Inducing cellular immune responses to prostate cancer antigens using peptide and nucleic acid compositions

Abstract
This invention uses our knowledge of the mechanisms by which antigen is recognized by T cells to identify and prepare prostate cancer-associated antigen epitopes, and to develop epitope-based vaccines directed towards prostate tumors. More specifically, this application communicates our discovery of pharmaceutical compositions and methods of use in the prevention and treatment of cancer.
Description
INDEX



  • I. Background of the Invention

  • II. Summary of the Invention

  • III. Brief Description of the Figures

  • IV. Detailed Description of the Invention
    • A. Definitions
    • B. Stimulation of CTL and HTL responses
    • C. Binding Affinity of Peptide Epitopes for HLA Molecules
    • D. Peptide Epitope Binding Motifs and Supermotifs
      • 1. HLA-A1 supermotif
      • 2. HLA-A2 supermotif
      • 3. HLA-A3 supermotif
      • 4. HLA-A24 supermotif
      • 5. HLA-B7 supermotif
      • 6. HLA-B27 supermotif
      • 7. HLA-B44 supermotif
      • 8. HLA-B58 supermotif
      • 9. HLA-B62 supermotif
      • 10. HLA-A1 motif
      • 11. HLA-A2.1 motif
      • 12. HLA-A3 motif
      • 13. HLA-A11 motif
      • 14. HLA-A24 motif
      • 15. HLA-DR-1-4-7 supermotif
      • 16. HLA-DR3 motifs
    • E. Enhancing Population Coverage of the Vaccine
    • F. Immune Response-Stimulating Peptide Epitope Analogs
    • G. Computer Screening of Protein Sequences from Disease-Related Antigens for Supermotif- or Motif-Containing Epitopes
    • H. Preparation of Peptide Epitopes
    • I. Assays to Detect T-Cell Responses
    • J. Use of Peptide Epitopes for Evaluating Immune Responses
    • K. Vaccine Compositions
      • 1. Minigene Vaccines
      • 2. Combinations of CTL Peptides with Helper Peptides
      • 3. Combinations of CTL Peptides with T Cell Priming Agents
      • 4. Vaccine Compositions Comprising Dendritic Cells Pulsed with CTL and/or HTL Peptides
    • L. Administration of Vaccines for Therapeutic or Prophylactic Purposes
    • M. Kits

  • V. Examples

  • VI. Claims

  • VII. Abstract



I. BACKGROUND OF THE INVENTION

A growing body of evidence suggests that cytotoxic T lymphocytes (CTL) are important in the immune response to tumor cells. CTL recognize peptide epitopes in the context of HLA class I molecules that are expressed on the surface of almost all nucleated cells. Following intracellular processing of endogenously synthesized tumor antigens, antigen-derived peptide epitopes bind to class I HLA molecules in the endoplasmic reticulum, and the resulting complex is then transported to the cell surface. CTL recognize the peptide-HLA class I complex, which then results in the destruction of the cell bearing the HLA-peptide complex directly by the CTL and/or via the activation of non-destructive mechanisms, e.g., activation of lymphokines such as tumor necrosis factor-α (TNF-α) or interferon-γ (IFNγ) which enhance the immune response and facilitate the destruction of the tumor cell.


Tumor-specific helper T lymphocytes (HTLs) are also known to be important for maintaining effective antitumor immunity. Their role in antitumor immunity has been demonstrated in animal models in which these cells not only serve to provide help for induction of CTL and antibody responses, but also provide effector functions, which are mediated by direct cell contact and also by secretion of lymphokines (e.g., IFNγ and TNF-α).


A fundamental challenge in the development of an efficacious tumor vaccine is immune suppression or tolerance that can occur. There is therefore a need to establish vaccine embodiments that elicit immune responses of sufficient breadth and vigor to prevent progression and/or clear the tumor.


The epitope approach, as we have described, represents a solution to this challenge, in that it allows the incorporation of various CTL, HTL, and antibody (if desired) epitopes from discrete regions of one or more target tumor-associated antigens (TAAs) in a single vaccine composition. Such a composition may simultaneously target multiple dominant and subdominant epitopes and thereby be used to achieve effective immunization in a diverse population.


Prostate cancer is the most common malignancy in men. Current therapies, i.e., chemotherapy combined with androgen blockade, antiandrogen withdrawal, and other secondary hormonal therapies, have met with limited success. Thus, there is a need to develop more efficacious therapies. The multiepitopic immunotherapy vaccine compositions of the present invention fulfill this need.


Antigens that are associated with prostate cancer include, but are not limited to, prostate specific antigen (PSA), prostate specific membrane antigen (PSM), prostatic acid phosphatase (PAP), and human kallikrein2 (hK2 or HuK2). These antigens represent important antigen targets for the polyepitopic vaccine compositions of the invention.


PSM is also an important candidate for prostate cancer therapy. It is a Type II membrane protein that is expressed at high levels on prostate adenocarcinomas. The levels of expression increase on metastases and in carcinomas that are refractory to hormone therapy. PSM is not generally present on normal tissues, although low levels have been detected in the colonic crypts and in the duodenum, and PSM can be detected in normal male serum and seminal fluid (see, e.g., Silver et al., Clin. Cancer Res. 3:81-85, 1997). CTL responses to PSM have also been documented (see, e.g., Murphy-et al., Prostate 29:371-380, 1996; and Salgaller et al., Prostate 35:144-151, 1998).


PAP is a tissue-specific differentiation antigen that is secreted exclusively by cells in the prostate (see, e.g., Lam et al., Prostate 15:13-21, 1989). It can be detected in serum and levels are increased in patients with prostate carcinoma (see, e.g., Jacobs et al., Curr. Probl. Cancer 15:299-360, 1991). The PAP protein sequence has, at best, a 49% sequence homology with other acid phosphatases with the homologous regions distributed throughout the protein. Accordingly, PAP-specific epitopes can be identified and several different CTL epitopes have been described (see, e.g., Peshwa et al., Prostate 36:129-138, 1998).


The hK2 protein is functionally a serine protease involved in posttranslational processing of polypeptides. It is expressed by prostate epithelia exclusively, and is found in both benign and malignant prostate cancer tissue. Although it is expressed in 50% of normal prostate cells, the percentage of cells expressing hK2 is increased in adenocarcinomas and prostatic intraepithelial neoplasia (PIN) (see, e.g., Darson et al., Urology 49:857-862, 1997). Based on the preferential expression of this antigen on prostate cancer cells, hK2 is also an important target for immunotherapy.


Prostate-specific antigen (PSA), also referred to as hK3, is a secreted serine protease and a member of the kallikrein family of proteins. The PSA gene is 80% homologous with the hK2 gene, however, tissue expression of hK2 is regulated independently of PSA (see, e.g., Darson et al., Urology 49:857-862, 1997). Expression of PSA is restricted to prostate epithelial cells, both benign and malignant. The antigen can be detected in the serum of most prostate cancer patients and in seminal plasma. Several T cell epitopes from PSA have been identified and have been found to be immunogenic, and antibody responses have been reported in patients (see, e.g., Correale et al., J. Immunol. 161:3186, 1998; and Alexander et al., Urology 51:150-157, 1998). Thus, based on its prostate-restricted expression and ability to stimulate immune responses, PSA is an attractive target for immunotherapy of prostate cancer.


The information provided in this section is intended to disclose the presently understood state of the art as of the filing date of the present application. Information is included in this section which was generated subsequent to the priority date of this application. Accordingly, information in this section is not intended, in any way, to delineate the priority date for the invention.


II. SUMMARY OF THE INVENTION

This invention applies our knowledge of the mechanisms by which antigen is recognized by T cells, for example, to develop epitope-based vaccines directed towards TAAs. More specifically, this application identifies epitopes for inclusion in diagnostic and/or pharmaceutical compositions and methods of use of the epitopes for the evaluation of immune responses and for the treatment and/or prevention of cancer.


The use of epitope-based vaccines has several advantages over current vaccines, particularly when compared to the use of whole antigens in vaccine compositions. For example, immunosuppressive epitopes that may be present in whole antigens can be avoided with the use of epitope-based vaccines. Such immunosuppressive epitopes may, e.g., correspond to immunodominant epitopes in whole antigens, which may be avoided by selecting peptide epitopes from non-dominant regions (see, e.g., Disis et al., J. Immunol. 156:3151-3158, 1996).


An additional advantage of an epitope-based vaccine approach is the ability to combine selected epitopes (CTL and HTL), and further, to modify the composition of the epitopes, achieving, for example, enhanced immunogenicity. Accordingly, the immune response can be modulated, as appropriate, for the target disease. Similar engineering of the response is not possible with traditional approaches.


Another major benefit of epitope-based immune-stimulating vaccines is their safety. The possible pathological side effects caused by infectious agents or whole protein antigens, which might have their own intrinsic biological activity, is eliminated.


An epitope-based vaccine also provides the ability to direct and focus an immune response to multiple selected antigens from the same pathogen (a “pathogen” may be an infectious agent or a tumor-associated molecule). Thus, patient-by-patient variability in the immune response to a particular pathogen may be alleviated by inclusion of epitopes from multiple antigens from the pathogen in a vaccine composition.


Furthermore, an epitope-based anti-tumor vaccine also provides the opportunity to combine epitopes derived from multiple tumor-associated molecules. This capability can therefore address the problem of tumor-to tumor variability that arises when developing a broadly targeted anti-tumor vaccine for a given tumor type and can also reduce the likelihood of tumor escape due to antigen loss. For example, prostate cancer cells in one patient may express target TAAs that differ from the prostate cancer cells in another patient. Epitopes derived from multiple TAAs can be included in a polyepitopic vaccine that will target both prostate cancers.


One of the most formidable obstacles to the development of broadly efficacious epitope-based immunotherapeutics, however, has been the extreme polymorphism of HLA molecules. To date, effective non-genetically biased coverage of a population has been a task of considerable complexity; such coverage has required that epitopes be used that are specific for HLA molecules corresponding to each individual HLA allele. Impractically large numbers of epitopes would therefore have to be used in order to cover ethnically diverse populations. Thus, there has existed a need for peptide epitopes that are bound by multiple HLA antigen molecules for use in epitope-based vaccines. The greater the number of HLA antigen molecules bound, the greater the breadth of population coverage by the vaccine.


Furthermore, as described herein in greater detail, a need has existed to modulate peptide binding properties, e.g., so that peptides that are able to bind to multiple HLA molecules do so with an affinity that will stimulate an immune response. Identification of epitopes restricted by more than one HLA allele at an affinity that correlates with immunogenicity is important to provide thorough population coverage, and to allow the elicitation of responses of sufficient vigor to prevent or clear an infection in a diverse segment of the population. Such a response can also target a broad array of epitopes. The technology disclosed herein provides for such favored immune responses.


In a preferred embodiment, epitopes for inclusion in vaccine compositions of the invention are selected by a process whereby protein sequences of known antigens are evaluated for the presence of motif or supermotif-bearing epitopes. Peptides corresponding to a motif- or supermotif-bearing epitope are then synthesized and tested for the ability to bind to the HLA molecule that recognizes the selected motif. Those peptides that bind at an intermediate or high affinity i.e., an IC50 (or a KD value) of about 500 nM or less for HLA class I molecules or an IC50 of about 1000 nM or less for HLA class II molecules, are further evaluated for their ability to induce a CTL or HTL response. Immunogenic peptide epitopes are selected for inclusion in vaccine compositions.


Supermotif-bearing peptides may additionally be tested for the ability to bind to multiple alleles within the HLA supertype family. Moreover, peptide epitopes may be analoged to modify binding affinity and/or the ability to bind to multiple alleles within an HLA supertype.


The invention also includes embodiments comprising methods for monitoring or evaluating an immune response to a TAA in a patient having a known HLA-type. Such methods comprise incubating a T lymphocyte sample from the patient with a peptide composition comprising a TAA epitope that has an amino acid sequence comprising a supermotif or motif and which binds the product of at least one HLA allele present in the patient, and detecting for the presence of a T lymphocyte that binds to the peptide. A CTL peptide epitope may, for example, be used as a component of a tetrameric complex for this type of analysis.


An alternative modality for defining the peptide epitopes in accordance with the invention is to recite the physical properties, such as length; primary structure; or charge, which are correlated with binding to a particular allele-specific HLA molecule or group of allele-specific HLA molecules. A further modality for defining peptide epitopes is to recite the physical properties of an HLA binding pocket, or properties shared by several allele-specific HLA binding pockets (e.g. pocket configuration and charge distribution) and reciting that the peptide epitope fits and binds to the pocket or pockets.


As will be apparent from the discussion below, other methods and embodiments are also contemplated. Further, novel synthetic peptides produced by any of the methods described herein are also part of the invention.


III. BRIEF DESCRIPTION OF THE FIGURES

not applicable







IV. DETAILED DESCRIPTION OF THE INVENTION

The peptide epitopes and corresponding nucleic acid compositions of the present invention are useful for stimulating an immune response to a TAA by stimulating the production of CTL or HTL responses. The peptide epitopes, which are derived directly or indirectly from native TAA protein amino acid sequences, are able to bind to HLA molecules and stimulate an immune response to the TAA. The complete sequence of the TAA proteins to be analyzed can be obtained from GenBank. Peptide epitopes and analogs thereof can also be readily determined from sequence information that may subsequently be discovered for heretofore unknown variants of particular TAAs, as will be clear from the disclosure provided below.


A list of target TAAs includes, but is not limited to, the following antigens: MAGE 1, MAGE 2, MAGE 3, MAGE-11, MAGE-A10, BAGE, GAGE, RAGE, MAGE-C1, LAGE-1, CAG-3, DAM, MUC1, MUC2, MUC18, NY-ESO-1, MUM-1, CDK4, BRCA2, NY-LU-1, NY-LU-7, NY-LU-12, CASP8, RAS, KIAA-2-5, SCCs, p53, p73, CEA, Her 2/neu, Melan-A, gp100, tyrosinase, TRP2, gp75/TRP1, kallikrein, PSM, PAP, PSA, PT1-1, B-catenin, PRAME, Telomerase, FAK, cyclin D1 protein, NOEY2, EGF-R, SART-1, CAPB, HPVE7, p5, Folate receptor CDC27, PAGE-1, and PAGE-4. Epitopes derived from these antigens may be used in combination with one another to target a specific tumor type, e.g., prostate tumors, or to target multiple types of tumors.


The peptide epitopes of the invention have been identified in a number of ways, as will be discussed below. Also discussed in greater detail is that analog peptides have been derived and the binding activity for HLA molecules modulated by modifying specific amino acid residues to create peptide analogs exhibiting altered immunogenicity. Further, the present invention provides compositions and combinations of compositions that enable epitope-based vaccines that are capable of interacting with HLA molecules encoded by various genetic alleles to provide broader population coverage than prior vaccines.


IV.A. Definitions


The invention can be better understood with reference to the following definitions, which are listed alphabetically:


A “construct” as used herein generally denotes a composition that does not occur in nature. A construct can be produced by synthetic technologies, e.g., recombinant DNA preparation and expression or chemical synthetic techniques for nucleic or amino acids. A construct can also be produced by the addition or affiliation of one material with another such that the result is not found in nature in that form.


A “computer” or “computer system” generally includes: a processor; at least one information storage/retrieval apparatus such as, for example, a hard drive, a disk drive or a tape drive; at least one input apparatus such as, for example, a keyboard, a mouse, a touch screen, or a microphone; and display structure. Additionally, the computer may include a communication channel in communication with a network. Such a computer may include more or less than what is listed above.


“Cross-reactive binding” indicates that a peptide is bound by more than one HLA molecule; a synonym is degenerate binding.


A “cryptic epitope” elicits a response by immunization with an isolated peptide, but the response is not cross-reactive in vitro when intact whole protein which comprises the epitope is used as an antigen.


A “dominant epitope” is an epitope that induces an immune response upon immunization with a whole native antigen (see, e.g., Sercarz, et al., Annu. Rev. Immunol. 11:729-766, 1993). Such a response is cross-reactive in vitro with an isolated peptide epitope.


With regard to a particular amino acid sequence, an “epitope” is a set of amino acid residues which is involved in recognition by a particular immunoglobulin, or in the context of T cells, those residues necessary for recognition by T cell receptor proteins and/or Major Histocompatibility Complex (MHC) receptors. In an immune system setting, in vivo or in vitro, an epitope is the collective features of a molecule, such as primary, secondary and tertiary peptide structure, and charge, that together form a site recognized by an immunoglobulin, T cell receptor or HLA molecule. Throughout this disclosure epitope and peptide are often used interchangeably.


It is to be appreciated that protein or peptide molecules that comprise an epitope of the invention as well as additional amino acid(s) are within the bounds of the invention. In certain embodiments, there is a limitation on the length of a peptide of the invention which is not otherwise a construct as defined herein. An embodiment that is length-limited occurs when the protein/peptide comprising an epitope of the invention comprises a region (i.e., a contiguous series of amino acids) having 100% identity with a native sequence. In order to avoid a recited definition of epitope from reading, e.g., on whole natural molecules, the length of any region that has 100% identity with a native peptide sequence is limited. Thus, for a peptide comprising an epitope of the invention and a region with 100% identity with a native peptide sequence (and which is not otherwise a construct), the region with 100% identity to a native sequence generally has a length of: less than or equal to 600 amino acids, often less than or equal to 500 amino acids, often less than or equal to 400 amino acids, often less than or equal to 250 amino acids, often less than or equal to 100 amino acids, often less than or equal to 85 amino acids, often less than or equal to 75 amino acids, often less than or equal to 65 amino acids, and often less than or equal to 50 amino acids. In certain embodiments, an “epitope” of the invention which is not a construct is comprised by a peptide having a region with less than 51 amino acids that has 100% identity to a native peptide sequence, in any increment of (50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5) down to 5 amino acids.


Certain peptide or protein sequences longer than 600 amino acids are within the scope of the invention. Such longer sequences are within the scope of the invention so long as they do not comprise any contiguous sequence of more than 600 amino acids that have 100% identity with a native peptide sequence, or if longer than 600 amino acids, they are a construct. For any peptide that has five contiguous residues or less that correspond to a native sequence, there is no limitation on the maximal length of that peptide in order to fall within the scope of the invention. It is presently preferred that a CTL epitope of the invention be less than 600 residues long in any increment down to eight amino acid residues.


“Human Leukocyte Antigen” or “HLA” is a human class I or class II Major Histocompatibility Complex (MHC) protein (see, e.g., Stites, et al., IMMUNOLOGY, 8TH ED., Lange Publishing, Los Altos, Calif., 1994).


An “HLA supertype or family”, as used herein, describes sets of HLA molecules grouped on the basis of shared peptide-binding specificities. HLA class I molecules that share somewhat similar binding affinity for peptides bearing certain amino acid motifs are grouped into HLA supertypes. The terms HLA superfamily, HLA supertype family, HLA family, and HLA xx-like molecules (where xx denotes a particular HLA type), are synonyms.


Throughout this disclosure, results are expressed in terms of “IC50's.” IC50 is the concentration of peptide in a binding assay at which 50% inhibition of binding of a reference peptide is observed. Given the conditions in which the assays are run (i.e., limiting HLA proteins and labeled peptide concentrations), these values approximate KD values. Assays for determining binding are described in detail, e.g., in PCT publications WO 94/20127 and WO 94/03205. It should be noted that IC50 values can change, often dramatically, if the assay conditions are varied, and depending on the particular reagents used (e.g., HLA preparation, etc.). For example, excessive concentrations of HLA molecules will increase the apparent measured IC50 of a given ligand.


Alternatively, binding is expressed relative to a reference peptide. Although as a particular assay becomes more, or less, sensitive, the IC50's of the peptides tested may change somewhat, the binding relative to the reference peptide will not significantly change. For example, in an assay run under conditions such that the IC50 of the reference peptide increases 10-fold, the IC50 values of the test peptides will also shift approximately 10-fold. Therefore, to avoid ambiguities, the assessment of whether a peptide is a good, intermediate, weak, or negative binder is generally based on its IC50, relative to the IC50 of a standard peptide.


Binding may also be determined using other assay systems including those using: live cells (e.g., Ceppellini et al., Nature 339:392, 1989; Christnick et al., Nature 352:67, 1991; Busch et al., Int. Immunol. 2:443, 19990; Hill et al., J. Immunol. 147:189, 1991; del Guercio et al., J. Immunol. 154:685, 1995), cell free systems using detergent lysates (e.g., Cerundolo et al., J. Immunol. 21:2069, 1991), immobilized purified MHC (e.g., Hill et al., J. Immunol. 152, 2890, 1994; Marshall et al., J. Immunol. 152:4946, 1994), ELISA systems (e.g., Reay et al., EMBO J. 11:2829, 1992), surface plasmon resonance (e.g., Khilko et al., J. Biol. Chem. 268:15425, 1993); high flux soluble phase assays (Hammer et al., J. Exp. Med. 180:2353, 1994), and measurement of class I MHC stabilization or assembly (e.g., Ljunggren et al., Nature 346:476, 1990; Schumacher et al., Cell 62:563, 1990; Townsend et al., Cell 62:285, 1990; Parker et al., J. Immunol. 149:1896, 1992).


As used herein, “high affinity” with respect to HLA class I molecules is defined as binding with an IC50, or KD value, of 50 nM or less; “intermediate affinity” is binding with an IC50 or KD value of between about 50 and about 500 nM. “High affinity” with respect to binding to HLA class II molecules is defined as binding with an IC50 or KD value of 100 nM or less; “intermediate affinity” is binding with an IC50 or KD value of between about 100 and about 1000 nM.


The terms “identical” or percent “identity,” in the context of two or more peptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues that are the same, when compared and aligned for maximum correspondence over a comparison window, as measured using a sequence comparison algorithm or by manual alignment and visual inspection.


An “immunogenic peptide” or “peptide epitope” is a peptide that comprises an allele-specific motif or supermotif such that the peptide will bind an HLA molecule and induce a CTL and/or HTL response. Thus, immunogenic peptides of the invention are capable of binding to an appropriate HLA molecule and thereafter inducing an HLA-restricted cytotoxic or helper T cell response to the antigen from which the immunogenic peptide is derived.


The phrases “isolated” or “biologically pure” refer to material which is substantially or essentially free from components which normally accompany the material as it is found in its native state. Thus, isolated peptides in accordance with the invention preferably do not contain materials normally associated with the peptides in their in situ environment.


“Link” or “join” refers to any method known in the art for functionally connecting peptides, including, without limitation, recombinant fusion, covalent bonding, disulfide bonding, ionic bonding, hydrogen bonding, and electrostatic bonding.


“Major Histocompatibility Complex” or “MHC” is a cluster of genes that plays a role in control of the cellular interactions responsible for physiologic immune responses. In humans, the MHC complex is also known as the HLA complex. For a detailed description of the MHC and HLA complexes, see, Paul, FUNDAMENTAL IMMUNOLOGY, 3RD ED., Raven Press, New York, 1993.


The term “motif” refers to the pattern of residues in a peptide of defined length, usually a peptide of from about 8 to about 13 amino acids, often 8 to 11 amino acids, for a class I HLA motif and from about 6 to about 25 amino acids for a class II HLA motif, which is recognized by a particular HLA molecule. Peptide motifs are typically different for each protein encoded by each human HLA allele and differ in the pattern of the primary and secondary anchor residues.


A “negative binding residue” or “deleterious residue” is an amino acid which, if present at certain positions (typically not primary anchor positions) in a peptide epitope, results in decreased binding affinity of the peptide for the peptide's corresponding HLA molecule.


A “non-native” sequence or “construct” refers to a sequence that is not found in nature, i.e., is “non-naturally occurring”. Such sequences include, e.g., peptides that are lipidated or otherwise modified, and polyepitopic compositions that contain epitopes that are not contiguous in a native protein sequence.


The term “peptide” is used interchangeably with “oligopeptide” in the present specification to designate a series of residues, typically L-amino acids, connected one to the other, typically by peptide bonds between the α-amino and carboxyl groups of adjacent amino acids. CTL-inducing peptides of the invention are often 13 residues or less in length and usually consist of between about 8 and about 11 residues, preferably 9 or 10 residues. HTL-inducing oligopeptides are often less than about 50 residues in length and usually consist of between about 6 and about 30 residues, more usually between about 12 and 25, and often between about 15 and 20 residues.


“Pharmaceutically acceptable” refers to a generally non-toxic, inert, and/or physiologically compatible composition.


A “pharmaceutical excipient” comprises a material such as an adjuvant, a carrier, pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservative, and the like.


A “primary anchor residue” is an amino acid at a specific position along a peptide sequence which is understood to provide a contact point between the immunogenic peptide and the HLA molecule. One to three, usually two, primary anchor residues within a peptide of defined length generally defines a “motif” for an immunogenic peptide. These residues are understood to fit in close contact with peptide binding grooves of an HLA molecule, with their side chains buried in specific pockets of the binding grooves themselves. In one embodiment, for example, the primary anchor residues are located at position 2 (from the amino terminal position) and at the carboxyl terminal position of a 9-residue peptide epitope in accordance with the invention. The primary anchor positions for each motif and supermotif are set forth in Table I. For example, analog peptides can be created by altering the presence or absence of particular residues in these primary anchor positions. Such analogs are used to modulate the binding affinity of a peptide comprising a particular motif or supermotif.


“Promiscuous recognition” is where a distinct peptide is recognized by the same T cell clone in the context of various HLA molecules. Promiscuous recognition or binding is synonymous with cross-reactive binding.


A “protective immune response” or “therapeutic immune response” refers to a CTL and/or an HTL response to an antigen derived from an infectious agent or a tumor antigen, which prevents or at least partially arrests disease symptoms or progression. The immune response may also include an antibody response which has been facilitated by the stimulation of helper T cells.


The term “residue” refers to an amino acid or amino acid mimetic incorporated into an oligopeptide by an amide bond or amide bond mimetic.


A “secondary anchor residue” is an amino acid at a position other than a primary anchor position in a peptide which may influence peptide binding. A secondary anchor residue occurs at a significantly higher frequency amongst bound peptides than would be expected by random distribution of amino acids at one position. The secondary anchor residues are said to occur at “secondary anchor positions.” A secondary anchor residue can be identified as a residue which is present at a higher frequency among high or intermediate affinity binding peptides, or a residue otherwise associated with high or intermediate affinity binding. For example, analog peptides can be created by altering the presence or absence of particular residues in these secondary anchor positions. Such analogs are used to finely modulate the binding affinity of a peptide comprising a particular motif or supermotif.


A “subdominant epitope” is an epitope which evokes little or no response upon immunization with whole antigens which comprise the epitope, but for which a response can be obtained by immunization with an isolated peptide, and this response (unlike the case of cryptic epitopes) is detected when whole protein is used to recall the response in vitro or in vivo.


A “supermotif” is a peptide binding specificity shared by HLA molecules encoded by two or more HLA alleles. Preferably, a supermotif-bearing peptide is recognized with high or intermediate affinity (as defined herein) by two or more HLA molecules.


“Synthetic peptide” refers to a peptide that is man-made using such methods as chemical synthesis or recombinant DNA technology.


As used herein, a “vaccine” is a composition that contains one or more peptides of the invention. There are numerous embodiments of vaccines in accordance with the invention, such as by a cocktail of one or more peptides; one or more epitopes of the invention comprised by a polyepitopic peptide; or nucleic acids that encode such peptides or polypeptides, e.g., a minigene that encodes a polyepitopic peptide. The “one or more peptides” can include any whole unit integer from 1-150, e.g., at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, or 150 or more peptides of the invention. The peptides or polypeptides can optionally be modified, such as by lipidation, addition of targeting or other sequences. HLA class I-binding peptides of the invention can be admixed with, or linked to, HLA class II-binding peptides, to facilitate activation of both cytotoxic T lymphocytes and helper T lymphocytes. Vaccines can also comprise peptide-pulsed antigen presenting cells, e.g., dendritic cells.


The nomenclature used to describe peptide compounds follows the conventional practice wherein the amino group is presented to the left (the N-terminus) and the carboxyl group to the right (the C-terminus) of each amino acid residue. When amino acid residue positions are referred to in a peptide epitope they are numbered in an amino to carboxyl direction with position one being the position closest to the amino terminal end of the epitope, or the peptide or protein of which it may be a part. In the formulae representing selected specific embodiments of the present invention, the amino- and carboxyl-terminal groups, although not specifically shown, are in the form they would assume at physiologic pH values, unless otherwise specified. In the amino acid structure formulae, each residue is generally represented by standard three letter or single letter designations. The L-form of an amino acid residue is represented by a capital single letter or a capital first letter of a three-letter symbol, and the D-form for those amino acids having D-forms is represented by a lower case single letter or a lower case three letter symbol. Glycine has no asymmetric carbon atom and is simply referred to as “Gly” or G. Symbols for the amino acids are shown below. In addition to these symbols, “B” in the single letter abbreviations used herein designates α-amino butyric acid.

Single Letter SymbolThree Letter SymbolAmino AcidsAAlaAlanineCCysCysteineDAspAspartic AcidEGluGlutamic AcidFPhePhenylalanineGGlyGlycineHHisHistidineIIleIsoleucineKLysLysineLLeuLeucineMMetMethionineNAsnAsparaginePProProlineQGlnGlutamineRArgArginineSSerSerineTThrThreonineVValValineWTrpTryptophanYTyrTyrosine


IV.B. Stimulation of CTL and HTL Responses


The mechanism by which T cells recognize antigens has been delineated during the past ten years. Based on our understanding of the immune system we have developed efficacious peptide epitope vaccine compositions that can induce a therapeutic or prophylactic immune response to a TAA in a broad population. For an understanding of the value and efficacy of the claimed compositions, a brief review of immunology-related technology is provided.


A complex of an HLA molecule and a peptidic antigen acts as the ligand recognized by HLA-restricted T cells (Buus, S. et al., Cell 47:1071, 1986; Babbitt, B. P. et al., Nature 317:359, 1985; Townsend, A. and Bodmer, H., Annu. Rev. Immunol. 7:601, 1989; Germain, R. N., Annu. Rev. Immunol. 11:403, 1993). Through the study of single amino acid substituted antigen analogs and the sequencing of endogenously bound, naturally processed peptides, critical residues that correspond to motifs required for specific binding to HLA antigen molecules have been identified and are described herein and are set forth in Tables I, II, and III (see also, e.g., Southwood, et al., J. Immunol. 160:3363, 1998; Rammensee, et al., Immunogenetics 41:178, 1995; Rammensee et al., SYFPEITHI, access via web at :http://134.2.96.221/scripts.hlaserver.dll/home.htm; Sette, A. and Sidney, J. Curr. Opin. Immunol. 10:478, 1998; Engelhard, V. H., Curr. Opin. Immunol. 6:13, 1994; Sette, A. and Grey, H. M., Curr. Opin. Immunol. 4:79, 1992; Sinigaglia, F. and Hammer, J. Curr. Biol. 6:52, 1994; Ruppert et al., Cell 74:929-937, 1993; Kondo et al., J. Immunol. 155:4307-4312, 1995; Sidney et al., J. Immunol. 157:3480-3490, 1996; Sidney et al., Human Immunol. 45:79-93, 1996; Sette, A. and Sidney, J. Immunogenetics, in press, 1999).


Furthermore, x-ray crystallographic analysis of HLA-peptide complexes has revealed pockets within the peptide binding cleft of HLA molecules which accommodate, in an allele-specific mode, residues borne by peptide ligands; these residues in turn determine the HLA binding capacity of the peptides in which they are present. (See, e.g., Madden, D. R. Annu. Rev. Immunol. 13:587, 1995; Smith, et al., Immunity 4:203, 1996; Fremont et al., Immunity 8:305, 1998; Stem et al., Structure 2:245, 1994; Jones, E. Y. Curr. Opin. Immunol. 9:75, 1997; Brown, J. H. et al., Nature 364:33, 1993; Guo, H. C. et al., Proc. Natl. Acad. Sci. USA 90:8053, 1993; Guo, H. C. et al., Nature 360:364, 1992; Silver, M. L. et al., Nature 360:367, 1992; Matsumura, M. et al., Science 257:927, 1992; Madden et al., Cell 70:1035, 1992; Fremont, D. H. et al., Science 257:919, 1992; Saper, M. A., Bjorkman, P. J. and Wiley, D. C., J. Mol. Biol. 219:277, 1991.)


Accordingly, the definition of class I and class II allele-specific HLA binding motifs, or class I or class II supermotifs allows identification of regions within a protein that have the potential of binding particular HLA molecules.


The present inventors have found that the correlation of binding affinity with immunogenicity, which is disclosed herein, is an important factor to be considered when evaluating candidate peptides. Thus, by a combination of motif searches and HLA-peptide binding assays, candidates for epitope-based vaccines have been identified. After determining their binding affinity, additional confirmatory work can be performed to select, amongst these vaccine candidates, epitopes with preferred characteristics in terms of population coverage, antigenicity, and immunogenicity.


Various strategies can be utilized to evaluate immunogenicity, including:


1) Evaluation of primary T cell cultures from normal individuals (see, e.g., Wentworth, P. A. et al., Mol. Immunol. 32:603, 1995; Celis, E. et al., Proc. Natl. Acad. Sci. USA 91:2105, 1994; Tsai, V. et al., J. Immunol. 158:1796, 1997; Kawashima, I. et. al., Human Immunol. 59:1, 1998); This procedure involves the stimulation of peripheral blood lymphocytes (PBL) from normal subjects with a test peptide in the presence of antigen presenting cells in vitro over a period of several weeks. T cells specific for the peptide become activated during this time and are detected using, e.g., a lymphokine-release or a 51Cr cytotoxicity assay involving peptide sensitized target cells.


2) Immunization of HLA transgenic mice (see, e.g., Wentworth, P. A. et al., J. Immunol. 26:97, 1996; Wentworth, P. A. et al., Int. Immunol. 8:651, 1996; Alexander, J. et al., J. Immunol. 159:4753, 1997); In this method, peptides in incomplete Freund's adjuvant are administered subcutaneously to HLA transgenic mice. Several weeks following immunization, splenocytes are removed and cultured in vitro in the presence of test peptide for approximately one week. Peptide-specific T cells are detected using, e.g., a 51Cr-release assay involving peptide sensitized target cells and target cells expressing endogenously generated antigen.


