber includes a sound conducting channel spanning continuously from the sound source to the sound port opening.
In yet another exemplary embodiment, the sound conducting channel forms a continuous acoustic transmission path for transmitting audible indications emitted via the audio indicator system to the opening.
In yet another exemplary embodiment, the housing is substantially rectangular.
In yet another exemplary embodiment, the sound source is a single beeper.
In yet another exemplary embodiment, the sound port opening is formed within a beveled portion of the common edge joining the two adjacent mounting surfaces of the housing.
In yet another exemplary embodiment, the sound source is a single speaker.
In yet another exemplary embodiment, the indicia reader is a fixed-position indicia reader configured for acquiring information about indicia presented within the indicia-capturing system's field of view when the indicia reader is mounted in either of the at least two mounting positions.
In another aspect, the present invention embraces a housing for an indicia reader. The housing includes an audio indicator system at least partially enclosed within the housing, with the audio indicator system having a sound source for providing audible indications to a user relating to indicia reader operations. The housing also includes two adjacent mounting surfaces where the two adjacent mounting surfaces meet to form a common edge, and a sound conducting channel in acoustic communication with the sound source, where the sound conducting channel has a sound port opening formed within a beveled portion of the common edge which joins the two adjacent surfaces. The housing is configured to be mounted in at least two different mounted positions by respectively attaching one of the two adjacent mounting surfaces to a support structure. The sound conducting channel is configured to transmit audible indications emitted via the sound source to the sound port opening when the housing is mounted in either of the at least two different mounted positions.
In an exemplary embodiment, the housing includes and at least partially encloses an indicia-capturing system for acquiring information about indicia within the indicia-capturing system's field of view.
In another exemplary embodiment, the housing includes and at least partially encloses an indicia-decoding module configured for decoding indicia information within the indicia-capturing system's field of view, the indicia-decoding module comprising a signal processor.
In yet another exemplary embodiment, the housing is substantially rectangular.
In yet another exemplary embodiment, the sound source is a single beeper.
In yet another exemplary embodiment, the sound conducting channel includes a chamber positioned within the housing and at least partially enclosing the audio indicator system.
In yet another exemplary embodiment, the chamber encloses the sound source and the sound conducting channel spans continuously to the sound port opening.
In another aspect, the present invention embraces a fixed-position indicia reader. The fixed-position indicia reader includes an indicia-capturing system for acquiring information about indicia presented within the indicia-capturing system's field of view when the fixed-position indicia reader is mounted to a support structure; an audio indicator system for providing audible indications relating to indicia reader operations, the audio indicator system having a sound source comprising a single beeper; and a housing for supporting and at least partially enclosing the indicia-capturing system and the audio indicator system. The housing includes two adjacent mounting surfaces where the two adjacent mounting surfaces meet to form a common edge, and a sound port opening formed within a beveled portion of the common edge joining the two adjacent mounting surfaces. The housing is configured for operatively mounting the fixed-position indicia reader to a support structure in at least two different mounting positions by respectively attaching one of the two adjacent mounting surfaces to a support structure. The sound port opening is in acoustic communication with the sound source for transmitting audible indications emitted from the sound source to the sound port opening when the housing is mounted in either of the at least two different mounting positions.
In an exemplary embodiment, the housing comprises, and at least partially encloses, an indicia-decoding module configured for decoding indicia information within the indicia-capturing system's field of view, the indicia-decoding module including a signal processor.
In another exemplary embodiment, the sound port opening is in acoustic communication with the sound source via a sound conducting channel spanning continuously from the sound source to the sound port opening.
The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.
The present invention embraces fixed-position indicia reading systems including mountable indicia readers having acoustic housings for effectively transmitting audible indications from a single sound source from various mounting positions or configurations.
In an exemplary embodiment, the fixed-position indicia reader is configured to be operatively mounted in at least two different positions by respectively attaching one of two adjacent mounting surfaces to a support structure. The exemplary mountable indicia reader also includes a sound port that is in acoustic communication with a sound source for effectively transmitting audible indications to a user when the fixed-position indicia reader is mounted in either of the at least two different mounting positions.
Indicia reading devices are often employed to decode indicia such as barcodes. A barcode is a machine-readable representation of information in graphic format. Traditionally, a barcode is a series of parallel bars and spaces of varying widths (e.g., a linear barcode or 1D barcode).
More recently, there has been an increase in the use of alternatives to the linear barcode. For example, matrix codes (e.g., 2D barcodes, QR Code, Aztec Code, Data Matrix, etc.) and Optical Character Recognition (OCR) have enjoyed increasing popularity. As used herein, terms such as indicia, barcode, and/or code symbol are intended in their broadest sense to include linear barcodes, matrix barcodes, and OCR-enabled labels, but are not limited to these examples.
One category of indicia readers includes laser-based readers, generally including a laser diode assembly generating a laser light beam and a moving mirror for sweeping the laser light beam across a decodable symbol, whereby a signal is generated corresponding to the decodable symbol.
Image sensor-based readers include multi-element image sensors such as CID, CMOS, or CCD image sensors and an imaging optic for focusing an image onto the image sensor. In the operation of an image sensor-based reader, an image of a decodable symbol is focused on an image sensor and a signal is generated corresponding to the symbol. Image sensor elements may be arrayed in a line or in a rectangular matrix or area. Area image sensors, for example, capture a digital picture and use software algorithms to find and decode one or more symbols.
Image sensor-based readers are, generally, more durable and offer additional features relative to laser scan engine readers. Features and functions which have been incorporated into image sensor-based barcode readers include image processing capabilities.
With reference to the drawings,
The exemplary mountable indicia reader 100 includes a housing 102. The housing 102 has front surface 102a including a light transmission window 103 integrated within the front surface portion of the housing 102. The housing 102 further includes a top surface 102b, a bottom surface 102c, a right-side surface 102d, a left-side surface 102e, and a back-side surface portion 102f. The back-side of the housing incorporates a cable 600 electronically connected to the reader 100 for operation in an exemplary indicia reading system, as further described below with reference to
Respective surfaces of the indicia reader 100 include mounting mechanisms 131 for affixing or mounting the reader on a mounting surface (e.g., a wall, a table, etc.). In one example, the mounting mechanisms 130 include threaded inserts and corresponding mounting screws, but any of a range of acceptable mechanisms or fasteners may be used. In the present case, the fixed-position reader 100 includes mounting mechanisms 130 on each respective surface except for the back-side portion including connector cable 600 (e.g., substantially all of the surfaces of the reader's housing). Thus, the fixed-position reader 100 is advantageously available for mounting in a broad range of different positions to a mounting surface.
As further described below with reference to
Behind the light transmission window 103, the housing 102 may include may include one or more light sensing assemblies (i.e., indicia-capturing systems), such as an image sensor-based reading engine and/or a laser scan engine that is utilized for reading indicia, symbols, images, and the like.
The exemplary mountable indicia reader 100, when positioned in a fixed or mounted position (e.g.,
The reader 100 could also be configured for manual activation or operation, such that a manually-actuated button or other user-interface mechanism (e.g., keyboard, trigger, etc.) may be utilized to activate an indicia reading system (not explicitly shown).
The exemplary indicia reader, in this case a mountable, fixed-position reader 100, has an indicia reading system that includes an indicia-capturing system 210, as depicted at
In some instances, the indicia-capturing system 210 may be a laser-based system that sweeps a light beam (e.g., a laser beam) across the field of view 104 and then receives the optical signals that reflect or scatter off the indicium. Typically, the optical signal is received using a photoreceptor (e.g., photodiode) and is converted into an electrical signal. The electrical signal is an electronic representation of the indicia information (e.g., the data represented by the indicia). When in the form of an electrical signal, this information can be processed (e.g., decoded).
The indicia-decoding module 220 is configured to decode indicia information (e.g., electrical signal or digital image) acquired by the indicia-capturing subsystem 210. Although the indicia reader 100 has been described as including an indicia-decoding module 220 as shown, this is only by way of example. In other contemplated embodiments, the indicia-reader 100 may include an indicia-capturing system 210 and transmit the acquired optical information for processing or decoding at an external host or similar system (e.g., via connector 600). References contained herein to electrical signals are intended broadly to also encompass digital images capable of being electronically processed (e.g., an image-processing computer processor).
The exemplary indicia-reading system 1000 of
Further, the exemplary indicia-reading system 1000 includes an illumination system 316 (e.g., having one or more LEDs) for producing illumination within the field of view 104. The emitted illumination may be transmitted through a narrow-band transmission-type optical filter.
An object detection subsystem 313 is in operative communication with IR sensor 105 for producing an IR-based object detection field (e.g., for activating an indicia reading system when objects are passed within the detection field).
A communication assembly 321 is configured for receiving input and for outputting processed image data and related information to an external host computer 400 or other device (e.g., via a wired or wireless connection). For example, the communication assembly 321 may transmit/receive data via connector 600.
Each respective subsystem of the exemplary indicia-reading device 100 may be operatively interfaced via a controller 314, and the components coupled to a system bus 300.
As shown, the exemplary indicia-reading device 100 includes an audio indicator system 110 including a sound source 111 for providing information to a user relating to the present status and/or the various operations of the indicia reader (e.g., failure indications, entering a different mode, completing a successful scan, etc.). Further, illumination of an indicator light (e.g., an LED) of the housing 102 from illumination indicator system 341 may be provided as a status indicator relating to reader operations.
Referring to further aspects of the exemplary indicia reading system 1000, the exemplary mountable indicia reader 100 can include a central processing unit (CPU) 318 for processing digital signals output by the camera 312 or other/additional light sensing assemblies. The indicia reader 100 may also include random access memory (RAM) 217, a read only memory 219, and a storage memory 220 (e.g., flash memory, a hard drive, etc.).