3) Demonstration of recall T cell responses from patients who have been effectively vaccinated or who have a tumor; (see, e.g., Rehermann, B. et al., J. Exp. Med. 181:1047, 1995; Doolan, D. L. et al., Immunity 7:97, 1997; Bertoni, R. et al., J. Clin. Invest. 100:503, 1997; Threlkeld, S. C. et al., J. Immunol. 159:1648, 1997; Diepolder, H. M. et al., J. Virol. 71:6011, 1997; Tsang et al., J. Natl. Cancer Inst. 87:982-990, 1995; Disis et al., J. Immunol. 156:3151-3158, 1996). In applying this strategy, recall responses are detected by culturing PBL from patients with cancer who have generated an immune response “naturally”, or from patients who were vaccinated with tumor antigen vaccines. PBL from subjects are cultured in vitro for 1-2 weeks in the presence of test peptide plus antigen presenting cells (APC) to allow activation of “memory” T cells, as compared to “naive” T cells. At the end of the culture period, T cell activity is detected using assays for T cell activity including 51Cr release involving peptide-sensitized targets, T cell proliferation, or lymphokine release.


The following describes the peptide epitopes and corresponding nucleic acids of the invention.


IV.C. Binding Affinity of Peptide Epitopes for HLA Molecules


As indicated herein, the large degree of HLA polymorphism is an important factor to be taken into account with the epitope-based approach to vaccine development. To address this factor, epitope selection encompassing identification of peptides capable of binding at high or intermediate affinity to multiple HLA molecules is preferably utilized, most preferably these epitopes bind at high or intermediate affinity to two or more allele-specific HLA molecules.


CTL-inducing peptides of interest for vaccine compositions preferably include those that have an IC50 or binding affinity value for class I HLA molecules of 500 nM or better (i.e., the value is ≦500 nM). HTL-inducing peptides preferably include those that have an IC50 or binding affinity value for class II HLA molecules of 1000 nM or better, (i.e., the value is ≦1,000 nM). For example, peptide binding is assessed by testing the capacity of a candidate peptide to bind to a purified HLA molecule in vitro. Peptides exhibiting high or intermediate affinity are then considered for further analysis. Selected peptides are tested on other members of the supertype family. In preferred embodiments, peptides that exhibit cross-reactive binding are then used in cellular screening analyses or vaccines.


High HLA binding affinity is correlated with greater immunogenicity (see, e.g., Sette, et al., J. Immunol. 153:5586-5592, 1994; Chen et al., J. Immunol. 152:2874-2881, 1994; and Ressing et al., J. Immunol. 154:5934-5943, 1995). Greater immunogenicity can be manifested in several different ways. Immunogenicity corresponds to whether an immune response is elicited at all, and to the vigor of any particular response, as well as to the extent of a population in which a response is elicited. For example, a peptide might elicit an immune response in a diverse array of the population, yet in no instance produce a vigorous response. Moreover, higher binding affinity peptides lead to more vigorous immunogenic responses. As a result, less peptide is required to elicit a similar biological effect if a high or intermediate affinity binding peptide is used. Thus, in preferred embodiments of the invention, high or intermediate affinity binding epitopes are particularly useful.


The relationship between binding affinity for HLA class I molecules and immunogenicity of discrete peptide epitopes on bound antigens has been determined for the first time in the art by the present inventors. The correlation between binding affinity and immunogenicity was analyzed in two different experimental approaches (see, e.g., Sette, et al., J. Immunol. 153:5586-5592, 1994). In the first approach, the immunogenicity of potential epitopes ranging in HLA binding affinity over a 10,000-fold range was analyzed in HLA-A*0201 transgenic mice. In the second approach, the antigenicity of approximately 100 different hepatitis B virus (HBV)-derived potential epitopes, all carrying A*0201 binding motifs, was assessed by using PBL from acute hepatitis patients. Pursuant to these approaches, it was determined that an affinity threshold value of approximately 500 nM (preferably 50 nM or less) determines the capacity of a peptide epitope to elicit a CTL response. These data are true for class I binding affinity measurements for naturally processed peptides and for synthesized T cell epitopes. These data also indicate the important role of determinant selection in the shaping of T cell responses (see, e.g., Schaeffer et al., Proc. Natl. Acad. Sci. USA 86:4649-4653, 1989).


An affinity threshold associated with immunogenicity in the context of HLA class II DR molecules has also been delineated (see, e.g., Southwood et al. J. Immunology 160:3363-3373, 1998, and co-pending U.S. Ser. No. 09/009,953 filed Jan. 21, 1998). In order to define a biologically significant threshold of DR binding affinity, a database of the binding affinities of 32 DR-restricted epitopes for their restricting element (i.e., the HLA molecule that binds the motif) was compiled. In approximately half of the cases (15 of 32 epitopes), DR restriction was associated with high binding affinities, i.e. binding affinity values of 100 nM or less. In the other half of the cases (16 of 32), DR restriction was associated with intermediate affinity (binding affinity values in the 100-1000 nM range). In only one of 32 cases was DR restriction associated with an IC50 of 1000 nM or greater. Thus, 1000 nM can be defined as an affinity threshold associated with immunogenicity in the context of DR molecules.


In the case of tumor-associated antigens, many CTL peptide epitopes that have been shown to induce CTL that lyse peptide-pulsed target cells and tumor cell targets endogenously expressing the epitope exhibit binding affinity or IC50 values of 200 nM or less. In a study that evaluated the association of binding affinity and immunogenicity of a small set of such TAA epitopes, 100% (10/10) of the high binders, i.e., peptide epitopes binding at an affinity of 50 nM or less, were immunogenic and 80% (8/10) of them elicited CTLs that specifically recognized tumor cells. In the 51 to 200 nM range, very similar figures were obtained. With respect to analog peptides, CTL inductions positive for wildtype peptide and tumor cells were noted for 86% (6/7) and 71% (5/7) of the peptides, respectively. In the 201-500 nM range, most peptides (4/5 wildtype) were positive for induction of CTL recognizing wildtype peptide, but tumor recognition was not detected.


The binding affinity of peptides for HLA molecules can be determined as described in Example 1, below.


IV.D. Peptide Epitope Binding Motifs and Supermotifs


Through the study of single amino acid substituted antigen analogs and the sequencing of endogenously bound, naturally processed peptides, critical residues required for allele-specific binding to HLA molecules have been identified. The presence of these residues correlates with binding affinity for HLA molecules. The identification of motifs and/or supermotifs that correlate with high and intermediate affinity binding is an important issue with respect to the identification of immunogenic peptide epitopes for the inclusion in a vaccine. Kast et al. (J. Immunol. 152:3904-3912, 1994) have shown that motif-bearing peptides account for 90% of the epitopes that bind to allele-specific HLA class I molecules. In this study all possible peptides of 9 amino acids in length and overlapping by eight amino acids (240 peptides), which cover the entire sequence of the E6 and E7 proteins of human papillomavirus type 16, were evaluated for binding to five allele-specific HLA molecules that are expressed at high frequency among different ethnic groups. This unbiased set of peptides allowed an evaluation of the predictive value of HLA class I motifs. From the set of 240 peptides, 22 peptides were identified that bound to an allele-specific HLA molecule with high or intermediate affinity. Of these 22 peptides, 20 (i.e. 91%) were motif-bearing. Thus, this study demonstrates the value of motifs for the identification of peptide epitopes for inclusion in a vaccine: application of motif-based identification techniques will identify about 90% of the potential epitopes in a target antigen protein sequence.


Such peptide epitopes are identified in the Tables described below.


Peptides of the present invention may also comprise epitopes that bind to MHC class II DR molecules. A greater degree of heterogeneity in both size and binding frame position of the motif, relative to the N and C termini of the peptide, exists for class II peptide ligands. This increased heterogeneity of HLA class II peptide ligands is due to the structure of the binding groove of the HLA class II molecule which, unlike its class I counterpart, is open at both ends. Crystallographic analysis of HLA class II DRB*0101-peptide complexes showed that the major energy of binding is contributed by peptide residues complexed with complementary pockets on the DRB*0101 molecules. An important anchor residue engages the deepest hydrophobic pocket (see, e.g., Madden, D. R. Ann. Rev. Immunol. 13:587, 1995) and is referred to as position 1 (P1). P1 may represent the N-terminal residue of a class II binding peptide epitope, but more typically is flanked towards the N-terminus by one or more residues. Other studies have also pointed to an important role for the peptide residue in the 6th position towards the C-terminus, relative to P1, for binding to various DR molecules.


In the past few years evidence has accumulated to demonstrate that a large fraction of HLA class I and class II molecules can be classified into a relatively few supertypes, each characterized by largely overlapping peptide binding repertoires, and consensus structures of the main peptide binding pockets. Thus, peptides of the present invention are identified by any one of several HLA-specific amino acid motifs (see, e.g., Tables I-III), or if the presence of the motif corresponds to the ability to bind several allele-specific HLA molecules, a supermotif. The HLA molecules that bind to peptides that possess a particular amino acid supermotif are collectively referred to as an HLA “supertype.”


The peptide motifs and supermotifs described below, and summarized in Tables I-III, provide guidance for the identification and use of peptide epitopes in accordance with the invention.


Examples of supermotif and/or motif-bearing peptide epitopes are shown in Tables VII-XX. To obtain the peptide epitope sequences, protein sequence data for the prostate cancer antigens PAP, PSA, PSM, and hK2, which is designated as kallikrein in Tables VII-XX, were evaluated for the presence of the designated supermotif or motif. The “Position” column indicates the position in the protein sequence that corresponds to the first amino acid residue of the putative epitope. The “number of amino acids” indicates the number of residues in the epitope sequence. The tables also include a binding affinity ratio listing for some of the peptide epitopes for the allele-specific HLA molecule indicated in the column heading. The ratio may be converted to IC50 by using the following formula: IC50 of the standard peptide/ratio=IC50 of the test peptide (i.e., the peptide epitope). The IC50 values of standard peptides used to determine binding affinities for Class I peptides are shown in Table IV. The IC50 values of standard peptides used to determine binding affinities for Class II peptides are shown in Table V. The peptides used as standards for the binding assays described herein are examples of standards; alternative standard peptides can also be used when performing binding studies.


HLA Class I Motifs Indicative of CTL Inducing Peptide Epitopes:


The primary anchor residues of the HLA class I peptide epitope supermotifs and motifs delineated below are summarized in Table I. The HLA class I motifs set out in Table I(a) are those most particularly relevant to the invention claimed here. Primary and secondary anchor positions are summarized in Table II. Allele-specific HLA molecules that comprise HLA class I supertype families are listed in Table VI. In some cases, peptide epitopes may be listed in both a motif and a supermotif Table. The relationship of a particular motif and respective supermotif is indicated in the description of the individual motifs.


IV.D.1. HLA-A1 Supermotif


The HLA-A1 supermotif is characterized by the presence in peptide ligands of a small (T or S) or hydrophobic (L, I, V, or M) primary anchor residue in position 2, and an aromatic (Y, F, or W) primary anchor residue at the C-terminal position of the epitope. The corresponding family of HLA molecules that bind to the A1 supermotif (i.e., the HLA-A1 supertype) is comprised of at least: A*0101, A*2601, A*2602, A*2501, and A*3201 (see, e.g., DiBrino, M. et al., J. Immunol. 151:5930, 1993; DiBrino, M. et al., J. Immunol. 152:620, 1994; Kondo, A. et al., Immunogenetics 45:249, 1997). Other allele-specific HLA molecules predicted to be members of the A1 superfamily are shown in Table VI. Peptides binding to each of the individual HLA proteins can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.


Representative peptide epitopes that comprise an A1 supermotif are set forth on the attached Table VII.


IV.D.2. HLA-A2 Supermotif


Primary anchor specificities for allele-specific HLA-A2.1 molecules (see, e.g., Falk et al., Nature 351:290-296, 1991; Hunt et al., Science 255:1261-1263, 1992; Parker et al., J. Immunol. 149:3580-3587, 1992; Ruppert et al., Cell 74:929-937, 1993) and cross-reactive binding among HLA-A2 and -A28 molecules have been described. (See, e.g., Fruci et al, Human Immunol. 38:187-192, 1993; Tanigaki et al., Human Immunol. 39:155-162, 1994; Del Guercio et al., J. Immunol. 154:685-693, 1995; Kast et al., J. Immunol. 152:3904-3912, 1994 for reviews of relevant data.) These primary anchor residues define the HLA-A2 supermotif; which presence in peptide ligands corresponds to the ability to bind several different HLA-A2 and -A28 molecules. The HLA-A2 supermotif comprises peptide ligands with L, I, V, M, A, T, or Q as a primary anchor-residue at position 2 and L, I, V, M, A, or T as a primary anchor residue at the C-terminal position of the epitope.


The corresponding family of HLA molecules (i.e., the HLA-A2 supertype that binds these peptides) is comprised of at least: A*0201, A*0202, A*0203, A*0204, A*0205, A*0206, A*0207, A*0209, A*0214, A*6802, and A*6901. Other allele-specific HLA molecules predicted to be members of the A2 superfamily are shown in Table VI. As explained in detail below, binding to each of the individual allele-specific HLA molecules can be modulated by substitutions at the primary anchor and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.


Representative peptide epitopes that comprise an A2 supermotif are set forth on the attached Table VIII. The motifs comprising the primary anchor residues V, A, T, or Q at position 2 and L, I, V, A, or T at the C-terminal position are those most particularly relevant to the invention claimed herein.


IV.D.3. HLA-A3 Supermotif


The HLA-A3 supermotif is characterized by the presence in peptide ligands of A, L, I, V, M, S, or, T as a primary anchor at position 2, and a positively charged residue, R or K, at the C-terminal position of the epitope, e.g., in position 9 of 9-mers (see, e.g., Sidney et al., Hum. Immunol. 45:79, 1996). Exemplary members of the corresponding family of HLA molecules (the HLA-A3 supertype) that bind the A3 supermotif include at least: A*0301, A*1101, A*3101, A*3301, and A*6801. Other allele-specific HLA molecules predicted to be members of the A3 supertype are shown in Table VI. As explained in detail below, peptide binding to each of the individual allele-specific HLA proteins can be modulated by substitutions of amino acids at the primary and/or secondary anchor positions of the peptide, preferably choosing respective residues specified for the supermotif.


Representative peptide epitopes that comprise the A3 supermotif are set forth on the attached Table IX.


IV.D.4. HLA-A24 Supermotif


The HLA-A24 supermotif is characterized by the presence in peptide ligands of an aromatic (F, W, or Y) or hydrophobic aliphatic (L, I, V, M, or T) residue as a primary anchor in position 2, and Y, F, W, L, I, or M as primary anchor at the C-terminal position of the epitope (see, e.g., Sette and Sidney, Immunogenetics, in press, 1999). The corresponding family of HLA molecules that bind to the A24 supermotif (i.e., the A24 supertype) includes at least: A*2402, A*3001, and A*2301. Other allele-specific HLA molecules predicted to be members of the A24 supertype are shown in Table VI. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.


Representative peptide epitopes that comprise the A24 supermotif are set forth on the attached Table X.


IV.D.5. HLA-B7 Supermotif


The HLA-B7 supermotif is characterized by peptides bearing proline in position 2 as a primary anchor, and a hydrophobic or aliphatic amino acid (L, I, V, M, A, F, W, or Y) as the primary anchor at the C-terminal position of the epitope. The corresponding family of HLA molecules that bind the B7 supermotif (i.e., the HLA-B7 supertype) is comprised of at least twenty six HLA-B proteins comprising at least: B*0702, B*0703, B*0704, B*0705, B*1508, B*3501, B*3502, B*3503, B*3504, B*3505, B*3506, B*3507, B*3508, B*5101, B*5102, B*5103, B*5104, B*5105, B*5301, B*5401, B*5501, B*5502, B*5601, B*5602, B*6701, and B*7801 (see, e.g., Sidney, et al., J. Immunol. 154:247, 1995; Barber, et al., Curr. Biol. 5:179, 1995; Hill, et al., Nature 360:434, 1992; Rammensee, et al., Immunogenetics 41:178, 1995 for reviews of relevant data). Other allele-specific HLA molecules predicted to be members of the B7 supertype are shown in Table VI. As explained in detail below, peptide binding to each of the individual allele-specific HLA proteins can be modulated by substitutions at the primary and/or secondary anchor positions of the peptide, preferably choosing respective residues specified for the supermotif.


Representative peptide epitopes that comprise the B7 supermotif are set forth on the attached Table XI.


IV.D.6. HLA-B27 Supermotif


The HLA-B27 supermotif is characterized by the presence in peptide ligands of a positively charged (R, H, or K) residue as a primary anchor at position 2, and a hydrophobic (F, Y, L, W, M, I, A, or V) residue as a primary anchor at the C-terminal position of the epitope (see, e.g., Sidney and Sette, Immunogenetics, in press, 1999). Exemplary members of the corresponding family of HLA molecules that bind to the B27 supermotif (i.e., the B27 supertype) include at least B*1401, B*1402, B*1509, B*2702, B*2703, B*2704, B*2705, B*2706, B*3801, B*3901, B*3902, and B*7301. Other allele-specific HLA molecules predicted to be members of the B27 supertype are shown in Table VI. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.


Representative peptide epitopes that comprise the B27 supermotif are set forth on the attached Table XII.


IV.D.7. HLA-B44 Supermotif


The HLA-B44 supermotif is characterized by the presence in peptide ligands of negatively charged (D or E) residues as a primary anchor in position 2, and hydrophobic residues (F, W, Y, L, I, M, V, or A) as a primary anchor at the C-terminal position of the epitope (see, e.g., Sidney et al., Immunol. Today 17:261, 1996). Exemplary members of the corresponding family of HLA molecules that bind to the B44 supermotif (i.e., the B44 supertype) include at least: B*1801, B*1802, B*3701, B*4001, B*4002, B*4006, B*4402, B*4403, and B*4404. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions; preferably choosing respective residues specified for the supermotif.


IV.D.8. HLA-B58 Supermotif


The HLA-B58 supermotif is characterized by the presence in peptide ligands of a small aliphatic residue (A, S, or T) as a primary anchor residue at position 2, and an aromatic or hydrophobic residue (F, W, Y, L, I, V, M, or A) as a primary anchor residue at the C-terminal position of the epitope (see, e.g., Sidney and Sette, Immunogenetics, in press, 1999 for reviews of relevant data). Exemplary members of the corresponding family of HLA molecules that bind to the B58 supermotif (i.e., the B58 supertype) include at least: B*1516, B*1517, B*5701, B*5702, and B*5801. Other allele-specific HLA molecules predicted to be members of the B58 supertype are shown in Table VI. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.


Representative peptide epitopes that comprise the B27 supermotif are set forth on the attached Table XII.


IV.D.9. HLA-B62 Supermotif


The HLA-B62 supermotif is characterized by the presence in peptide ligands of the polar aliphatic residue Q or a hydrophobic aliphatic residue (L, V, M, I, or P) as a primary anchor in position 2, and a hydrophobic residue (F, W, Y, M, I, V, L, or A) as a primary anchor at the C-terminal position of the epitope (see, e.g., Sidney and Sette, Immunogenetics, in press, 1999). Exemplary members of the corresponding family of HLA molecules that bind to the B62 supermotif (i.e., the B62 supertype) include at least: B*1501, B*1502, B*1513, and B5201. Other allele-specific HLA molecules predicted to be members of the B62 supertype are shown in Table VI. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.


Representative peptide epitopes that comprise the B62 supermotif are set forth on the attached Table XIV.


IV.D.10. HLA-A1 Motif


The HLA-A1 motif is characterized by the presence in peptide ligands of T, S, or M as a primary anchor residue at position 2 and the presence of Y as a primary anchor residue at the C-terminal position of the epitope. An alternative allele-specific A1 motif is characterized by a primary anchor residue at position 3 rather than position 2. This motif is characterized by the presence of D, E, A, or S as a primary anchor residue in position 3, and a Y as a primary anchor residue at the C-terminal position of the epitope (see, e.g., DiBrino et al., J. Immunol., 152:620, 1994; Kondo et al., Immunogenetics 45:249, 1997; and Kubo et al., J. Immunol. 152:3913, 1994 for reviews of relevant data). Peptide binding to HLA-A1 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.


Representative peptide epitopes that comprise either A1 motif are set forth on the attached Table XV. Those epitopes comprising T, S, or M at position 2 and Y at the C-terminal position are also included in the listing of HLA-A1 supermotif-bearing peptide epitopes listed in Table VII, as these residues are a subset of the A1 supermotif.


IV.D.11. HLA-A*0201 Motif


An HLA-A2*0201 motif was determined to be characterized by the presence in peptide ligands of L or M as a primary anchor residue in position 2, and L or V as a primary anchor residue at the C-terminal position of a 9-residue peptide (see, e.g., Falk et al., Nature 351:290-296, 1991) and was further found to comprise an I at position 2 and I or A at the C-terminal position of a nine amino acid peptide (see, e.g., Hunt et al., Science 255:1261-1263, Mar. 6, 1992; Parker et al., J. Immunol. 149:3580-3587, 1992). The A*0201 allele-specific motif has also been defined by the present inventors to additionally comprise V, A, T, or Q as a primary anchor residue at position 2, and M or T as a primary anchor residue at the C-terminal position of the epitope (see, e.g., Kast et al., J. Immunol. 152:3904-3912, 1994). Thus, the HLA-A*0201 motif comprises peptide ligands with L, I, V, M, A, T, or Q as primary anchor residues at position 2 and L, I, V, M, A, or T as a primary anchor residue at the C-terminal position of the epitope. The preferred and tolerated residues that characterize the primary anchor positions of the HLA-A*0201 motif are identical to the residues describing the A2 supermotif. (For reviews of relevant data, see, e.g., del Guercio et al., J. Immunol. 154:685-693, 1995; Ruppert et al., Cell 74:929-937, 1993; Sidney et al., Immunol. Today 17:261-266, 1996; Sette and Sidney, Curr. Opin. in Immunol. 10:478-482, 1998). Secondary anchor residues that characterize the A*0201 motif have additionally been defined (see, e.g., Ruppert et al., Cell 74:929-937, 1993). These are shown in Table II. Peptide binding to HLA-A*0201 molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.


Representative peptide epitopes that comprise an A*0201 motif are set forth on the attached Table VII. The A*0201 motifs comprising the primary anchor residues V, A, T, or Q at position 2 and L, I, V, A, or T at the C-terminal position are those most particularly relevant to the invention claimed herein.


IV.D.12. HLA-A3 Motif


The HLA-A3 motif is characterized by the presence in peptide ligands of L, M, V, I, S, A, T, F, C, G, or D as a primary anchor residue at position 2, and the presence of K, Y, R, H, F, or A as a primary anchor residue at the C-terminal position of the epitope (see, e.g., DiBrino et al., Proc. Natl. Acad. Sci USA 90:1508, 1993; and Kubo et al., J. Immunol. 152:3913-3924, 1994). Peptide binding to HLA-A3 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.


Representative peptide epitopes that comprise the A3 motif are set forth on the attached Table XVI. Those epitopes that comprise the A3 supermotif are also listed in Table IX, as the A3 supermotif primary anchor residues comprise a subset of the A3- and A11-allele-specific motifs.


IV.D.13. HLA-A11 Motif


The HLA-A11 motif is characterized by the presence in peptide ligands of V, T, M, L, I, S, A, G, N, C, D, or F as a primary anchor residue in position 2, and K, k, Y, or H as a primary anchor residue at the C-terminal position of the epitope (see, e.g., Zhang et al., Proc. Natl. Acad. Sci USA 90:2217-2221, 1993; and Kubo et al., J. Immunol. 152:3913-3924, 1994). Peptide binding to HLA-A11 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.


Representative peptide epitopes that comprise the A1 I motif are set forth on the attached Table XVII; peptide epitopes comprising the A3 allele-specific motif are also present in this Table because of the extensive overlap between the A3 and A11 motif primary anchor specificities. Further, those peptide epitopes that comprise the A3 supermotif are also listed in Table IX.


IV.D.14. HLA-A24 Motif


The HLA-A24 motif is characterized by the presence in peptide ligands of Y, F, W, or M as a primary anchor residue in position 2, and F, L, I, or W as a primary anchor residue at the C-terminal position of the epitope (see, e.g., Kondo et al., J. Immunol. 155:4307-4312, 1995; and Kubo et al., J. Immunol. 152:3913-3924, 1994). Peptide binding to HLA-A24 molecules can be modulated by substitutions at primary and/or secondary anchor positions; preferably choosing respective residues specified for the motif.


Representative peptide epitopes that comprise the A24 motif are set forth on the attached Table XVIII. These epitopes are also listed in Table X, which sets forth HLA-A24-supermotif-bearing peptide epitopes, as the primary anchor residues characterizing the A24 allele-specific motif comprise a subset of the A24 supermotif primary anchor residues.


Motifs Indicative of Class II HTL Inducing Peptide Epitopes


The primary and secondary anchor residues of the HLA class II peptide epitope supermotifs and motifs delineated below are summarized in Table III.


IV.D.15. HLA DR-1-4-7 Supermotif


Motifs have also been identified for peptides that bind to three common HLA class II allele-specific HLA molecules: HLA DRB1*0401, DRB1*0101, and DRB1*0701 (see, e.g., the review by Southwood et al. J. Immunology 160:3363-3373, 1998). Collectively, the common residues from these motifs delineate the HLA DR-1-4-7 supermotif. Peptides that bind to these DR molecules carry a supermotif characterized by a large aromatic or hydrophobic residue (Y, F, W, L, I, V, or M) as a primary anchor residue in position 1, and a small, non-charged residue (S, T, C, A, P, V, I, L, or M) as a primary anchor residue in position 6 of a 9-mer core region. Allele-specific secondary effects and secondary anchors for each of these HLA types have also been identified (Southwood et al., supra). These are set forth in Table III. Peptide binding to HLA-DRB1*0401, DRB1*0101, and/or DRB1*0701 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.


Representative 9-mer epitopes comprising the DR-1-4-7 supermotif, wherein position 1 of the supermotif is at position 1 of the nine-residue core, are set forth in Table XIX. Respective exemplary peptide epitopes of 15 amino acid residues in length, each of which comprise a conserved nine residue core, are also shown in the Table.


IV.D.16. HLA-DR3 Motifs


Two alternative motifs (i.e., submotifs) characterize peptide epitopes that bind to HLA-DR3 molecules (see, e.g., Geluk et al., J. Immunol. 152:5742, 1994). In the first motif (submotif DR3a) a large, hydrophobic residue (L, I, V, M, F, or Y) is present in anchor position 1 of a 9-mer core, and D is present as an anchor at position 4, towards the carboxyl terminus of the epitope. As in other class II motifs, core position 1 may or may not occupy the peptide N-terminal position.


The alternative DR3 submotif provides for lack of the large, hydrophobic residue at anchor position 1, and/or lack of the negatively charged or amide-like anchor residue at position 4, by the presence of a positive charge at position 6 towards the carboxyl terminus of the epitope. Thus, for the alternative allele-specific DR3 motif (submotif DR3b): L, I, V, M, F, Y, A, or Y is present at anchor position 1; D, N, Q, E, S, or T is present at anchor position 4; and K, R, or H is present at anchor position 6. Peptide binding to HLA-DR3 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.


Peptide epitope 9-mer core regions corresponding to a nine residue sequence comprising the DR3a or the DR3b submotifs (wherein position 1 of the motif is at position 1 of the nine residue core) are set forth in Table XXa and b. Respective exemplary peptide epitopes of 15 amino acid residues in length, each of which comprise a conserved nine residue core, are also shown in Table XX.


Each of the HLA class I or class II peptide epitopes identified as described herein is deemed singly to be an inventive aspect of this application. Further, it is also an inventive aspect of this application that each peptide epitope may be used in combination with any other peptide epitope.


IV.E. Enhancing Population Coverage of the Vaccine


Vaccines that have broad population coverage are preferred because they are more commercially viable and generally applicable to the most people. Broad population coverage can be obtained using the peptides of the invention (and/or nucleic acid compositions that encode such peptides) through selecting peptide epitopes that bind to HLA alleles which, when considered in total, are present in most of the population. Table XXI shows the overall frequencies of HLA class I supertypes in various ethnicities (Table XXIa) and the combined population coverage achieved by the A2-, A3-, and B7-supertypes (Table XXIb). The A2-, A3-, and B7 supertypes are each present on average of over 40% in each of these five major ethnic groups. Coverage in excess of 80% is achieved with a combination of these supermotifs. These results suggest that effective and non-ethnically biased population coverage is achieved upon use of a limited number of cross-reactive peptides. Although the population coverage reached with these three main peptide specificities is high, coverage can be expanded to reach 95% population coverage and above, and more easily achieve truly multispecific responses upon use of additional supermotif or allele-specific motif bearing peptides.


The B44-, A1-, and A24-supertypes are each present, on average, in a range from 25% to 40% in these major ethnic populations (Table XXIa). While less prevalent overall, the B27-, B58-, and B62 supertypes are each present with a frequency >25% in at least one major ethnic group (Table XXIa). Table XXIb summarizes the estimated prevalence of combinations of HLA supertypes that have been identified in five major ethnic groups; the incremental coverage obtained by the inclusion of A1,- A24-, and B44-supertypes to the A2, A3, and B7 coverage; and coverage obtained with all of the supertypes described herein, is shown.


The data presented herein, together with the previous definition of the A2-, A3-, and B7-supertypes, indicates that all antigens, with the possible exception of A29, B8, and B46, can be classified into a total of nine HLA supertypes. By including epitopes from the six most frequent supertypes, an average population coverage of 99% is obtained for five major ethnic groups.


IV.F. Immune Response-Stimulating Peptide Analogs


In general, CTL and HTL responses to whole antigens are not directed against all possible epitopes. Rather, they are restricted to a few “immunodominant” determinants (Zinkemagel, et al., Adv. Immunol. 27:5159, 1979; Bennink, et al., J. Exp. Med. 168:1935-1939, 1988; Rawle, et al., J. Immunol. 146:3977-3984, 1991). It has been recognized that immunodominance (Benacerraf, et al., Science 175:273-279, 1972) could be explained by either the ability of a given epitope to selectively bind a particular HLA protein (determinant selection theory) (Vitiello, et al., J. Immunol. 131:1635, 1983); Rosenthal, et al., Nature 267:156-158, 1977), or to be selectively recognized by the existing TCR (T cell receptor) specificities (repertoire theory) (Klein, J., IMMUNOLOGY, THE SCIENCE OF SELF/NONSELF DISCRIMINATION, John Wiley & Sons, New York, pp. 270-310, 1982). It has been demonstrated that additional factors, mostly linked to processing events, can also play a key role in dictating, beyond strict immunogenicity, which of the many potential determinants will be presented as immunodominant (Sercarz, et al., Annu. Rev. Immunol. 11:729-766, 1993).


Because tissue specific and developmental TAAs are expressed on normal tissue at least at some point in time or location within the body, it may be expected that T cells to them, particularly dominant epitopes, are eliminated during immunological surveillance and that tolerance is induced. However, CTL responses to tumor epitopes in both normal donors and cancer patient have been detected, which may indicate that tolerance is incomplete (see, e.g., Kawashima et al., Hum. Immunol. 59:1, 1998; Tsang, J. Natl. Cancer Inst. 87:82-90, 1995; Rongcun et al., J. Immunol. 163:1037, 1999). Thus, immune tolerance does not completely eliminate or inactivate CTL precursors capable of recognizing high affinity HLA class I binding peptides.


An additional strategy to overcome tolerance is to use analog peptides. Without intending to be bound by theory, it is believed that because T cells to dominant epitopes may have been clonally deleted, selecting subdominant epitopes may allow existing T cells to be recruited, which will then lead to a therapeutic or prophylactic response. However, the binding of HLA molecules to subdominant epitopes is often less vigorous than to dominant ones. Accordingly, there is a need to be able to modulate the binding affinity of particular immunogenic epitopes for one or more HLA molecules, and thereby to modulate the immune response elicited by the peptide, for example to prepare analog peptides which elicit a more vigorous response.


Although peptides with suitable cross-reactivity among all alleles of a superfamily are identified by the screening procedures described above, cross-reactivity is not always as complete as possible, and in certain cases procedures to increase cross-reactivity of peptides can be useful; moreover, such procedures can also be used to modify other properties of the peptides such as binding affinity or peptide stability. Having established the general rules that govern cross-reactivity of peptides for HLA alleles within a given motif or supermotif, modification (i.e., analoging) of the structure of peptides of particular interest in order to achieve broader (or otherwise modified) HLA binding capacity can be performed. More specifically, peptides which exhibit the broadest cross-reactivity patterns, can be produced in accordance with the teachings herein. The present concepts related to analog generation are set forth in greater detail in co-pending U.S. Ser. No. 09/226,775 filed Jan. 6, 1999.


In brief, the strategy employed utilizes the motifs or supermotifs which correlate with binding to certain HLA molecules. The motifs or supermotifs are defined by having primary anchors, and in many cases secondary anchors. Analog peptides can be created by substituting amino acid residues at primary anchor, secondary anchor, or at primary and secondary anchor positions. Generally, analogs are made for peptides that already bear a motif or supermotif. Preferred secondary anchor residues of supermotifs and motifs that have been defined for HLA class I and class II binding peptides are shown in Tables II and III, respectively.


For a number of the motifs or supermotifs in accordance with the invention, residues are defined which are deleterious to binding to allele-specific HLA molecules or members of HLA supertypes that bind the respective motif or supermotif (Tables II and III). Accordingly, removal of such residues that are detrimental to binding can be performed in accordance with the present invention. For example, in the case of the A3 supertype, when all peptides that have such deleterious residues are removed from the population of peptides used in the analysis, the incidence of cross-reactivity increased from 22% to 37% (see, e.g., Sidney, J. et al., Hu. Immunol. 45:79, 1996). Thus, one strategy to improve the cross-reactivity of peptides within a given supermotif is simply to delete one or more of the deleterious residues present within a peptide and substitute a small “neutral” residue such as Ala (that may not influence T cell recognition of the peptide). An enhanced likelihood of cross-reactivity is expected if, together with elimination of detrimental residues within a peptide, “preferred” residues associated with high affinity binding to an allele-specific HLA molecule or to multiple HLA molecules within a superfamily are inserted.


To ensure that an analog peptide, when used as a vaccine, actually elicits a CTL response to the native epitope in vivo (or, in the case of class II epitopes, elicits helper T cells that cross-react with the wild type peptides), the analog peptide may be used to immunize T cells in vitro from individuals of the appropriate HLA allele. Thereafter, the immunized cells' capacity to induce lysis of wild type peptide sensitized target cells is evaluated. It will be desirable to use as antigen presenting cells, cells that have been either infected, or transfected with the appropriate genes, or, in the case of class II epitopes, cells that have been pulsed with whole protein antigens, to establish whether endogenously produced antigen is also recognized by the relevant T cells.


Another embodiment of the invention is to create analogs of weak binding peptides, to thereby ensure adequate numbers of cross-reactive cellular binders. Class I binding peptides exhibiting binding affinities of 500-5000 nM, and carrying an acceptable but suboptimal primary anchor residue at one or both positions can be “fixed” by substituting preferred anchor residues in accordance with the respective supertype. The analog peptides can then be tested for crossbinding activity.


Another embodiment for generating effective peptide analogs involves the substitution of residues that have an adverse impact on peptide stability or solubility in, e.g., a liquid environment. This substitution may occur at any position of the peptide epitope. For example, a cysteine can be substituted out in favor of α-amino butyric acid (“B” in the single letter abbreviations for peptide sequences listed herein). Due to its chemical nature, cysteine has the propensity to form disulfide bridges and sufficiently alter the peptide structurally so as to reduce binding capacity. Substituting α-amino butyric acid for cysteine not only alleviates this problem, but actually improves binding and crossbinding capability in certain instances (see, e.g., the review by Sette et al., In: Persistent Viral Infections, Eds. R. Ahmed and I. Chen, John Wiley & Sons, England, 1999).


IV.G. Computer Screening of Protein Sequences from Disease-Related Antigens for Supermotif- or Motif-Bearing Peptides


In order to identify supermotif- or motif-bearing epitopes in a target antigen, a native protein sequence, e.g., a tumor-associated antigen, or sequences from an infectious organism, or a donor tissue for transplantation, is screened using a means for computing, such as an intellectual calculation or a computer, to determine the presence of a supermotif or motif within the sequence. The information obtained from the analysis of native peptide can be used directly to evaluate the status of the native peptide or may be utilized subsequently to generate the peptide epitope.


Computer programs that allow the rapid screening of protein sequences for the occurrence of the subject supermotifs or motifs are encompassed by the present invention; as are programs that permit the generation of analog peptides. These programs are implemented to analyze any identified amino acid sequence or operate on an unknown sequence and simultaneously determine the sequence and identify motif-bearing epitopes thereof; analogs can be simultaneously determined as well. Generally, the identified sequences will be from a pathogenic organism or a tumor-associated peptide. In the present invention, the target TAA molecules include, without limitation, PSA, PSM, PAP, and hK2.


It is important that the selection criteria utilized for prediction of peptide binding are as accurate as possible, to correlate most efficiently with actual binding. Prediction of peptides that bind, for example, to HLA-A*0201, on the basis of the presence of the appropriate primary anchors, is positive at about a 30% rate (see, e.g., Ruppert, J. et al. Cell 74:929, 1993). However, by extensively analyzing peptide-HLA binding data disclosed herein, data in related patent applications, and data in the art, the present inventors have developed a number of allele-specific polynomial algorithms that dramatically increase the predictive value over identification on the basis of the presence of primary anchor residues alone. These algorithms take into account not only the presence or absence of primary anchors, but also consider the positive or deleterious presence of secondary anchor residues (to account for the impact of different amino acids at different positions). The algorithms are essentially based on the premise that the overall affinity (or ΔG) of peptide-HLA interactions can be approximated as a linear polynomial function of the type:

ΔG=a1i×a2i×a3i . . . ×ani

where aji is a coefficient that represents the effect of the presence of a given amino acid (j) at a given position (i) along the sequence of a peptide of n amino acids. An important assumption of this method is that the effects at each position are essentially independent of each other. This assumption is justified by studies that demonstrated that peptides are bound to HLA molecules and recognized by T cells in essentially an extended conformation. Derivation of specific algorithm coefficients has been described, for example, in Gulukota, K. et al., J. Mol. Biol. 267:1258, 1997.


Additional methods to identify preferred peptide sequences, which also make use of specific motifs, include the use of neural networks and molecular modeling programs (see, e.g., Milik et al., Nature Biotechnology 16:753, 1998; Altuvia et al., Hum. Immunol. 58:1, 1997; Altuvia et al, J. Mol. Biol. 249:244, 1995; Buus, S. Curr. Opin. Immunol. 11:209-213, 1999; Brusic, V. et al., Bioinformatics 14:121-130, 1998; Parker et al., J. Immunol. 152:163, 1993; Meister et al., Vaccine 13:581, 1995; Hammer et al., J. Exp. Med. 180:2353, 1994; Sturniolo et al., Nature Biotechnol. 17:555 1999).


For example, it has been shown that in sets of A*0201 motif-bearing peptides containing at least one preferred secondary anchor residue while avoiding the presence of any deleterious secondary anchor residues, 69% of the peptides will bind A*0201 with an IC50 less than 500 nM (Ruppert, J. et al. Cell 74:929, 1993). These algorithms are also flexible in that cut-off scores may be adjusted to select sets of peptides with greater or lower predicted binding properties, as desired.


In utilizing computer screening to identify peptide epitopes, a protein sequence or translated sequence may be analyzed using software developed to search for motifs, for example the “FINDPATTERNS’ program (Devereux, et al. Nucl. Acids Res. 12:387-395, 1984) or MotifSearch 1.4 software program (D. Brown, San Diego, Calif.) to identify potential peptide sequences containing appropriate HLA binding motifs. The identified peptides can be scored using customized polynomial algorithms to predict their capacity to bind specific HLA class I or class II alleles. As appreciated by one of ordinary skill in the art, a large array of computer programming software and hardware options are available in the relevant art which can be employed to implement the motifs of the invention in order to evaluate (e.g., without limitation, to identify epitopes, identify epitope concentration per peptide length, or to generate analogs) known or unknown peptide sequences.


In accordance with the procedures described above, prostate cancer-associated antigen peptide epitopes and analogs thereof that are able to bind HLA supertype groups or allele-specific HLA molecules are identified.


IV.H. Preparation of Peptide Epitopes


Peptides in accordance with the invention can be prepared synthetically, by recombinant DNA technology or chemical synthesis, or from natural sources such as native tumors or pathogenic organisms. Peptide epitopes may be synthesized individually or as polyepitopic peptides. Although the peptide will preferably be substantially free of other naturally occurring host cell proteins and fragments thereof, in some embodiments the peptides may be synthetically conjugated to native fragments or particles.


The peptides in accordance with the invention can be a variety of lengths, and either in their neutral (uncharged) forms or in forms which are salts. The peptides in accordance with the invention are either free of modifications such as glycosylation, side chain oxidation, or phosphorylation; or they contain these modifications, subject to the condition that modifications do not destroy the biological activity of the peptides as described herein.


When possible, it may be desirable to optimize HLA class I binding epitopes of the invention, such as can be used in a polyepitopic construct, to a length of about 8 to about 13 amino acid residues, often 8 to 11, preferably 9 to 10. HLA class II binding peptide epitopes of the invention may be optimized to a length of about 6 to about 30 amino acids in length, preferably to between about 13 and about 20 residues. Preferably, the peptide epitopes are commensurate in size with endogenously processed pathogen-derived peptides or tumor cell peptides that are bound to the relevant HLA molecules, however, the identification and preparation of peptides that comprise epitopes of the invention can also be carried out using the techniques described herein.


In alternative embodiments, epitopes of the invention can be linked as a polyepitopic peptide, or as a minigene that encodes a polyepitopic peptide.


In another embodiment, it is preferred to identify native peptide regions that contain a high concentration of class I and/or class II epitopes. Such a sequence is generally selected on the basis that it contains the greatest number of epitopes per amino acid length. It is to be appreciated that epitopes can be present in a nested or overlapping manner, e.g. a 10 amino acid long peptide could contain two 9 amino acid long epitopes and one 10 amino acid long epitope; upon intracellular processing, each epitope can be exposed and bound by an HLA molecule upon administration of such a peptide. This larger, preferably multi-epitopic, peptide can be generated synthetically, recombinantly, or via cleavage from the native source.


The peptides of the invention can be prepared in a wide variety of ways. For the preferred relatively short size, the peptides can be synthesized in solution or on a solid support in accordance with conventional techniques. Various automatic synthesizers are commercially available and can be used in accordance with known protocols. (See, for example, Stewart & Young, SOLID PHASE PEPTIDE SYNTHESIS, 2D. ED., Pierce Chemical Co., 1984). Further, individual peptide epitopes can be joined using chemical ligation to produce larger peptides that are still within the bounds of the invention.


Alternatively, recombinant DNA technology can be employed wherein a nucleotide sequence which encodes an immunogenic peptide of interest is inserted into an expression vector, transformed or transfected into an appropriate host cell and cultivated under conditions suitable for expression. These procedures are generally known in the art, as described generally in Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL, Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (1989). Thus, recombinant polypeptides which comprise one or more peptide sequences of the invention can be used to present the appropriate T cell epitope.


The nucleotide coding sequence for peptide epitopes of the preferred lengths contemplated herein can be synthesized by chemical techniques, for example, the phosphotriester method of Matteucci, et al., J. Am. Chem. Soc. 103:3185 (1981). Peptide analogs can be made simply by substituting the appropriate and desired nucleic acid base(s) for those that encode the native peptide sequence; exemplary nucleic acid substitutions are those that encode an amino acid defined by the motifs/supermotifs herein. The coding sequence can then be provided with appropriate linkers and ligated into expression vectors commonly available in the art, and the vectors used to transform suitable hosts to produce the desired fusion protein. A number of such vectors and suitable host systems are now available. For expression of the fusion proteins, the coding sequence will be provided with operably linked start and stop codons, promoter and terminator regions and usually a replication system to provide an expression vector for expression in the desired cellular host. For example, promoter sequences compatible with bacterial hosts are provided in plasmids containing convenient restriction sites for insertion of the desired coding sequence. The resulting expression vectors are transformed into suitable bacterial hosts. Of course, yeast, insect or mammalian cell hosts may also be used, employing suitable vectors and control sequences.


IV.I. Assays to Detect T-Cell Responses


Once HLA binding peptides are identified, they can be tested for the ability to elicit a T-cell response. The preparation and evaluation of motif-bearing peptides are described in PCT publications WO 94/20127 and WO 94/03205. Briefly, peptides comprising epitopes from a particular antigen are synthesized and tested for their ability to bind to the appropriate HLA proteins. These assays may involve evaluating the binding of a peptide of the invention to purified HLA class I molecules in relation to the binding of a radioiodinated reference peptide. Alternatively, cells expressing empty class I molecules (i.e. lacking peptide therein) may be evaluated for peptide binding by immunofluorescent staining and flow microfluorimetry. Other assays that may be used to evaluate peptide binding include peptide-dependent class I assembly assays and/or the inhibition of CTL recognition by peptide competition. Those peptides that bind to the class I molecule, typically with an affinity of 500 nM or less, are further evaluated for their ability to serve as targets for CTLs derived from infected or immunized individuals, as well as for their capacity to induce primary in vitro or in vivo CTL responses that can give rise to CTL populations capable of reacting with selected target cells associated with a disease.


Analogous assays are used for evaluation of HLA class II binding peptides. HLA class II motif-bearing peptides that are shown to bind, typically at an affinity of 1000 nM or less, are further evaluated for the ability to stimulate HTL responses.


Conventional assays utilized to detect T cell responses include proliferation assays, lymphokine secretion assays, direct cytotoxicity assays, and limiting dilution assays. For example, antigen-presenting cells that have been incubated with a peptide can be assayed for the ability to induce CTL responses in responder cell populations. Antigen-presenting cells can be normal cells such as peripheral blood mononuclear cells or dendritic cells. Alternatively, mutant non-human mammalian cell lines that are deficient in their ability to load class I molecules with internally processed peptides and that have been transfected with the appropriate human class I gene, may be used to test for the capacity of the peptide to induce in vitro primary CTL responses.


Peripheral blood mononuclear cells (PBMCs) may be used as the responder cell source of CTL precursors. The appropriate antigen-presenting cells are incubated with peptide, after which the peptide-loaded antigen-presenting cells are then incubated with the responder cell population under optimized culture conditions. Positive CTL activation can be determined by assaying the culture for the presence of CTLs that kill radio-labeled target cells, both specific peptide-pulsed targets as well as target cells expressing endogenously processed forms of the antigen from which the peptide sequence was derived.


Additionally, a method has been devised which allows direct quantification of antigen-specific T cells by staining with Fluorescein-labelled HLA tetrameric complexes (Altman, J. D. et al., Proc. Natl. Acad. Sci. USA 90:10330, 1993; Altman, J. D. et al., Science 274:94, 1996). Other relatively recent technical developments include staining for intracellular lymphokines, and interferon-γ release assays or ELISPOT assays. Tetramer staining, intracellular lymphokine staining and ELISPOT assays all appear to be at least 10-fold more sensitive than more conventional assays (Lalvani, A. et al., J. Exp. Med. 186:859, 1997; Dunbar, P. R. et al., Curr. Biol. 8:413, 1998; Murali-Krishna, K. et al., Immunity 8:177, 1998).


HTL activation may also be assessed using such techniques known to those in the art such as T cell proliferation and secretion of lymphokines, e.g. IL-2 (see, e.g. Alexander et al., Immunity 1:751-761, 1994).


Alternatively, immunization of HLA transgenic mice can be used to determine immunogenicity of peptide epitopes. Several transgenic mouse models including mice with human A2.1, A11 (which can additionally be used to analyze HLA-A3 epitopes), and B7 alleles have been characterized and others (e.g., transgenic mice for HLA-A1 and A24) are being developed. HLA-DR1 and HLA-DR3 mouse models have also been developed. Additional transgenic mouse models with other HLA alleles may be generated as necessary. The mice may be immunized with peptides emulsified in Incomplete Freund's Adjuvant and the resulting T cells tested for their capacity to recognize peptide-pulsed target cells and target cells transfected with appropriate genes. CTL responses may be analyzed using cytotoxicity assays described above. Similarly, HTL responses may be analyzed using such assays as T cell proliferation or secretion of lymphokines.


IV.J. Use of Peptide Epitopes as Diagnostic Agents and for Evaluating Immune Responses


In one embodiment of the invention, HLA class I and class II binding peptides as described herein are used as reagents to evaluate an immune response. The immune response to be evaluated is induced by using as an immunogen any agent that may result in the production of antigen-specific CTLs or HTLs that recognize and bind to the peptide epitope(s) to be employed as the reagent. The peptide reagent need not be used as the immunogen. Assay systems that are used for such an analysis include relatively recent technical developments such as tetramers, staining for intracellular lymphokines and interferon release assays, or ELISPOT assays.


For example, peptides of the invention are used in tetramer staining assays to assess peripheral blood mononuclear cells for the presence of antigen-specific CTLs following exposure to a tumor cell antigen or an immunogen. The HLA-tetrameric complex is used to directly visualize antigen-specific CTLs (see, e.g., Ogg et al., Science 279:2103-2106, 1998; and Altman et al., Science 174:94-96, 1996) and determine the frequency of the antigen-specific CTL population in a sample of peripheral blood mononuclear cells. A tetramer reagent using a peptide of the invention is generated as follows: A peptide that binds to an HLA molecule is refolded in the presence of the corresponding HLA heavy chain and β2-microglobulin to generate a trimolecular complex. The complex is biotinylated at the carboxyl terminal end of the heavy chain at a site that was previously engineered into the protein. Tetramer formation is then induced by the addition of streptavidin. By means of fluorescently labeled streptavidin, the tetramer can be used to stain antigen-specific cells. The cells can then be identified, for example, by flow cytometry. Such an analysis may be used for diagnostic or prognostic purposes. Cells identified by the procedure can also be used for therapeutic purposes.


Peptides of the invention are also used as reagents to evaluate immune recall responses (see, e.g., Bertoni et al., J. Clin. Invest. 100:503-513, 1997 and Penna et al., J. Exp. Med. 174:1565-1570, 1991). For example, patient PBMC samples from individuals with cancer are analyzed for the presence of antigen-specific CTLs or HTLs using specific peptides. A blood sample containing mononuclear cells can be evaluated by cultivating the PBMCs and stimulating the cells with a peptide of the invention. After an appropriate cultivation period, the expanded cell population can be analyzed, for example, for CTL or for HTL activity.


The peptides are also used as reagents to evaluate the efficacy of a vaccine. PBMCs obtained from a patient vaccinated with an immunogen are analyzed using, for example, either of the methods described above. The patient is HLA typed, and peptide epitope reagents that recognize the allele-specific molecules present in that patient are selected for the analysis. The immunogenicity of the vaccine is indicated by the presence of epitope-specific CTLs and/or HTLs in the PBMC sample.


The peptides of the invention are also used to make antibodies, using techniques well known in the art (see, e.g. CURRENT PROTOCOLS IN IMMUNOLOGY, Wiley/Greene, NY; and Antibodies A Laboratory Manual, Harlow and Lane, Cold Spring Harbor Laboratory Press, 1989), which may be useful as reagents to diagnose or monitor cancer. Such antibodies include those that recognize a peptide in the context of an HLA molecule, i.e., antibodies that bind to a peptide-MHC complex.


IV.K. Vaccine Compositions


Vaccines and methods of preparing vaccines that contain an immunogenically effective amount of one or more peptides as described herein are further embodiments of the invention. Once appropriately immunogenic epitopes have been defined, they can be sorted and delivered by various means, herein referred to as “vaccine” compositions. Such vaccine compositions can include, for example, lipopeptides (e.g., Vitiello, A. et al., J. Clin. Invest. 95:341, 1995), peptide compositions encapsulated in poly(DL-lactide-co-glycolide) (“PLG”) microspheres (see, e.g., Eldridge, et al., Molec. Immunol. 28:287-294, 1991: Alonso et al., Vaccine 12:299-306, 1994; Jones et al., Vaccine 13:675-681, 1995), peptide compositions contained in immune stimulating complexes (ISCOMS) (see, e.g., Takahashi et al., Nature 344:873-875, 1990; Hu et al., Clin Exp Immunol. 113:235-243, 1998), multiple antigen peptide systems (MAPs) (see e.g., Tam, J. P., Proc. Natl. Acad. Sci. U.S.A. 85:5409-5413, 1988; Tam, J. P., J. Immunol. Methods 196:17-32, 1996), peptides formulated as multivalent peptides; peptides for use in ballistic delivery systems, typically crystallized peptides, viral delivery vectors (Perkus, M. E. et al., In: Concepts in vaccine development, Kaufmann, S. H. E., ed., p. 379, 1996; Chakrabarti, S. et al., Nature 320:535, 1986; Hu, S. L. et al., Nature 320:537, 1986; Kieny, M.-P. et al., AIDS Bio/Technology 4:790, 1986; Top, F. H. et al., J. Infect. Dis. 124:148, 1971; Chanda, P. K. et al., Virology 175:535, 1990), particles of viral or synthetic origin (e.g., Kofler, N. et al., J. Immunol. Methods. 192:25, 1996; Eldridge, J. H. et al., Sem. Hematol. 30:16, 1993; Falo, L. D., Jr. et al., Nature Med. 7:649, 1995), adjuvants (Warren, H. S., Vogel, F. R., and Chedid, L. A. Annu. Rev. Immunol. 4:369, 1986; Gupta, R. K. et al., Vaccine 11:293, 1993), liposomes (Reddy, R. et al., J. Immunol. 148:1585, 1992; Rock, K. L., Immunol. Today 17:131, 1996), or, naked or particle absorbed cDNA (Ulmer, J. B. et al., Science 259:1745, 1993; Robinson, H. L., Hunt, L. A., and Webster, R. G., Vaccine 11:957, 1993; Shiver, J. W. et al., In: Concepts in vaccine development, Kaufmann, S. H. E., ed., p. 423, 1996; Cease, K. B., and Berzofsky, J. A., Annu. Rev. Immunol. 12:923, 1994 and Eldridge, J. H. et al., Sem. Hematol. 30:16, 1993). Toxin-targeted delivery technologies, also known as receptor mediated targeting, such as those of Avant Immunotherapeutics, Inc. (Needham, Mass.) may also be used.


Vaccines of the invention include nucleic acid-mediated modalities. DNA or RNA encoding one or more of the peptides of the invention can also be administered to a patient. This approach is described, for instance, in Wolff et. al., Science 247:1465 (1990) as well as U.S. Pat. Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; WO 98/04720; and in more detail below. Examples of DNA-based delivery technologies include “naked DNA”, facilitated (bupivicaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated (“gene gun”) or pressure-mediated delivery (see, e.g., U.S. Pat. No. 5,922,687).


For therapeutic or prophylactic immunization purposes, the peptides of the invention can also be expressed by viral or bacterial vectors. Examples of expression vectors include attenuated viral hosts, such as vaccinia or fowlpox. As an example of this approach, vaccinia virus is used as a vector to express nucleotide sequences that encode the peptides of the invention. Upon introduction into a host bearing a tumor, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits a host CTL and/or HTL response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Pat. No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover et al., Nature 351:456-460 (1991). A wide variety of other vectors useful for therapeutic administration or immunization of the peptides of the invention, e.g. adeno and adeno-associated virus vectors, retroviral vectors, Salmonella typhi vectors, detoxified anthrax toxin vectors, and the like, will be apparent to those skilled in the art from the description herein.


Furthermore, vaccines in accordance with the invention encompass compositions of one or more of the claimed peptides. A peptide can be present in a vaccine individually. Alternatively, the peptide can exist as a homopolymer comprising multiple copies of the same peptide, or as a heteropolymer of various peptides. Polymers have the advantage of increased immunological reaction and, where different peptide epitopes are used to make up the polymer, the additional ability to induce antibodies and/or CTLs that react with different antigenic determinants of the pathogenic organism or tumor-related peptide targeted for an immune response. The composition can be a naturally occurring region of an antigen or can be prepared, e.g., recombinantly or by chemical synthesis.


Carriers that can be used with vaccines of the invention are well known in the art, and include, e.g., thyroglobulin, albumins such as human serum albumin, tetanus toxoid, polyamino acids such as poly L-lysine, poly L-glutamic acid, influenza, hepatitis B virus core protein, and the like. The vaccines can contain a physiologically tolerable (i.e., acceptable) diluent such as water, or saline, preferably phosphate buffered saline. The vaccines also typically include an adjuvant. Adjuvants such as incomplete Freund's adjuvant, aluminum phosphate, aluminum hydroxide, or alum are examples of materials well known in the art. Additionally, as disclosed herein, CTL responses can be primed by conjugating peptides of the invention to lipids, such as tripalmitoyl-S-glycerylcysteinlyseryl-serine (P3CSS).


Upon immunization with a peptide composition in accordance with the invention, via injection, aerosol, oral, transdermal, transmucosal, intrapleural, intrathecal, or other suitable routes, the immune system of the host responds to the vaccine by producing large amounts of CTLs and/or HTLs specific for the desired antigen. Consequently, the host becomes at least partially immune to later infection, or at least partially resistant to developing an ongoing chronic infection, or derives at least some therapeutic benefit when the antigen was tumor-associated.


In some embodiments, it may be desirable to combine the class I peptide components with components that induce or facilitate neutralizing antibody and or helper T cell responses to the target antigen of interest. A preferred embodiment of such a composition comprises class I and class II epitopes in accordance with the invention. An alternative embodiment of such a composition comprises a class I and/or class II epitope in accordance with the invention, along with a PADRE™ (Epimmune, San Diego, Calif.) molecule (described, for example, in U.S. Pat. No. 5,736,142).


A vaccine of the invention can also include antigen-presenting cells (APC), such as dendritic cells (DC), as a vehicle to present peptides of the invention. Vaccine compositions can be created in vitro, following dendritic cell mobilization and harvesting, whereby loading of dendritic cells occurs in vitro. For example, dendritic cells are transfected, e.g., with a minigene in accordance with the invention, or are pulsed with peptides. The dendritic cell can then be administered to a patient to elicit immune responses in vivo.


Vaccine compositions, either DNA- or peptide-based, can also be administered in vivo in combination with dendritic cell mobilization whereby loading of dendritic cells occurs in vivo.


Antigenic peptides are used to elicit a CTL and/or HTL response ex vivo, as well. The resulting CTL or HTL cells, can be used to treat tumors in patients that do not respond to other conventional forms of therapy, or will not respond to a therapeutic vaccine peptide or nucleic acid in accordance with the invention. Ex vivo CTL or HTL responses to a particular tumor-associated antigen are induced by incubating in tissue culture the patient's, or genetically compatible, CTL or HTL precursor cells together with a source of antigen-presenting cells, such as dendritic cells, and the appropriate immunogenic peptide. After an appropriate incubation time (typically about 7-28 days), in which the precursor cells are activated and expanded into effector cells, the cells are infused back into the patient, where they will destroy (CTL) or facilitate destruction (HTL) of their specific target cell (an infected cell or a tumor cell). Transfected dendritic cells may also be used as antigen presenting cells.


The vaccine compositions of the invention can also be used in combination with other treatments used for cancer, including use in combination with immune adjuvants such as IL-2, IL-12, GM-CSF, and the like.


Preferably, the following principles are utilized when selecting an array of epitopes for inclusion in a polyepitopic composition for use in a vaccine, or for selecting discrete epitopes to be included in a vaccine and/or to be encoded by nucleic acids such as a minigene. It is preferred that each of the following principles are balanced in order to make the selection. The multiple epitopes to be incorporated in a given vaccine composition may be, but need not be, contiguous in sequence in the native antigen from which the epitopes are derived.


1.) Epitopes are selected which, upon administration, mimic immune responses that have been observed to be correlated with tumor clearance. For HLA Class I this includes 3-4 epitopes that come from at least one TAA. For HLA Class II a similar rationale is employed; again 3-4 epitopes are selected from at least one TAA (see e.g., Rosenberg et al., Science 278:1447-1450). Epitopes from one TAA may be used in combination with epitopes from one or more additional TAAs to produce a vaccine that targets tumors with varying expression patterns of frequently-expressed TAAs as described, e.g., in Example 15.


2.) Epitopes are selected that have the requisite binding affinity established to be correlated with immunogenicity: for HLA Class I an IC50 of 500 nM or less, often 200 nM or less; and for Class II an IC50 of 1000 nM or less.


3.) Sufficient supermotif bearing-peptides, or a sufficient array of allele-specific motif-bearing peptides, are selected to give broad population coverage. For example, it is preferable to have at least 80% population coverage. A Monte Carlo analysis, a statistical evaluation known in the art, can be employed to assess the breadth, or redundancy of, population coverage.


4.) When selecting epitopes from cancer-related antigens it is often useful to select analogs because the patient may have developed tolerance to the native epitope. When selecting epitopes for infectious disease-related antigens it is preferable to select either native or analoged epitopes.


5.) Of particular relevance are epitopes referred to as “nested epitopes.” Nested epitopes occur where at least two epitopes overlap in a given peptide sequence. A nested peptide sequence can comprise both HLA class I and HLA class II epitopes. When providing nested epitopes, a general objective is to provide the greatest number of epitopes per sequence. Thus, an aspect is to avoid providing a peptide that is any longer than the amino terminus of the amino terminal epitope and the carboxyl terminus of the carboxyl terminal epitope in the peptide. When providing a multi-epitopic sequence, such as a sequence comprising nested epitopes, it is generally important to screen the sequence in order to insure that it does not have pathological or other deleterious biological properties.


6.) If a polyepitopic protein is created, or when creating a minigene, an objective is to generate the smallest peptide that encompasses the epitopes of interest. This principle is similar, if not the same as that employed when selecting a peptide comprising nested epitopes. However, with an artificial polyepitopic peptide, the size minimization objective is balanced against the need to integrate any spacer sequences between epitopes in the polyepitopic protein. Spacer amino acid residues can, for example, be introduced to avoid junctional epitopes (an epitope recognized by the immune system, not present in the target antigen, and only created by the man-made juxtaposition of epitopes), or to facilitate cleavage between epitopes and thereby enhance epitope presentation. Junctional epitopes are generally to be avoided because the recipient may generate an immune response to that non-native epitope. Of particular concern is a junctional epitope that is a “dominant epitope.” A dominant epitope may lead to such a zealous response that immune responses to other epitopes are diminished or suppressed.


IV.K.1. Minigene Vaccines


A number of different approaches are available which allow simultaneous delivery of multiple epitopes. Nucleic acids encoding the peptides of the invention are a particularly useful embodiment of the invention. Epitopes for inclusion in a minigene are preferably selected according to the guidelines set forth in the previous section. A preferred means of administering nucleic acids encoding the peptides of the invention uses minigene constructs encoding a peptide comprising one or multiple epitopes of the invention.


The use of multi-epitope minigenes is described below and in, e.g., co-pending application U.S. Ser. No. 09/311,784; Ishioka et al., J. Immunol. 162:3915-3925, 1999; An, L. and Whitton, J. L., J. Virol. 71:2292, 1997; Thomson, S. A. et al., J. Immunol. 157:822, 1996; Whitton, J. L. et al., J. Virol. 67:348, 1993; Hanke, R. et al., Vaccine 16:426, 1998. For example, a multi-epitope DNA plasmid encoding supermotif-and/or motif-bearing PSA, PSM, PAP, and hK2 epitopes derived from multiple regions of one or more of the prostate cancer-associated antigens, the PADRE™ universal helper T cell epitope (or multiple HTL epitopes from PSA, PSM, PAP, and hK2), and an endoplasmic reticulum-translocating signal sequence can be engineered. A vaccine may also comprise epitopes that are derived from other TAAs.


The immunogenicity of a multi-epitopic minigene can be tested in transgenic mice to evaluate the magnitude of CTL induction responses against the epitopes tested. Further, the immunogenicity of DNA-encoded epitopes in vivo can be correlated with the in vitro responses of specific CTL lines against target cells transfected with the DNA plasmid. Thus, these experiments can show that the minigene serves to both: 1.) generate a CTL response and 2.) that the induced CTLs recognized cells expressing the encoded epitopes.


For example, to create a DNA sequence encoding the selected epitopes (minigene) for expression in human cells, the amino acid sequences of the epitopes may be reverse translated. A human codon usage table can be used to guide the codon choice for each amino acid. These epitope-encoding DNA sequences may be directly adjoined, so that when translated, a continuous polypeptide sequence is created. To optimize expression and/or immunogenicity, additional elements can be incorporated into the minigene design. Examples of amino acid sequences that can be reverse translated and included in the minigene sequence include: HLA class I epitopes, HLA class II epitopes, a ubiquitination signal sequence, and/or an endoplasmic reticulum targeting signal. In addition, HLA presentation of CTL and HTL epitopes may be improved by including synthetic (e.g. poly-alanine) or naturally-occurring flanking sequences adjacent to the CTL or HTL epitopes; these larger peptides comprising the epitope(s) are within the scope of the invention.


The minigene sequence may be converted to DNA by assembling oligonucleotides that encode the plus and minus strands of the minigene. Overlapping oligonucleotides (30-100 bases long) may be synthesized, phosphorylated, purified and annealed under appropriate conditions using well known techniques. The ends of the oligonucleotides can be joined, for example, using T4 DNA ligase. This synthetic minigene, encoding the epitope polypeptide, can then be cloned into a desired expression vector.


Standard regulatory sequences well known to those of skill in the art are preferably included in the vector to ensure expression in the target cells. Several vector elements are desirable: a promoter with a down-stream cloning site for minigene insertion; a polyadenylation signal for efficient transcription termination; an E. coli origin of replication; and an E. coli selectable marker (e.g. ampicillin or kanamycin resistance). Numerous promoters can be used for this purpose, e.g., the human cytomegalovirus (hCMV) promoter. See, e.g., U.S. Pat. Nos. 5,580,859 and 5,589,466 for other suitable promoter sequences.


Additional vector modifications may be desired to optimize minigene expression and immunogenicity. In some cases, introns are required for efficient gene expression, and one or more synthetic or naturally-occurring introns could be incorporated into the transcribed region of the minigene. The inclusion of mRNA stabilization sequences and sequences for replication in mammalian cells may also be considered for increasing minigene expression.


Once an expression vector is selected, the minigene is cloned into the polylinker region downstream of the promoter. This plasmid is transformed into an appropriate E. coli strain, and DNA is prepared using standard techniques. The orientation and DNA sequence of the minigene, as well as all other elements included in the vector, are confirmed using restriction mapping and DNA sequence analysis. Bacterial cells harboring the correct plasmid can be stored as a master cell bank and a working cell bank.


In addition, immunostimulatory sequences (ISSs or CpGs) appear to play a role in the immunogenicity of DNA vaccines. These sequences may be included in the vector, outside the minigene coding sequence, if desired to enhance immunogenicity.


In some embodiments, a bi-cistronic expression vector which allows production of both the minigene-encoded epitopes and a second protein (included to enhance or decrease immunogenicity) can be used. Examples of proteins or polypeptides that could beneficially enhance the immune response if co-expressed include cytokines (e.g., IL-2, IL-12, GM-CSF), cytokine-inducing molecules (e.g., LeIF), costimulatory molecules, or for HTL responses, pan-DR binding proteins (PADRE™, Epimmune, San Diego, Calif.). Helper (HTL) epitopes can be joined to intracellular targeting signals and expressed separately from expressed CTL epitopes; this allows direction of the HTL epitopes to a cell compartment different than that of the CTL epitopes. If required, this could facilitate more efficient entry of HTL epitopes into the HLA class II pathway, thereby improving HTL induction. In contrast to HTL or CTL induction, specifically decreasing the immune response by co-expression of immunosuppressive molecules (e.g. TGF-β) may be beneficial in certain diseases.