For attempting to decode indicia information, CPU 318 can process digital signal image data. The data corresponds to a line of pixel positions (e.g., a row, a column, or a diagonal set of pixel positions) in the case of an image-sensor-array-based light sensing assembly of
In other contemplated embodiments, the indicia-reader 100 may capture and transmit the acquired optical information for processing or decoding at an external host or similar system (e.g., via a wired or wireless connection).
Where a decodable indicia representation is, for example, a 2D bar code symbology, a decode attempt can comprise the steps of locating a finder pattern using a feature detection algorithm, locating matrix lines intersecting the finder pattern according to a predetermined relationship with the finder pattern, determining a pattern of dark and light cells along the matrix lines, and converting each light pattern into a character or character string via table lookup.
Regarding CPU 318, CPU 318 may run an operating system (OS) and a plurality of applicable device drivers via a communication interface 321.
Indicia reader 100 can include a power supply 322 that supplies power to a power grid 340 to which the internal electrical components (e.g., integrated circuits) can be connected. Power supply 322 can be coupled to internal or external power sources 500; e.g. a battery, a serial interface (e.g., USB RS232), and/or an AC/DC transformer.
A chamber component 113 within the housing is shown enclosing portions of the audio indicator system 110 and surrounding the sound source 111. For example, the chamber may include a recess 113a forming an interference or snap fit onto a section of the audio indicator system 110 protruding from the substrate 112 in order to mate with the substrate 112. The chamber may be formed via injection molding of a durable rubber or elastomeric material.
As shown, the chamber 113 forms a sound conducting channel 120 (e.g., an acoustic-waveguide, sound conducting conduit, etc.) spanning from first end 114 about the sound source 111 to a second end 115 about the sound port openings 116. Thus, the sound conducting channel 120 is in acoustically communication with the sound port opening 116 for communicating audible indications emitted via the audio indicator system 110 to a user.
As depicted in the drawings, the exemplary housing 102 has substantially rectangular appearance, generally a rectangular box or prism, notwithstanding the connector 600 features and slightly rounded edges (e.g., for ease of use and handling). The sound port segment 125 (e.g., including the sound port openings 116 or beeper holes) is positioned within a void space along an edge 130 where two adjacent surfaces 102c, 102e meet. In this regard, the sound port segment 125 is inset, extending inward with regard to the outer portion of the adjacent edge 130.
As depicted, the sound port openings 116 are formed within a beveled portion or segment 125 of the common edge 130 joining the two adjacent mounting surfaces 102c, 102e of the housing 102. Thus, even though the sound source 111 of the audio indicator system 110 may comprise a single speaker, beeper, or other sound emitting mechanism, the acoustic housing 102 can provide sound indications to a user when mounted on either of the two adjacent mounting surfaces 102c, 102e in various mounted positions (e.g., at least two different mounting positions).
As shown and described herein, the exemplary acoustic housing for a fixed-position indicia reader includes a sound channel and sound ports formed about recessed or inset segment joining two adjacent mounting surfaces of the housing. Accordingly, even when the sound source comprises a single emitter (e.g., a beeper or speaker), the fixed-position indicia reader can transmit audible indications to a user when the indicia reader is mounted to a support surface on either of the two adjacent mounting surfaces without the sound being blocked by the support surface.
To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications:
In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.
Number | Date | Country | Kind |
---|---|---|---|
201710661845.9 | Aug 2017 | CN | national |
The present application is a continuation of U.S. patent application Ser. No. 17/248,916 for INDICIA READER ACOUSTIC FOR MULTIPLE MOUNTING POSITIONS filed Feb. 12, 2021, which is a continuation of U.S. patent application Ser. No. 16/831,534 for INDICIA READER ACOUSTIC FOR MULTIPLE MOUNTING POSITIONS filed Mar. 26, 2020, now U.S. Pat. No. 10,956,695 issued Mar. 23, 2021, which is a continuation of U.S. patent application Ser. No. 16/052,039 for INDICIA READER ACOUSTIC FOR MULTIPLE MOUNTING POSITIONS filed Aug. 1, 2018, now U.S. Pat. No. 10,635,871 issued Apr. 28, 2020, which claims priority to and the benefit of Chinese Patent Application for Invention No. 201710661845.9 for an INDICIA READER ACOUSTIC FOR MULTIPLE MOUNTING POSITIONS filed Aug. 4, 2017, each of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3913877 | Wiener | Oct 1975 | A |
6243260 | Lundgren et al. | Jun 2001 | B1 |
6832725 | Gardiner et al. | Dec 2004 | B2 |
7128266 | Zhu et al. | Oct 2006 | B2 |
7159783 | Walczyk et al. | Jan 2007 | B2 |
7266210 | Lam et al. | Sep 2007 | B2 |
7413127 | Ehrhart et al. | Aug 2008 | B2 |
7726575 | Wang et al. | Jun 2010 | B2 |
8294969 | Plesko | Oct 2012 | B2 |
8317105 | Kotlarsky et al. | Nov 2012 | B2 |
8322622 | Liu | Dec 2012 | B2 |
8366005 | Kotlarsky et al. | Feb 2013 | B2 |
8371507 | Haggerty et al. | Feb 2013 | B2 |
8376233 | Horn et al. | Feb 2013 | B2 |
8381979 | Franz | Feb 2013 | B2 |
8390909 | Plesko | Mar 2013 | B2 |
8408464 | Zhu et al. | Apr 2013 | B2 |
8408468 | Van et al. | Apr 2013 | B2 |
8408469 | Good | Apr 2013 | B2 |
8424768 | Rueblinger et al. | Apr 2013 | B2 |
8448863 | Xian et al. | May 2013 | B2 |
8457013 | Essinger et al. | Jun 2013 | B2 |
8459557 | Havens et al. | Jun 2013 | B2 |
8469272 | Kearney | Jun 2013 | B2 |
8474712 | Kearney et al. | Jul 2013 | B2 |
8479992 | Kotlarsky et al. | Jul 2013 | B2 |
8490877 | Kearney | Jul 2013 | B2 |
8517271 | Kotlarsky et al. | Aug 2013 | B2 |
8523076 | Good | Sep 2013 | B2 |
8528818 | Ehrhart et al. | Sep 2013 | B2 |
8544737 | Gomez et al. | Oct 2013 | B2 |
8548420 | Grunow et al. | Oct 2013 | B2 |
8550335 | Samek et al. | Oct 2013 | B2 |
8550354 | Gannon et al. | Oct 2013 | B2 |
8550357 | Kearney | Oct 2013 | B2 |
8556174 | Kosecki et al. | Oct 2013 | B2 |
8556176 | Van et al. | Oct 2013 | B2 |
8556177 | Hussey et al. | Oct 2013 | B2 |
8559767 | Barber et al. | Oct 2013 | B2 |
8561895 | Gomez et al. | Oct 2013 | B2 |
8561903 | Sauerwein, Jr. | Oct 2013 | B2 |
8561905 | Edmonds et al. | Oct 2013 | B2 |
8565107 | Pease et al. | Oct 2013 | B2 |
8571307 | Li et al. | Oct 2013 | B2 |
8579200 | Samek et al. | Nov 2013 | B2 |
8583924 | Caballero et al. | Nov 2013 | B2 |
8584945 | Wang et al. | Nov 2013 | B2 |
8587595 | Wang | Nov 2013 | B2 |
8587697 | Hussey et al. | Nov 2013 | B2 |
8588869 | Sauerwein et al. | Nov 2013 | B2 |
8590789 | Nahill et al. | Nov 2013 | B2 |
8596539 | Havens et al. | Dec 2013 | B2 |
8596542 | Havens et al. | Dec 2013 | B2 |
8596543 | Havens et al. | Dec 2013 | B2 |
8599271 | Havens et al. | Dec 2013 | B2 |
8599957 | Peake et al. | Dec 2013 | B2 |
8600158 | Li et al. | Dec 2013 | B2 |
8600167 | Showering | Dec 2013 | B2 |
8602309 | Longacre et al. | Dec 2013 | B2 |