Therapeutic quantities of plasmid DNA can be produced for example, by fermentation in E. coli, followed by purification. Aliquots from the working cell bank are used to inoculate growth medium, and grown to saturation in shaker flasks or a bioreactor according to well known techniques. Plasmid DNA can be purified using standard bioseparation technologies such as solid phase anion-exchange resins supplied by QIAGEN, Inc. (Valencia, Calif.). If required, supercoiled DNA can be isolated from the open circular and linear forms using gel electrophoresis or other methods.


Purified plasmid DNA can be prepared for injection using a variety of formulations. The simplest of these is reconstitution of lyophilized DNA in sterile phosphate-buffered saline (PBS). This approach, known as “naked DNA,” is currently being used for intramuscular (IM) administration in clinical trials. To maximize the immunotherapeutic effects of minigene DNA vaccines, an alternative method for formulating purified plasmid DNA may be desirable. A variety of methods have been described, and new techniques may become available. Cationic lipids, glycolipids, and fusogenic liposomes can also be used in the formulation (see, e.g., as described by WO 93/24640; Mannino & Gould-Fogerite, BioTechniques 6(7): 682 (1988); U.S. Pat. No. 5,279,833; WO 91/06309; and Felgner, et al., Proc. Nat'l Acad. Sci. USA 84:7413 (1987). In addition, peptides and compounds referred to collectively as protective, interactive, non-condensing compounds (PINC) could also be complexed to purified plasmid DNA to influence variables such as stability, intramuscular dispersion, or trafficking to specific organs or cell types.


Target cell sensitization can be used as a functional assay for expression and HLA class I presentation of minigene-encoded CTL epitopes. For example, the plasmid DNA is introduced into a mammalian cell line that is suitable as a target for standard CTL chromium release assays. The transfection method used will be dependent on the final formulation. Electroporation can be used for “naked” DNA, whereas cationic lipids allow direct in vitro transfection. A plasmid expressing green fluorescent protein (GFP) can be co-transfected to allow enrichment of transfected cells using fluorescence activated cell sorting (FACS). These cells are then chromium-51 (51 Cr) labeled and used as target cells for epitope-specific CTL lines; cytolysis, detected by 51Cr release, indicates both production of, and HLA presentation of, minigene-encoded CTL epitopes. Expression of HTL epitopes may be evaluated in an analogous manner using assays to assess HTL activity.


In vivo immunogenicity is a second approach for functional testing of minigene DNA formulations. Transgenic mice expressing appropriate human HLA proteins are immunized with the DNA product. The dose and route of administration are formulation dependent (e.g., IM for DNA in PBS, intraperitoneal (IP) for lipid-complexed DNA). Twenty-one days after immunization, splenocytes are harvested and restimulated for one week in the presence of peptides encoding each epitope being tested. Thereafter, for CTL effector cells, assays are conducted for cytolysis of peptide-loaded, 51Cr-labeled target cells using standard techniques. Lysis of target cells that were sensitized by HLA loaded with peptide epitopes, corresponding to minigene-encoded epitopes, demonstrates DNA vaccine function for in vivo induction of CTLs. Immunogenicity of HTL epitopes is evaluated in transgenic mice in an analogous manner.


Alternatively, the nucleic acids can be administered using ballistic delivery as described, for instance, in U.S. Pat. No. 5,204,253. Using this technique, particles comprised solely of DNA are administered. In a further alternative embodiment, DNA can be adhered to particles, such as gold particles.


Minigenes can also be delivered using other bacterial or viral delivery systems well known in the art, e.g., an expression construct encoding epitopes of the invention can be incorporated into a viral vector such as vaccinia.


IV.K.2. Combinations of CTL Peptides with Helper Peptides


Vaccine compositions comprising the peptides of the present invention can be modified to provide desired attributes, such as improved serum half-life, or to enhance immunogenicity.


For instance, the ability of a peptide to induce CTL activity can be enhanced by linking the peptide to a sequence which contains at least one epitope that is capable of inducing a T helper cell response. The use of T helper epitopes in conjunction with CTL epitopes to enhance immunogenicity is illustrated, for example, in the co-pending applications U.S. Ser. No. 08/820,360, U.S. Ser. No. 08/197,484, and U.S. Ser. No. 08/464,234.


Although a CTL peptide can be directly linked to a T helper peptide, often CTL epitope/HTL epitope conjugates are linked by a spacer molecule. The spacer is typically comprised of relatively small, neutral molecules, such as amino acids or amino acid mimetics, which are substantially uncharged under physiological conditions. The spacers are typically selected from, e.g., Ala, Gly, or other neutral spacers of nonpolar amino acids or neutral polar amino acids. It will be understood that the optionally present spacer need not be comprised of the same residues and thus may be a hetero- or homo-oligomer. When present, the spacer will usually be at least one or two residues, more usually three to six residues and sometimes 10 or more residues. The CTL peptide epitope can be linked to the T helper peptide epitope either directly or via a spacer either at the amino or carboxy terminus of the CTL peptide. The amino terminus of either the immunogenic peptide or the T helper peptide may be acylated.


In certain embodiments, the T helper peptide is one that is recognized by T helper cells present in the majority of the population. This can be accomplished by selecting amino acid sequences that bind to many, most, or all of the HLA class II molecules. These are known as “loosely HLA-restricted” or “promiscuous” T helper sequences. Examples of peptides that are promiscuous include sequences from antigens such as tetanus toxoid at positions 830-843 (QYIKANSKFIGITE), Plasmodium falciparum circumsporozoite (CS) protein at positions 378-398 (DIEKKIAKMEKASSVFNVVNS), and Streptococcus 18 kD protein at positions 116 (GAVDSILGGVATYGAA). Other examples include peptides bearing a DR 1-4-7 supermotif, or either of the DR3 motifs.


Alternatively, it is possible to prepare synthetic peptides capable of stimulating T helper lymphocytes, in a loosely HLA-restricted fashion, using amino acid sequences not found in nature (see, e.g., PCT publication WO 95/07707). These synthetic compounds called Pan-DR-binding epitopes (e.g., PADRE™, Epimmune, Inc., San Diego, Calif.) are designed to most preferrably bind most HLA-DR (human HLA class II) molecules. For instance, a pan-DR-binding epitope peptide having the formula: aKXVAAWTLKAAa, where “X” is either cyclohexylalanine, phenylalanine, or tyrosine, and “a” is either D-alanine or L-alanine, has been found to bind to most HLA-DR alleles, and to stimulate the response of T helper lymphocytes from most individuals, regardless of their HLA type. An alternative of a pan-DR binding epitope comprises all “L” natural amino acids and can be provided in the form of nucleic acids that encode the epitope.


HTL peptide epitopes can also be modified to alter their biological properties. For example, they can be modified to include D-amino acids to increase their resistance to proteases and thus extend their serum half life, or they can be conjugated to other molecules such as lipids, proteins, carbohydrates, and the like to increase their biological activity. For example, the T helper peptide can be conjugated to one or more palmitic acid chains at either the amino or carboxyl termini.


IV.K.3. Combinations of CTL Peptides with T Cell Priming Agents


In some embodiments it may be desirable to include in the pharmaceutical compositions of the invention at least one component which primes cytotoxic T lymphocytes. Lipids have been identified as agents capable of priming CTL in vivo against viral antigens. For example, palmitic acid residues can be attached to the ε-and α-amino groups of a lysine residue and then linked, e.g., via one or more linking residues such as Gly, Gly-Gly-, Ser, Ser-Ser, or the like, to an immunogenic peptide. The lipidated peptide can then be administered either directly in a micelle or particle, incorporated into a liposome, or emulsified in an adjuvant, e.g., incomplete Freund's adjuvant. A preferred immunogenic composition comprises palmitic acid attached to ε- and α-amino groups of Lys, which is attached via linkage, e.g., Ser-Ser, to the amino terminus of the immunogenic peptide.


As another example of lipid priming of CTL responses, E. coli lipoproteins, such as tripalmitoyl-S-glycerylcysteinlyseryl-serine (P3CSS) can be used to prime virus specific CTL when covalently attached to an appropriate peptide (see, e.g., Deres, et al., Nature 342:561, 1989). Peptides of the invention can be coupled to P3CSS, for example, and the lipopeptide administered to an individual to specifically prime a CTL response to the target antigen. Moreover, because the induction of neutralizing antibodies can also be primed with P3CSS-conjugated epitopes, two such compositions can be combined to more effectively elicit both humoral and cell-mediated responses.


CTL and/or HTL peptides can also be modified by the addition of amino acids to the termini of a peptide to provide for ease of linking peptides one to another, for coupling to a carrier support or larger peptide, for modifying the physical or chemical properties of the peptide or oligopeptide, or the like. Amino acids such as tyrosine, cysteine, lysine, glutamic or aspartic acid, or the like, can be introduced at the C- or N-terminus of the peptide or oligopeptide, particularly class I peptides. However, it is to be noted that modification at the carboxyl terminus of a CTL epitope may, in some cases, alter binding characteristics of the peptide. In addition, the peptide or oligopeptide sequences can differ from the natural sequence by being modified by terminal-NH2 acylation, e.g., by alkanoyl (C1-C20) or thioglycolyl acetylation, terminal-carboxyl amidation, e.g., ammonia, methylamine, etc. In some instances these modifications may provide sites for linking to a support or other molecule.


IV.K.4. Vaccine Compositions Comprising DC Pulsed with CTL and/or HTL Peptides


An embodiment of a vaccine composition in accordance with the invention comprises ex vivo administration of a cocktail of epitope-bearing peptides to PBMC, or isolated DC therefrom, from the patient's blood. A pharmaceutical to facilitate harvesting of DC can be used, such as Progenipoietin™ (Monsanto, St. Louis, Mo.) or GM-CSF/IL-4. After pulsing the DC with peptides and prior to reinfusion into patients, the DC are washed to remove unbound peptides. In this embodiment, a vaccine comprises peptide-pulsed DCs which present the pulsed peptide epitopes complexed with HLA molecules on their surfaces.


The DC can be pulsed ex vivo with a cocktail of peptides, some of which stimulate CTL response to one or more antigens of interest, e.g., prostate-associated antigens such as PSA, PSM, PAP, kallikrein, and the like. Optionally, a helper T cell peptide such as a PADRE™ family molecule, can be included to facilitate the CTL response.


IV.L. Administration of Vaccines for Therapeutic or Prophylactic Purposes


The peptides of the present invention and pharmaceutical and vaccine compositions of the invention are typically used therapeutically to treat cancer, particularly prostate cancer. Vaccine compositions containing the peptides of the invention are typically administered to a prostate cancer patient who has a malignancy associated with expression of one or more prostate-associated antigens. Alternatively, vaccine compositions can be administered to an individual susceptible to, or otherwise at risk for developing prostate cancer.


In therapeutic applications, peptide and/or nucleic acid compositions are administered to a patient in an amount sufficient to elicit an effective CTL and/or HTL response to the tumor antigen and to cure or at least partially arrest or slow symptoms and/or complications. An amount adequate to accomplish this is defined as “therapeutically effective dose.” Amounts effective for this use will depend on, e.g., the particular composition administered, the manner of administration, the stage and severity of the disease being treated, the weight and general state of health of the patient, and the judgment of the prescribing physician.


As noted above, peptides comprising CTL and/or HTL epitopes of the invention induce immune responses when presented by HLA molecules and contacted with a CTL or HTL specific for an epitope comprised by the peptide. The peptides (or DNA encoding them) can be administered individually or as fusions of one or more peptide sequences. The manner in which the peptide is contacted with the CTL or HTL is not critical to the invention. For instance, the peptide can be contacted with the CTL or HTL either in vivo or in vitro. If the contacting occurs in vivo, the peptide itself can be administered to the patient, or other vehicles, e.g., DNA vectors encoding one or more peptides, viral vectors encoding the peptide(s), liposomes and the like, can be used, as described herein.


When the peptide is contacted in vitro, the vaccinating agent can comprise a population of cells, e.g., peptide-pulsed dendritic cells, or TAA-specific CTLs, which have been induced by pulsing antigen-presenting cells in vitro with the peptide or by transfecting antigen-presenting cells with a minigene of the invention. Such a cell population is subsequently administered to a patient in a therapeutically effective dose.


For therapeutic use, administration should generally begin at the first diagnosis of cancer. This is followed by boosting doses until at least symptoms are substantially abated and for a period thereafter. The embodiment of the vaccine composition (i.e., including, but not limited to embodiments such as peptide cocktails, polyepitopic polypeptides, minigenes, or TAA-specific CTLs or pulsed dendritic cells) delivered to the patient may vary according to the stage of the disease or the patient's health status. For example, a vaccine comprising TAA-specific CTLs may be more efficacious in killing tumor cells in patients with advanced disease than alternative embodiments.


The vaccine compositions of the invention may also be used therapeutically in combination with treatments such as surgery. An example is a situation in which a patient has undergone surgery to remove a primary tumor and the vaccine is then used to slow or prevent recurrence and/or metastasis.


Where susceptible individuals, e.g., individuals who may be diagnosed as being genetically pre-disposed to developing a prostate tumor, are identified prior to diagnosis of cancer, the composition can be targeted to them, thus minimizing the need for administration to a larger population.


The dosage for an initial therapeutic immunization generally occurs in a unit dosage range where the lower value is about 1, 5, 50, 500, or 1,000 μg and the higher value is about 10,000; 20,000; 30,000; or 50,000 μg. Dosage values for a human typically range from about 500 μg to about 50,000 μg per 70 kilogram patient. Initial doses followed by boosting doses at established intervals, e.g., from four weeks to six months, may be required, possibly for a prolonged period of time to effectively treat a patient. Boosting dosages of between about 1.0 μg to about 50,000 μg of peptide pursuant to a boosting regimen over weeks to months may be administered depending upon the patient's response and condition as determined by measuring the specific activity of CTL and HTL obtained from the patient's blood.


Administration should continue until at least clinical symptoms or laboratory tests indicate that the tumor has been eliminated or that the tumor cell burden has been substantially reduced and for a period thereafter. The dosages, routes of administration, and dose schedules are adjusted in accordance with methodologies known in the art.


In certain embodiments, peptides and compositions of the present invention are employed in serious disease states, that is, life-threatening or potentially life threatening situations. In such cases, as a result of the minimal amounts of extraneous substances and the relative nontoxic nature of the peptides in preferred compositions of the invention, it is possible and may be felt desirable by the treating physician to administer substantial excesses of these peptide compositions relative to these stated dosage amounts.


The vaccine compositions of the invention can also be used as prophylactic agents. For example, the compositions can be administered to individuals at risk of developing prostate cancer. Generally the dosage for an initial prophylactic immunization generally occurs in a unit dosage range where the lower value is about 1, 5, 50, 500, or 1000 μg and the higher value is about 10,000; 20,000; 30,000; or 50,000 μg. Dosage values for a human typically range from about 500 μg to about 50,000 μg per 70 kilogram patient. This is followed by boosting dosages of between about 1.0 μg to about 50,000 μg of peptide administered at defined intervals from about four weeks to six months after the initial administration of vaccine. The immunogenicity of the vaccine may be assessed by measuring the specific activity of CTL and HTL obtained from a sample of the patient's blood.


The pharmaceutical compositions for therapeutic treatment are intended for parenteral, topical, oral, intrathecal, or local administration. Preferably, the pharmaceutical compositions are administered parentally, e.g., intravenously, subcutaneously, intradermally, or intramuscularly. Thus, the invention provides compositions for parenteral administration which comprise a solution of the immunogenic peptides dissolved or suspended in an acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers may be used, e.g., water, buffered water, 0.8% saline, 0.3% glycine, hyaluronic acid and the like. These compositions may be sterilized by conventional, well known sterilization techniques, or may be sterile filtered. The resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile solution prior to administration. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservatives, and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurate, triethanolamine oleate, etc.


The concentration of peptides of the invention in the pharmaceutical formulations can vary widely, i.e., from less than about 0.1%, usually at or at least about 2% to as much as 20% to 50% or more by weight, and will be selected primarily by fluid volumes, viscosities, etc., in accordance with the particular mode of administration selected.


A human unit dose form of the peptide composition is typically included in a pharmaceutical composition that comprises a human unit dose of an acceptable carrier, preferably an aqueous carrier, and is administered in a volume of fluid that is known by those of skill in the art to be used for administration of such compositions to humans (see, e.g., Remington's Pharmaceutical Sciences, 17th Edition, A. Gennaro, Editor, Mack Publishing Co., Easton, Pa., 1985).


The peptides of the invention may also be administered via liposomes, which serve to target the peptides to a particular tissue, such as lymphoid tissue, or to target selectively to infected cells, as well as to increase the half-life of the peptide composition. Liposomes include emulsions, foams, micelles, insoluble monolayers, liquid crystals, phospholipid dispersions, lamellar layers and the like. In these preparations, the peptide to be delivered is incorporated as part of a liposome, alone or in conjunction with a molecule which binds to a receptor prevalent among lymphoid cells, such as monoclonal antibodies which bind to the CD45 antigen, or with other therapeutic or immunogenic compositions. Thus, liposomes either filled or decorated with a desired peptide of the invention can be directed to the site of lymphoid cells, where the liposomes then deliver the peptide compositions. Liposomes for use in accordance with the invention are formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol, such as cholesterol. The selection of lipids is generally guided by consideration of, e.g., liposome size, acid lability and stability of the liposomes in the blood stream. A variety of methods are available for preparing liposomes, as described in, e.g., Szoka, et al., Ann. Rev. Biophys. Bioeng. 9:467 (1980), and U.S. Pat. Nos. 4,235,871, 4,501,728, 4,837,028, and 5,019,369.


For targeting cells of the immune system, a ligand to be incorporated into the liposome can include, e.g., antibodies or fragments thereof specific for cell surface determinants of the desired immune system cells. A liposome suspension containing a peptide may be administered intravenously, locally, topically, etc. in a dose which varies according to, inter alia, the manner of administration, the peptide being delivered, and the stage of the disease being treated.


For solid compositions, conventional nontoxic solid carriers may be used which include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like. For oral administration, a pharmaceutically acceptable nontoxic composition is formed by incorporating any of the normally employed excipients, such as those carriers previously listed, and generally 10-95% of active ingredient, that is, one or more peptides of the invention, and more preferably at a concentration of 25%-75%.


For aerosol administration, the immunogenic peptides are preferably supplied in finely divided form along with a surfactant and propellant. Typical percentages of peptides are 0.01%-20% by weight, preferably 1%-10%. The surfactant must, of course, be nontoxic, and preferably soluble in the propellant. Representative of such agents are the esters or partial esters of fatty acids containing from 6 to 22 carbon atoms, such as caproic, octanoic, lauric, palmitic, stearic, linoleic, linolenic, olesteric and oleic acids with an aliphatic polyhydric alcohol or its cyclic anhydride. Mixed esters, such as mixed or natural glycerides may be employed. The surfactant may constitute 0.1%-20% by weight of the composition, preferably 0.25-5%. The balance of the composition is ordinarily propellant. A carrier can also be included, as desired, as with, e.g., lecithin for intranasal delivery.


IV.M. Kits


The peptide and nucleic acid compositions of this invention can be provided in kit form together with instructions for vaccine administration. Typically the kit would include desired peptide compositions in a container, preferably in unit dosage form and instructions for administration. An alternative kit would include a minigene construct with desired nucleic acids of the invention in a container, preferably in unit dosage form together with instructions for administration. Lymphokines such as IL-2 or IL-12 may also be included in the kit. Other kit components that may also be desirable include, for example, a sterile syringe, booster dosages, and other desired excipients.


Epitopes in accordance with the present invention were successfully used to induce an immune response. Immune responses with these epitopes have been induced by administering the epitopes in various forms. The epitopes have been administered as peptides, as nucleic acids, and as viral vectors comprising nucleic acids that encode the epitope(s) of the invention. Upon administration of peptide-based epitope forms, immune responses have been induced by direct loading of an epitope onto an empty HLA molecule that is expressed on a cell, and via internalization of the epitope and processing via the HLA class I pathway; in either event, the HLA molecule expressing the epitope was then able to interact with and induce a CTL response. Peptides can be delivered directly or using such agents as liposomes. They can additionally be delivered using ballistic delivery, in which the peptides are typically in a crystalline form. When DNA is used to induce an immune response, it is administered either as naked DNA, generally in a dose range of approximately 1-5 mg, or via the ballistic “gene gun” delivery, typically in a dose range of approximately 10-100 μg. The DNA can be delivered in a variety of conformations, e.g., linear, circular etc. Various viral vectors have also successfully been used that comprise nucleic acids which encode epitopes in accordance with the invention.


Accordingly compositions in accordance with the invention exist in several forms. Embodiments of each of these composition forms in accordance with the invention have been successfully used to induce an immune response.


One composition in accordance with the invention comprises a plurality of peptides. This plurality or cocktail of peptides is generally admixed with one or more pharmaceutically acceptable excipients. The peptide cocktail can comprise multiple copies of the same peptide or can comprise a mixture of peptides. The peptides can be analogs of naturally occurring epitopes. The peptides can comprise artificial amino acids and/or chemical modifications such as addition of a surface active molecule, e.g., lipidation; acetylation, glycosylation, biotinylation, phosphorylation etc. The peptides can be CTL or HTL epitopes. In a preferred embodiment the peptide cocktail comprises a plurality of different CTL epitopes and at least one HTL epitope. The HTL epitope can be naturally or non-naturally (e.g., PADRE®, Epimmune Inc., San Diego, Calif.). The number of distinct epitopes in an embodiment of the invention is generally a whole unit integer from one through one hundred fifty (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or, 100).


An additional embodiment of a composition in accordance with the invention comprises a polypeptide multi-epitope construct, i.e., a polyepitopic peptide. Polyepitopic peptides in accordance with the invention are prepared by use of technologies well-known in the art. By use of these known technologies, epitopes in accordance with the invention are connected one to another. The polyepitopic peptides can be linear or non-linear, e.g., multivalent. These polyepitopic constructs can comprise artificial amino acids, spacing or spacer amino acids, flanking amino acids, or chemical modifications between adjacent epitope units. The polyepitopic construct can be a heteropolymer or a homopolymer. The polyepitopic constructs generally comprise epitopes in a quantity of any whole unit integer between 2-150 (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or, 100). The polyepitopic construct can comprise CTL and/or HTL epitopes. One or more of the epitopes in the construct can be modified, e.g., by addition of a surface active material, e.g. a lipid, or chemically modified, e.g., acetylation, etc. Moreover, bonds in the multiepitopic construct can be other than peptide bonds, e.g., covalent bonds, ester or ether bonds, disulfide bonds, hydrogen bonds, ionic bonds etc.


Alternatively, a composition in accordance with the invention comprises construct which comprises a series, sequence, stretch, etc., of amino acids that have homology to (i.e., corresponds to or is contiguous with) to a native sequence. This stretch of amino acids comprises at least one subsequence of amino acids that, if cleaved or isolated from the longer series of amino acids, functions as an HLA class I or HLA class II epitope in accordance with the invention. In this embodiment, the peptide sequence is modified, so as to become a construct as defined herein, by use of any number of techniques known or to be provided in the art. The polyepitopic constructs can contain homology to a native sequence in any whole unit integer increment from 70-100%, e.g., 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or, 100 percent.


A further embodiment of a composition in accordance with the invention is an antigen presenting cell that comprises one or more epitopes in accordance with the invention. The antigen presenting cell can be a “professional” antigen presenting cell, such as a dendritic cell. The antigen presenting cell can comprise the epitope of the invention by any means known or to be determined in the art. Such means include pulsing of dendritic cells with one or more individual epitopes or with one or more peptides that comprise multiple epitopes, by nucleic acid administration such as ballistic nucleic acid delivery or by other techniques in the art for administration of nucleic acids, including vector-based, e.g. viral vector, delivery of nucleic acids.


Further embodiments of compositions in accordance with the invention comprise nucleic acids that encode one or more peptides of the invention, or nucleic acids which encode a polyepitopic peptide in accordance with the invention. As appreciated by one of ordinary skill in the art, various nucleic acids compositions will encode the same peptide due to the redundancy of the genetic code. Each of these nucleic acid compositions falls within the scope of the present invention. This embodiment of the invention comprises DNA or RNA, and in certain embodiments a combination of DNA and RNA. It is to be appreciated that any composition comprising nucleic acids that will encode a peptide in accordance with the invention or any other peptide based composition in accordance with the invention, falls within the scope of this invention.


It is to be appreciated that peptide-based forms of the invention (as well as the nucleic acids that encode them) can comprise analogs of epitopes of the invention generated using priniciples already known, or to be known, in the art. Principles related to analoging are now known in the art, and are disclosed herein; moreover, analoging principles (heteroclitic analoging) are disclosed in co-pending application serial number U.S. Ser. No. 09/226,775 filed 6 Jan. 1999. Generally the compositions of the invention are isolated or purified.


The invention will be described in greater detail by way of specific examples. The following examples are offered for illustrative purposes, and are not intended to limit the invention in any manner. Those of skill in the art will readily recognize a variety of non-critical parameters that can be changed or modified to yield alternative embodiments in accordance with the invention.


V. EXAMPLES

The following examples illustrate identification, selection, and use of immunogenic Class I and Class II peptide epitopes for inclusion in vaccine compositions.


Example 1
HLA Class I and Class II Binding Assays

The following example of peptide binding to HLA molecules demonstrates quantification of binding affinities of HLA class I and class II peptides. Binding assays can be performed with peptides that are either motif-bearing or not motif-bearing.


Cell lysates were prepared and HLA molecules purified in accordance with disclosed protocols (Sidney et al., Current Protocols in Immunology 18.3.1 (1998); Sidney, et al., J. Immunol. 154:247 (1995); Sette, et al., Mol. Immunol. 31:813 (1994)). cells/ml in 50 mM Tris. The cell lines used as sources of HLA molecules and the antibodies used for the extraction of the HLA molecules from the cell lysates are also described in these publications.


Epstein-Barr virus (EBV)-transformed homozygous cell lines, fibroblasts, CIR, or 721.221-transfectants were used as sources of HLA class I molecules. These cells were maintained in vitro by culture in RPMI 1640 medium supplemented with 2 mM L-glutamine (GIBCO, Grand Island, N.Y.), 50 μM 2-ME, 100 μg/ml of streptomycin, 100 U/ml of penicillin (Irvine Scientific) and 10% heat-inactivated FCS (Irvine Scientific, Santa Ana, Calif.). Cells were grown in 225-cm2 tissue culture flasks or, for large-scale cultures, in roller bottle apparatuses.


Cell lysates were prepared and HLA molecules purified in accordance with disclosed protocols (Sidney et al., Current Protocols in Immunology 18.3.1 (1998); Sidney, et al., J. Immunol. 154:247 (1995); Sette, et al., Mol. Immunol. 31:813 (1994)). Briefly, cells were lysed at a concentration of 108 cells/ml in 50 mM Tris-HCl, pH 8.5, containing 1% Nonidet P-40 (Fluka Biochemika, Buchs, Switzerland), 150 mM NaCl, 5 mM EDTA, and 2 mM PMSF. Lysates were cleared of debris and nuclei by centrifugation at 15,000×g for 30 min.


HLA molecules were purified from lysates by affinity chromatography. Lysates prepared as above were passed twice through two pre-columns of inactivated Sepharose CL-4-B and protein A-Sepharose. Next, the lysate was passed over a column of Sepharose CL-4B beads coupled to an appropriate antibody. The anti-HLA column was then washed with 10-column volumes of 10 mM Tris-HCL, pH 8.0, in 1% NP-40, PBS, 2-column volumes of PBS, and 2-column volumes of PBS containing 0.4% n-octylglucoside. Finally, MHC molecules were eluted with 50 mM diethylamine in 0.15M NaCl containing 0.4% n-octylglucoside, pH 11.5. A 1/25 volume of 2.0M Tris, pH 6.8, was added to the eluate to reduce the pH to ˜8.0. Eluates were then concentrated by centrifugation in Centriprep 30 concentrators at 2000 rpm (Amicon, Beverly, Mass.). Protein content was evaluated by a BCA protein assay (Pierce Chemical Co., Rockford, Ill.) and confirmed by SDS-PAGE.


A detailed description of the protocol utilized to measure the binding of peptides to Class I and Class II MHC has been published (Sette et al., Mol. Immunol. 31:813, 1994; Sidney et al., in Current Protocols in Immunology, Margulies, Ed., John Wiley & Sons, New York, Section 18.3, 1998). Briefly, purified MHC molecules (5 to 500 nM) were incubated with various unlabeled peptide inhibitors and 1-10 nM 125I-radiolabeled probe peptides for 48 h in PBS containing 0.05% Nonidet P-40 (NP40) (or 20% w/v digitonin for H-2 IA assays) in the presence of a protease inhibitor cocktail. The final concentrations of protease inhibitors (each from CalBioChem, La Jolla, Calif.) were 1 mM PMSF, 1.3 nM 1.10 phenanthroline, 73 μM pepstatin A, 8 mM EDTA, 6 mM N-ethylmaleimide (for Class II assays), and 200 μM N alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK). All assays were performed at pH 7.0 with the exception of DRB1*0301, which was performed at pH 4.5, and DRB1*1601 (DR2w21β1) and DRB4*0101 (DRw53), which were performed at pH 5.0. pH was adjusted as described elsewhere (see Sidney et al., in Current Protocols in Immunology, Margulies, Ed., John Wiley & Sons, New York, Section 18.3, 1998).


Following incubation, MHC-peptide complexes were separated from free peptide by gel filtration on 7.8 mm×15 cm TSK200 columns (TosoHaas 16215, Montgomeryville, Pa.), eluted at 1.2 mls/min with PBS pH 6.5 containing 0.5% NP40 and 0.1% NaN3. Because the large size of the radiolabeled peptide used for the DRB1*1501 (DR2w2β1) assay makes separation of bound from unbound peaks more difficult under these conditions, all DRB1*1501 (DR2w2 μl) assays were performed using a 7.8 mm×30 cm TSK2000 column eluted at 0.6 mls/min. The eluate from the TSK columns was passed through a Beckman 170 radioisotope detector, and radioactivity was plotted and integrated using a Hewlett-Packard 3396A integrator, and the fraction of peptide bound was determined.


Radiolabeled peptides were iodinated using the chloramine-T method. Representative radiolabeled probe peptides utilized in each assay, and its assay specific IC50 nM, are summarized in Tables IV and V. Typically, in preliminary experiments, each MHC preparation was titered in the presence of fixed amounts of radiolabeled peptides to determine the concentration of HLA molecules necessary to bind 10-20% of the total radioactivity. All subsequent inhibition and direct binding assays were performed using these HLA concentrations.


Since under these conditions [label]<[HLA] and IC50>[HLA], the measured IC50 values are reasonable approximations of the true KD values. Peptide inhibitors are typically tested at concentrations ranging from 120 μg/ml to 1.2 ng/ml, and are tested in two to four completely independent experiments. To allow comparison of the data obtained in different experiments, a relative binding figure is calculated for each peptide by dividing the IC50 of a positive control for inhibition by the IC50 for each tested peptide (typically unlabeled versions of the radiolabeled probe peptide). For inter-experiment comparisons, relative binding values are compiled. These values can subsequently be converted back into IC50 nM values by dividing the IC50 nM of the positive controls for inhibition by the relative binding of the peptide of interest. This method of data compilation has proven to be the most accurate and consistent for comparing peptides that have been tested on different days, or with different lots of purified MHC.


Because the antibody used for HLA-DR purification (LB3.1) is α-chain specific, β1 molecules are not separated from β3 (and/or β4 and β5) molecules. The β1 specificity of the binding assay is obvious in the cases of DRB1*0101 (DR1), DRB1*0802 (DR8w2), and DRB1*0803 (DR8w3), where no 3 is expressed. It has also been demonstrated for DRB1*0301 (DR3) and DRB3*0101 (DR52a), DRB1*0401 (DR4w4), DRB1*0404 (DR4w14), DRB1*0405 (DR4w15), DRB1*1101 (DR5), DRB1*1201 (DR5w12), DRB1*1302 (DR6w19) and DRB1*0701 (DR7). The problem of β chain specificity for DRB1*1501 (DR2w2β1), DRB5*0101 (DR2w2β2), DRB1*1601 (DR2w21β1), DRB5*0201 (DR51Dw21), and DRB4*0101 (DRw53) assays is circumvented by the use of fibroblasts. Development and validation of assays with regard to DRβ molecule specificity have been described previously (see, e.g., Southwood et al., J. Immunol. 160:3363-3373, 1998).


Binding assays as outlined above may be used to analyze supermotif and/or motif-bearing epitopes as, for example, described in Example 2.


Example 2
Identification of HLA Supermotif- and Motif-Bearing CTL Candidate Epitopes

Vaccine compositions of the invention may include multiple epitopes that comprise multiple HLA supermotifs or motifs to achieve broad population coverage. This example illustrates the identification of supermotif- and motif-bearing epitopes for the inclusion in such a vaccine composition. Calculation of population coverage is performed using the strategy described below.


Computer Searches and Algorthims for Identification of Supermotif and/or Motif-Bearing Epitopes


The searches performed to identify the motif-bearing peptide sequences in Examples 2 and 5 employ protein sequence data for prostate cancer-associated antigens.


Computer searches for epitopes bearing HLA Class I or Class II supermotifs or motifs were performed as follows. All translated protein sequences were analyzed using a text string search software program, e.g., MotifSearch 1.4 (D. Brown, San Diego) to identify potential peptide sequences containing appropriate HLA binding motifs; alternative programs are readily produced in accordance with information in the art in view of the motif/supermotif disclosure herein. Furthermore, such calculations can be made mentally.


Identified A2-, A3-, and DR-supermotif sequences were scored using polynomial algorithms to predict their capacity to bind to specific HLA-Class I or Class II molecules. These polynomial algorithms take into account both extended and refined motifs (that is, to account for the impact of different amino acids at different positions), and are essentially based on the premise that the overall affinity (or ΔG) of peptide-HLA molecule interactions can be approximated as a linear polynomial function of the type:

“ΔG”=a1i×a2i×a3i . . . ×ani

where aji is a coefficient which represents the effect of the presence of a given amino acid (i) at a given position (i) along the sequence of a peptide of n amino acids. The crucial assumption of this method is that the effects at each position are essentially independent of each other (i.e., independent binding of individual side-chains). When residue j occurs at position i in the peptide, it is assumed to contribute a constant amount ji to the free energy of binding of the peptide irrespective of the sequence of the rest of the peptide. This assumption is justified by studies from our laboratories that demonstrated that peptides are bound to MHC and recognized by T cells in essentially an extended conformation (data omitted herein).


The method of derivation of specific algorithm coefficients has been described in Gulukota et al., J. Mol. Biol. 267:1258-126, 1997; (see also Sidney et al., Human Immunol. 45:79-93, 1996; and Southwood et al., J. Immunol. 160:3363-3373, 1998). Briefly, for all i positions, anchor and non-anchor alike, the geometric mean of the average relative binding (ARB) of all peptides carrying j is calculated relative to the remainder of the group, and used as the estimate of ji. For Class II peptides, if multiple alignments are possible, only the highest scoring alignment is utilized, following an iterative procedure. To calculate an algorithm score of a given peptide in a test set, the ARB values corresponding to the sequence of the peptide are multiplied. If this product exceeds a chosen threshold, the peptide is predicted to bind. Appropriate thresholds are chosen as a function of the degree of stringency of prediction desired.


Selection of HLA-A2 Supertype Cross-Reactive Peptides


The complete protein sequences of the prostate cancer-associated antigens PAP, PSA, PSM, and hK2 were obtained from GenBank and scanned, utilizing motif identification software, to identify 8-, 9-, 10-, and 11-mer sequences containing the HLA-A2-supermotif main anchor specificity.


HLA-A2 supermotif-bearing sequences are shown in Table VII. These sequences are then scored using the A2 algorithm and the peptides corresponding to the positive-scoring sequences are synthesized and tested for their capacity to bind purified HLA-A*0201 molecules in vitro (HLA-A*0201 is considered a prototype A2 supertype molecule).


Examples of peptides that were identified that bind to HLA-A*0201 with IC50 values ≦500 nM are shown in Tables XXII and XXIII. These peptides were then tested for the capacity to bind to additional A2-supertype molecules (A*0202, A*0203, A*0206, and A*6802). Peptides that bind to at least three of the five A2-supertype alleles tested are deemed A2-supertype cross-reactive binders. Preferred peptides bind at an affinity equal to or less than 500 nM to three or more HLA-A2 supertype molecules. Examples of such peptides are set out in Table XXIII. (Due to the homology described above, a number of CTL and HTL epitopes are represented in both the PSA and hK2 antigens. This is represented in Tables XXIII and XXIV by the headings source and alternate source.)


Selection of HLA-A3 Supermotif-Bearing Epitopes


The protein sequences scanned above were also examined for the presence of peptides with the HLA-A3-supermotif primary anchors using methodology similar to that performed to identify HLA-A2 supermotif-bearing epitopes.


Peptides corresponding to the supermotif-bearing sequences are then synthesized and tested for binding to HLA-A*0301 and HLA-A*1101 molecules, the two most prevalent A3-supertype alleles. The peptides that are found to bind one of the two alleles with binding affinities of ≦500 nM, preferably ≦200 nM, are then tested for binding cross-reactivity to the other common A3-supertype alleles (A*3101, A*3301, and A*6801) to identify those that can bind at least three of the five HLA-A3-supertype molecules tested.


Selection of HLA-B7 Supermotif Bearing Epitopes


The same target antigen protein sequences were also analyzed to identify HLA-B7-supermotif-bearing sequences. The corresponding peptides are then synthesized and tested for binding to HLA-B*0702, the most common B7-supertype allele (i.e., the prototype B7 supertype allele). Those peptides that bind B*0702 with IC50 of ≦500 nM, preferably ≦200 nM, are then tested for binding to other common B7-supertype molecules (B*3501, B*5101, B*5301, and B*5401) to identify those peptides that are capable of binding to three or more of the five B7-supertype alleles tested.


Selection of A1 and A24 Motif-Bearing Epitopes


To further increase population coverage, HLA-A1 and -A24 epitopes can also be incorporated into vaccine constructs. An analysis of the protein sequence data from the target antigens utilized above was performed to identify HLA-A1- and A24-motif-containing sequences. Peptides are then synthesized and tested for binding.


Peptides that bear other supermotifs and/or motifs can be assessed for binding or cross-reactive binding in an analogous manner.


Example 3
Confirmation of Immunogenicity

Cross-reactive candidate CTL A2-supermotif-bearing peptides that are identified as described in Example 2 were selected for in vitro immunogenicity testing. Examples of immunogenic HLA-A2 cross-reactive binding peptides that bind to at least 3/5 HLA-A2 supertype family members at an IC50 of 200 nM or less are shown in Table XXV. Testing was performed using the following methodology:


Target Cell Lines for Cellular Screening:


The 0.221A2.1 cell line, produced by transferring the HLA-A2.1 gene into the HLA-A, -B, -C null mutant human B-lymphoblastoid cell line 721.221, is used as the peptide-loaded target to measure activity of HLA-A2.1-restricted CTL. This cell line is grown in RPMI-1640 medium supplemented with antibiotics, sodium pyruvate, nonessential amino acids and 10% (v/v) heat inactivated FCS. Cells that express an antigen of interest, or transfectants comprising the gene encoding the antigen of interest, can be used as target cells to test the ability of peptide-specific CTLs to recognize endogenous antigen.


Primary CTL Induction Cultures:


Generation of Dendritic Cells (DC): PBMCs are thawed in RPMI with 30 μg/ml DNAse, washed twice and resuspended in complete medium (RPMI-1640 plus 5% AB human serum, non-essential amino acids, sodium pyruvate, L-glutamine and penicillin/strpetomycin). The monocytes are purified by plating 10×106 PBMC/well in a 6-well plate. After 2 hours at 37° C., the non-adherent cells are removed by gently shaking the plates and aspirating the supernatants. The wells are washed a total of three times with 3 ml RPMI to remove most of the non-adherent and loosely adherent cells. Three ml of complete medium containing 50 ng/ml of GM-CSF and 1,000 U/ml of IL-4 are then added to each well. TNFα is added to the DCs on day 6 at 75 ng/ml and the cells are used for CTL induction cultures on day 7.


Induction of CTL with DC and Peptide: CD8+ T-cells are isolated by positive selection with Dynal immunomagnetic beads (Dynabeads® M-450) and the detacha-bead® reagent. Typically about 200-250×106 PBMC are processed to obtain 24×106 CD8+T-cells (enough for a 48-well plate culture). Briefly, the PBMCs are thawed in RPMI with 30 μg/ml DNAse, washed once with PBS containing 1% human AB serum and resuspended in PBS/1% AB serum at a concentration of 20×106 cells/ml. The magnetic beads are washed 3 times with PBS/AB serum, added to the cells (140 μl beads/20×106 cells) and incubated for 1 hour at 4° C. with continuous mixing. The beads and cells are washed 4× with PBS/AB serum to remove the nonadherent cells and resuspended at 100×106 cells/ml (based on the original cell number) in PBS/AB serum containing 100 μl/ml detacha-bead® reagent and 30 μg/ml DNAse. The mixture is incubated for 1 hour at room temperature with continuous mixing. The beads are washed again with PBS/AB/DNAse to collect the CD8+ T-cells. The DC are collected and centrifuged at 1300 rpm for 5-7 minutes, washed once with PBS with 1% BSA, counted and pulsed with 40 μg/ml of peptide at a cell concentration of 1-2×106/ml in the presence of 3 μg/ml B2-microglobulin for 4 hours at 20° C. The DC are then irradiated (4,200 rads), washed 1 time with medium and counted again.


Setting up induction cultures: 0.25 ml cytokine-generated DC (@1×105 cells/ml) are co-cultured with 0.25 ml of CD8+ T-cells (@2×106 cell/ml) in each well of a 48-well plate in the presence of 10 ng/ml of IL-7. Recombinant human IL10 is added the next day at a final concentration of 10 ng/ml and rhuman IL2 is added 48 hours later at 10 IU/ml.


Restimulation of the induction cultures with peptide-pulsed adherent cells: Seven and fourteen days after the primary induction the cells are restimulated with peptide-pulsed adherent cells. The PBMCS are thawed and washed twice with RPMI and DNAse. The cells are resuspended at 5×106 cells/ml and irradiated at ˜4200 rads. The PBMCs are plated at 2×106 in 0.5 ml complete medium per well and incubated for 2 hours at 37° C. The plates are washed twice with RPMI by tapping the plate gently to remove the nonadherent cells and the adherent cells pulsed with 10 μg/ml of peptide in the presence of 3 μg/ml β2 microglobulin in 0.25 ml RPMI/5% AB per well for 2 hours at 37° C. Peptide solution from each well is aspirated and the wells are washed once with RPMI. Most of the media is aspirated from the induction cultures (CD8+ cells) and brought to 0.5 ml with fresh media. The cells are then transferred to the wells containing the peptide-pulsed adherent cells. Twenty four hours later rhuman IL10 is added at a final concentration of 10 ng/ml and rhuman IL2 is added the next day and again 2-3 days later at 50 IU/ml (Tsai et al., Critical Reviews in Immunology 18(1-2):65-75, 1998). Seven days later the cultures are assayed for CTL activity in a 51Cr release assay. In some experiments the cultures are assayed for peptide-specific recognition in the in situ IFNγ ELISA at the time of the second restimulation followed by assay of endogenous recognition 7 days later. After expansion, activity is measured in both assays for a side by side comparison.


Measurement of CTL Lytic Activity by 51Cr Release.


Seven days after the second restimulation, cytotoxicity is determined in a standard (5 hr) 51Cr release assay by assaying individual wells at a single E:T. Peptide-pulsed targets are prepared by incubating the cells with 10 g/ml peptide overnight at 37° C.


Adherent target cells are removed from culture flasks with trypsin-EDTA. Target cells are labelled with 200 μCi of 51Cr sodium chromate (Dupont, Wilmington, Del.) for 1 hour at 37° C. Labelled target cells are resuspended at 106 per ml and diluted 1:10 with K562 cells at a concentration of 3.3×106/ml (an NK-sensitive erythroblastoma cell line used to reduce non-specific lysis). Target cells (100 μl) and 10011 of effectors are plated in 96 well round-bottom plates and incubated for 5 hours at 37° C. At that time, 100 μl of supernatant are collected from each well and percent lysis is determined according to the formula: [(cpm of the test sample-cpm of the spontaneous 51Cr release sample)/(cpm of the maximal 51Cr release sample-cpm of the spontaneous 51Cr release sample)]×100. Maximum and spontaneous release are determined by incubating the labelled targets with 1% Trition X-100 and media alone, respectively. A positive culture is defined as one in which the specific lysis (sample-background) is 10% or higher in the case of individual wells and is 15% or more at the 2 highest E:T ratios when expanded cultures are assayed.


In Situ Measurement of Human γIFN Production as an Indicator of Peptide-Specific and Endogenous Recognition


Immulon 2 plates are coated with mouse anti-human IFNγ monoclonal antibody (4 μg/ml 0.1M NaHCO3, pH8.2) overnight at 4° C. The plates are washed with Ca2+, Mg2+-free PBS/0.05% Tween 20 and blocked with PBS/10% FCS for 2 hours, after which the CTLs (100 μl/well) and targets (100 μl/well) are added to each well, leaving empty wells for the standards and blanks (which received media only). The target cells, either peptide-pulsed or endogenous targets, are used at a concentration of 1×106 cells/ml. The plates are incubated for 48 hours at 37° C. with 5% CO2.


Recombinant human IFNγ is added to the standard wells starting at 400 pg or 1200 pg/100 μl/well and the plate incubated for 2 hours at 37° C. The plates are washed and 100 μl of biotinylated mouse anti-human IFNγ monoclonal antibody (2 μg/ml in PBS/3% FCS/0.05% Tween 20) are added and incubated for 2 hours at room temperature. After washing again, 100 μl HRP-streptavidin (1:4000) are added and the plates incubated for 1 hour at room temperature. The plates are then washed 6× with wash buffer, 100 μl/well developing solution (TMB 1:1) are added, and the plates allowed to develop for 5-15 minutes. The reaction is stopped with 50 μl/well 1M H3PO4 and read at OD450. A culture is considered positive if it measured at least 50 pg of IFNγ/well above background and is twice the background level of expression.


CTL Expansion. Those cultures that demonstrate specific lytic activity against peptide-pulsed targets and/or tumor targets are expanded over a two week period with anti-CD3. Briefly, 5×104 CD8+ cells are added to a T25 flask containing the following: 1×106 irradiated (4,200 rad) PBMC (autologous or allogeneic) per ml, 2×105 irradiated (8,000 rad) EBV-transformed cells per ml, and OKT3 (anti-CD3) at 30 ng per ml in RPMI-1640 containing 10% (v/v) human AB serum, non-essential amino acids, sodium pyruvate, 25 μM 2-mercaptoethanol, L-glutamine and penicillin/streptomycin. Rhuman IL2 is added 24 hours later at a final concentration of 200 IU/ml and every 3 days thereafter with fresh media at 50 IU/ml. The cells are split if the cell concentration exceeded 1×106/ml and the cultures are assayed between days 13 and 15 at E:T ratios of 30, 10, 3 and 1:1 in the 51Cr release assay or at 1×106/ml in the in situ IFNγ assay using the same targets as before the expansion.


Cultures are expanded in the absence of anti-CD3+ as follows. Those cultures that demonstrate specific lytic activity against peptide and endogenous targets are selected and 5×104 CD8+ cells are added to a T25 flask containing the following: 1×106 autologous PBMC per ml which have been peptide-pulsed with 10 μg/ml peptide for 2 hours at 37° C. and irradiated (4,200 rad); 2×105 irradiated (8,000 rad) EBV-transformed cells per ml RPMI-1640 containing 10% (v/v) human AB serum, non-essential AA, sodium pyruvate, 25 mM 2-ME, L-glutamine and gentamicin.


Immunogenicity of A2 Supermotif-Bearing Peptides


A2-supermotif cross-reactive binding peptides were tested in the cellular assay for the ability to induce peptide-specific CTL in normal individuals. In this analysis, a peptide is considered to be an epitope if it induces peptide-specific CTLs in at least 2 donors (unless otherwise noted) and preferably, also recognizes the endogenously expressed peptide. Examples of immunogenic peptides are shown in Table XXIV.


Immunogenicity is additionally confirmed using PBMCs isolated from cancer patients. Briefly, PBMCs are isolated from patients with prostate cancer, re-stimulated with peptide-pulsed monocytes and assayed for the ability to recognize peptide-pulsed target cells as well as transfected cells endogenously expressing the antigen.


Evaluation of A*03/A11 Immunogenicity


HLA-A3 supermotif-bearing cross-reactive binding peptides are also evaluated for immunogenicity using methodology analogous for that used to evaluate the immunogenicity of the HLA-A2 supermotif peptides.


Evaluation of B7 Immunogenicity


Immunogenicity screening of the B7-supertype cross-reactive binding peptides identified in Example 2 are evaluated in a manner analogous to the evaluation of A2-and A3-supermotif-bearing peptides.


Peptides bearing other supermotifs and/or motifs, e.g., HLA-A1, HLA-a24 etc. are also evaluated using similar methodology


Example 4
Implementation of the Extended Supermotif to Improve the Binding Capacity of Native Epitopes by Creating Analogs

HLA motifs and supermotifs (comprising primary and/or secondary residues) are useful in the identification and preparation of highly cross-reactive native peptides, as demonstrated herein. Moreover, the definition of HLA motifs and supermotifs also allows one to engineer highly cross-reactive epitopes by identifying residues within a native peptide sequence which can be analoged, or “fixed” to confer upon the peptide certain characteristics, e.g. greater cross-reactivity within the group of HLA molecules that comprise a supertype, and/or greater binding affinity for some or all of those HLA molecules. Examples of analog peptides that exhibit modulated binding affinity are set forth in this example.


Analoging at Primary Anchor Residues


Peptide engineering strategies were implemented to further increase the cross-reactivity of the epitopes identified above (see, e.g., Table XXII). On the basis of the data disclosed, e.g., in related and co-pending U.S. Ser. No. 09/226,775, the main anchors of A2-supermotif-bearing peptides are altered, for example, to introduce a preferred L, I, V, or M at position 2, and I or V at the C-terminus.


Peptides that exhibit at least weak A*0201 binding (IC50 of 5000 nM or less), and carrying suboptimal anchor residues at either position 2, the C-terminal position, or both, can be fixed by introducing canonical substitutions (typically L at position 2 and V at the C-terminus). Those analoged peptides that show at least a three-fold increase in A*0201 binding and bind with an IC50 of 500 nM, or preferably 200 nM, or less are then tested for A2 cross-reactive binding along with their wild-type (WT) counterparts. Analoged peptides that bind at least three of the five A2 supertype alleles are then selected for cellular screening analysis.


Additionally, the selection of analogs for cellular screening analysis is further restricted by the capacity of the WT parent peptide to bind at least weakly, i.e., bind at an IC50 of 5000 nM or less, to three of more A2 supertype alleles. The rationale for this requirement is that the WT peptides must be present endogenously in sufficient quantity to be biologically relevant. Analoged peptides have been shown to have increased immunogenicity and cross-reactivity by T cells specific for the WT epitope (see, e.g., Parkhurst et al., J. Immunol. 157:2539, 1996; and Pogue et al., Proc. Natl. Acad. Sci. USA 92:8166, 1995).


In the cellular screening of these peptide analogs, it is important to demonstrate that analog-specific CTLs are also able to recognize the wild-type peptide and, when possible, tumor targets that endogenously express the epitope.


Peptides that were analoged at primary anchor residues, generally by adding a preferred resiude at a primary anchor position, were synthesized and assessed for enhanced binding to A*0201 and/or enhanced cross-reactive binding. Examples of analoged peptides that exhibit increased binding and/or cross-reactivity are shown in Table XXIII.


Analogs exhibiting altered binding characteristics are then selected for cellular screening studies. Examples are shown in Table XXIV.


Using methodology similar to that used to develop HLA-A2 analogs, analogs of HLA-A3 and HLA-B7 supermotif-bearing epitopes are also generated. Analogous strategies can be used for peptides bearing other supermotifs/motifs as well. For example, peptides binding at least weakly to 3/5 of the A3-supertype molecules may be engineered at primary anchor residues to possess a preferred residue (V, S, M, or A) at position 2. The analog peptides are then tested for the ability to bind A*03 and A*11 (prototype A3 supertype alleles). Those peptides that demonstrate ≦500 nM binding capacity, often ≦200 nM binding values, are then tested for A3-supertype cross-reactivity. B7 supermotif-bearing peptides may, for example, be engineered to possess a preferred residue (V, I, L, or F) at the C-terminal primary anchor position, as demonstrated by Sidney et al. (J. Immunol. 157:3480-3490, 1996) and tested for binding to B7 supertype alleles.


Analoging at Secondary Anchor Residues


Moreover, HLA supermotifs are of value in engineering highly cross-reactive peptides and/or peptides that bind HLA molecules with increased affinity by identifying particular residues at secondary anchor positions that are associated with such properties. For example, the binding capacity of a B7 supermotif-bearing peptide representing a discreet single amino acid substitution at position 1 can be analyzed. A peptide can, for example, be analoged to substitute L with F at position I and subsequently be evaluated for increased binding affinity/and or increased cross-reactivity. This procedure will identify analoged peptides with modulated binding affinity.


Engineered analogs with sufficiently improved binding capacity or cross-reactivity are tested for immunogenicity as above.


Other Analoging Strategies


Another form of peptide analoging, unrelated to the anchor positions, involves the substitution of a cysteine with α-amino butyric acid. Due to its chemical nature, cysteine has the propensity to form disulfide bridges and sufficiently alter the peptide structurally so as to reduce binding capacity. Subtitution of α-amino butyric acid for cysteine not only alleviates this problem, but has been shown to improve binding and crossbinding capabilities in some instances (see, e.g., the review by Sette et al., In: Persistent Viral Infections, Eds. R. Ahmed and I. Chen, John Wiley & Sons, England, 1999).


In conclusion, these data demonstrate that by the use of even single amino acid substitutions, it is possible to increase the binding affinity and/or cross-reactivity of peptide ligands for HLA supertype molecules.


Example 5
Identification of Peptide Epitope Sequences with HLA-DR Binding Motifs

Peptide epitopes bearing an HLA class II supermotif or motif may also be identified as outlined below using methodology similar to that described in Examples 1-3.


Selection of HLA-DR-Supermotif-Bearing Epitopes


To identify HLA class II HTL epitopes, the prostate cancer-associate antigen protein sequences were analyzed for the presence of sequences bearing an HLA-DR-motif or supermotif. Specifically, 15-mer sequences are selected comprising a DR-supermotif, further comprising a 9-mer core, and three-residue N- and C-terminal flanking regions (15 amino acids total).


Protocols for predicting peptide binding to DR molecules have been developed (Southwood et al., J. Immunol. 160:3363-3373, 1998). These protocols, specific for individual DR molecules, allow the scoring, and ranking, of 9-mer core regions. Each protocol not only scores peptide sequences for the presence of DR-supermotif primary anchors (i.e., at position 1 and position 6) within a 9-mer core, but additionally evaluates sequences for the presence of secondary anchors. Using allele specific selection tables (see, e.g., Southwood et al., ibid.), it has been found that these protocols efficiently select peptide sequences with a high probability of binding a particular DR molecule. Additionally, it has been found that performing these protocols in tandem, specifically those for DR1, DR4w4, and DR7, can efficiently select DR cross-reactive peptides.


The prostate antigen-derived peptides identified above are tested for their binding capacity to various common HLA-DR molecules. All peptides are initially tested for binding to the DR molecules in the primary panel: DR1, DR4w4, and DR7. Peptides binding at least 2 of these 3 DR molecules with an IC50 value of 1000 nM or less, were then tested for binding to DR5*0101, DRB1*1501, DRB1*1101, DRB1*0802, and DRB1*1302. Peptides were considered to be cross-reactive DR supertype binders if they bound at an IC50 value of 1000 nM or less to at least 5 of the 8 alleles tested.


Following the strategy outlined above DR supermotif-bearing sequences were identified within the prostate antigen protein sequence. Generally, these sequences are then scored for the combined DR 1-4-7 algorithms. The postive-scoring peptides are synthesized and tested for binding to HLA-DRB1*0101, DRB1*0401, DRB1*0701. Those that bind at least 2 of the 3 alleles are then tested for binding to secondary DR supertype alleles: DRB5*0101, DRB1*1501, DRB1*1101, DRB1*0802, and DRB1*1302.


Selection of DR3 Motif Peptides


Because HLA-DR3 is an allele that is prevalent in Caucasian, Black, and Hispanic populations, DR3 binding capacity is an important criterion in the selection of HTL epitopes. However, data generated previously indicated that DR3 only rarely cross-reacts with other DR alleles (Sidney et al., J. Immunol. 149:2634-2640, 1992; Geluk et al., J. Immunol. 152:5742-5748, 1994; Southwood et al., J. Immunol. 160:3363-3373, 1998). This is not entirely surprising in that the DR3 peptide-binding motif appears to be distinct from the specificity of most other DR alleles. For maximum efficiency in developing vaccine candidates it would be desirable for DR3 motifs to be clustered in proximity with DR supermotif regions. Thus, peptides shown to be candidates may also be assayed for their DR3 binding capacity. However, in view of the distinct binding specificity of the DR3 motif, peptides binding only to DR3 can also be considered as candidates for inclusion in a vaccine formulation.


To efficiently identify peptides that bind DR3, the PSA, PSM, PAP, and hK2 protein sequences were analyzed for sequences carrying one of the two DR3 specific binding motifs (Table III) reported by Geluk et al. (J. Immunol. 152:5742-5748, 1994). The corresponding peptides are then synthesized and tested for the ability to bind DR3 with an affinity of 1000 nM or better, i.e., less than 1000 nM.


Additionally, the DR3 binders are also tested for binding to the DR supertype alleles. Conversely, the DR supertype cross-reactive binding peptides are also tested for DR3 binding capacity.


DR3 binding epitopes identified in this manner are then included in vaccine compositions with DR supermotif-bearing peptide epitopes.


Similarly to the case of HLA class I motif-bearing peptides, the class II motif-bearing peptides are analoged to improve affinity or cross-reactivity. For example, aspartic acid at position 4 of the 9-mer core sequence is an optimal residue for DR3 binding, and substitution for that residue often improves DR 3 binding.


For example, a number of HLA-DR supermotif and DR-3 motif-bearing prostate antigen-associated sequences have been identified. The number in each category is summarized in Table XXV.


Example 6
Immunogenicity of HTL Epitopes

This example determines immunogenic DR supermotif- and DR3 motif-bearing epitopes among those identified using the methodology in Example 5.


Immunogenicity of HTL epitopes are evaluated in a manner analogous to the determination of immunogenicity of CTL epitopes by assessing the ability to stimulate HTL responses and/or by using appropriate transgenic mouse models. Immunogenicity is determined by screening for: 1.) in vitro primary induction using normal PBMC or 2.) recall responses from cancer patient PBMCs.


Example 7
Calculation of Phenotypic Frequencies of HLA-Supertypes in Various Ethnic Backgrounds to Determine Breadth of Population Coverage

This example illustrates the assessment of the breadth of population coverage of a vaccine composition comprised of multiple epitopes comprising multiple supermotifs and/or motifs.


In order to analyze population coverage, gene frequencies of HLA alleles were determined. Gene frequencies for each HLA allele were calculated from antigen or allele frequencies utilizing the binomial distribution formulae gf=1−(SQRT(1−af)) (see, e.g., Sidney et al., Human Immunol. 45:79-93, 1996). To obtain overall phenotypic frequencies, cumulative gene frequencies were calculated, and the cumulative antigen frequencies derived by the use of the inverse formula [af=1−(1−Cgf)2].


Where frequency data was not available at the level of DNA typing, correspondence to the serologically defined antigen frequencies was assumed. To obtain total potential supertype population coverage no linkage disequilibrium was assumed, and only alleles confirmed to belong to each of the supertypes were included (minimal estimates). Estimates of total potential coverage achieved by inter-loci combinations were made by adding to the A coverage the proportion of the non-A covered population that could be expected to be covered by the B alleles considered (e.g., total=A+B*(1−A)). Confirmed members of the A3-like supertype are A3, A11, A31, A*3301, and A*6801. Although the A3-like supertype may also include A34, A66, and A*7401, these alleles were not included in overall frequency calculations. Likewise, confirmed members of the A2-like supertype family are A*0201, A*0202, A*0203, A*0204, A*0205, A*0206, A*0207, A*6802, and A*6901. Finally, the B7-like supertype-confirmed alleles are: B7, B*3501-03, B51, B*5301, B*5401, B*5501-2, B*5601, B*6701, and B*7801 (potentially also B*1401, B*3504-06, B*4201, and B*5602).


Population coverage achieved by combining the A2-, A3- and B7-supertypes is approximately 86% in five major ethnic groups (see Table XXI). Coverage may be extended by including peptides bearing the A1 and A24 motifs. On average, A1 is present in 12% and A24 in 29% of the population across five different major ethnic groups (Caucasian, North American Black, Chinese, Japanese, and Hispanic). Together, these alleles are represented with an average frequency of 39% in these same ethnic populations. The total coverage across the major ethnicities when A1 and A24 are combined with the coverage of the A2-, A3- and B7-supertype alleles is >95%. An analogous approach can be used to estimate population coverage achieved with combinations of class II motif-bearing epitopes.


Example 8
Recognition of Generation of Endogenous Processed Antigens after Priming

This example determines that CTL induced by native or analogued peptide epitopes identified and selected as described in Examples 1-6 recognize endogenously synthesized, i.e., native antigens, using a transgenic mouse model.


Effector cells isolated from transgenic mice that are immunized with peptide epitopes (as described, e.g., in Wentworth et al., Mol. Immunol. 32:603, 1995), for example HLA-A2 supermotif-bearing epitopes, are re-stimulated in vitro using peptide-coated stimulator cells. Six days later, effector cells are assayed for cytotoxicity and the cell lines that contain peptide-specific cytotoxic activity are further re-stimulated. An additional six days later, these cell lines are tested for cytotoxic activity on 51Cr labeled Jurkat-A2.1/Kb target cells in the absence or presence of peptide, and also tested on 51Cr labeled target cells bearing the endogenously synthesized antigen, i.e. prostate tumor cells or cells that are stably transfected with TAA expression vectors.


The result will demonstrate that CTL lines obtained from animals primed with peptide epitope recognize endogenously synthesized antigen. The choice of transgenic mouse model to be used for such an analysis depends upon the epitope(s) that is being evaluated. In addition to HLA-A*0201/Kb transgenic mice, several other transgenic mouse models including mice with human A11, which may also be used to evaluate A3 epitopes, and B7 alleles have been characterized and others (e.g., transgenic mice for HLA-A1 and A24) are being developed. HLA-DR1 and HLA-DR3 mouse models have also been developed, which may be used to evaluate HTL epitopes.


Example 9
Activity of CTL-HTL Conjugated Epitopes in Transgenic Mice

This example illustrates the induction of CTLs and HTLs in transgenic mice by use of a tumor associated antigen CTL/HTL peptide conjugate whereby the vaccine composition comprises peptides to be administered to a cancer patient. The peptide composition can comprise multiple CTL and/or HTL epitopes and further, can comprise epitopes selected from multiple-tumor associated antigens. The epitopes are identified using methodology as described in Examples 1-6 This analysis demonstrates the enhanced immunogenicity that can be achieved by inclusion of one or more HTL epitopes in a vaccine composition. Such a peptide composition can comprise an HTL epitope conjugated to a preferred CTL epitope containing, for example, at least one CTL epitope selected from Table XXIII, or other analogs of that epitope. The peptides may be lipidated, if desired.


Immunization procedures: Immunization of transgenic mice is performed as described (Alexander et al., J. Immunol. 159:4753-4761, 1997). For example, A2/Kb mice, which are transgenic for the human HLA A2.1 allele and are useful for the assessment of the immunogenicity of HLA-A*0201 motif- or HLA-A2 supermotif-bearing epitopes, are primed subcutaneously (base of the tail) with a 0.1 ml of peptide in Incomplete Freund's Adjuvant, or if the peptide composition is a lipidated CTL/HTL conjugate, in DMSO/saline or if the peptide composition is a polypeptide, in PBS or Incomplete Freund's Adjuvant. Seven days after priming, splenocytes obtained from these animals are restimulated with syngenic irradiated LPS-activated lymphoblasts coated with peptide.


The target cells for peptide-specific cytotoxicity assays are Jurkat cells transfected with the HLA-A2.1/Kb chimeric gene (e.g., Vitiello et al., J. Exp. Med. 173:1007, 1991).


In vitro CTL activation: One week after priming, spleen cells (30×106 cells/flask) are co-cultured at 37° C. with syngeneic, irradiated (3000 rads), peptide coated lymphoblasts (10×106 cells/flask) in 10 ml of culture medium/T25 flask. After six days, effector cells are harvested and assayed for cytotoxic activity.


Assay for cytotoxic activity: Target cells (1.0 to 1.5×106) are incubated at 37° C. in the presence of 200 μl of 51Cr. After 60 minutes, cells are washed three times and resuspended in medium. Peptide is added where required at a concentration of 1 μg/ml. For the assay, 104 51Cr-labeled target cells are added to different concentrations of effector cells (final volume of 200 μl) in U-bottom 96-well plates. After a 6 hour incubation period at 37° C., a 0.1 ml aliquot of supernatant is removed from each well and radioactivity is determined in a Micromedic automatic gamma counter. The percent specific lysis is determined by the formula: percent specific release=100×(experimental release−spontaneous release)/(maximum release−spontaneous release). To facilitate comparison between separate CTL assays run under the same conditions, % 51Cr release data is expressed as lytic units/106 cells. One lytic unit is arbitrarily defined as the number of effector cells required to achieve 30% lysis of 10,000 target cells in a 6 hour 51Cr release assay. To obtain specific lytic units/106, the lytic units/106 obtained in the absence of peptide is subtracted from the lytic units/106 obtained in the presence of peptide. For example, if 30% 51Cr release is obtained at the effector (E): target (T) ratio of 50:1 (i.e., 5×105 effector cells for 10,000 targets) in the absence of peptide and 5:1 (i.e., 5×104 effector cells for 10,000 targets) in the presence of peptide, the specific lytic units would be: [(1/50,000)−(1/500,000)]×106=18 LU.


The results are analyzed to assess the magnitude of the CTL responses of animals injected with the immunogenic CTL/HTL conjugate vaccine preparation. The magnitude and frequency of the response can also be compared to the the CTL response achieved using the CTL epitopes by themselves. Analyses similar to this may be performed to evaluate the immunogenicity of peptide conjugates containing multiple CTL epitopes and/or multiple HTL epitopes. In accordance with these procedures it is found that a CTL response is induced, and concomitantly that an HTL response is induced upon administration of such compositions.


Example 10
Selection of CTL and HTL Epitopes for Inclusion in a Cancer Vaccine

This example illustrates the procedure for the selection of peptide epitopes for vaccine compositions of the invention. The peptides in the composition can be in the form of a nucleic acid sequence, either single or one or more sequences (i.e., minigene) that encodes peptide(s), or may be single and/or polyepitopic peptides.


The following principles are utilized when selecting an array of epitopes for inclusion in a vaccine composition. Each of the following principles is balanced in order to make the selection.