8608053 | Meier et al. | Dec 2013 | B2 |
8608071 | Liu et al. | Dec 2013 | B2 |
8611309 | Wang et al. | Dec 2013 | B2 |
8615487 | Gomez et al. | Dec 2013 | B2 |
8621123 | Caballero | Dec 2013 | B2 |
8622303 | Meier et al. | Jan 2014 | B2 |
8628013 | Ding | Jan 2014 | B2 |
8628015 | Wang et al. | Jan 2014 | B2 |
8628016 | Winegar | Jan 2014 | B2 |
8629926 | Wang | Jan 2014 | B2 |
8630491 | Longacre et al. | Jan 2014 | B2 |
8635309 | Berthiaume et al. | Jan 2014 | B2 |
8636200 | Kearney | Jan 2014 | B2 |
8636212 | Nahill et al. | Jan 2014 | B2 |
8636215 | Ding et al. | Jan 2014 | B2 |
8636224 | Wang | Jan 2014 | B2 |
8638806 | Wang et al. | Jan 2014 | B2 |
8640958 | Lu et al. | Feb 2014 | B2 |
8640960 | Wang et al. | Feb 2014 | B2 |
8643717 | Li et al. | Feb 2014 | B2 |
8646692 | Meier et al. | Feb 2014 | B2 |
8646694 | Wang et al. | Feb 2014 | B2 |
8657200 | Ren et al. | Feb 2014 | B2 |
8659397 | Vargo et al. | Feb 2014 | B2 |
8668149 | Good | Mar 2014 | B2 |
8678285 | Kearney | Mar 2014 | B2 |
8678286 | Smith et al. | Mar 2014 | B2 |
8682077 | Longacre, Jr. | Mar 2014 | B1 |
D702237 | Oberpriller et al. | Apr 2014 | S |
8687282 | Feng et al. | Apr 2014 | B2 |
8692927 | Pease et al. | Apr 2014 | B2 |
8695880 | Bremer et al. | Apr 2014 | B2 |
8698949 | Grunow et al. | Apr 2014 | B2 |
8702000 | Barber et al. | Apr 2014 | B2 |
8717494 | Gannon | May 2014 | B2 |
8720783 | Biss et al. | May 2014 | B2 |
8723804 | Fletcher et al. | May 2014 | B2 |
8723904 | Marty et al. | May 2014 | B2 |
8727223 | Wang | May 2014 | B2 |
8740082 | Wilz, Sr. | Jun 2014 | B2 |
8740085 | Furlong et al. | Jun 2014 | B2 |
8746563 | Hennick et al. | Jun 2014 | B2 |
8750445 | Peake et al. | Jun 2014 | B2 |
8752766 | Xian et al. | Jun 2014 | B2 |
8756059 | Braho et al. | Jun 2014 | B2 |
8757495 | Qu et al. | Jun 2014 | B2 |
8760563 | Koziol et al. | Jun 2014 | B2 |
8763909 | Reed et al. | Jul 2014 | B2 |
8777108 | Coyle | Jul 2014 | B2 |
8777109 | Oberpriller et al. | Jul 2014 | B2 |
8779898 | Havens et al. | Jul 2014 | B2 |
8781520 | Payne et al. | Jul 2014 | B2 |
8783573 | Havens et al. | Jul 2014 | B2 |
8789757 | Barten | Jul 2014 | B2 |
8789758 | Hawley et al. | Jul 2014 | B2 |
8789759 | Xian et al. | Jul 2014 | B2 |
8794520 | Wang et al. | Aug 2014 | B2 |
8794522 | Ehrhart | Aug 2014 | B2 |
8794525 | Amundsen et al. | Aug 2014 | B2 |
8794526 | Wang et al. | Aug 2014 | B2 |
8798367 | Ellis | Aug 2014 | B2 |
8807431 | Wang et al. | Aug 2014 | B2 |
8807432 | Van et al. | Aug 2014 | B2 |
8820630 | Qu et al. | Sep 2014 | B2 |
8822848 | Meagher | Sep 2014 | B2 |
8824692 | Sheerin et al. | Sep 2014 | B2 |
8824696 | Braho | Sep 2014 | B2 |
8842849 | Wahl et al. | Sep 2014 | B2 |
8844822 | Kotlarsky et al. | Sep 2014 | B2 |
8844823 | Fritz et al. | Sep 2014 | B2 |
8849019 | Li et al. | Sep 2014 | B2 |
D716285 | Chaney et al. | Oct 2014 | S |
8851383 | Yeakley et al. | Oct 2014 | B2 |
8854633 | Laffargue et al. | Oct 2014 | B2 |
8866963 | Grunow et al. | Oct 2014 | B2 |
8868421 | Braho et al. | Oct 2014 | B2 |
8868519 | Maloy et al. | Oct 2014 | B2 |
8868802 | Barten | Oct 2014 | B2 |
8868803 | Caballero | Oct 2014 | B2 |
8870074 | Gannon | Oct 2014 | B1 |
8879639 | Sauerwein, Jr. | Nov 2014 | B2 |
8880426 | Smith | Nov 2014 | B2 |
8881983 | Havens et al. | Nov 2014 | B2 |
8881987 | Wang | Nov 2014 | B2 |
8903172 | Smith | Dec 2014 | B2 |
8908995 | Benos et al. | Dec 2014 | B2 |
8910870 | Li et al. | Dec 2014 | B2 |
8910875 | Ren et al. | Dec 2014 | B2 |
8914290 | Hendrickson et al. | Dec 2014 | B2 |
8914788 | Pettinelli et al. | Dec 2014 | B2 |
8915439 | Feng et al. | Dec 2014 | B2 |
8915444 | Havens et al. | Dec 2014 | B2 |
8916789 | Woodburn | Dec 2014 | B2 |
8918250 | Hollifield | Dec 2014 | B2 |
8918564 | Caballero | Dec 2014 | B2 |
8925818 | Kosecki et al. | Jan 2015 | B2 |
8939374 | Jovanovski et al. | Jan 2015 | B2 |
8942480 | Ellis | Jan 2015 | B2 |
8944313 | Williams et al. | Feb 2015 | B2 |
8944327 | Meier et al. | Feb 2015 | B2 |
8944332 | Harding et al. | Feb 2015 | B2 |
8950678 | Germaine et al. | Feb 2015 | B2 |
D723560 | Zhou et al. | Mar 2015 | S |
8967468 | Gomez et al. | Mar 2015 | B2 |
8971346 | Sevier | Mar 2015 | B2 |
8976030 | Cunningham et al. | Mar 2015 | B2 |
8976368 | El et al. | Mar 2015 | B2 |
8978981 | Guan | Mar 2015 | B2 |
8978983 | Bremer et al. | Mar 2015 | B2 |
8978984 | Hennick et al. | Mar 2015 | B2 |
8985456 | Zhu et al. | Mar 2015 | B2 |
8985457 | Soule et al. | Mar 2015 | B2 |
8985459 | Kearney et al. | Mar 2015 | B2 |
8985461 | Gelay et al. | Mar 2015 | B2 |
8988578 | Showering | Mar 2015 | B2 |
8988590 | Gillet et al. | Mar 2015 | B2 |
8991704 | Hopper et al. | Mar 2015 | B2 |
8996194 | Davis et al. | Mar 2015 | B2 |
8996384 | Funyak et al. | Mar 2015 | B2 |
8998091 | Edmonds et al. | Apr 2015 | B2 |
9002641 | Showering | Apr 2015 | B2 |
9007368 | Laffargue et al. | Apr 2015 | B2 |
9010641 | Qu et al. | Apr 2015 | B2 |
9015513 | Murawski et al. | Apr 2015 | B2 |
9016576 | Brady et al. | Apr 2015 | B2 |
D730357 | Fitch et al. | May 2015 | S |
9022288 | Nahill et al. | May 2015 | B2 |
9030964 | Essinger et al. | May 2015 | B2 |
9033240 | Smith et al. | May 2015 | B2 |
9033242 | Gillet et al. | May 2015 | B2 |
9036054 | Koziol et al. | May 2015 | B2 |
9037344 | Chamberlin | May 2015 | B2 |
9038911 | Xian et al. | May 2015 | B2 |
9038915 | Smith | May 2015 | B2 |
D730901 | Oberpriller et al. | Jun 2015 | S |
D730902 | Fitch et al. | Jun 2015 | S |
D733112 | Chaney et al. | Jun 2015 | S |
9047098 | Barten | Jun 2015 | B2 |
9047359 | Caballero et al. | Jun 2015 | B2 |
9047420 | Caballero | Jun 2015 | B2 |
9047525 | Barber et al. | Jun 2015 | B2 |
9047531 | Showering et al. | Jun 2015 | B2 |
9049640 | Wang et al. | Jun 2015 | B2 |
9053055 | Caballero | Jun 2015 | B2 |
9053378 | Hou et al. | Jun 2015 | B1 |
9053380 | Xian et al. | Jun 2015 | B2 |
9057641 | Amundsen et al. | Jun 2015 | B2 |
9058526 | Powilleit | Jun 2015 | B2 |
9061527 | Tobin et al. | Jun 2015 | B2 |
9064165 | Havens et al. | Jun 2015 | B2 |
9064167 | Xian et al. | Jun 2015 | B2 |
9064168 | Todeschini et al. | Jun 2015 | B2 |
9064254 | Todeschini et al. | Jun 2015 | B2 |
9066032 | Wang | Jun 2015 | B2 |
9070032 | Corcoran | Jun 2015 | B2 |
D734339 | Zhou et al. | Jul 2015 | S |
D734751 | Oberpriller et al. | Jul 2015 | S |
9076459 | Braho et al. | Jul 2015 | B2 |
9079423 | Bouverie et al. | Jul 2015 | B2 |
9080856 | Laffargue | Jul 2015 | B2 |
9082023 | Feng et al. | Jul 2015 | B2 |
9084032 | Rautiola et al. | Jul 2015 | B2 |
9087250 | Coyle | Jul 2015 | B2 |
9092681 | Havens et al. | Jul 2015 | B2 |
9092682 | Wilz et al. | Jul 2015 | B2 |
9092683 | Koziol et al. | Jul 2015 | B2 |
9093141 | Liu | Jul 2015 | B2 |
9098763 | Lu et al. | Aug 2015 | B2 |
9104929 | Todeschini | Aug 2015 | B2 |
9104934 | Li et al. | Aug 2015 | B2 |
9107484 | Chaney | Aug 2015 | B2 |
9111159 | Liu et al. | Aug 2015 | B2 |
9111166 | Cunningham, IV | Aug 2015 | B2 |
9135483 | Liu et al. | Sep 2015 | B2 |
9137009 | Gardiner | Sep 2015 | B1 |
9141839 | Xian et al. | Sep 2015 | B2 |
9147096 | Wang | Sep 2015 | B2 |
9148474 | Skvoretz | Sep 2015 | B2 |
9158000 | Sauerwein, Jr. | Oct 2015 | B2 |
9158340 | Reed et al. | Oct 2015 | B2 |
9158953 | Gillet et al. | Oct 2015 | B2 |
9159059 | Daddabbo et al. | Oct 2015 | B2 |
9165174 | Huck | Oct 2015 | B2 |
9171543 | Emerick et al. | Oct 2015 | B2 |
9183425 | Wang | Nov 2015 | B2 |
9189669 | Zhu et al. | Nov 2015 | B2 |
9195844 | Todeschini et al. | Nov 2015 | B2 |
9202458 | Braho et al. | Dec 2015 | B2 |
9208366 | Liu | Dec 2015 | B2 |
9208367 | Smith | Dec 2015 | B2 |
9219836 | Bouverie et al. | Dec 2015 | B2 |
9224022 | Ackley et al. | Dec 2015 | B2 |
9224024 | Bremer et al. | Dec 2015 | B2 |
9224027 | Van et al. | Dec 2015 | B2 |
D747321 | London et al. | Jan 2016 | S |
9230140 | Ackley | Jan 2016 | B1 |
9235553 | Fitch et al. | Jan 2016 | B2 |
9239950 | Fletcher | Jan 2016 | B2 |
9245492 | Ackley et al. | Jan 2016 | B2 |
9248640 | Heng | Feb 2016 | B2 |
9250652 | London et al. | Feb 2016 | B2 |
9250712 | Todeschini | Feb 2016 | B1 |
9251411 | Todeschini | Feb 2016 | B2 |
9258033 | Showering | Feb 2016 | B2 |
9261398 | Amundsen et al. | Feb 2016 | B2 |
9262633 | Todeschini et al. | Feb 2016 | B1 |
9262660 | Lu et al. | Feb 2016 | B2 |
9262662 | Chen et al. | Feb 2016 | B2 |
9262664 | Soule et al. | Feb 2016 | B2 |
9269036 | Bremer | Feb 2016 | B2 |
9270782 | Hala et al. | Feb 2016 | B2 |
9274806 | Barten | Mar 2016 | B2 |
9274812 | Doren et al. | Mar 2016 | B2 |
9275388 | Havens et al. | Mar 2016 | B2 |
9277668 | Feng et al. | Mar 2016 | B2 |
9280693 | Feng et al. | Mar 2016 | B2 |
9282501 | Wang et al. | Mar 2016 | B2 |
9286496 | Smith | Mar 2016 | B2 |
9292969 | Laffargue et al. | Mar 2016 | B2 |
9297900 | Jiang | Mar 2016 | B2 |
9298667 | Caballero | Mar 2016 | B2 |
9298964 | Li et al. | Mar 2016 | B2 |
9301427 | Feng et al. | Mar 2016 | B2 |
9304376 | Anderson | Apr 2016 | B2 |
9310609 | Rueblinger et al. | Apr 2016 | B2 |
9313377 | Todeschini et al. | Apr 2016 | B2 |
9317037 | Byford et al. | Apr 2016 | B2 |
9319548 | Showering et al. | Apr 2016 | B2 |
D757009 | Oberpriller et al. | May 2016 | S |
9342723 | Liu et al. | May 2016 | B2 |
9342724 | McCloskey et al. | May 2016 | B2 |
9342827 | Smith | May 2016 | B2 |
9355294 | Smith et al. | May 2016 | B2 |
9360304 | Xue et al. | Jun 2016 | B2 |
9361882 | Ressler et al. | Jun 2016 | B2 |
9365381 | Colonel et al. | Jun 2016 | B2 |
9367722 | Xian et al. | Jun 2016 | B2 |
9373018 | Colavito et al. | Jun 2016 | B2 |
9375945 | Bowles | Jun 2016 | B1 |
9378403 | Wang et al. | Jun 2016 | B2 |
D760719 | Zhou et al. | Jul 2016 | S |
9383848 | Daghigh | Jul 2016 | B2 |
9384374 | Bianconi | Jul 2016 | B2 |
9390596 | Todeschini | Jul 2016 | B1 |
9396375 | Qu et al. | Jul 2016 | B2 |
9398008 | Todeschini et al. | Jul 2016 | B2 |
D762604 | Fitch et al. | Aug 2016 | S |
D762647 | Fitch et al. | Aug 2016 | S |
9405011 | Showering | Aug 2016 | B2 |
9407840 | Wang | Aug 2016 | B2 |
9411386 | Sauerwein, Jr. | Aug 2016 | B2 |
9412242 | Van et al. | Aug 2016 | B2 |
9418252 | Nahill et al. | Aug 2016 | B2 |
9418269 | Havens et al. | Aug 2016 | B2 |
9418270 | Van et al. | Aug 2016 | B2 |
9423318 | Liu et al. | Aug 2016 | B2 |
D766244 | Zhou et al. | Sep 2016 | S |
9443123 | Hejl | Sep 2016 | B2 |
9443222 | Singel et al. | Sep 2016 | B2 |
9448610 | Davis et al. | Sep 2016 | B2 |
9454689 | McCloskey et al. | Sep 2016 | B2 |
9464885 | Lloyd et al. | Oct 2016 | B2 |
9465967 | Xian et al. | Oct 2016 | B2 |
9478113 | Xie et al. | Oct 2016 | B2 |
9478983 | Kather et al. | Oct 2016 | B2 |
D771631 | Fitch et al. | Nov 2016 | S |
9481186 | Bouverie et al. | Nov 2016 | B2 |
9488986 | Solanki | Nov 2016 | B1 |
9489782 | Payne et al. | Nov 2016 | B2 |
9490540 | Davies et al. | Nov 2016 | B1 |
9491729 | Rautiola et al. | Nov 2016 | B2 |
9497092 | Gomez et al. | Nov 2016 | B2 |
9507974 | Todeschini | Nov 2016 | B1 |
9519814 | Cudzilo | Dec 2016 | B2 |
9521331 | Bessettes et al. | Dec 2016 | B2 |
9530038 | Xian et al. | Dec 2016 | B2 |
D777166 | Bidwell et al. | Jan 2017 | S |
9558386 | Yeakley | Jan 2017 | B2 |
9572901 | Todeschini | Feb 2017 | B2 |
9582696 | Barber et al. | Feb 2017 | B2 |
9606581 | Howe et al. | Mar 2017 | B1 |
D783601 | Schulte et al. | Apr 2017 | S |
9616749 | Chamberlin | Apr 2017 | B2 |
9618993 | Murawski et al. | Apr 2017 | B2 |
D785617 | Bidwell et al. | May 2017 | S |
D785636 | Oberpriller et al. | May 2017 | S |
9646189 | Lu et al. | May 2017 | B2 |
9646191 | Unemyr et al. | May 2017 | B2 |
9652648 | Ackley et al. | May 2017 | B2 |
9652653 | Todeschini et al. | May 2017 | B2 |
9656487 | Ho et al. | May 2017 | B2 |
9659198 | Giordano et al. | May 2017 | B2 |
D790505 | Vargo et al. | Jun 2017 | S |
D790546 | Zhou et al. | Jun 2017 | S |
D790553 | Fitch et al. | Jun 2017 | S |
9680282 | Hanenburg | Jun 2017 | B2 |
9697401 | Feng et al. | Jul 2017 | B2 |
9701140 | Alaganchetty et al. | Jul 2017 | B1 |
9715614 | Todeschini et al. | Jul 2017 | B2 |
9734493 | Gomez et al. | Aug 2017 | B2 |
10019334 | Caballero et al. | Jul 2018 | B2 |
10021043 | Sevier | Jul 2018 | B2 |
10327158 | Wang et al. | Jun 2019 | B2 |
10410029 | Powilleit | Sep 2019 | B2 |
10635871 | Stang | Apr 2020 | B2 |
10956695 | Stang | Mar 2021 | B2 |
11373051 | Stang | Jun 2022 | B2 |
20070063048 | Havens et al. | Mar 2007 | A1 |
20080185432 | Caballero et al. | Aug 2008 | A1 |
20090134221 | Zhu et al. | May 2009 | A1 |
20100177076 | Essinger et al. | Jul 2010 | A1 |
20100177080 | Essinger et al. | Jul 2010 | A1 |
20100177707 | Essinger et al. | Jul 2010 | A1 |
20100177749 | Essinger et al. | Jul 2010 | A1 |
20100265880 | Rautiola et al. | Oct 2010 | A1 |
20110169999 | Grunow et al. | Jul 2011 | A1 |
20110202554 | Powilleit et al. | Aug 2011 | A1 |
20120111946 | Golant | May 2012 | A1 |
20120168511 | Kotlarsky et al. | Jul 2012 | A1 |
20120168512 | Kotlarsky et al. | Jul 2012 | A1 |
20120193423 | Samek | Aug 2012 | A1 |
20120203647 | Smith | Aug 2012 | A1 |
20120223141 | Good et al. | Sep 2012 | A1 |
20120228382 | Havens et al. | Sep 2012 | A1 |
20120248188 | Kearney | Oct 2012 | A1 |
20130043312 | Van Horn | Feb 2013 | A1 |
20130075168 | Amundsen et al. | Mar 2013 | A1 |
20130082104 | Kearney et al. | Apr 2013 | A1 |
20130175341 | Kearney et al. | Jul 2013 | A1 |
20130175343 | Good | Jul 2013 | A1 |
20130257744 | Daghigh et al. | Oct 2013 | A1 |
20130257759 | Daghigh | Oct 2013 | A1 |
20130270346 | Xian et al. | Oct 2013 | A1 |
20130287258 | Kearney | Oct 2013 | A1 |
20130292475 | Kotlarsky et al. | Nov 2013 | A1 |
20130292477 | Hennick et al. | Nov 2013 | A1 |
20130293539 | Hunt et al. | Nov 2013 | A1 |
20130293540 | Laffargue et al. | Nov 2013 | A1 |
20130306728 | Thuries et al. | Nov 2013 | A1 |
20130306731 | Pedrao | Nov 2013 | A1 |
20130307964 | Bremer et al. | Nov 2013 | A1 |
20130308625 | Park et al. | Nov 2013 | A1 |
20130313324 | Koziol et al. | Nov 2013 | A1 |
20130313325 | Wilz et al. | Nov 2013 | A1 |
20130332524 | Fiala et al. | Dec 2013 | A1 |
20130342717 | Havens et al. | Dec 2013 | A1 |
20140001267 | Giordano et al. | Jan 2014 | A1 |
20140002828 | Laffargue et al. | Jan 2014 | A1 |
20140008439 | Wang | Jan 2014 | A1 |
20140025584 | Liu et al. | Jan 2014 | A1 |
20140034734 | Sauerwein, Jr. | Feb 2014 | A1 |
20140036848 | Pease et al. | Feb 2014 | A1 |
20140039693 | Havens et al. | Feb 2014 | A1 |
20140042814 | Kather et al. | Feb 2014 | A1 |
20140049120 | Kohtz et al. | Feb 2014 | A1 |
20140049635 | Laffargue et al. | Feb 2014 | A1 |
20140061306 | Wu et al. | Mar 2014 | A1 |
20140063289 | Hussey et al. | Mar 2014 | A1 |
20140066136 | Sauerwein et al. | Mar 2014 | A1 |
20140067692 | Ye et al. | Mar 2014 | A1 |
20140070005 | Nahill et al. | Mar 2014 | A1 |
20140071840 | Venancio | Mar 2014 | A1 |
20140074746 | Wang | Mar 2014 | A1 |
20140076974 | Havens et al. | Mar 2014 | A1 |