Epitopes are selected which, upon administration, mimic immune responses that have been observed to be correlated with tumor clearance. For example, a vaccine can include 3-4 epitopes that come from at least one prostate cancer-associated antigen. Epitopes from one prostate cancer-associated antigen can be used in combination with epitopes from one or more additional TAAs to produce a vaccine that targets tumors with varying expression patterns of frequently-expressed TAAs as described, e.g., in Example 15.


Epitopes are preferably selected that have a binding affinity (IC50) of 500 nM or less, often 200 nM or less, for an HLA class I molecule, or for a class II molecule, 1000 nM or less.


Sufficient supermotif bearing peptides, or a sufficient array of allele-specific motif bearing peptides, are selected to give broad population coverage. For example, epitopes are selected to provide at least 80% population coverage. A Monte Carlo analysis, a statistical evaluation known in the art, can be employed to assess breadth, or redundancy, of population coverage.


When selecting epitopes from cancer-related antigens it is often preferred to select analogs because the patient may have developed tolerance to the native epitope.


When creating a polyepitopic composition, e.g. a minigene, it is typically desirable to generate the smallest peptide possible that encompasses the epitopes of interest, although spacers or other flanking sequences can also be incorporated. The principles employed are often similar as those employed when selecting a peptide comprising nested epitopes. Additionally, however, upon determination of the nucleic acid sequence to be provided as a minigene, the peptide sequence encoded thereby is analyzed to determine whether any “junctional epitopes” have been created. A junctional epitope is a potential HLA binding epitope, as predicted, e.g., by motif analysis. Junctional epitopes are generally to be avoided because the recipient may bind to an HLA molecule and generate an immune response to that epitope, which is not present in a native protein sequence.


A vaccine composition comprised of selected peptides, when administered, is safe, efficacious, and elicits an immune response that results in tumor cell killing and reduction of tumor size or mass.


Example 11
Construction of Minigene Multi-Epitope DNA Plasmids

This example provides general guidance for the construction of a minigene expression plasmid. Minigene plasmids may, of course, contain various configurations of CTL and/or HTL epitopes or epitope analogs as described herein. Examples of the construction and evaluation of expression plasmids are described, for example, in co-pending U.S. Ser. No. 09/311,784 filed May 13, 1999.


A minigene expression plasmid may include multiple CTL and HTL peptide epitopes. In this example, HLA-A2, -A3, -B7 supermotif-bearing peptide epitopes and HLA-A1 and -A24 motif-bearing peptide epitopes are used in conjunction with DR supermotif-bearing epitopes and/or DR3 epitopes. HLA class I supermotif or motif-bearing peptide epitopes derived from multiple prostate cancer-associated antigens are selected such that multiple supermotifs/motifs are represented to ensure broad population coverage. Similarly, HLA class II epitopes are selected from multiple prostate cancer-associated antigens to provide broad population coverage, i.e. both HLA DR-1-4-7 supermotif-bearing epitopes and HLA DR-3 motif-bearing epitopes are selected for inclusion in the minigene construct. The selected CTL and HTL epitopes are then incorporated into a minigene for expression in an expression vector.


This example illustrates the methods to be used for construction of such a minigene-bearing expression plasmid. Other expression vectors that may be used for minigene compositions are available and known to those of skill in the art.


The minigene DNA plasmid contains a consensus Kozak sequence and a consensus murine kappa Ig-light chain signal sequence followed by CTL and/or HTL epitopes selected in accordance with principles disclosed herein. The sequence encodes an open reading frame fused to the Myc and His antibody epitope tag coded for by the pcDNA 3.1 Myc-His vector.


Overlapping oligonucleotides that can, for example, average about 70 nucleotides in length with 15 nucleotide overlaps, are synthesized and HPLC-purified. The oligonucleotides encode the selected peptide epitopes as well as appropriate linker nucleotides, Kozak sequence, and signal sequence. The final multiepitope minigene is assembled by extending the overlapping oligonucleotides in three sets of reactions using PCR. A Perkin/Elmer 9600 PCR machine is used and a total of 30 cycles are performed using the following conditions: 95° C. for 15 sec, annealing temperature (5° below the lowest calculated Tm of each primer pair) for 30 sec, and 72° C. for 1 min.


For example, a minigene can be prepared as follows. For a first PCR reaction, 5 μg of each of two oligonucleotides are annealed and extended: In an example using eight oligonucleotides, i.e., four pairs of primers, oligonucleotides 1+2, 3+4, 5+6, and 7+8 are combined in 100 μl reactions containing Pfu polymerase buffer (1×=10 mM KCL, 10 mM (NH4)2SO4, 20 mM Tris-chloride, pH 8.75, 2 mM MgSO4, 0.1% Triton X-100, 100 μg/ml BSA), 0.25 mM each dNTP, and 2.5 U of Pfu polymerase. The full-length dimer products are gel-purified, and two reactions containing the product of 1+2 and 3+4, and the product of 5+6 and 7+8 are mixed, annealed, and extended for 10 cycles. Half of the two reactions are then mixed, and 5 cycles of annealing and extension carried out before flanking primers are added to amplify the full length product. The full-length product is gel-purified and cloned into pCR-blunt (Invitrogen) and individual clones are screened by sequencing.


Example 12
The Plasmid Construct and the Degree to which it Induces Immunogenicity

The degree to which a plasmid construct, for example a plasmid constructed in accordance with Example 11, is able to induce immunogenicity can be evaluated in vitro by testing for epitope presentation by APC following transduction or transfection of the APC with an epitope-expressing nucleic acid construct. Such a study determines “antigenicity” and allows the use of human APC. The assay determines the ability of the epitope to be presented by the APC in a context that is recognized by a T cell by quantifying the density of epitope-HLA class I complexes on the cell surface. Quantitation can be performed by directly measuring the amount of peptide eluted from the APC (see, e.g., Sijts et al., J. Immunol. 156:683-692, 1996; Demotz et al., Nature 342:682-684, 1989); or the number of peptide-HLA class I complexes can be estimated by measuring the amount of lysis or lymphokine release induced by infected or transfected target cells, and then determining the concentration of peptide necessary to obtained equivalent levels of lysis or lymphokine release (see, e.g., Kageyama et al., J. Immunol. 154:567-576, 1995).


Atlernatively, immunogenicity can be evaluated through in vivo injections into mice and subsequent in vitro assessment of CTL and HTL activity, which are analysed using cytotoxicity and proliferation assays, respectively, as detailed e.g., in co-pending U.S. Ser. No. 09/311,784 filed May 13, 1999 and Alexander et al., Immunity 1:751-761, 1994.


For example, to assess the capacity of a DNA minigene construct (e.g., a pMin minigene construct generated as decribed in U.S. Ser. No. 09/311,784) containing at least one HLA-A2 supermotif peptide to induce CTLs in vivo, HLA-A2.1/Kb transgenic mice, for example, are immunized intramuscularly with 100 μg of naked cDNA. As a means of comparing the level of CTLs induced by cDNA immunization, a control group of animals is also immunized with an actual peptide composition that comprises multiple epitopes synthesized as a single polypeptide as they would be encoded by the minigene.


Splenocytes from immunized animals are stimulated twice with each of the respective compositions (peptide epitopes encoded in the minigene or the polyepitopic peptide), then assayed for peptide-specific cytotoxic activity in a 51Cr release assay. The results indicate the magnitude of the CTL response directed against the A2-restricted epitope, thus indicating the in vivo immunogenicity of the minigene vaccine and polyepitopic vaccine. It is, therefore, found that the minigene elicits immune responses directed toward the HLA-A2 supermotif peptide epitopes as does the polyepitopic peptide vaccine. A similar analysis is also performed using other HLA-A3 and HLA-B7 transgenic mouse models to assess CTL induction by HLA-A3 and HLA-B7 motif or supermotif epitopes.


To assess the capacity of a class II epitope encoding minigene to induce HTLs in vivo, DR transgenic mice, or for those epitope that cross react with the appropriate mouse MHC molecule, I-Ab-restricted mice, for example, are immunized intramuscularly with 100 μg of plasmid DNA. As a means of comparing the level of HTLs induced by DNA immunization, a group of control animals is also immunized with an actual peptide composition emulsified in complete Freund's adjuvant. CD4+ T cells, i.e. HTLs, are purified from splenocytes of immunized animals and stimulated with each of the respective compositions (peptides encoded in the minigene). The HTL response is measured using a 3H-thymidine incorporation proliferation assay, (see, e.g., Alexander et al. Immunity 1:751-761, 1994). The results indicate the magnitude of the HTL response, thus demonstrating the in vivo immunogenicity of the minigene.


DNA minigenes, constructed as described in Example 11, may also be evaluated as a vaccine in combination with a boosting agent using a prime boost protocol. The boosting agent can consist of recombinant protein (e.g., Barnett et al., Aids Res. and Human Retroviruses 14, Supplement 3:S299-S309, 1998) or recombinant vaccinia, for example, expressing a minigene or DNA encoding the complete protein of interest (see, e.g., Hanke et al., Vaccine 16:439-445, 1998; Sedegah et al., Proc. Natl. Acad. Sci USA 95:7648-53, 1998; Hanke and McMichael, Immunol. Letters 66:177-181, 1999; and Robinson et al., Nature Med. 5:526-34, 1999).


For example, the efficacy of the DNA minigene used in a prime boost protocol is initially evaluated in transgenic mice. In this example, A2.1/Kb transgenic mice are immunized IM with 100 μg of a DNA minigene encoding the immunogenic peptides including at least one HLA-A2 supermotif-bearing peptide. After an incubation period (ranging from 3-9 weeks), the mice are boosted IP with 107 pfu/mouse of a recombinant vaccinia virus expressing the same sequence encoded by the DNA minigene. Control mice are immunized with 100 μg of DNA or recombinant vaccinia without the minigene sequence, or with DNA encoding the minigene, but without the vaccinia boost. After an additional incubation period of two weeks, splenocytes from the mice are immediately assayed for peptide-specific activity in an ELISPOT assay. Additionally, splenocytes are stimulated in vitro with the A2-restricted peptide epitopes encoded in the minigene and recombinant vaccinia, then assayed for peptide-specific activity in an IFN-γ ELISA.


It is found that the minigene utilized in a prime-boost protocol elicits greater immune responses toward the HLA-A2 supermotif peptides than with DNA alone. Such an analysis can also be performed using HLA-A11 or HLA-B7 transgenic mouse models to assess CTL induction by HLA-A3 or HLA-B7 motif or supermotif epitopes.


The use of prime boost protocols in humans is described in Example 20.


Example 13
Peptide Composition for Prophylactic Uses

Vaccine compositions of the present invention are used to prevent cancer in persons who are at high risk for developing a tumor. For example, a polyepitopic peptide epitope composition (or a nucleic acid comprising the same) containing multiple CTL and HTL epitopes such as those selected in Examples 9 and/or 10, which are also selected to target greater than 80% of the population, is administered to an individual at high risk for prostate cancer. The composition is provided as a single polypeptide that encompasses multiple epitopes. The vaccine is administered in an aqueous carrier comprised of Freunds Incomplete Adjuvant. The dose of peptide for the initial immunization is from about 1 to about 50,000 μg, generally 100-5,000 μg, for a 70 kg patient. The initial administration of vaccine is followed by booster dosages at 4 weeks followed by evaluation of the magnitude of the immune response in the patient, by techniques that determine the presence of epitope-specific CTL populations in a PBMC sample. Additional booster doses are administered as required. The composition is found to be both safe and efficacious as a prophylaxis against cancer.


Alternatively, the polyepitopic peptide composition can be administered as a nucleic acid in accordance with methodologies known in the art and disclosed herein.


Example 14
Polyepitopic Vaccine Compositions Derived from Native TAA Sequences

A native TAA polyprotein sequence is screened, preferably using computer algorithms defined for each class I and/or class II supermotif or motif, to identify “relatively short” regions of the polyprotein that comprise multiple epitopes and is preferably less in length than an entire native antigen. This relatively short sequence that contains multiple distinct, even overlapping, epitopes is selected and used to generate a minigene construct. The construct is engineered to express the peptide, which corresponds to the native protein sequence. The “relatively short” peptide is generally less than 1000, 500, or 250 amino acids in length, often less than 100 amino acids in length, preferably less than 75 amino acids in length, and more preferably less than 50 amino acids in length. The protein sequence of the vaccine composition is selected because it has maximal number of epitopes contained within the sequence, i.e., it has a high concentration of epitopes. As noted herein, epitope motifs may be nested or overlapping (i.e., frame shifted relative to one another). For example, with frame shifted overlapping epitopes, two 9-mer epitopes and one 10-mer epitope can be present in a 10 amino acid peptide. Such a vaccine composition is administered for therapeutic or prophylactic purposes.


The vaccine composition will preferably include, for example, three CTL epitopes and at least one HTL epitope from multiple prostate cancer-associated antigens. This polyepitopic native sequence is administered either as a peptide or as a nucleic acid sequence which encodes the peptide. Alternatively, an analog can be made of this native sequence, whereby one or more of the epitopes comprise substitutions that alter the cross-reactivity and/or binding affinity properties of the polyepitopic peptide.


The embodiment of this example provides for the possibility that an as yet undiscovered aspect of immune system processing will apply to the native nested sequence and thereby facilitate the production of therapeutic or prophylactic immune response-inducing vaccine compositions. Additionally such an embodiment provides for the possibility of motif-bearing epitopes for an HLA makeup that is presently unknown. Furthermore, this embodiment (absent analogs) directs the immune response to multiple peptide sequences that are actually present in native TAAs thus avoiding the need to evaluate any junctional epitopes. Lastly, the embodiment provides an economy of scale when producing nucleic acid vaccine compositions.


Related to this embodiment, computer programs can be derived in accordance with principles in the art, which identify in a target sequence, the greatest number of epitopes per sequence length.


Example 15
Polyepitopic Vaccine Compositions Comprising Epitopes From Multiple Tumor-Associated Antigens

The prostate cancer-associated antigen peptide epitopes of the present invention are used in combination with each other, or with peptide epitopes from other target tumor-associated antigens to create a vaccine composition that is useful for the treatment of prostate tumors from multiple patients. Furthermore, a vaccine composition comprising epitopes from multiple tumor antigens also reduces the potential for escape mutants due to loss of expression of an individual tumor antigen.


The composition can be provided as a single polypeptide that incorporates the multiple epitopes from the various TAAs, or can be administered as a composition comprising one or more discrete epitopes. Alternatively, the vaccine can be administered as a minigene construct or as dendritic cells which have been loaded with the peptide epitopes in vitro.


Example 16
Use of Peptides to Evaluate an Immune Response

Peptides of the invention may be used to analyze an immune response for the presence of specific CTL or HTL populations directed to a prostate cancer-associated antigen. Such an analysis may be performed using multimeric complexes as described, e.g., by Ogg et al., Science 279:2103-2106, 1998 and Greten et al., Proc. Natl. Acad. Sci. USA 95:7568-7573, 1998. In the following example, peptides in accordance with the invention are used as a reagent for diagnostic or prognostic purposes, not as an immunogen.


In this example, highly sensitive human leukocyte antigen tetrameric complexes (“tetramers”) are used for a cross-sectional analysis of, for example, tumor-associated antigen HLA-A*0201-specific CTL frequencies from HLA A*0201-positive individuals at different stages of disease or following immunization using a TAA peptide containing an A*0201 motif. Tetrameric complexes are synthesized as described (Musey et al., N. Engl. J. Med. 337:1267, 1997). Briefly, purified HLA heavy chain (A*0201 in this example) and β2-microglobulin are synthesized by means of a prokaryotic expression system. The heavy chain is modified by deletion of the transmembrane-cytosolic tail and COOH-terminal addition of a sequence containing a BirA enzymatic biotinylation site. The heavy chain, β2-microglobulin, and peptide are refolded by dilution. The 45-kD refolded product is isolated by fast protein liquid chromatography and then biotinylated by BirA in the presence of biotin (Sigma, St. Louis, Mo.), adenosine 5′triphosphate and magnesium. Streptavidin-phycoerythrin conjugate is added in a 1:4 molar ratio, and the tetrameric product is concentrated to 1 mg/ml. The resulting product is referred to as tetramer-phycoerythrin.


For the analysis of patient blood samples, approximately one million PBMCs are centrifuged at 300 g for 5 minutes and resuspended in 50 μl of cold phosphate-buffered saline. Tri-color analysis is performed with the tetramer-phycoerythrin, along with anti-CD8-Tricolor, and anti-CD38. The PBMCs are incubated with tetramer and antibodies on ice for 30 to 60 min and then washed twice before formaldehyde fixation. Gates are applied to contain >99.98% of control samples. Controls for the tetramers include both A*0201-negative individuals and A*0201-positive uninfected donors. The percentage of cells stained with the tetramer is then determined by flow cytometry. The results indicate the number of cells in the PBMC sample that contain epitope-restricted CTLs, thereby readily indicating the extent of immune response to the TAA epitope, and thus the stage of tumor progression or exposure to a vaccine that elicits a protective or therapeutic response.


Example 17
Use of Peptide Epitopes to Evaluate Recall Responses

The peptide epitopes of the invention are used as reagents to evaluate T cell responses, such as acute or recall responses, in patients. Such an analysis may be performed on patients who are in remission, have a tumor, or who have been vaccinated with a prostate cancer-associated antigen vaccine.


For example, the class I restricted CTL response of persons who have been vaccinated may be analyzed. The vaccine may be any TAA vaccine. PBMC are collected from vaccinated individuals and HLA typed. Appropriate peptide epitopes of the invention that, optimally, bear supermotifs to provide cross-reactivity with multiple HLA supertype family members, are then used for analysis of samples derived from individuals who bear that HLA type.


PBMC from vaccinated individuals are separated on Ficoll-Histopaque density gradients (Sigma Chemical Co., St. Louis, Mo.), washed three times in HBSS (GIBCO Laboratories), resuspended in RPMI-1640 (GIBCO Laboratories) supplemented with L-glutamine (2 mM), penicillin (50 U/ml), streptomycin (50 μg/ml), and Hepes (10 mM) containing 10% heat-inactivated human AB serum (complete RPMI) and plated using microculture formats. A synthetic peptide comprising an epitope of the invention is added at 10 μg/ml to each well and HBV core 128-140 epitope is added at 1 μg/ml to each well as a source of T cell help during the first week of stimulation.


In the microculture format, 4×105 PBMC are stimulated with peptide in 8 replicate cultures in 96-well round bottom plate in 100 μl/well of complete RPMI. On days 3 and 10, 100 μl of complete RPMI and 20 U/ml final concentration of rIL-2 are added to each well. On day 7 the cultures are transferred into a 96-well flat-bottom plate and restimulated with peptide, rIL-2 and 105 irradiated (3,000 rad) autologous feeder cells. The cultures are tested for cytotoxic activity on day 14. A positive CTL response requires two or more of the eight replicate cultures to display greater than 10% specific 51Cr release, based on comparison with uninfected control subjects as previously described (Rehermann, et al., Nature Med. 2:1104, 1108, 1996; Rehermann et al., J. Clin. Invest. 97:1655-1665, 1996; and Rehermann et al. J. Clin. Invest. 98:1432-1440, 1996).


Target cell lines are autologous and allogeneic EBV-transformed B-LCL that are either purchased from the American Society for Histocompatibility and Immunogenetics (ASHI, Boston, Mass.) or established from the pool of patients as described (Guilhot, et al. J. Virol. 66:2670-2678, 1992).


Cytotoxicity assays are performed in the following manner. Target cells consist of either allogeneic HLA-matched or autologous EBV-transformed B lymphoblastoid cell line that are incubated overnight with the synthetic peptide epitope of the invention at 10 μM, and labeled with 100 μCi of 51Cr (Amersham Corp., Arlington Heights, Ill.) for 1 hour after which they are washed four times with HBSS.


Cytolytic activity is determined in a standard 4 hour, split-well 51Cr release assay using U-bottomed 96 well plates containing 3,000 targets/well. Stimulated PBMC are tested at effector/target (E/T) ratios of 20-50:1 on day 14. Percent cytotoxicity is determined from the formula: 100×[(experimental release-spontaneous release)/maximum release-spontaneous release)]. Maximum release is determined by lysis of targets by detergent (2% Triton X-100; Sigma Chemical Co., St. Louis, Mo.). Spontaneous release is <25% of maximum release for all experiments.


The results of such an analysis indicate the extent to which HLA-restricted CTL populations have been stimulated by previous exposure to the TAA or TAA vaccine.


The class II restricted HTL responses may also be analyzed. Purified PBMC are cultured in a 96-well flat bottom plate at a density of 1.5×105 cells/well and are stimulated with 10 μg/ml synthetic peptide, whole antigen, or PHA. Cells are routinely plated in replicates of 4-6 wells for each condition. After seven days of culture, the medium is removed and replaced with fresh medium containing 10 U/ml IL-2. Two days later, 1 μCi 3H-thymidine is added to each well and incubation is continued for an additional 18 hours. Cellular DNA is then harvested on glass fiber mats and analyzed for 3H-thymidine incorporation. Antigen-specific T cell proliferation is calculated as the ratio of 3H-thymidine incorporation in the presence of antigen divided by the 3H-thymidine incorporation in the absence of antigen.


Example 18
Induction of Specific CTL Response in Humans

A human clinical trial for an immunogenic composition comprising CTL and HTL epitopes of the invention is set up as an IND Phase I, dose escalation study. Such a trial is designed, for example, as follows:


A total of about 27 male subjects are enrolled and divided into 3 groups:


Group I: 3 subjects are injected with placebo and 6 subjects are injected with 5 μg of peptide composition;


Group II: 3 subjects are injected with placebo and 6 subjects are injected with 50 μg peptide composition;


Group III: 3 subjects are injected with placebo and 6 subjects are injected with 500 μg of peptide composition.


After 4 weeks following the first injection, all subjects receive a booster inoculation at the same dosage. Additional booster inoculations can be administered on the same schedule.


The endpoints measured in this study relate to the safety and tolerability of the peptide composition as well as its immunogenicity. Cellular immune responses to the peptide composition are an index of the intrinsic activity of the peptide composition, and can therefore be viewed as a measure of biological efficacy. The following summarize the clinical and laboratory data that relate to safety and efficacy endpoints.


Safety: The incidence of adverse events is monitored in the placebo and drug treatment group and assessed in terms of degree and reversibility.


Evaluation of Vaccine Efficacy: For evaluation of vaccine efficacy, subjects are bled before and after injection. Peripheral blood mononuclear cells are isolated from fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity.


The vaccine is found to be both safe and efficacious.


Example 19
Therapeutic Use in Cancer Patients

Evaluation of vaccine compositions are performed to validate the efficacy of the CTL-HTL peptide compositions in cancer patients. The main objectives of the trials are to determine an effective dose and regimen for inducing CTLs in prostate cancer patients, to establish the safety of inducing a CTL and HTL response in these patients, and to see to what extent activation of CTLs improves the clinical picture of cancer patients, as manifested by a reduction in tumor cell numbers. Such a study is designed, for example, as follows:


The studies are performed in multiple centers. The trial design is an open-label, uncontrolled, dose escalation protocol wherein the peptide composition is administered as a single dose followed six weeks later by a single booster shot of the same dose. The dosages are 50, 500 and 5,000 micrograms per injection. Drug-associated adverse effects (severity and reversibility) are recorded.


There are three patient groupings. The first group is injected with 50 micrograms of the peptide composition and the second and third groups with 500 and 5,000 micrograms of peptide composition, respectively. The patients within each group are males, typically above the age of 50, and represent diverse ethnic backgrounds.


Example 20
Induction of CTL Responses Using a Prime Boost Protocol

A prime boost protocol similar in its underlying principle to that used to evaluate the efficacy of a DNA vaccine in transgenic mice, such as described in Example 12, can also be used for the administration of the vaccine to humans. Such a vaccine regimen can include an initial administration of, for example, naked DNA followed by a boost using recombinant virus encoding the vaccine, or recombinant protein/polypeptide or a peptide mixture administered in an adjuvant.


For example, the initial immunization can be performed using an expression vector, such as one constructed in accordance with Example 11, in the form of naked nucleic acid administered IM (or SC or ID) in the amounts of 0.5-5 mg at multiple sites. The nucleic acid (0.1 to 1000 μg) can also be administered using a gene gun. Following an incubation period of 3-4 weeks, a booster dose is then administered. The booster can be recombinant fowlpox virus administered at a dose of 5- to 5×109 pfu. An alternative recombinant virus, such as an MVA, canarypox, adenovirus, or adeno-associated virus, can also be used for the booster, or the polyepitopic protein or a mixture of the peptides can be administered. For evaluation of vaccine efficacy, patient blood samples will be obtained before immunization as well as at intervals following administration of the initial vaccine and booster doses of the vaccine. Peripheral blood mononuclear cells are isolated from fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity.


Analysis of the results will indicate that a magnitude of response sufficient to achieve protective immunity against prostate cancer is generated.


Example 21
Administration of Vaccine Compositions Using Antigen Presenting Cells

Vaccines comprising peptide epitopes of the invention may be administered using antigen-presenting cells (APCs), or “professional” APCs such as dendritic cells (DC). In this example, the peptide-pulsed DC are administered to a patient to stimulate a CTL response in vivo. In this method, dendritic cells are isolated, expanded, and pulsed with a vaccine comprising peptide CTL and HTL epitopes of the invention. The dendritic cells are infused back into the patient to elicit CTL and HTL responses in vivo. The induced CTL and HTL then destroy (CTL) or facilitate destruction (HTL) of the specific target tumor cells that bear the proteins from which the epitopes in the vaccine are derived.


For example, a cocktail of epitope-bearing peptides is administered ex vivo to PBMC, or isolated DC therefrom, from the patient's blood. A pharmaceutical to facilitate harvesting of DC can be used, such as Progenipoietin™ (Monsanto, St. Louis, Mo.) or GM-CSF/IL-4. After pulsing the DC with peptides and prior to reinfusion into patients, the DC are washed to remove unbound peptides.


As appreciated clinically, and readily determined by one of skill based on clinical outcomes, the number of dendritic cells reinfused into the patient can vary (see, e.g., Nature Med. 4:328, 1998; Nature Med. 2:52, 1996 and Prostate 32:272, 1997). Although 2-50×106 dendritic cells per patient are typically administered, larger number of dendritic cells, such as 107 or 108 can also be provided. Such cell populations typically contain between 50-90% dendritic cells.


In some embodiments, peptide-loaded PBMC are injected into patients without purification of the DC. For example, PBMC containing DC generated after treatment with an agent such as Progenipoietin™ are injected into patients without purification of the DC. The total number of PBMC that are administered often ranges from 108 to 1010. Generally, the cell doses injected into patients is based on the percentage of DC in the blood of each patient, as determined, for example, by immunofluorescence analysis with specific anti-DC antibodies. Thus, for example, if Progenipoietin™ mobilizes 2% DC in the peripheral blood of a given patient, and that patient is to receive 5×106 DC, then the patient will be injected with a total of 2.5×108 peptide-loaded PBMC. The percent DC mobilized by an agent such as Progenipoietin™ is typically estimated to be between 2-10%, but can vary as appreciated by one of skill in the art.


The ability of DC to stimulate immune responses was evaluated in both in vitro and in vivo immune function assays. These assays include the stimulation of CTL hybridomas and CTL cell lines, and the in vivo activation of CTL.


DC Purification


Progenipoietin™-mobilized DC were purified from peripheral blood (PB) and spleens of Progenipoietin™-treated C57B1/6 mice to evaluate their ability to present antigen and to elicit cellular immune responses. Briefly, DC were purified from total WBC and spleen using a positive selection strategy employing magnetic beads coated with a CD11c specific antibody (Miltenyi Biotec, Auburn Calif.). For comparison, ex vivo expanded DC were generated by culturing bone marrow cells from untreated C57B1/6 mice with the standard cocktail of GM-CSF and IL-4 (R&D Systems, Minneapolis, Minn.) for a period of 7-8 days (Mayordomo et al., Nature Med. 1: 1297-1302 (1995)). Recent studies have revealed that this ex vivo expanded DC population contains effective antigen presenting cells, with the capacity to stimulate anti-tumor immune responses (Celluzzi et al., J. Exp. Med. 83:283-287 (1996)).


The purities of Progenipoietin™-derived DC (100 μg/day, 10 days, SC) and GM-CSF/IL-4 ex vivo expanded DC were determined by flow cytometry. DC populations were defined as cells expressing both CD11c and MHC Class II molecules. Following purification of DC from magnetic CD11c microbeads, the percentage of double positive PB-derived DC, isolated from Progenipoietin™-treated mice, was enriched from approximately 4% to a range from 48-57% (average yield=4.5×106 DC/animal). The percentage of purified splenic DC isolated from Progenipoietin™ treated mice was enriched from a range of 12-17% to a range of 67-77%. The purity of GM-CSF/IL-4 ex vivo expanded DC ranged from 31-41% (Wong et al., J. Immunother., 21:32040 (1998)).


In Vitro Stimulation of CTL Hybridomas and CTL Cell Lines: Presentation of Specific CTL Epitopes


The ability of Progenipoietin™ generated DC to stimulate a CTL cell line was demonstrated in vitro using a viral-derived epitope and a corresponding epitope responsive CTL cell line. Transgenic mice expressing human HLA-A2.1 were treated with Progenipoietin™. Splenic DC isolated from these mice were pulsed with a peptide epitope derived from hepatitis B virus (HBV Pol 455) and then incubated with a CTL cell line that responds to the HBV Pol 455 epitope/HLA-A2.1 complex by producing IFNγ. The capacity of Progenipoietin™-derived splenic DC to present the HBV Pol 455 epitope was greater than that of two positive control populations: GM-CSF and IL-4 expanded DC cultures, or purified splenic B cells. A left shift in the response curve for Progenipoietin™-derived spleen cells versus the other antigen presenting cells revealed that these Progenipoietin™-derived cells required less epitope to stimulate maximal IFNγ release by the responder cell line.


The ability of ex vivo peptide-pulsed DC to stimulate CTL responses in vivo was also evaluated using the HLA-A2.1 transgenic mouse model. DC derived from Progenipoietin™-treated animals or control DC derived from bone marrow cells after expansion with GM-CSF and IL-4 were pulsed ex vivo with the HBV Pol 455 CTL epitope, washed and injected (IV) into such mice. At seven days post immunization, spleens were removed and splenocytes containing DC and CTL were restimulated twice in vitro in the presence of the HBV Pol 455 peptide. The CTL activity of three independent cultures of restimulated spleen cell cultures was assessed by measuring the ability of the CTL to lyse 51Cr-labeled target cells pulsed with or without peptide. Vigorous CTL responses were generated in animals immunized with the epitope-pulsed Progenipoietin™-derived DC as well as epitope-pulsed GM-CSF/IL-4 DC. In contrast, animals that were immunized with mock-pulsed Progenipoietin™-generated DC (no peptide) exhibited no evidence of CTL induction.


These data confirm that DC derived from Progenipoietin™ treated mice can be pulsed ex vivo with epitope and used to induce specific CTL responses in vivo. Thus, these data support the principle that Progenipoietin™-derived DC promote CTL responses in a model that manifests human MHC Class I molecules.


In vivo pharmacology studies in mice have demonstrated no apparent toxicity of reinfusion of pulsed autologous DC into animals.


Ex Vivo Activation of CTL/HTL Responses


Alternatively, ex vivo CTL or HTL responses to a particular tumor-associated antigen can be induced by incubating in tissue culture the patient's, or genetically compatible, CTL or HTL precursor cells together with a source of antigen-presenting cells (APC), such as dendritic cells, and the appropriate immunogenic peptides. After an appropriate incubation time (typically about 7-28 days), in which the precursor cells are activated and expanded into effector cells, the cells are infused back into the patient, where they will destroy (CTL) or facilitate destruction (HTL) of their specific target cells, i.e., tumor cells.


Example 22
Alternative Method of Identifying Motif-Bearing Peptides

Another way of identifying motif-bearing peptides is to elute them from cells bearing defined MHC molecules. For example, EBV transformed B cell lines used for tissue typing, have been extensively characterized to determine which HLA molecules they express. In certain cases these cells express only a single type of HLA molecule. These cells can then be infected with a pathogenic organism or transfected with nucleic acids that express the tumor antigen of interest. Thereafter, peptides produced by endogenous antigen processing of peptides produced consequent to infection (or as a result of transfection) will bind to HLA molecules within the cell and be transported and displayed on the cell surface.


The peptides are then eluted from the HLA molecules by exposure to mild acid conditions and their amino acid sequence determined, e.g., by mass spectral analysis (e.g., Kubo et al., J. Immunol. 152:3913, 1994). Because, as disclosed herein, the majority of peptides that bind a particular HLA molecule are motif-bearing, this is an alternative modality for obtaining the motif-bearing peptides correlated with the particular HLA molecule expressed on the cell.


Alternatively, cell lines that do not express any endogenous HLA molecules can be transfected with an expression construct encoding a single HLA allele. These cells may then be used as described, i.e., they may be infected with a pathogenic organism or transfected with nucleic acid encoding an antigen of interest to isolate peptides corresponding to the pathogen or antigen of interest that have been presented on the cell surface. Peptides obtained from such an analysis will bear motif(s) that correspond to binding to the single HLA allele that is expressed in the cell.


As appreciated by one in the art, one can perform a similar analysis on a cell bearing more than one HLA allele and subsequently determine peptides specific for each HLA allele expressed. Moreover, one of skill would also recognize that means other than infection or transfection, such as loading with a protein antigen, can be used to provide a source of antigen to the cell.


The above examples are provided to illustrate the invention but not to limit its scope. For example, the human terminology for the Major Histocompatibility Complex, namely HLA, is used throughout this document. It is to be appreciated that these principles can be extended to other species as well. Thus, other variants of the invention will be readily apparent to one of ordinary skill in the art and are encompassed by the appended claims. All publications, patents, and patent application cited herein are hereby incorporated by reference for all purposes.