20140078341 | Havens et al. | Mar 2014 | A1 |
20140078342 | Li et al. | Mar 2014 | A1 |
20140078345 | Showering | Mar 2014 | A1 |
20140097249 | Gomez et al. | Apr 2014 | A1 |
20140098792 | Wang et al. | Apr 2014 | A1 |
20140100774 | Showering | Apr 2014 | A1 |
20140100813 | Showering | Apr 2014 | A1 |
20140103115 | Meier et al. | Apr 2014 | A1 |
20140104413 | McCloskey et al. | Apr 2014 | A1 |
20140104414 | McCloskey et al. | Apr 2014 | A1 |
20140104416 | Giordano et al. | Apr 2014 | A1 |
20140104451 | Todeschini et al. | Apr 2014 | A1 |
20140106594 | Skvoretz | Apr 2014 | A1 |
20140106725 | Sauerwein, Jr. | Apr 2014 | A1 |
20140108010 | Maltseff et al. | Apr 2014 | A1 |
20140108402 | Gomez et al. | Apr 2014 | A1 |
20140108682 | Caballero | Apr 2014 | A1 |
20140110485 | Toa et al. | Apr 2014 | A1 |
20140114530 | Fitch et al. | Apr 2014 | A1 |
20140124577 | Wang et al. | May 2014 | A1 |
20140124579 | Ding | May 2014 | A1 |
20140125842 | Winegar | May 2014 | A1 |
20140125853 | Wang | May 2014 | A1 |
20140125999 | Longacre et al. | May 2014 | A1 |
20140129378 | Richardson | May 2014 | A1 |
20140131438 | Kearney | May 2014 | A1 |
20140131441 | Nahill et al. | May 2014 | A1 |
20140131443 | Smith | May 2014 | A1 |
20140131444 | Wang | May 2014 | A1 |
20140131445 | Ding et al. | May 2014 | A1 |
20140131448 | Xian et al. | May 2014 | A1 |
20140133379 | Wang et al. | May 2014 | A1 |
20140136208 | Maltseff et al. | May 2014 | A1 |
20140140585 | Wang | May 2014 | A1 |
20140151453 | Meier et al. | Jun 2014 | A1 |
20140152882 | Samek et al. | Jun 2014 | A1 |
20140158770 | Sevier et al. | Jun 2014 | A1 |
20140159869 | Zumsteg et al. | Jun 2014 | A1 |
20140166755 | Liu et al. | Jun 2014 | A1 |
20140166757 | Smith | Jun 2014 | A1 |
20140166759 | Liu et al. | Jun 2014 | A1 |
20140168787 | Wang et al. | Jun 2014 | A1 |
20140175165 | Havens et al. | Jun 2014 | A1 |
20140175172 | Jovanovski et al. | Jun 2014 | A1 |
20140191644 | Chaney | Jul 2014 | A1 |
20140191913 | Ge et al. | Jul 2014 | A1 |
20140197238 | Liu et al. | Jul 2014 | A1 |
20140197239 | Havens et al. | Jul 2014 | A1 |
20140197304 | Feng et al. | Jul 2014 | A1 |
20140204268 | Grunow et al. | Jul 2014 | A1 |
20140214631 | Hansen | Jul 2014 | A1 |
20140217166 | Berthiaume et al. | Aug 2014 | A1 |
20140217180 | Liu | Aug 2014 | A1 |
20140231500 | Ehrhart et al. | Aug 2014 | A1 |
20140232930 | Anderson | Aug 2014 | A1 |
20140247315 | Marty et al. | Sep 2014 | A1 |
20140263493 | Amurgis et al. | Sep 2014 | A1 |
20140263645 | Smith et al. | Sep 2014 | A1 |
20140267609 | Laffargue | Sep 2014 | A1 |
20140270196 | Braho et al. | Sep 2014 | A1 |
20140270229 | Braho | Sep 2014 | A1 |
20140277337 | Chen | Sep 2014 | A1 |
20140278387 | DiGregorio | Sep 2014 | A1 |
20140278391 | Braho et al. | Sep 2014 | A1 |
20140282210 | Bianconi | Sep 2014 | A1 |
20140283282 | Dye et al. | Sep 2014 | A1 |
20140284384 | Lu et al. | Sep 2014 | A1 |
20140288933 | Braho et al. | Sep 2014 | A1 |
20140297058 | Barker et al. | Oct 2014 | A1 |
20140299665 | Barber et al. | Oct 2014 | A1 |
20140312121 | Lu et al. | Oct 2014 | A1 |
20140319220 | Coyle | Oct 2014 | A1 |
20140319221 | Oberpriller et al. | Oct 2014 | A1 |
20140326787 | Barten | Nov 2014 | A1 |
20140332590 | Wang et al. | Nov 2014 | A1 |
20140344943 | Todeschini et al. | Nov 2014 | A1 |
20140346233 | Liu et al. | Nov 2014 | A1 |
20140351317 | Smith et al. | Nov 2014 | A1 |
20140353373 | Van et al. | Dec 2014 | A1 |
20140361073 | Qu et al. | Dec 2014 | A1 |
20140361082 | Xian et al. | Dec 2014 | A1 |
20140362184 | Jovanovski et al. | Dec 2014 | A1 |
20140363015 | Braho | Dec 2014 | A1 |
20140369511 | Sheerin et al. | Dec 2014 | A1 |
20140374483 | Lu | Dec 2014 | A1 |
20140374485 | Xian et al. | Dec 2014 | A1 |
20150001301 | Ouyang | Jan 2015 | A1 |
20150001304 | Todeschini | Jan 2015 | A1 |
20150003673 | Fletcher | Jan 2015 | A1 |
20150009338 | Laffargue et al. | Jan 2015 | A1 |
20150009610 | London et al. | Jan 2015 | A1 |
20150014416 | Kotlarsky et al. | Jan 2015 | A1 |
20150021397 | Rueblinger et al. | Jan 2015 | A1 |
20150028102 | Ren et al. | Jan 2015 | A1 |
20150028103 | Jiang | Jan 2015 | A1 |
20150028104 | Ma et al. | Jan 2015 | A1 |
20150029002 | Yeakley et al. | Jan 2015 | A1 |
20150032709 | Maloy et al. | Jan 2015 | A1 |
20150039309 | Braho et al. | Feb 2015 | A1 |
20150039878 | Barten | Feb 2015 | A1 |
20150040378 | Saber et al. | Feb 2015 | A1 |
20150048168 | Fritz et al. | Feb 2015 | A1 |
20150049347 | Laffargue et al. | Feb 2015 | A1 |
20150051992 | Smith | Feb 2015 | A1 |
20150053766 | Havens et al. | Feb 2015 | A1 |
20150053768 | Wang et al. | Feb 2015 | A1 |
20150053769 | Thuries et al. | Feb 2015 | A1 |
20150060544 | Feng et al. | Mar 2015 | A1 |
20150062366 | Liu et al. | Mar 2015 | A1 |
20150063215 | Wang | Mar 2015 | A1 |
20150063676 | Lloyd et al. | Mar 2015 | A1 |
20150069130 | Gannon | Mar 2015 | A1 |
20150071819 | Todeschini | Mar 2015 | A1 |
20150083800 | Li et al. | Mar 2015 | A1 |
20150086114 | Todeschini | Mar 2015 | A1 |
20150088522 | Hendrickson et al. | Mar 2015 | A1 |
20150096872 | Woodburn | Apr 2015 | A1 |
20150099557 | Pettinelli et al. | Apr 2015 | A1 |
20150100196 | Hollifield | Apr 2015 | A1 |
20150102109 | Huck | Apr 2015 | A1 |
20150115035 | Meier et al. | Apr 2015 | A1 |
20150127791 | Kosecki et al. | May 2015 | A1 |
20150128116 | Chen et al. | May 2015 | A1 |
20150129659 | Feng et al. | May 2015 | A1 |
20150133047 | Smith et al. | May 2015 | A1 |
20150134470 | Hejl et al. | May 2015 | A1 |
20150136851 | Harding et al. | May 2015 | A1 |
20150136854 | Lu et al. | May 2015 | A1 |
20150142492 | Kumar | May 2015 | A1 |
20150144692 | Hejl | May 2015 | A1 |
20150144698 | Teng et al. | May 2015 | A1 |
20150144701 | Xian et al. | May 2015 | A1 |
20150149946 | Benos et al. | May 2015 | A1 |
20150161429 | Xian | Jun 2015 | A1 |
20150169925 | Chen et al. | Jun 2015 | A1 |
20150169929 | Williams et al. | Jun 2015 | A1 |
20150178523 | Gelay et al. | Jun 2015 | A1 |
20150178534 | Jovanovski et al. | Jun 2015 | A1 |
20150178535 | Bremer et al. | Jun 2015 | A1 |
20150178536 | Hennick et al. | Jun 2015 | A1 |
20150178537 | El et al. | Jun 2015 | A1 |
20150181093 | Zhu et al. | Jun 2015 | A1 |
20150181109 | Gillet et al. | Jun 2015 | A1 |
20150186703 | Chen et al. | Jul 2015 | A1 |
20150193644 | Kearney et al. | Jul 2015 | A1 |
20150199957 | Funyak et al. | Jul 2015 | A1 |
20150210199 | Payne | Jul 2015 | A1 |
20150220753 | Zhu et al. | Aug 2015 | A1 |
20150254485 | Feng et al. | Sep 2015 | A1 |
20150310243 | Ackley et al. | Oct 2015 | A1 |
20150310389 | Crimm et al. | Oct 2015 | A1 |
20150327012 | Bian et al. | Nov 2015 | A1 |
20160014251 | Hejl | Jan 2016 | A1 |
20160040982 | Li et al. | Feb 2016 | A1 |
20160042241 | Todeschini | Feb 2016 | A1 |
20160057230 | Todeschini et al. | Feb 2016 | A1 |
20160062473 | Bouchat et al. | Mar 2016 | A1 |
20160092805 | Geisler et al. | Mar 2016 | A1 |
20160101936 | Chamberlin | Apr 2016 | A1 |
20160102975 | McCloskey et al. | Apr 2016 | A1 |
20160104019 | Todeschini et al. | Apr 2016 | A1 |
20160104274 | Jovanovski et al. | Apr 2016 | A1 |
20160109219 | Ackley et al. | Apr 2016 | A1 |
20160109220 | Laffargue et al. | Apr 2016 | A1 |
20160109224 | Thuries et al. | Apr 2016 | A1 |
20160112631 | Ackley et al. | Apr 2016 | A1 |
20160112643 | Laffargue et al. | Apr 2016 | A1 |
20160117627 | Raj et al. | Apr 2016 | A1 |
20160124516 | Schoon et al. | May 2016 | A1 |