TABLE IPOSITIONPOSITIONPOSITIONC Terminus2 (Primary Anchor)3 (Primary Anchor)(Primary Anchor)SUPERMOTIFSA1T, I, L, V, M, SF, W, YA2L, I, V, M, A, T, QI, V, M, A, T, LA3V, S, M, A, T, L, IR, KA24Y, F, W, I, V, L, M, TF, I, Y, W, L, MB7PV, I, L, F, M, W, Y, AB27R, H, KF, Y, L, W, M, I, V, AB44E, DF, W, L, I, M, V, AB58A, T, SF, W, Y, L, I, V, M, AB62Q, L, I, V, M, PF, W, Y, M, I, V, L, AMOTIFSA1T, S, MYA1D, E, A, SYA2.1L, M, V, Q, I, A, TV, L, I, M, A, TA3L, M, V, I, S, A, T, F,K, Y, R, H, F, AC, G, DA11V, T, M, L, I, S, A,K, R, Y, HG, N, C, D, FA24Y, F, W, MF, L, I, WA*3101M, V, T, A, L, I, SR, KA*3301M, V, A, L, F, I, S, TR, KA*6801A, V, T, M, S, L, IR, KB*0702PL, M, F, W, Y, A, I, VB*3501PL, M, F, W, Y, I, V, AB51PL, I, V, F, W, Y, A, MB*5301PI, M, F, W, Y, A, L, VB*5401PA, T, I, V, L, M, F,W, Y


Bolded residues are preferred, italicized residues are less preferred: A peptide is considered motif-bearing if it has primary anchors at each primary anchor position for a motif or supermotif as specified in the above table.

TABLE IaPOSITIONPOSITIONPOSITIONC Terminus2 (Primary Anchor)3 (Primary Anchor)(Primary Anchor)SUPERMOTIFSA1T, I, L, V, M, SF, W, YA2V, Q, A, TI, V, L, M, A, TA3V, S, M, A, T, L, IR, KA24Y, F, W, I, V, L, M, TF, I, Y, W, L, MB7PV, I, L, F, M, W, Y, AB27R, H, KF, Y, L, W, M, I, V, AB58A, T, SF, W, Y, L, I, V, M, AB62Q, L, I, V, M, PF, W, Y, M, I, V, L, AMOTIFSA1T, S, MYA1D, E, A, SYA2.1V, Q, A, T*V, L, I, M, A, TA3.2L, M, V, I, S, A, T, F,K, Y, R, H, F, AC, G, DA11V, T, M, L, I, S, A,K, R, H, YG, N, C, D, FA24Y, F, WF, L, I, W
*If 2 is V, or Q, the C-term is not L


Bolded residues are preferred, italicized residues are less preferred: A peptide is considered motif-bearing if it has primary anchors at each primary anchor position for a motif or supermotif as specified in the above table.

TABLE IIPOSITIONcustom charactercustom charactercustom charactercustom charactercustom characterSUPERMOTIFSA11° AnchorT, I, L, V, M, SA21° AnchorL, I, V, M, A, T, QA3preferred1° AnchorY, F, W, (4/5)V, S, M, A, T, L, IdeleteriousD, E (3/5); P, (5/5)D, E, (4/5)A241° AnchorY, F, W, I, V, L, M, TB7preferredF, W, Y (5/5)1° AnchorF, W, Y (4/5)L, I, V, M, (3/5)PdeleteriousD, E (3/5); P(5/5);D, E, (3/5)G(4/5); A(3/5);Q, N, (3/5)B271° AnchorR, H, KB441° AnchorE, DB581° AnchorA, T, SB621° AnchorQ, L, I, V, M, PMOTIFSA1preferredG, F, Y, W,1° AnchorD, E, A,Y, F, W,9-merS, T, M,deleteriousD, E,R, H, K, L, I, VA,G,M, P,A1preferredG, R, H, KA, S, T, C, L, I V, M,1° AnchorG, S, T, C,9-merD, E, A, SdeleteriousAR, H, K, D, E, P, Y, F, W,D, E,P, Q, N,POSITIONcustom charactercustom charactercustom characterC-terminusSUPERMOTIFSA11° AnchorF, W, YA21° AnchorL, I, V, M, A, TA3preferredY, F, W, (3/5)Y, F, W, (4/5)P, (4/5)1° AnchorR, KdeleteriousA241° AnchorF, I, Y, W, L, MB7preferredF, W, Y, (3/5)1° AnchorV, I, L, F, M, W, Y, AdeleteriousG, (4/5)Q, N, (4/5)D, E, (4/5)B271° AnchorF, Y, L, W, M, V, AB441° AnchorF, W, Y, L, I, M, V, AB581° AnchorF, W, Y, L, I, V, M, AB621° AnchorF, W, Y, M, I, V, L, AMOTIFSA1 9-merpreferredP,D, E, Q, N,Y, F, W,1° AnchorYdeleteriousA,A1 9-merpreferredA, S, T, C,L, I, V, M,D, E,1° AnchorYdeleteriousR, H, K,P, G,G, P,POSITIONcustom charactercustom charactercustom charactercustom charactercustom characterA1peferredY, F, W,1° AnchorD, E, A, Q, N,A,Y, F, W, Q, N,10-merS, T, MdeleteriousG, P,R, H, K, G, L, I V, M,D, E,R, H, K,A1preferredY, F, W,S, T, C, L, I, V1° AnchorA,Y, F, W,10-merM,D, E, A, SdeleteriousR, H, K,R, H, K, D, E,P,P, Y, F, W,A2.1preferredY, F, W,1° AnchorY, F, W,S, T, C,Y, F, W,9-merL, M, I, V, Q, A, TdeleteriousD, E, P,D, E, R, K, HA2.1preferredA, Y, F, W,1° AnchorL, V, I, M,G,10-merL, M, I, V, Q, A, TdeleteriousD, E, P,D, E,R, K, H, A,P,A3preferredR, H, K,1° AnchorY, F, WP, R, H, K, Y, F, W,A,L, M, V, I, S, A, T, F, C, G DdeleteriousD, E, P,D, EA11preferredA,1° AnchorY, FW,Y, F, W,A,V, T, L, M, I, S, A, G, N, C, D, FdeleteriousD, E, P,A24preferredY, F, W, R, H, K,1° AnchorS, T, C9-merY, F, W, MdeleteriousD, E, G,D, E,G,Q, N, P,A24preferred1° AnchorP,Y, F, W, P,10-merY, F, W, MdeleteriousG, D, EQ, NR, H, KA3101preferredR, H, K,1° AnchorY, F, W,P,M, V, T, A, L, I, SdeleteriousD, E, P,D, E,A, D, E,A3301preferred1° AnchorY, F, WM, V, A, L, F, I, S, TdeleteriousG, PD, EA6801preferredY, F, W, S, T, C,1° AnchorY, F, W, L, I,A, V, T, M, S, L, IV, MdeleteriousG, P,D, E, G,R, H, K,B0702preferredR, H, K, F, W, Y,1° AnchorR, H, K,R, H, K,PdeleteriousD, E, Q, N, P,D, E, P,D, E,D, E,B3501preferredF, W, Y, L, I, V, M,1° AnchorF, W, Y,PdeleteriousA, G, P,G,B51preferredL, I, V, M, F, W, Y,1° AnchorF, W, Y,S, T, C,F, W, Y,PdeleteriousA, G, P, D, E, R, H, K,D, E,S, T, C,B5301preferredL, I, V, M, F, W, Y,1° AnchorF, W, Y,S, T, C,F, W, Y,PdeleteriousA, G, P, Q, N,B5401preferredF, W, Y,1° AnchorF, W, Y, L, I, VL, I, V, M,PM,deleteriousG, P, Q, N, D, E,G, D, E, S, T, C,R, H, K, D, E,POSITIONcustom characterorcustom charactercustom charactercustom characterC-terminusC-terminusA1peferredP, A, S, T, C,G, D, E,P,1° Anchor10-merYdeleteriousQ, N, AR, H, K, Y, F, W,R, H, K,AA1preferredP, G,G,Y, F, W,1° Anchor10-merYdeleteriousG,P, R, H, K,Q, N,A2.1preferredA,P1° Anchor9-merV, L, I, M, A, TdeleteriousR, K, HD, E, R, K, HA2.1preferredG,F, Y, W, L,1° Anchor10-merV, I, M,V, L, I, M, A, TdeleteriousR, K, H,D, E, R, K,R, K, H,H,A3preferredY, F, W,P,1° AnchorK, Y, R, H, F, AdeleteriousA11preferredY, F, W,Y, F, W,P,1° AnchorK,, RY, HdeleteriousAG,A24preferredY, F, W,Y, F, W,1° Anchor9-merF, L, I, WdeleteriousD, E, R, H, K,G,A, Q, N,A24preferredP,1° Anchor10-merF, L, I, WdeleteriousD, EAQ, N,D, E, A,A3101preferredY, F, W,Y, F, W,A, P,1° AnchorR, KdeleteriousD, E,D, E,D, E,A3301preferredA, Y, F, W1° AnchorR, KdeleteriousA6801preferredY, F, W,P,1° AnchorR, KdeleteriousA,B0702preferredR, H, K,R, H, K,P, A,1° AnchorL, M, F, W, Y, A, I, VdeleteriousG, D, E,Q, N,D, E,B3501preferredF, W, Y,1° AnchorL, M, F, W, Y, I, V, AdeleteriousG,B51preferredG,F, W, Y,1° AnchorL, I, V, F, W, Y, A, MdeleteriousG,D, E, Q, N,G, D, E,B5301preferredL, I, V, M, F,F, W, Y,1° AnchorW, Y,I, M, F, W, Y, A, L, VdeleteriousG,R, H, K, Q, N,D, E,B5401preferredA, L, I, V, M,F, W, Y, A, P,1° AnchorA, T, I, V, L, M, F, W, YdeleteriousD, E,Q, N, D, G, E,D, E,


Italicized residues indicate less preferred or “tolerated” residues.


The information in Table II is specific for 9-mers unless otherwise specified.


Secondary anchor specificities are designated for each position independently.

TABLE IIIPOSITIONMOTIFScustom charactercustom charactercustom charactercustom charactercustom characterDR4preferredF, M, Y,M,T,I,L, I, V, W,deleteriousW,DR1preferredM, F,P, A, M, Q,L, I, V, W, Y,deleteriousCC, HF, DC, W, DDR7preferredM, F,M,W,A,L, I, V, W, Y,deleteriousC,G,DR SupermotifM, F,L, I, V, W, Y,POSITIONMOTIFScustom charactercustom charactercustom charactercustom characterDR4preferredV, S, T,M, H,M, HC, P, A, L, I, M,deleteriousR,W, D, EDR1preferredV, M, A, T,M,A, V, MS, P, L, I, C,deleteriousG, D, E,DDR7preferredI, V, M, S, A,M,I, VC, T, P, L,deleteriousG, R, D,NGDR SupermotifV, M, S, T, A,C, P, L, I,POSITIONDR3 MOTIFScustom charactercustom charactercustom charactercustom charactercustom charactercustom charactermotif aL, I, V, M,DpreferredF, Y,motif bL, I, V, M,D, N, Q,K, R, HpreferredF, A, Y,E, S, T


Italicized residues indicate less preferred or “tolerated” residues. Secondary anchor specificities are designated for each position independently.

TABLE IVHLA Class I Standard Peptide Binding Affinity.STANDARDSTANDARDSEQUENCEBINDING AFFINITYALLELEPEPTIDE(SEQ ID NO:)(nM)A*0101944.02YLEPAIAKY25A*0201941.01FLPSDYFPSV5.0A*0202941.01FLPSDYFPSV4.3A*0203941.01FLPSDYFPSV10A*0205941.01FLPSDYFPSV4.3A*0206941.01FLPSDYFPSV3.7A*0207941.01FLPSDYFPSV23A*68021072.34YVIKVSARV8.0A*0301941.12KVFPYALINK11A*1101940.06AVDLYHFLK6.0A*3101941.12KVFPYALINK18A*33011083.02STLPETYVVRR29A*6801941.12KVFPYALINK8.0A*2402979.02AYIDNYNKF12B*07021075.23APRTLVYLL5.5B*35011021.05FPFKYAAAF7.2B511021.05FPFKYAAAF5.5B*53011021.05FPFKYAAAF9.3B*54011021.05FPFKYAAAF10









TABLE V










HLA Class II Standard Peptide Binding Affinity.















Binding Affinity


Allele
Nomenclature
Standard Peptide
Sequence (SEQ ID NO:)
(nM)














DRB1*0101
DR1
515.01
PKYVKQNTLKLAT
5.0


DRB1*0301
DR3
829.02
YKTIAFDEEARR
300


DRB1*0401
DR4w4
515.01
PKYVKQNTLKLAT
45


DRB1*0404
DR4w14
717.01
YARFQSQTTLKQKT
50


DRB1*0405
DR4w15
717.01
YARFQSQTTLKQKT
38


DRB1*0701
DR7
553.01
QYIKANSKFIGITE
25


DRB1*0802
DR8w2
553.01
QYIKANSKFIGITE
49


DRB1*0803
DR8w3
553.01
QYIKANSKFIGITE
1600


DRB1*0901
DR9
553.01
QYIKANSKFIGITE
75


DRB1*1101
DR5w11
553.01
QYIKANSKFIGITE
20


DRB1*1201
DR5w12
1200.05
EALIHQLKINPYVLS
298


DRB1*1302
DR6w19
650.22
QYIKANAKFIGITE
3.5


DRB1*1501
DR2w2β1
507.02
GRTQDENPVVHFFKNIVTPRTPPP
9.1


DRB3*0101
DR52a
511
NGQIGNDPNRDIL
470


DRB4*0101
DRw53
717.01
YARFQSQTTLKQKT
58


DRB5*0101
DR2w2β2
553.01
QYIKANSKFIGITE
20


















TABLE VI













Allelle-specific HLA-supertype members









HLA-supertype
Verifieda
Predictedb





A1
A*0101, A*2501, A*2601, A*2602, A*3201
A*0102, A*2604, A*3601, A*4301, A*8001


A2
A*0201, A*0202, A*0203, A*0204, A*0205, A*0206, A*0207,
A*0208, A*0210, A*0211, A*0212, A*0213



A*0209, A*0214, A*6802, A*6901


A3
A*0301, A*1101, A*3101, A*3301, A*6801
A*0302, A*1102, A*2603, A*3302, A*3303, A*3401,




A*3402, A*6601, A*6602, A*7401


A24
A*2301, A*2402, A*3001
A*2403, A*2404, A*3002, A*3003


B7
B*0702, B*0703, B*0704, B*0705, B*1508, B*3501, B*3502, B*3503,
B*1511, B*4201, B*5901



B*3503, B*3504, B*3505, B*3506, B*3507, B*3508, B*5101, B*5102,



B*5103, B*5104, B*5105, B*5301, B*5401, B*5501, B*5502, B*5601,



B*5602, B*6701, B*7801


B27
B*1401, B*1402, B*1509, B*2702, B*2703, B*2704, B*2705, B*2706,
B*2701, B*2707, B*2708, B*3802, B*3903, B*3904,



B*3801, B*3901, B*3902, B*7301
B*3905, B*4801, B*4802, B*1510, B*1518, B*1503


B44
B*1801, B*1802, B*3701, B*4402, B*4403, B*4404, B*4001, B*4002,
B*4101, B*4501, B*4701, B*4901, B*5001



B*4006


B58
B*5701, B*5702, B*5801, B*5802, B*1516, B*1517


B62
B*1501, B*1502, B*1513, B*5201
B*1301, B*1302, B*1504, B*1505, B*1506, B*1507,




B*1515, B*1520, B*1521, B*1512, B*1514, B*1510








aVerified alleles include alleles whose specificity has been determined by pool sequencing analysis, peptide binding assays, or by analysis of the sequences of CTL epitopes.






bPredicted alleles are alleles whose specificity is predicted on the basis of B and F pocket structure to overlap with the supertype specificity.















TABLE VII










Prostate A01 Supermotif Peptides



with Binding Data
















No. of

Seq.






Amino

Id.


Protein
Sequence
Position
Acids
A*0101
No.
















PAP
ALFPPEGVSIW
122
11

1






Kallikrein
ALGTTCYASGW
147
11

2





PSA
ALGTTCYASGW
143
11

3





Kallikrein
ALPEKPAVY
235
9

4





PSA
ALPERPSLY
231
9
0.0110
5





PSM
ALVLAGGF
25
8

6





PSM
ALVLAGGFF
25
9

7





PAP
AMTNLAALF
116
9

8





PAP
ASCHLTELY
311
9
0.7700
9





PAP
ASCHLTELYF
311
10

10





PSM
ASGRARYTKNW
531
11

11





PSM
ASKFSERLQDF
643
11

12





PAP
ASLSLGFLF
12
9

13





PSM
ASWDAEEF
419
8

14





PSM
ATARRPRW
13
8

15





PSM
AVATARRPRW
11
10

16





PSM
AVVHEIVRSF
393
10

17





Kallikrein
AVYTKVVHY
241
9

18





Kallikrein
CLKKNSQVW
66
9

19





PSM
CSGKIVIARY
196
10
0.0160
20





PAP
CSPSCPLERF
347
10

21





PSM
DIVPPFSAF
156
9

22





PAP
DLFGIWSKVY
201
10

23





PSA
DMSLLKNRF
98
9

24





PSM
DSLFSAVKNF
630
10

25





PSM
DSSIEGNY
453
8

26





PSM
DSVELAHY
106
8

27





PAP
DVYNGLLPPY
301
10

28





PSM
EIFNTSLF
137
8

29





PSM
ELAHYDVLLSY
109
11

30





PSM
ELANSIVLPF
586
10

31





PAP
ELGEYIRKRY
80
10

32





PSM
ELKAENIKKF
64
10

33





PAP
ELKFVTLVF
34
9

34





PSM
ELKSPDEGF
480
9

35





PAP
ELSELSLLSLY
237
11

36





PAP
ELSLLSLY
240
8

37





PSM
ELVEKFYDPMF
560
11

38





PAP
ELVGPVIPQDW
358
11

39





PAP
ELYFEKGEY
317
9

40





PAP
ELYFEKGEYF
317
10

41





PSM
EMKTYSVSF
621
9

42





PAP
ESETLKSEEF
168
10

43





PSM
ESFPGIYDALF
703
11

44





PSM
ESKVDPSKAW
716
10

45





PAP
ESSWPQGF
60
8

46





PAP
ESVHNFTLPSW
216
11

47





PAP
ESYKHEQVY
95
9
0.0980
48





PAP
ETLKSEEF
170
8

49





PSM
ETNKYSGY
542
8

50





PSM
ETNKFSGYPLY
542
11

51





PSM
ETYELVEKF
557
9

52





PSM
ETYELVEKFY
557
10
0.0260
53





PSM
EVKRQIYVAAF
727
11

54





PAP
FLFLLFFW
18
8

55





PSM
FLLGFLFGW
33
9

56





PSM
FLLGFLFGWF
33
10

57





PSA
FLTLSVTW
3
8

58





Kallikrein
FMLCAGLW
195
8

59





PSA
FMLCAGRW
191
8

60





PSM
FSERLQDF
646
8

61





PSM
FSGYPLYHSVY
546
11

62





PSM
FTEIASKK
639
8

63





PSM
GIASGRARY
529
9
0.0025
64





PAP
GIWSKVYDPLY
204
11

65





PSM
GLDSVELAHY
104
10
0.4800
66





PAP
GLHGQDLF
196
8

67





PAP
GLHGQDLFGIW
196
11

68





PSM
GLLGSTEW
427
8

69





PSM
GLPDRPFY
680
8

70





PAP
GLQMALDVY
295
9

71





PAP
GMEQHYELGEY
74
11

72





PSM
GMPEGDLVY
168
9
0.0001
73





PSM
GSAPPDSSW
311
9

74





PSM
GSGNDFEVF
516
9

75





PSM
GSGNDFEVFF
516
10

76





Kallikrein
GSIEPEEF
158
8

77





PSA
GSIEPEEF
154
8

78





PSM
GTLKKEGW
403
8

79





Kallikrein
GTTCYASGW
149
9

80





PSA
GTTGYASGW
145
9

81





PSM
GVILYSDPADY
224
11

82





PSM
GVKSYPDGW
238
9

83





Kallikrein
GVLQGITSW
221
9

84





PSA
GVLQGITSW
217
9

85





Kallikrein
GVLVHPQW
52
8

86





PSA
GVLVHPQW
48
8

87





PAP
GVSIWNPILLW
128
11

88





PSM
HLAGTEQNF
82
9

89





PAP
HMKRATQIPSY
270
11

90





Kallikrein
HSFPHPLY
94
8
0.0260
91





PSA
HSFPHPLY
90
8
0.0260
92





Kallikrein
HSQPWQVAVY
34
10

93





PSM
HSTNEVTRIY
347
10
0.0048
94





PSM
IINEDGNEIF
130
10

95





PSM
ILFASWDAEEF
416
11

96





PSM
ILGGHRDSW
373
9

97





PSM
ILGGHRDSWVF
373
11

98





PSA
ILLGRHSLF
69
9

99





PSA
ILSRIVGGW
17
9

100





PSM
ILYSDPADY
226
9

101





PSM
ILYSDPADYF
226
10

102





PSM
ISKLGSGNDF
512
10

103





PSM
ITPKHNMKAF
52
10

104





PSM
IVIARYGKVF
200
10

105





PSM
IVLPFDCRDY
591
10

106





PSM
IVPPFSAF
157
8

107





PSM
KIVIARYGKVF
199
11

108





PSM
KLGSGNDF
514
8

109





PSM
KLGSGNDFEVF
514
11

110





PAP
KLSGLHGQDLF
193
11

111





PSM
KTYSVSFDSLF
623
11

112





PSM
KVDPSKAW
718
8

113





PSM
KVPYNVGPGF
324
10

114





Kallikrein
KVVHYRKW
245
8

115





PSA
KVVHYRKW
241
8

116





PSA
LILSRIVGGW
16
10

117





Kallikrein
LIQSRIVGGW
20
10

118





PSM
LLGFLFGW
34
8

119





PSM
LLGFLFGWF
34
9

120





PSA
LLGRHSLF
70
8

121





PSM
LLQERGVAY
441
9

122





Kallikrein
LLSNDMCARAY
178
11

123





PSM
LMFLERAF
668
8

124





PAP
LSEDQLLY
148
8

125





PAP
LSEDQLLYLPF
148
11

126





PAP
LSELSLLSLY
238
10
12.0000
127





PAP
LSGLHGQDLF
194
10

128





PAP
LSLGFLFLLF
14
10

129





PAP
LSLGFLFLLFF
14
11

130





Kallikrein
LSNDMCARAY
179
10

131





PSA
LSRIVGGW
18
8

132





PSM
LSYPNKTHPNY
117
11

133





PAP
LTELYFEKGEY
315
11

134





PSM
LTPGYPANEY
268
10
0.0082
135





PAP
LTQLGMEQHY
70
10
0.6200
136





PSM
LVEKFYDPMF
561
10

137





PAP
LVGPVIPQDW
359
10

138





PSM
LVLAGGFF
26
8

139





PSM
MMNDQLMF
663
8

140





PAP
MSAMTNLAALF
114
11

141





PSA
MSLLKNRF
99
8

142





PAP
MTNLAALF
117
8

143





PSM
NIKKFLYNF
69
9

144





PSM
NITPKHNMKAF
51
11

145





PSM
NVGPGFTGNF
328
10

146





PSM
NVSDIVPPF
153
9

147





PAP
PIKESSWPQGF
57
11

148





PSM
PLGLPDRPF
678
9

149





PSM
PLGLPDRPFY
678
10

150





PSA
PLILSRIVGGW
15
11

151





Kallikrein
PLIQSRIVGGW
19
11

152





PAP
PLSEDQLLY
147
9
1.2000
153





PSM
PLTPGYPANEY
267
11

154





PAP
PLYCESVHNF
212
10

155





PSM
PLYHSVYETY
550
10

156





PAP
PSCPLERF
349
8

157





PSM
PSIPVHPIGY
290
10

158





PSM
PSIPVHPIGYY
290
11

159





PSA
PSLYTKVVHY
236
10
0.0010
160





PAP
PSYKKLIMY
278
9
0.0031
161





PAP
PTDPIKESSW
54
10

162





PSM
PVHPIGYY
293
8

163





Kallikrein
PVSHSFPHPLY
91
11

164





PAP
QIPSYKKLIMY
276
11

165





PSM
QIQSQWKEF
95
9

166





PSM
QLAGAKGVILY
218
11

167





PSM
QLAKQIQSQW
91
10

168





PAP
QLGMEQHY
72
8

169





PSM
QLMFLERAF
667
9

170





PAP
QLTQLGMEQHY
69
11

171





Kallikrein
QSRIVGGW
22
8

172





Kallikrein
QVAVYSHGW
39
9

173





PSA
QVFQVSHSF
84
9

174





PSA
QVHPQKVTKF
182
10

175





PSM
QVRGGMVF
578
8

176





PSA
QVSHSFPHPLY
87
11

177





Kallikrein
QVWLGRHNLF
72
10

178





PSM
RISKLGSGNDF
511
11

179





PSM
RLGIASGRARY
527
11

180





PAP
RLHPYKDF
180
8

181





PSM
RLLQERGVAY
440
10

182





PSM
RMMNDQLMF
662
9

183





PSM
RSFGTLKKEGW
400
11

184





PAP
RSVLAKELKF
28
10

185





PSM
RTILFASW
414
8

186





PSM
RVDCTPLMY
463
9
11.0000
187





Kallikrein
RVPVSHSF
89
8

188





PSM
SIINEDGNEIF
129
11

189





PSM
SIPVHPIGY
291
9

190





PSM
SIPVHPIGYY
291
10

191





PSM
SIVLPFDGRDY
590
11

192





PAP
SIWNPILLW
130
9

193





PSM
SLFEPPPPGY
142
10

194





PSM
SLFSAVKNF
631
9

195





PAP
SLGFLFLLF
15
9

196





PAP
SLGFLFLLFF
15
10

197





PAP
SLGFLFLLFFW
15
11

198





PAP
SLSLGFLF
13
8

199





PAP
SLSLGFLFLLF
13
11

200





PSA
SLYTKVVHY
237
9
0.0017
201





PSM
SMKHPQEMKTY
615
11

202





PSM
SSHNKYAGESF
695
11

203





PSM
SSWRGSLKVPY
317
11

204





PSM
STNEVTRIY
348
9
0.0430
205





PAP
SVHNFTLPSW
217
10

206





PSA
SVILLGRHSLF
67
11

207





PAP
SVLAKELKF
29
9

208





PSM
SVSFDSLF
626
8

209





PSM
TLRGAVEPDRY
361
11

210





PSM
TLRVDCTPLMY
461
11

211





PSM
TSLFEPPPPGY
141
11

212





Kallikrein
TTCYASGW
150
8

213





PSA
TTCYASGW
146
8

214





PSM
TVAQVRGGMVF
575
11

215





PAP
TVPLSEDQLLY
145
11

216





PSM
VIARYGKVF
201
9

217





PSM
VILGGHRDSW
372
10

218





PSA
VILLGRHSLF
68
10

219





PSM
VILYSDPADY
225
10

220





PSM
VILYSDPADYF
225
11

221





PSM
VIYAPSSHNKY
690
11

222





PSM
VLAGGFFLLGF
27
11

223





PAP
VLAKELKF
30
8

224





PSM
VLPFDCRDY
592
9

225





Kallikrein
VLQGITSW
222
8

226





PSA
VLQGITSW
218
8

227





PSM
VLRKYADKIY
603
10

228





PSM
VLRMMNDQLMF
660
11

229





PSM
VSDIVPPF
154
8

230





PSM
VSDIVPPFSAF
154
11

231





PAP
VSGLQMALDVY
293
11

232





Kallikrein
VSHSFPHPLY
92
10
0.1500
233





PSA
VSHSFPHPLY
88
10
0.1500
234





PAP
VSIWNPILLW
129
10

235





Kallikrein
VTEFMLCAGLW
192
11

236





PSA
VTKFMLCAGRW
188
11

237





PSA
VVFLTLSVTW
1
10

238





PSM
VVHEIVRSF
394
9

239





PSM
VVLRKYADKIY
602
11

240





Kallikrein
WLGRHNLF
74
8

241





PAP
WSKVYDPLY
206
9
0.0046
242





PSM
WTKKSPSPEF
497
10

243





PAP
YIRKRYRKF
84
9

244





PAP
YLPFRNCPRF
155
10

245





PSM
YSDPADYF
228
8

246





Kallikrein
YSEKVTEF
188
8

247





PSM
YSVSFDSLF
625
9

248





PSM
YTKNWETNKF
537
10

249





Kallikrein
YTKVVHYRKW
243
10

250





PSA
YTKVVHYRKW
239
10

251





PSM
YVILGGHRDSW
371
11

252





PSM
YVNYARTEDF
176
10

253





PSM
YVNYARTEDFF
176
11

254
















TABLE VIII










Prostate A02 Supermotif Peptides with Binding Information




















No. of





Seq.






Amino





Id.


Protein
Sequence
Position
Acids
A*0201
A*0202
A*0203
A*0206
A*6802
No.




