20160125217 | Todeschini | May 2016 | A1 |
20160125342 | Miller et al. | May 2016 | A1 |
20160125873 | Braho et al. | May 2016 | A1 |
20160133253 | Braho et al. | May 2016 | A1 |
20160171597 | Todeschini | Jun 2016 | A1 |
20160171666 | McCloskey | Jun 2016 | A1 |
20160171720 | Todeschini | Jun 2016 | A1 |
20160171775 | Todeschini et al. | Jun 2016 | A1 |
20160171777 | Todeschini et al. | Jun 2016 | A1 |
20160174674 | Oberpriller et al. | Jun 2016 | A1 |
20160178479 | Goldsmith | Jun 2016 | A1 |
20160178685 | Young et al. | Jun 2016 | A1 |
20160178707 | Young et al. | Jun 2016 | A1 |
20160179132 | Harr | Jun 2016 | A1 |
20160179143 | Bidwell et al. | Jun 2016 | A1 |
20160179368 | Roeder | Jun 2016 | A1 |
20160179378 | Kent et al. | Jun 2016 | A1 |
20160180130 | Bremer | Jun 2016 | A1 |
20160180133 | Oberpriller et al. | Jun 2016 | A1 |
20160180136 | Meier et al. | Jun 2016 | A1 |
20160180594 | Todeschini | Jun 2016 | A1 |
20160180663 | McMahan et al. | Jun 2016 | A1 |
20160180678 | Ackley et al. | Jun 2016 | A1 |
20160180713 | Bernhardt et al. | Jun 2016 | A1 |
20160185136 | Ng et al. | Jun 2016 | A1 |
20160185291 | Chamberlin | Jun 2016 | A1 |
20160186926 | Oberpriller et al. | Jun 2016 | A1 |
20160188861 | Todeschini | Jun 2016 | A1 |
20160188939 | Sailors et al. | Jun 2016 | A1 |
20160188940 | Lu et al. | Jun 2016 | A1 |
20160188941 | Todeschini et al. | Jun 2016 | A1 |
20160188942 | Good et al. | Jun 2016 | A1 |
20160188943 | Franz | Jun 2016 | A1 |
20160188944 | Wilz et al. | Jun 2016 | A1 |
20160189076 | Mellott et al. | Jun 2016 | A1 |
20160189087 | Morton et al. | Jun 2016 | A1 |
20160189088 | Pecorari et al. | Jun 2016 | A1 |
20160189092 | George et al. | Jun 2016 | A1 |
20160189284 | Mellott et al. | Jun 2016 | A1 |
20160189288 | Todeschini et al. | Jun 2016 | A1 |
20160189366 | Chamberlin et al. | Jun 2016 | A1 |
20160189443 | Smith | Jun 2016 | A1 |
20160189447 | Valenzuela | Jun 2016 | A1 |
20160189489 | Au et al. | Jun 2016 | A1 |
20160191684 | DiPiazza et al. | Jun 2016 | A1 |
20160192051 | DiPiazza et al. | Jun 2016 | A1 |
20160202951 | Pike et al. | Jul 2016 | A1 |
20160202958 | Zabel et al. | Jul 2016 | A1 |
20160202959 | Doubleday et al. | Jul 2016 | A1 |
20160203021 | Pike et al. | Jul 2016 | A1 |
20160203429 | Mellott et al. | Jul 2016 | A1 |
20160203797 | Pike et al. | Jul 2016 | A1 |
20160203820 | Zabel et al. | Jul 2016 | A1 |
20160204623 | Haggerty et al. | Jul 2016 | A1 |
20160204636 | Allen et al. | Jul 2016 | A1 |
20160204638 | Miraglia et al. | Jul 2016 | A1 |
20160227912 | Oberpriller et al. | Aug 2016 | A1 |
20160232891 | Pecorari | Aug 2016 | A1 |
20160292477 | Bidwell | Oct 2016 | A1 |
20160294779 | Yeakley et al. | Oct 2016 | A1 |
20160306769 | Kohtz et al. | Oct 2016 | A1 |
20160314276 | Wilz et al. | Oct 2016 | A1 |
20160314294 | Kubler et al. | Oct 2016 | A1 |
20160316190 | McCloskey et al. | Oct 2016 | A1 |
20160323310 | Todeschini et al. | Nov 2016 | A1 |
20160325677 | Fitch et al. | Nov 2016 | A1 |
20160327614 | Young et al. | Nov 2016 | A1 |
20160327930 | Charpentier et al. | Nov 2016 | A1 |
20160328762 | Pape | Nov 2016 | A1 |
20160330218 | Hussey et al. | Nov 2016 | A1 |
20160343163 | Venkatesha et al. | Nov 2016 | A1 |
20160343176 | Ackley | Nov 2016 | A1 |
20160364914 | Todeschini | Dec 2016 | A1 |
20160370220 | Ackley et al. | Dec 2016 | A1 |
20160372282 | Bandringa | Dec 2016 | A1 |
20160373847 | Vargo et al. | Dec 2016 | A1 |
20160377414 | Thuries et al. | Dec 2016 | A1 |
20160377417 | Jovanovski et al. | Dec 2016 | A1 |
20170010141 | Ackley | Jan 2017 | A1 |
20170010328 | Mullen et al. | Jan 2017 | A1 |
20170010780 | Waldron et al. | Jan 2017 | A1 |
20170016714 | Laffargue et al. | Jan 2017 | A1 |
20170018094 | Todeschini | Jan 2017 | A1 |
20170046603 | Lee et al. | Feb 2017 | A1 |
20170047864 | Stang et al. | Feb 2017 | A1 |
20170053146 | Liu et al. | Feb 2017 | A1 |
20170053147 | Germaine et al. | Feb 2017 | A1 |
20170053647 | Nichols et al. | Feb 2017 | A1 |
20170055606 | Xu et al. | Mar 2017 | A1 |
20170060316 | Larson | Mar 2017 | A1 |
20170061961 | Nichols et al. | Mar 2017 | A1 |
20170064634 | Van et al. | Mar 2017 | A1 |
20170083730 | Feng et al. | Mar 2017 | A1 |
20170091502 | Furlong et al. | Mar 2017 | A1 |
20170091706 | Lloyd et al. | Mar 2017 | A1 |
20170091741 | Todeschini | Mar 2017 | A1 |
20170091904 | Ventress, Jr. | Mar 2017 | A1 |
20170092908 | Chaney | Mar 2017 | A1 |
20170094238 | Germaine et al. | Mar 2017 | A1 |
20170098947 | Wolski | Apr 2017 | A1 |
20170100949 | Celinder et al. | Apr 2017 | A1 |
20170108838 | Todeschini et al. | Apr 2017 | A1 |
20170108895 | Chamberlin et al. | Apr 2017 | A1 |
20170118355 | Wong et al. | Apr 2017 | A1 |
20170123598 | Phan et al. | May 2017 | A1 |
20170124369 | Rueblinger et al. | May 2017 | A1 |
20170124396 | Todeschini et al. | May 2017 | A1 |
20170124687 | McCloskey et al. | May 2017 | A1 |
20170126873 | McGary et al. | May 2017 | A1 |
20170126904 | D'Armancourt et al. | May 2017 | A1 |
20170139012 | Smith | May 2017 | A1 |
20170140329 | Bernhardt et al. | May 2017 | A1 |
20170140731 | Smith | May 2017 | A1 |
20170147847 | Berggren et al. | May 2017 | A1 |
20170150124 | Thuries | May 2017 | A1 |
20170169198 | Nichols | Jun 2017 | A1 |
20170171035 | Lu et al. | Jun 2017 | A1 |
20170171703 | Maheswaranathan | Jun 2017 | A1 |
20170171803 | Maheswaranathan | Jun 2017 | A1 |
20170180359 | Wolski et al. | Jun 2017 | A1 |
20170180577 | Nguon et al. | Jun 2017 | A1 |
20170181299 | Shi et al. | Jun 2017 | A1 |
20170190192 | Delario et al. | Jul 2017 | A1 |
20170193432 | Bernhardt | Jul 2017 | A1 |
20170193461 | Celinder et al. | Jul 2017 | A1 |
20170193727 | Van et al. | Jul 2017 | A1 |
20170200108 | Au et al. | Jul 2017 | A1 |
20170200275 | McCloskey et al. | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
202995744 | Jun 2013 | CN |
106249869 | Dec 2016 | CN |
2003-333459 | Nov 2003 | JP |
2013163789 | Nov 2013 | WO |
2013173985 | Nov 2013 | WO |
2014019130 | Feb 2014 | WO |
2014110495 | Jul 2014 | WO |
Entry |
---|
US 8,548,242 B1, 10/2013, Longacre (withdrawn) |
US 8,616,454 B2, 12/2013, Havens et al. (withdrawn) |
Final Rejection dated Oct. 1, 2020 for U.S. Appl. No. 16/831,534. |
Non-Final Office Action received for U.S. Appl. No. 17/248,916, dated Oct. 4, 2021, 10 pages. |
Non-Final Rejection dated Jun. 24, 2020 for U.S. Appl. No. 16/831,534. |
Notice of Allowance and Fees Due (PTOL-85) dated Aug. 29, 2019 for U.S. Appl. No. 16/052,039. |
Notice of Allowance and Fees Due (PTOL-85) dated Dec. 30, 2019 for U.S. Appl. No. 16/052,039. |
Notice of Allowance and Fees Due (PTOL-85) dated Nov. 12, 2020 for U.S. Appl. No. 16/831,534. |
Notice of Allowance received for U.S. Appl. No. 17/248,916, dated Mar. 10, 2022, 14 pages. |
U.S. Patent Application Brian L. Jovanovski et al., filed Jun. 23, 2015, not published yet, Dual-Projector Three-Dimensional Scanner; 40 pages [Previously cited and provided in parent application], U.S. Appl. No. 14/747,490. |
U.S. Patent Application for a Laser Scanning Module Employing an Elastomeric U-Hinge Based Laser Scanning Assembly, filed Feb. 7, 2012 (Feng et al.), U.S. Appl. No. 13/367,978. |
U.S. Patent Application for a Mobile-Phone Adapter for Electronic Transactions, filed Jul. 10, 2014 (Hejl), U.S. Appl. No. 14/327,827. |
U.S. Patent Application for a System and Method for Indicia Verification, filed Jul. 18, 2014 (Hejl), U.S. Appl. No. 14/334,934. |
U.S. Patent Application for Adaptable Interface for a Mobile Computing Device filed Oct. 31, 2014 (Schoon et al.), U.S. Appl. No. 14/529,563. |
U.S. Patent Application for Aimer for Barcode Scanning filed Mar. 31, 2015 (Bidwell), U.S. Appl. No. 14/674,329. |
U.S. Patent Application for an Axially Reinforced Flexible Scan Element, filed Jul. 25, 2014 (Reublinger et al.); 41 pages, U.S. Appl. No. 14/340,627. |
U.S. Patent Application for Apparatus and Methods for Monitoring One or More Portable Data Terminals (Caballero et al.), U.S. Appl. No. 14/725,352. |
U.S. Patent Application for Application Independent DEX/UCS Interface filed May 8, 2015 (Pape), U.S. Appl. No. 14/707,123. |
U.S. Patent Application for Augumented Reality Enabled Hazard Display filed May 19, 2015 (Venkatesha et al.), U.S. Appl. No. 14/715,672. |
U.S. Patent Application for Auto-Contrast Viewfinder for an Indicia Reader filed Dec. 12, 2014 (Todeschini), U.S. Appl. No. 14/568,305. |
U.S. Patent Application for Autofocus Lens System for Indicia Readers filed Apr. 29, 2014 (Ackley et al.), U.S. Appl. No. 14/264,173. |
U.S. Patent Application for Barcode Reader With Security Features filed Oct. 31, 2014 (Todeschini et al.), U.S. Appl. No. 14/529,857. |
U.S. Patent Application for Barcode Scanning System Using Wearable Device With Embedded Camera filed Nov. 5, 2014 (Todeschini), U.S. Appl. No. 14/533,319. |
U.S. Patent Application for Calibrating a Volume Dimensioner filed Jun. 16, 2015 (Ackley et al.); 63 pages, U.S. Appl. No. 14/740,373. |
U.S. Patent Application for Cargo Apportionment Techniques filed Feb. 5, 2015 (Morton et al.), U.S. Appl. No. 14/614,796. |
U.S. Patent Application for Cloud-Based System for Reading of Decodable Indicia filed Jun. 19, 2015 (Todeschini et al.), U.S. Appl. No. 14/744,836. |
U.S. Patent Application for Concatenated Expected Responses for Speech Recognition filed Nov. 7, 2014 (Braho et al.), U.S. Appl. No. 14/535,764. |
U.S. Patent Application for Cordless Indicia Reader With a Multifunction Coil for Wireless Charging and EAS Deactivation, filed Jun. 24, 2015 (Xie et al.), U.S. Appl. No. 14/748,446. |
U.S. Patent Application for Data Collection Module and System filed Jun. 8, 2015 (Powilleit), U.S. Appl. No. 14/732,870. |
U.S. Patent Application for Decodable Indicia Reading Terminal With Combined Illumination filed Mar. 18, 2015 (Kearney et al.), U.S. Appl. No. 14/660,970. |
U.S. Patent Application for Design Patiern for Secure Store filed Mar. 9, 2015 (Zhu et al.); 23 pages, U.S. Appl. No. 14/405,278. |
U.S. Patent Application for Device for Supporting an Electronic Tool on a User's Hand filed Feb. 5, 2015 (Oberpriller et al.), U.S. Appl. No. 14/614,706. |
U.S. Patent Application for Device Management Proxy for Secure Devices filed Apr. 1, 2015 (Yeakley et al.), U.S. Appl. No. 14/676,327. |
U.S. Patent Application for Device Management Using Virtual Interfaces Cross-Reference to Related Applications filed Jun. 2, 2015 (Caballero), U.S. Appl. No. 14/728,397. |
U.S. Patent Application for Device, System, and Method for Determining the Status of Checkout Lanes filed Feb. 23, 2015 (Todeschini), U.S. Appl. No. 14/628,708. |
U.S. Patent Application for Dimensioning System Calibration Systems and Methods filed Apr. 6, 2015 (Laffargue et al.), U.S. Appl. No. 14/679,275. |
U.S. Patent Application for Dimensioning System With Guided Alignment, filed Aug. 6, 2014 (Li et al.), U.S. Appl. No. 14/453,019. |
U.S. Patent Application for Dimensioning System With Multipath Interference Mitigation filed Oct. 21, 2014 (Thuries et al.), U.S. Appl. No. 14/519,179. |
U.S. Patent Application for Directing an Inspector Through an Inspection filed Nov. 3, 2014 (Miller et al.), U.S. Appl. No. 14/531,154. |
U.S. Patent Application for Docking System and Method Using Near Field Communication filed Apr. 21, 2014 (Showering), U.S. Appl. No. 14/257,364. |
U.S. Patent Application for Dynamic Diagnostic Indicator Generation filed Dec. 17, 2014 (Goldsmith), U.S. Appl. No. 14/573,022. |
U.S. Patent Application for Electronic Device With Wireless Path Selection Capability filed May 28, 2015 (Wang et al.), U.S. Appl. No. 14/724,134. |
U.S. Patent Application for Evaluating Image Values filed May 19, 2015 (Ackley), U.S. Appl. No. 14/715,916. |
U.S. Patent Application for Hand-Mounted Indicia-Reading Device with Finger Motion Triggering filed Apr. 1, 2014 (Van Horn et al.), U.S. Appl. No. 14/231,898. |
U.S. Patent Application for Handheld Dimensioner With Data-Quality Indication filed Oct. 21, 2014 (Laffargue et al.), U.S. Appl. No. 14/519,233. |
U.S. Patent Application for Handheld Dimensioning System With Feedback filed Oct. 21, 2014 (Laffargue et al.), U.S. Appl. No. 14/519,195. |
U.S. Patent Application for Handheld Dimensioning System With Measurement-Conformance Feedback filed Oct. 21, 2014 (Ackley et al.), U.S. Appl. No. 14/519,249. |
U.S. Patent Application for Hands-Free Human Machine Interface Responsive to a Driver of a Vehicle filed May 6, 2015 (Fitch et al.), U.S. Appl. No. 14/705,012. |
U.S. Patent Application for Identifying Inventory Items in a Storage Facility filed Oct. 14, 2014 (Singel et al.), U.S. Appl. No. 14/513,808. |
U.S. Patent Application for Imaging Apparatus Comprising IIvtAGE Sensor Array Having Shared Global Shutter Circuitry filed Jun. 19, 2015 (Wang), U.S. Appl. No. 14/744,633. |
U.S. Patent Application for Imaging Apparatus Having Imaging Assembly filed May 29, 2015 (Barber et al.), U.S. Appl. No. 14/724,908. |
U.S. Patent Application for Indicia Reader filed Apr. 1, 2015 (Huck), U.S. Appl. No. 14/676,109. |
U.S. Patent Application for Indicia Reader for Size-Limited Applications filed Mar. 7, 2014 (Feng et al.), U.S. Appl. No. 14/200,405. |
U.S. Patent Application for Indicia Reading System Employing Digital Gain Control filed Jun. 18, 2015 (Xian et al.), U.S. Appl. No. 14/742,818. |
U.S. Patent Application for Indicia-reader Having Unitary Construction Scanner, filed Jan. 8, 2014 (Colavito et al.), U.S. Appl. No. 14/150,393. |
U.S. Patent Application for Indicia-Reading Systems Having an Interface With a User's Nervous System filed Jun. 10, 2015 (Todeschini), U.S. Appl. No. 14/735,717. |
U.S. Patent Application for Interactive Indicia Reader, filed Aug. 6, 2014 (Todeschini), U.S. Appl. No. 14/452,697. |
U.S. Patent Application for Interactive User Interface for Capturing a Document in an Image Signal filed May 27, 2015 (Showering et al.), U.S. Appl. No. 14/722,608. |
U.S. Patent Application for Intermediate Linear Positioning filed May 5, 2015 (Charpentier et al.); 60 pages, U.S. Appl. No. 14/704,050. |
U.S. Patent Application for Laser Scanning Code Symbol Reading System, filed Jul. 24, 2014 (Xian et al.), U.S. Appl. No. 14/339,708. |
U.S. Patent Application for Media Gate for Thermal Transfer Printers filed Dec. 23, 2014 (Bowles), U.S. Appl. No. 14/580,262. |
U.S. Patent Application for Medication Management System filed Apr. 24, 2015 (Sewell et al.), U.S. Appl. No. 14/695,364. |
U.S. Patent Application for Method and Apparatus for Reading Optical Indicia Using a Plurality of Data Sources filed May 8, 2015 (Smith et al.), U.S. Appl. No. 14/707,492. |
U.S. Patent Application for Method and Application for Scanning a Barcode With a Smart Device While Continuously Running and Displaying an Application on the Smart Device Display filed Mar. 20, 2015 (Todeschini), U.S. Appl. No. 14/664,063. |
U.S. Patent Application for Method and System for Recognizing Speech Using Wildcards in an Expected Response filed Oct. 29, 2014 (Braho et al.), U.S. Appl. No. 14/527,191. |
U.S. Patent Application for Method and System to Protect Software-Based Network-Connected Devices From Advanced Persistent Threat filed May 6, 2015 (Hussey et al.), U.S. Appl. No. 14/705,407. |
U.S. Patent Application for Method of and System for Detecting Object Weighing Interferences filed Jun. 12, 2015 (Amundsen et al.), U.S. Appl. No. 14/738,038. |
U.S. Patent Application for Method of Programming the Default Cable Interface Software in an Indicia Reading Device filed May 29, 2015 (Barten), U.S. Appl. No. 14/724,849. |
U.S. Patent Application for Methods for Training a Speech Recognition System filed Feb. 11, 2015 (Pecorari), U.S. Appl. No. 14/619,093. |
U.S. Patent Application for Mobile Computing Device With Data Cognition Software, filed Aug. 19, 2014 (Todeschini et al.), U.S. Appl. No. 14/462,801. |
U.S. Patent Application for Multifunction Point of Sale Apparatus With Optical Signature Capture filed Jul. 30, 2014 (Good et al.), U.S. Appl. No. 14/446,391. |
U.S. Patent Application for Multifunction Point of Sale System filed Mar. 19, 2015 (Van Horn et al.), U.S. Appl. No. 14/662,922. |
U.S. Patent Application for Multiple Platform Support System and Method filed Apr. 15, 2015 (Qu et al.), U.S. Appl. No. 14/686,822. |
U.S. Patent Application for Multipurpose Optical Reader, filed May 14, 2014 (Jovanovski et al.); 59 pages now abandoned., U.S. Appl. No. 14/277,337. |
U.S. Patent Application for Navigation System Configured to Integrate Motion Sensing Device Inputs filed Apr. 2, 2015 (Showering), U.S. Appl. No. 14/676,898. |
U.S. Patent Application for Optical Pattern Projector filed Jun. 23, 2015 (Thuries et al.), U.S. Appl. No. 14/747,197. |
U.S. Patent Application for Optical Reading Apparatus Having Variable Settings filed Jan. 21, 2015 (Chen et al.), U.S. Appl. No. 14/416,147. |
U.S. Patent Application for Portable Electronic Devices Having a Separate Location Trigger Unit for Use in Controlling an Application Unit filed Nov. 3, 2014 (Bian et al. ), U.S. Appl. No. 14/398,542. |
U.S. Patent Application for Pre-Paid Usage System for Encoded Information Reading Terminals filed May 13, 2015 (Smith), U.S. Appl. No. 14/710,666. |
U.S. Patent Application for Reprogramming System and Method for Devices Including Programming Symbol filed Mar. 18, 2015 (Soule et al.), U.S. Appl. No. 14/661,013. |
U.S. Patent Application for Safety System and Method filed Dec. 22, 2014 (Ackley et al.), U.S. Appl. No. 14/578,627. |
U.S. Patent Application for Secure Unatiended Network Authentication filed Apr. 24, 2015 (Kubler et al.); 52 pages, U.S. Appl. No. 14/695,923. |
U.S. Patent Application for Selective Output of Decoded Message Data filed Jun. 19, 2015 (Todeschini et al.), U.S. Appl. No. 14/745,006. |
U.S. Patent Application for Shelving and Package Locating Systems for Delivery Vehicles filed Jan. 6, 2015 (Payne), U.S. Appl. No. 14/590,024. |
U.S. Patent Application for Symbol Reading System Having Predictive Diagnostics filed Apr. 29, 2015 (Nahill et al.), U.S. Appl. No. 14/699,436. |
U.S. Patent Application for System and Method for Detecting Barcode Printing Errors filed Jan. 14, 2015 (Ackley), U.S. Appl. No. 14/596,757. |
U.S. Patent Application for System and Method for Dimensioning filed Oct. 21, 2014 (Ackley et al.), U.S. Appl. No. 14/519,211. |
U.S. Patent Application for System and Method for Display of Information Using a Vehicle-Mount Computer filed May 8, 2015 (Chamberlin), U.S. Appl. No. 14/707,037. |
U.S. Patent Application for System and Method for Power Management of Mobile Devices filed Apr. 9, 2015 (Murawski et al.), U.S. Appl. No. 14/682,615. |
U.S. Patent Application for System and Method for Regulating Barcode Data Injection Into a Running Application on a SI1ART Device filed May 1, 2015 (Todeschini et al. ), U.S. Appl. No. 14/702,110. |
U.S. Patent Application for System and Method for Reliable Store-and-Forward Data Handling By Encoded Information Reading Terminals filed Mar. 2, 2015 (Sevier), U.S. Appl. No. 14/635,346. |
U.S. Patent Application for System for Communication Via a Peripheral Hub filed Apr. 15, 2015 (Kohtz et al.), U.S. Appl. No. 14/687,289. |
U.S. Patent Application for Tactile Switch for a Mobile Electronic Device filed Jun. 16, 2015 (Bandringa), U.S. Appl. No. 14/740,320. |
U.S. Patent Application for Terminal Having Illumination and Focus Control filed May 21, 2014 (Liu et al.), U.S. Appl. No. 14/283,282. |
U.S. Patent Application for Terminal Including Imaging Assembly filed Feb. 25, 2015 (Gomez et al.), U.S. Appl. No. 14/630,841. |
U.S. Patent Application for Tracking Battery Conditions filed May 4, 2015 (Young et al.), U.S. Appl. No. 14/702,979. |
U.S. Patent Application for Transforming Components of a Web Page to Voice Prompts filed Mar. 26, 2015 (Funyak et al.), U.S. Appl. No. 14/669,280. |
U.S. Patent Application for Variable Depth of Field Barcode Scanner filed Sep. 10, 2014 (McCloskey et al.); 29 pages, U.S. Appl. No. 14/483,056. |
U.S. Patent Application for Vehicle Mount Computer With Configurable Ignition Switch Behavior filed Mar. 20, 2015 (Davis et al.), U.S. Appl. No. 14/663,638. |
U.S. Patent Application for Wireless Mesh Point Portable Data Terminal filed Jun. 18, 2015 (Wang et al.), U.S. Appl. No. 14/743,257. |
U.S. Appl. No. 29/458,405 for an Electronic Device, filed Jun. 19, 2013 (Fitch et al.); 22 pages. |
U.S. Appl. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.); 21 pages. |
U.S. Appl. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.); 44 pages. |
U.S. Appl. No. 29/486,759 for an Imaging Terminal, filed Apr. 2, 2014 (Oberpriller et al.); 8 pages. |
U.S. Appl. No. 29/516,892 for Table Computer filed Feb. 6, 2015 (Bidwell et al.); 13 pages. |
U.S. Appl. No. 29/519,017 for Scanner filed Mar. 2, 2015 (Zhou et al.); 11 pages. |
U.S. Appl. No. 29/523,098 for Handle for a Tablet Computer filed Apr. 7, 2015 (Bidwell et al.); 17 pages. |
U.S. Appl. No. 29/524,186 for Scanner filed Apr. 17, 2015 (Zhou et al.); 17 pages. |
U.S. Appl. No. 29/525,068 for Tablet Computer With Removable Scanning Device filed Apr. 27, 2015 (Schulte et al.); 19 pages. |
U.S. Appl. No. 29/526,918 for Charging Base filed May 14, 2015 (Fitch et al.); 10 pages. |
U.S. Appl. No. 29/528,165 for In-Counter Barcode Scanner filed May 27, 2015 (Oberpriller et al.); 13 pages. |
U.S. Appl. No. 29/528,590 for Electronic Device filed May 29, 2015 (Fitch et al.); 9 pages. |
U.S. Appl. No. 29/528,890 for Mobile Computer Housing filed Jun. 2, 2015 (Fitch et al.); 61 pages. |
U.S. Appl. No. 29/529,441 for Indicia Reading Device filed Jun. 8, 2015 (Zhou et al.); 14 pages. |
U.S. Appl. No. 29/530,600 for Cyclone filed Jun. 18, 2015 (Vargo et al). |
1st Office Action for CN Application No. 201710661845.9 dated Jan. 18, 2023 (10 pages). |
Cn Office Action dated Jul. 8, 2023 for CN Application No. 201710661845, 3 page(s). |
English Translation of CN Office Action dated Jul. 8, 2023 for CN Application No. 201710661845, 5 page(s). |
Number | Date | Country | |
---|---|---|---|
20220284205 A1 | Sep 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17248916 | Feb 2021 | US |
Child | 17804032 | US | |
Parent | 16831534 | Mar 2020 | US |
Child | 17248916 | US | |
Parent | 16052039 | Aug 2018 | US |
Child | 16831534 | US |