PSM
AAAETLSEV
741
9
0.0002




255






PSM
AAAETLSEVA
741
10





256





PSM
AAETLSEV
742
8





257





PSM
AAETLSEVA
742
9





258





PSM
AAFTVQAA
735
8





259





PSM
AAFTVQAAA
735
9





260





PSM
AAFTVQAAAET
735
11





261





PSA
AAHCIRNKSV
59
10
0.0002




262





PSA
AAHCIRNKSVI
59
11
0.0010
0.0100
0.0140
0.0004
0.0018
263





Kallikrein
AAHCLKKNSQV
63
11
0.0003
0.0006
0.0450
0.0001
0.0004
264





PAP
AALFPPEGV
121
9
0.0002




265





PAP
AALFPPEGVSI
121
11





266





PSA
AAPLILSRI
13
9
0.0002




267





PSA
AAPLILSRIV
13
10
0.0002




268





PAP
AAPLLLARA
3
9





269





PAP
AAPLLLARAA
3
10





270





PAP
AASLSLGFL
11
9
0.0002




271





PAP
AASLSLGFLFL
11
11





272





PSM
AAVVHEIV
392
8





273





PAP
ALDVYNGL
299
8





274





PAP
ALDVYNGLL
299
9
0.0520




275





PSM
ALFDIESKV
711
9
0.0590
6.0000
7.2000
0.0250
0.0009
276





PAP
ALFPPEGV
122
8





277





PAP
ALFPPEGVSI
122
10
0.0044




278





Kallikrein
ALGTTCYA
147
8
0.0230




279





PSA
ALGTTCYA
143
8
0.0230




280





Kallikrein
ALPEKPAV
235
8
0.0009
0.0200
0.0510
0.0001
−0.0001
281





Kallikrein
ALPEKPAVYT
235
10
0.0003
0.0050
0.0028
0.0005
−0.0001
282





PSA
ALPERPSL
231
8
0.0002




283





PSA
ALPERPSLYT
231
10
0.0008




284





Kallikrein
ALSVGCTGA
9
9
0.0410
0.0038
0.1100
0.0066
−0.0001
285





Kallikrein
ALSVGCTGAV
9
10
0.0180
0.2600
0.4000
0.0051
0.0012
286





PSM
ALVLAGGFFL
25
10
0.0150




287





PSM
ALVLAGGFFLL
25
11





288





PAP
AMTNLAAL
116
8





289





PSM
AQKLLEKM
302
8





290





PSM
AQLAGAKGV
217
9





291





PSM
AQLAGAKGVI
217
10





292





PSM
AQLAGAKGVIL
217
11





293





PSA
AQVHPQKV
181
8





294





PSA
AQVHPQKVT
181
9
0.0002




295





PSM
AQVRGGMV
577
8





296





PSM
AQVRGGMVFEL
577
11





297





PSM
ATARRPRWL
13
9
0.0002




298





PSM
ATARRPRWLCA
13
11





299





PAP
ATEDTMTKL
227
9
0.0002




300





PAP
ATLGKLSGL
189
9
0.0005




301





PSM
ATNITPKHNM
49
10





302





PAP
ATQIPSYKKL
274
10
0.0002




303





PAP
ATQIPSYKKLI
274
11





304





PSM
AVATARRPRWL
11
11





305





PSA
AVCGGVLV
44
8
0.0003




306





PSM
AVEPDRYV
365
8





307





PSM
AVEPDRYVI
365
9
0.0001




308





PSM
AVEPDRYVIL
365
10
0.0002




309





PSM
AVGLPSIPV
286
9
0.0042




310





PSM
AVKNFTEI
635
8





311





PSM
AVKNFTEIA
635
9





312





PSA
AVKVMDLPT
131
9
0.0001




313





Kallikrein
AVPLIQSRI
17
9
0.0001
0.0026
0.0013
0.0020
0.0610
314





Kallikrein
AVPLIQSRIV
17
10
0.0014
0.0510
0.0490
0.0035
0.0058
315





PSM
AVVLRKYA
601
8





316





PSM
AVVLRKYADKI
601
11





317





Kallikrein
AVYSHGWA
41
8
−0.0001
0.0005
0.0011
0.0004
0.0003
318





PSM
CAGALVLA
22
8





319





Kallikrein
CAGLWTGGKDT
198
11
0.0001
0.0003
0.0027
−0.0001
−0.0002
320





PSA
CAGRWTGGKST
194
11
0.0013
0.0370
0.0250
0.0002
0.0081
321





Kallikrein
CALPEKPA
234
8
−0.0001
−0.0001
−0.0001
−0.0001
−0.0001
322





Kallikrein
CALPEKPAV
234
9
0.0002
0.0013
0.1100
0.0004
0.0001
323





Kallikrein
CALPEKPAVYT
234
11
0.0008
0.0033
0.0120
0.1700
−0.0002
324





PSA
CALPERPSL
230
9
0.0001




325





PSA
CALPERPSLYT
230
11
0.0008
0.0130
0.0071
0.0016
0.0023
326





PSA
CAQVHPQKV
180
9
0.0002




327





PSA
CAQVHPQKVT
180
10
0.0001




328





Kallikrein
CARAYSEKV
184
9
−0.0001
0.0006
0.0025
0.0002
0.0012
329





Kal1ikrein
CARAYSEKVT
184
10
0.0074
0.0710
0.0200
0.0030
0.0071
330





PSA
CIRNKSVI
62
8
0.0001




331





PSA
CIRNKSVIL
62
9
0.0003




332





PSA
CIRNKSVILL
62
10
0.0001




333





Kallikrein
CLKKNSQV
66
8
0.0001
0.0006
0.0006
−0.0001
−0.0001
334





Kallikrein
GLKKNSQVWL
66
10
0.0001
0.0220
0.0083
0.0002
−0.0001
335





PAP
CMTTNSHQGT
372
10
0.0002




336





Kallikrein
CTGAVPLI
14
8
0.0001
0.0001
0.0001
0.0012
0.0004
337





PSM
CTPLMYSL
466
8





338





PSM
CTPLMYSLV
466
9
0.0004




339





PSA
CVDLHVISNDV
169
11
0.0001




340





Kallikrein
CVSLHLLSNDM
173
11
0.0002
0.0031
0.0020
0.0009
0.0007
341





PSM
DAEEFGLL
422
8





342





PSM
DAEEFGLLGST
422
11





343





PSM
DALFDIESKV
710
10
0.0004




344





PSM
DAQKLLEKM
301
9





345





PSA
DAVKVMDL
130
8
−0.0001
0.0003
−0.0001
−0.0001
0.0001
346





PSA
DAVKVMDLPT
130
10
0.0001




347





PSM
DIESKVDPSKA
714
11





348





PSM
DIVPPFSA
156
8





349





PAP
DLFGIWSKV
201
9
0.0002




350





PSA
DLHVISNDV
171
9
0.0003




351





PSA
DLHVISNDVCA
171
11
0.0001




352





Kallikrein
DLMLLRLSEPA
120
11
0.0022




353





PSA
DLMLLRLSEPA
116
11
0.0022




354





PSA
DLPTQEPA
136
8
0.0001




355





PSA
DLPTQEPAL
136
9
0.0003




356





PSA
DLPTQEPALGT
136
11
0.0041
0.0180
0.0100
0.0001
0.0009
357





Kallikrein
DLVLSIAL
3
8
0.0001
−0.0002
−0.0001
−0.0001
0.0006
358





Kallikrein
DLVLSIALSV
3
10
0.0010
0.0180
0.0052
0.0230
0.0051
359





PSM
DLVYVNYA
173
8





360





PSM
DLVYVNYART
173
10
0.0004




361





Kallikrein
DMCARAYSEKV
182
11
0.0001
0.0018
0.0130
0.0001
0.0170
362





PSM
DMKINCSGKI
191
10
0.0001




363





PSM
DMKINCSGKIV
191
11





364





PSA
DMSLLKNRFL
98
10
0.0001




365





PSM
DQLMFLERA
666
9





366





PSM
DQLMFLERAFI
666
11





367





Kallikrein
DTCGGDSGGPL
207
11
0.0001
−0.0001
0.0005
−0.0001
0.0005
368





PAP
DTFPTDPI
51
8





369





Kallikrein
DTGQRVPV
85
8
−0.0001
0.0001
−0.0001
−0.0001
0.0002
370





PSA
DTGQVFQV
81
8
−0.0001
−0.0001
−0.0001
−0.0001
0.0016
371





PAP
DTMTKLREL
230
9
0.0002




372





PAP
DTTVSGLQM
290
9





373





PAP
DTTVSGLQMA
290
10





374





PAP
DTTVSGLQMAL
290
11





375





PSA
DVCAQVHPQKV
178
11
0.0001




376





PAP
DVDRTLMSA
108
9





377





PAP
DVDRTLMSAM
108
10





378





PAP
DVDRTLMSAMT
108
11





379





PSM
DVLLSYPNKT
114
10





380





Kallikrein
DVVKVLGL
134
8
−0.0001
−0.0001
−0.0001
−0.0001
0.0024
381





Kallikrein
DVVKVLGLPT
134
10
0.0012
0.0230
0.0460
0.0004
0.0017
382





PAP
DVYNGLLPPYA
301
11





383





PSM
EATNITPKHNM
48
11





384





PSM
EAVGLPSI
285
8





385





PSM
EAVGLPSIPV
285
10
0.0002




386





PSM
EIASKFSERL
641
10
0.0001




387





PAP
EILNHMKRA
266
9





388





PAP
EILNHMKRAT
266
10





389





PSM
EIVRSFGT
397
8





390





PSM
EIVRSFGTL
397
9
0.0002




391





PSM
ELAHYDVL
109
8





392





PSM
ELAHYDVLL
109
9
0.0028




393





PSM
ELANSIVL
586
8





394





PSM
ELKAENIKKFL
64
11





395





PAP
ELKFVTLV
34
8





396





PAP
ELSELSLL
237
8





397





PAP
ELSELSLLSL
237
10
0.0008




398





PAP
ELSLLSLYGI
240
10
0.0002




399





PSA
ELTDAVKV
127
8
0.0001




400





PSA
ELTDAVKVM
127
9
0.0001




401





PSA
ELTDAVKVMDL
127
11
0.0001




402





PSM
ELVEKFYDPM
560
10
0.0001




403





PAP
ELYFEKGEYFV
317
11





404





PAP
EMYYRNET
328
8





405





PAP
EQHYELGEYI
76
10





406





PSM
EQNFQLAKQI
87
10





407





PAP
EQVYIRST
100
8





408





PAP
EQVYIRSTDV
100
10





409





PSM
ETDSAVAT
7
8





410





PSM
ETDSAVATA
7
9





411





PSM
ETNKFSGYPL
542
10
0.0002




412





PAP
ETQHEPYPL
334
9
0.0002




413





PAP
ETQHEPYPLM
334
10





414





PAP
ETQHEPYPLML
334
11





415





PSM
EVFFQRLG
522
9
0.0002




416





PSM
EVFFQRLGIA
522
10





417





PSM
EVKRQIYV
727
8





418





PSM
EVKRQIYVA
727
9





419





PSM
EVKRQIYVAA
727
10





420





PSM
EVTRIYNV
351
8





421





PSM
EVTRIYNVI
351
9
0.0002




422





PSM
EVTRIYNVIGT
351
11





423





PAP
FAELVGPV
356
8





424





PAP
FAELVGPVI
356
9
0.0002




425





PSM
FASWDAEEFGL
418
11





426





PAP
FIATLGKL
187
8





427





PAP
FIATLGKLSGL
187
11





428





PSM
FIKSSNEA
42
8





429





PSM
FIKSSNEAT
42
9





430





PSM
FIKSSNEATNI
42
11





431





PSM
FLDELKAENI
61
10
0.0160




432





PSM
FLERAFIDPL
670
10
0.0014




433





PAP
FLFLLFFWL
18
9
0.0011




434





PAP
FLLFFWLDRSV
20
11





435





PSM
FLLGFLFGWFI
33
11





436





PAP
FLNESYKHEQV
92
11





437





Kallikrein
FLRPRSLQCV
165
10
0.0410
0.0940
1.1000
0.0068
0.0036
438





PSA
FLTLSVTWI
3
9
0.0150




439





PSA
FLTLSVTWIGA
3
11
0.0160




440





PSA
FLTPKKLQCV
161
10
0.0310




441





PSM
FLYNFTQI
73
8





442





PSM
FLYNFTQIPHL
73
11





443





Kallkrein
FMLCAGLWT
195
9
0.0220
0.0019
0.0160
0.0170
0.0006
444





PSA
FMLGAGRWT
191
9
0.0059




445





PAP
FQELESET
164
8





446





PAP
FQELESETL
164
9





447





PSM
FQRLGIASGRA
525
11





448





PSA
FQVSHSFPHPL
86
11





449





PSM
FTGNFSTQKV
333
10
0.0001




450





PAP
FTLPSWAT
221
8





451





PAP
FTLPSWATEDT
221
11





452





PSM
FTQIPHLA
77
8





453





PSM
FTQIPHLAGT
77
10





454





PSM
FTVQAAAET
737
9





455





PSM
FTVQAAAETL
737
10
0.0001




456





PAP
FVEMYYRNET
326
10





457





PSA
GAAPLILSRI
12
10
0.0005




458





PSA
GAAPLILSRIV
12
11
0.1700
0.0220
0.0110
0.0006
0.0017
459





PSM
GAAVVHEI
391
8





460





PSM
GAAVVHEIV
391
9
0.0002




461





PSM
GALVLAGGFFL
24
11





462





PSM
GAVEPDRYV
364
9
0.0001




463





PSM
GAVEPDRYVI
364
10
0.0002




464





PSM
GAVEPDRYVIL
364
11





465





Kallikrein
GAVPLIQSRI
16
10
0.0017
0.0520
0.0380
0.0041
0.0057
466





Kallikrein
GAVPLIQSRIV
16
11
0.0001
0.0004
0.0004
0.0003
0.0003
467





PSM
GIAEAVGL
282
8





468





PSM
GIAEAVGLPSI
282
11





469





PSM
GIASGRARYT
529
10





470





PSM
GIDPQSGA
385
8





471





PSM
GIDPQSGAA
385
9





472





PSM
GIDPQSGAAV
385
10
0.0002




473





PSM
GIDPQSGAAVV
385
11





474





PAP
GIHKQKEKSRL
248
11





475





Kallikrein
GITSWGPEPCA
225
11
0.0009
0.0014
0.0230
0.0001
0.0004
476





PSA
GITSWGSEPCA
221
11
0.0001




477





PAP
GIWSKVYDPL
204
10
0.0002




478





PSM
GIYDALFDI
707
9
0.0210




479





PSM
GLDSVELA
104
8





480





PAP
GLHGQDLFGI
196
10
0.0340




481





PSM
GLLGSTEWA
427
9
0.0079




482





PAP
GLLPPYASCHL
305
11





483





PSM
GLPDRPFYRHV
680
11





484





PSM
GLPSIPVHPI
288
10
0.0340
1.6000
4.7000
0.0015
0.0260
485





Kallikrein
GLPTQEPA
140
8
−0.0001
0.0003
−0.0001
−0.0001
−0.0001
486





Kallikrein
GLPTQEPAL
140
9
0.0002
0.0092
0.0013
0.0007
−0.0002
487





Kallikrein
GLPTQEPALGT
140
11
0.0003
0.0200
0.0450
0.0006
0.0020
488





PAP
GLQMALDV
295
8





489





Kallikrein
GLWTGGKDT
200
9
0.0002
0.0007
0.0015
−0.0001
−0.0002
490





PAP
GMEQHYEL
74
8





491





PSM
GMPEGDLV
168
8





492





PSM
GMPEGDLVYV
168
10
0.0910
1.4000
1.4000
0.0230
0.0013
493





PSM
GMPRISKL
508
8





494





PSM
GMVFELANSI
582
10
0.0024




495





PSM
GMVFELANSIV
582
11





496





PAP
GQDLFGIWSKV
199
11





497





PAP
GQLTQLGM
68
8





498





PSM
GTEQNFQL
85
8





499





PSM
GTEQNFQLA
85
9





500





PSM
GVAYINADSSI
446
11





501





PSM
GVILYSDPA
224
9





502





PSM
GVKSYPDGWNL
238
11





503





Kallikrein
GVLVHPQWV
52
9
0.0003




504





PSA
GVLVHPQWV
48
9
0.0003




505





Kallikrein
GVLVHPQWVL
52
10
0.0004




506





PSA
GVLVHPQWVL
48
10
0.0004




507





Kallikrein
GVLVHPQWVLT
52
11
0.0002
0.0005
0.0005
0.0014
−0.0001
508





PSA
GVLVHPQWVLT
48
11
0.0002
0.0005
0.0005
0.0014
−0.0001
509





PAP
GVLVNEIL
261
8





510





PAP
GVLVNEILNHM
261
11





511





PSM
GVQRGNIL
252
8





512





PSM
GVQRGNILNL
252
10
0.0001




513





PAP
GVSIWNPI
128
8





514





PAP
GVSIWNPIL
128
9
0.0034




515





PAP
GVSIWNPILL
128
10
0.0016




516





PSM
HIHSTNEV
345
8





517





PSM
HIHSTNEVT
345
9





518





PSM
HIHSTNEVTRI
345
11





519





PSM
HLAGTEQNFQL
82
11





520





Kallikrein
HLLSNDMCA
177
9
0.0020
0.0049
0.0005
0.0009
0.0003
521





Kallikrein
HLLSNDMCARA
177
11
0.0290
0.0520
0.1100
0.0088
0.0004
522





PSM
HLTVAQVRGGM
573
11





523





PAP
HMKRATQI
270
8





524





PAP
HQGTEDST
378
8





525





PAP
HTVPLSEDQL
144
10
0.0002




526





PAP
HTVPLSEDQLL
144
11





527





PSA
HVISNDVCA
173
9
0.0001




528





PSA
HVISNDVCAQV
173
11
0.0024




529





PSM
IAEAVGLPSI
283
10
0.0001




530





Kallikrein
IALSVGCT
8
8
0.0001
−0.0002
−0.0001
−0.0001
0.0003
531





Kallikrein
IALSVGCTGA
8
10
0.0013
0.0500
0.0180
0.0180
0.0005
532





Kallikrein
IALSVGCTGAV
8
11
0.0009
0.0032
0.0270
0.0100
0.0061
533





PSM
IASGRARYT
530
9





534





PSM
IASKFSERL
642
9
0.0001




535





PAP
IATLGKLSGL
188
10
0.0002




536





PSM
IINEDGNEI
130
9
0.0002




537





PSM
ILFASWDA
416
8





538





PSM
ILGGHRDSWV
373
10
0.0003




539





PSA
ILLGRHSL
69
8
0.0010




540





PAP
ILLWQPIPV
135
9
1.3000




541





PAP
ILLWQPIPVHT
135
11





542





PAP
ILNHMKRA
267
8





543





PAP
ILNHMKRAT
267
9
0.0001




544





PAP
ILNHMKRATQI
267
11





545





PSM
ILNLNGAGDPL
258
11





546





PSM
ILYSDPADYFA
226
11





547





PAP
IMYSAHDT
284
8





548





PAP
IMYSAHDTT
284
9
0.0019




549





PAP
IMYSAHDTTV
284
10
0.0610




550





PSM
IQSQWKEFGL
96
10





551





Kallikrein
ITDVVKVL
132
8
0.0001
0.0010
0.0001
−0.0001
0.0002
552





Kallikrein
ITDVVKVLGL
132
10
0.0003
0.0084
0.0088
0.0004
0.0005
553





PSM
ITPKHNMKA
52
9





554





PSM
ITPKHNMKAFL
52
11





555





Kallikrein
ITSWGPEPCA
226
10
0.0003
0.0100
0.0031
0.0005
0.0002
556





Kallkrein
ITSWGPEPCAL
226
11
0.0003
0.0150
0.0007
0.0013
0.0350
557





PSA
ITSWGSEPCA
222
10
0.0003
0.0036
0.0030
0.0001
0.0003
558





PSA
ITSWGSEPCAL
222
11
0.0010
0.0120
0.0096
0.0001
0.0003
559





PSM
IVIARYGKV
200
9
0.0001




560





PSM
IVLPFDCRDYA
591
11





561





PSM
IVLRMMNDQL
659
10
0.0004




562





PSM
IVLRMMNDQLM
659
11





563





PSM
IVRSFGTL
398
8





564





PSM
KAENIKKFL
66
9
0.0002




565





PSM
KAFLDELKA
59
9





566





PSM
KAWGEVKRQI
723
10
0.0001




567





PSM
KINCSGKI
193
8





568





PSM
KINCSGKIV
193
9
0.0002




569





PSM
KKINCSGKIVI
193
10
0.0001




570





PSM
KINCSGKIVIA
193
11





571





Kallikrein
KITDVVKV
131
8
0.0004
0.0002
0.0017
0.0002
−0.0001
572





Kallikrein
KITDVVKVL
131
9
0.0047
0.0500
0.0420
0.0021
0.0002
573





Kallikrein
KITDVVKVLGL
131
11
0.0002
0.0053
0.1700
0.0011
0.0006
574





PSM
KIVIARYGKV
199
10
0.0002




575





PSM
KLERDMKI
187
8





576





PSM
KLGSGNDFEV
514
10
0.0140




577





PAP
KLIMYSAHDT
282
10
0.0002




578





PAP
KLIMYSAHDTT
282
11





579





PSM
KLLEKMGGSA
304
10
0.0003




580





PSA
KLQCVDLHV
166
9
0.0190




581





PSA
KLQCVDLHVI
166
10
0.0370




582





PAP
KLRELSEL
234
8





583





PAP
KLRELSELSL
234
10
0.0040




584





PAP
KLRELSELSLL
234
11





585





PAP
KLSGLHGQDL
193
10
0.0026




586





PSM
KMHIHSTNEV
343
10
0.0042




587





PSM
KMHIHSTNEVT
343
11





588





PAP
KQKEKSRL
251
8





589





PSM
KTHPNYISI
122
9
0.0002




590





PSM
KTHPNYISII
122
10
0.0001




591





PSM
KTYSVSFDSL
623
10
0.0002




592





PSM
KVDPSKAWGEV
718
11





593





PSM
KVFRGNKV
207
8





594





PSM
KVFRGNKVKNA
207
11





595





PSM
KVKMHIHST
341
9





596





PSM
KVKNAQLA
213
8





597





PSM
KVKNAQLAGA
213
10





598





Kallikrein
KVLGLPTQEPA
137
11
0.0001
0.0004
0.0009
0.0012
0.0005
599





PSA
KVMDLPTQEPA
133
11
0.0014




600





PSM
KVPYNVGPGFT
324
11





601





Kallikrein
KVTEFMLCA
191
9
0.0035
0.0092
0.1900
0.1600
0.0004
602





Kallikrein
KVTEFMLCAGL
191
11
0.0010
0.0280
0.0280
0.0160
0.0036
603





PSA
KVTKFMLCA
187
9
0.0020




604





Kallikrein
KVVHYRKWI
245
9
0.0001




605





PSA
KVVHYRKWI
241
9
0.0001




606





PAP
KVYDPLYGESV
208
11





607





PAP
LAALFPPEGV
120
10
0.0017




608





PSM
LAGAKGVI
219
8





609





PSM
LAGAKGVIL
219
9
0.0002




610





PSM
LAGGFFLL
28
8





611





PSM
LAGGFFLLGFL
28
11





612





PSM
LAGTEQNFQL
83
10
0.0001




613





PSM
LAGTEQNFQLA
83
11





614





PSM
LAHYDVLL
110
8





615





PAP
LAKELKFV
31
8





616





PAP
LAKELKFVT
31
9





617





PAP
LAKELKFVTL
31
10
0.0002




618





PAP
LAKELKFVTLV
31
11





619





PAP
LARAASLSL
8
9
0.0002




620





PAP
LIMYSAHDT
283
9





621





PAP
LIMYSAHDTT
283
10





622





PAP
LIMYSAHDTTV
283
11





623





PAP
LLARAASL
7
8





624





PAP
LLARAASLSL
7
10
0.0061




625





PSM
LLEKMGGSA
305
9
0.0001




626





PAP
LLFFWLDRSV
21
10
0.6000




627





PAP
LLFFWLDRSVL
21
11





628





PSM
LLGFLFGWFI
34
10
0.0058




629





PSM
LLGSTEWA
428
8





630





PSM
LLHETDSA
4
8





631





PSM
LLHETDSAV
4
9
0.0180




632





PSM
LLHETDSAVA
4
10
0.0006




633





PSM
LLHETDSAVAT
4
11





634





PAP
LLLARAASL
6
9
0.0120




635





PAP
LLLARAASLSL
6
11





636





PAP
LLPPYASCHL
306
10
0.0017




637





PAP
LLPPYASCHLT
306
11





638





PSM
LLQERGVA
441
8





639





PSM
LLQERGVAYI
441
10
0.0280
0.7500
1.5000
0.0043
0.0006
640





Kallikrein
LLRLSEPA
123
8
0.0001




641





PSA
LLRLSEPA
119
8
0.0001




642





PSA
LLRLSEPAEL
119
10
0.0001




643





PSA
LLRLSEPAELT
119
11
0.0023
0.0140
0.0150
0.0002
0.0010
644





Kallikrein
LLRLSEPAKI
123
10
0.0030
0.0290
0.9200
0.0010
0.0008
645





Kallikrein
LLRLSEPAKIT
123
11
0.0002
0.0007
0.0180
−0.0001
−0.0001
646





Kallikrein
LLSNDMCA
178
8
0.0003
0.0073
0.0003
0.0021
−0.0001
647





Kallikrein
LLSNDMCARA
178
10
0.0030
0.0800
0.0280
0.0020
0.0042
648





PSM
LLSYPNKT
116
8





649





PAP
LLWQPIPV
136
8





650





PAP
LLWQPIPVHT
136
10
0.0074




651





PAP
LLWQPIPVHTV
136
11





652





PSM
LMFLERAFI
668
9
0.0110




653





Kallikrein
LMLLRLSEPA
121
10
0.0018




654





PSA
LMLLRLSEPA
117
10
0.0018




655





PAP
LMSAMTNL
113
8





656





PAP
LMSAMTNLA
113
9
0.0071




657





PAP
LMSAMTNLAA
113
10
0.0037




658





PAP
LMSAMTNLAAL
113
11





659





PSM
LMYSLVHNL
469
9
0.0780
11.0000
4.8000
0.0340
0.0250
660





PSM
LMYSLVHNLT
469
10
0.0046




661





PSA
LQCVDLHV
167
8





662





PSA
LQCVDLHVI
167
9





663





Kallikrein
LQCVSLHL
171
8





664





Kallikrein
LQCVSLHLL
171
9





665





PSM
LQDFDKSNPI
650
10





666





PSM
LQDFDKSNPIV
650
11





667





PSM
LQERGVAYI
442
9





668





PSM
LQERGVAYINA
442
11





669





PAP
LQGGVLVNEI
258
10





670





PAP
LQGGVLVNEIL
258
11





671





PAP
LQMALDVYNGL
296
11





672





PSA
LTDAVKVM
128
8
0.0001
−0.0001
0.0002
−0.0001
0.0001
673





PSA
LTDAVKVMDL
128
10
0.0002




674





PSA
LTLSVTWI
4
8
0.0003
−0.0001
0.0006
0.0007
0.0001
675





PSA
LTLSVTWIGA
4
10
0.0018
0.0450
0.0820
0.0110
0.0910
676





PSA
LTLSVTWIGAA
4
11
0.0008
0.0014
0.0370
0.0025
0.0062
677





PSM
LTPGYPANEYA
268
11





678





PSA
LTPKKLQCV
162
9
0.0003




679





PSA
LTPKKLQCVDL
162
11
0.0007
0.0087
0.0074
0.0004
0.0021
680





PSM
LTVAQVRGGM
574
10





681





PSM
LTVAQVRGGMV
574
11





682





PSA
LVASRGRA
37
8
0.0001




683





PSA
LVASRGRAV
37
9
0.0003




684





Kallikrein
LVCNGVLQGG
217
10
0.0004




685





PSA
LVCNGVLQGI
213
10
0.0004




686





Kallikrein
LVCNGVLQGIT
217
11
0.0007
0.0034
0.0033
0.0049
0.0041
687





PSA
LVCNGVLQGIT
213
11
0.0007
0.0034
0.0033
0.0049
0.0041
688





PSM
LVEKFYDPM
561
9





689





PAP
LVFRHGDRSPI
40
11





690





PSM
LVHNLTKEL
473
9
0.0001




691





Kallikrein
LVHPQWVL
54
8
0.0001




692





PSA
LVHPQWVL
50
8
0.0001




693





Kallikrein
LVHPQWVLT
54
9
0.0001




694





PSA
LVHPQWVLT
50
9
0.0001




695





Kallikrein
LVHPQWVLTA
54
10
0.0001




696





PSA
LVHPQWVLTA
50
10
0.0001




697





Kallikrein
LVHPQWVLTAA
54
11
0.0001




698





PSA
LVHPQWVLTAA
50
11
0.0001




699





PSM
LVLAGGFFL
26
9
0.0280
0.0030
0.0004
0.1100
0.0003
700





PSM
LVLAGGFFLL
26
10
0.0021




701





Kallikrein
LVLSTALSV
4
9
0.0020
0.0027
0.0085
0.0190
0.0002
702





PAP
LVNEILNHM
263
9





703





PSM
LVYVNYART
174
9





704





PAP
MALDVYNGL
298
9
0.0037




705





PAP
MALDVYNGLL
298
10
0.0010




706





Kallikrein
MLCAGLWT
196
8
0.0014
0.0020
0.0018
0.0001
0.0002
707





PSA
MLCAGRWT
192
8
0.0006
0.0012
0.0033
−0.0001
0.0001
708





Kallikrein
MLLRLSEPA
122
9
0.0610




709





PSA
MLLRLSEPA
118
9
0.0610




710





PSA
MLLRLSEPAEL
118
11
0.1400




711





Kallikrein
MLLRLSEPAKI
122
11
0.0044
0.0072
0.2100
0.0019
0.0007
712





PAP
MLPGCSPSCPL
343
11





713





PSM
MMNDQLMFL
663
9
0.4400
5.7000
5.8000
0.4900
0.0410
714





PAP
MTKLRELSEL
232
10
0.0002




715





PAP
MTTNSHQGT
373
9





716





PSM
MVFELANSI
583
9
0.0170




717





PSM
MVFELANSIV
583
10
0.0140




718





PSM
MVFELANSIVL
583
11





719





PSM
NADSSIEGNYT
451
11





720





PSM
NAQLAGAKGV
216
10
0.0002




721





PSM
NAQLAGAKGVI
216
11





722





PSM
NIKKFLYNFT
69
10





723





PSM
NILNLNGA
257
8





724





PSM
NITPKHNM
51
8





725





PSM
NITPKHNMKA
51
10





726





PAP
NLAALFPPEGV
119
11





727





Kallikrein
NLFEPEDT
79
8
0.0002
0.0035
0.0004
−0.0001
0.0004
728





PSM
NLLHETDSA
3
9
0.0001




729





PSM
NLLHETDSAV
3
10
0.0027




730





PSM
NLLHETDSAVA
3
11





731





PSM
NLNGAGDPL
260
9
0.0007




732





PSM
NLNGAGDPLT
260
10
0.0002




733





PSM
NMKAFLDEL
57
9
0.0026




734





PSM
NMKAFLDELKA
57
11





735





Kallikrein
NMSLLKHQSL
102
10
0.0043
0.0260
0.0400
0.0058
0.0020
736





PSM
NVIGTLRGA
357
9





737





PSM
NVIGTLRGAV
357
10
0.0001




738





PSM
NVSDIVPPFSA
153
11





739





PSM
PADYFAPGV
231
9
0.0001




740





PSA
PAELTDAV
125
8
−0.0001
−0.0001
−0.0001
−0.0001
−0.0001
741





PSA
PAELTDAVKV
125
10
0.0002




742





PSA
PAELTDAVKVM
125
11
0.0003
0.0028
0.0008
−0.0001
−0.0001
743





Kallikrein
PAKITDVV
129
8
0.0001
0.0003
−0.0001
−0.0001
−0.0001
744





Kallikrein
PAKITDVVKV
129
10
0.0011
0.0100
0.0320
0.0006
0.0002
745





Kallikrein
PAKITDVVKVL
129
11
0.0002
0.0006
0.0017
−0.0001
0.0001
746





Kallikrein
PALGTTCYA
146
9
0.0083
0.0210
0.0270
0.0002
0.0035
747





PSA
PALGTTCYA
142
9
0.0083
0.0210
0.0270
0.0002
0.0035
748





PSM
PANEYAYRRGI
273
11





749





Kallikrein
PAVYTKVV
240
8
0.0001
−0.0001
−0.0001
−0.0001
−0.0001
750





PAP
PIDTFPTDPI
49
10
0.0002




751





PSM
PIGYYDAQKL
296
10
0.0001




752





PSM
PIGYYDAQKLL
296
11





753





PAP
PILLWQPI
134
8





754





PAP
PILLWQPIPV
134
10
0.0075




755





PAP
PIPVHTVPL
140
9
0.0002




756





PSM
PIVLRMMNDQL
658
11





757





PAP
PLERFAEL
352
8





758





PAP
PLERFAELV
352
9
0.0001




759





PSA
PLILSRIV
15
8
0.0001




760





Kallikrein
PLIQSRIV
19
8
0.0001
0.0002
−0.0001
−0.0001
−0.0001
761





PAP
PLLLARAA
5
8





762





PAP
PLLLARAASL
5
10
0.0004




763





PSM
PLMYSLVHNL
468
10
0.0008




764





PSM
PLMYSLVHNLT
468
11





765





PAP
PLSEDQLL
147
8





766





PAP
PLSEDQLLYL
147
10
0.0006




767





PSM
PLTPGYPA
267
8





768





Kallikrein
PLVGNGVL
216
8
0.0001




769





PSA
PLVGNGVL
212
8
0.0001




770





Kallikrein
PLVCNGVLQGI
216
11
0.0020




771





PSA
PLVCNGVLQGI
212
11
0.0020




772





PAP
PLYCESVHNFT
212
11





773





PSA
PLYDMSLL
95
8
0.0002




774





PSM
PLYHSVYET
550
9
0.0002




775





Kallikrein
PLYNMSLL
99
8
0.0002
0.0008
0.0002
−0.0001
−0.0001
776





PSM
PMFKYHLT
568
8





777





PSM
PMFKYHLTV
568
9
0.0042




778





PSM
PMFKYHLTVA
568
10
0.0005




779





PAP
PQDWSTECM
365
9





780





PAP
PQDWSTECMT
365
10





781





PAP
PQDWSTECMTT
365
11





782





PSM
PQEMKTYSV
619
9





783





PAP
PQGFGQLT
64
8





784





PAP
PQGFGQLTQL
64
10





785





PSM
PQGMPEGDL
166
9





786





PSM
PQGMPEGDLV
166
10





787





PSA
PQKVTKFM
185
8





788





PSA
PQKVTKFML
185
9





789





PSA
PQKVTKFMLCA
185
11





790





PSM
PQSGAAVV
388
8





791





PSM
PQSGAAVVHEI
388
11





792





Kallikrein
PQWVLTAA
57
8





793





PSA
PQWVLTAA
53
8





794





PSA
PQWVLTAAHCI
53
11





795





Kallikrein
PQWVLTAAHCL
57
11





796





Kallikrein
PTQEPALGT
142
9
0.0001




797





PSA
PTQEPALGT
138
9
0.0001




798





Kallikrein
PTQEPALGTT
142
10
0.0084
0.0220
0.0520
0.0037
0.0005
799





PSA
PTQEPALGTT
138
10
0.0084
0.0220
0.0520
0.0037
0.0005
800





PSM
PVHPIGYYDA
293
10





801





PAP
PVIPQDWST
362
9





802





Kallikrein
PVSHSFPHPL
91
10
0.0019
0.0099
0.0680
0.0022
0.0011
803





PSM
QAAAETLSEV
740
10
0.0006




804





PSM
QAAAETLSEVA
740
11





805





PSM
QIPHLAGT
79
8





806





PAP
QIPSYKKL
276
8





807





PAP
QIPSYKKLI
276
9
0.0002




808





PAP
QIPSYKKLIM
276
10





809





PSM
QIQSQWKEFGL
95
11





810





PSM
QIYVAAFT
731
8





811





PSM
QIYVAAFTV
731
9
0.0026




812





PSM
QIYVAAFTVQA
731
11





813





PSM
QLAGAKGV
218
8





814





PSM
QLAGAKGVI
218
9
0.0001




815





PSM
QLAGAKGVIL
218
10
0.0006




816





PAP
QLGMEQHYEL
72
10
0.0003




817





PSM
QLMFLERA
667
8





818





PSM
QLMFLERAFI
667
10
0.0510
0.1200
0.1100
0.0003
0.2700
819





PAP
QMALDVYNGL
297
10
0.0002




820





PAP
QMALDVYNGLL
297
11





821





Kallikrein
QVAVYSHGWA
39
10
0.0004
0.0097
0.0200
0.0005
0.0252
822





PSA
QVHPQKVT
182
8
−0.0001
−0.0001
0.0001
−0.0001
−0.0001
823





PSA
QVHPQKVTKFM
182
11
0.0001




824





PSA
QVLVASRGRA
35
10
0.0001




825





PSA
QVLVASRGRAV
35
11
0.0001




826





PSM
QVRGGMVFEL
578
10
0.0001




827





PSM
QVRGGMVFELA
578
11





828





PSA
QVSHSFPHPL
87
10
0.0001




829





Kallikrein
QVWLGRHNL
72
9
0.0001
0.0021
0.0011
0.0025
0.0510
830





PAP
QVYIRSTDV
101
9
0.0002




831





PAP
RAAPLLLA
2
8





832





PAP
RAAPLLLARA
2
10





833





PAP
RAAPLLLARAA
2
11





834





PAP
RAASLSLGFL
10
10
0.0002




835





PSM
RAFIDPLGL
673
9
0.0001




836





PSM
RARYTKNWET
534
10





837





PAP
RATQTPSYKKL
273
11





838





PSA
RAVCGGVL
43
8
−0.0001
−0.0001
0.0003
−0.0001
−0.0001
839





PSA
RAVCGGVLV
43
9
0.0002




840





Kallikrein
RAYSEKVT
186
8
−0.0001
−0.0001
0.0003
0.0001
−0.0001
841





Kallikrein
RAYSEKVTEFM
186
11
0.0007
0.0560
0.0016
0.0018
0.0009
842





PSM
RIYNVIGT
354
8





843





PSM
RIYNVIGTL
354
9
0.0004




844





PSM
RLGIASGRA
527
9
0.0001




845





PAP
RLHPYKDFI
180
9
0.0006




846





PAP
RLHPYKDFIA
180
10
0.0048




847





PAP
RLHPYKDFIAT
180
11





848





PSM
RLLQERGV
440
8





849





PSM
RLLQERGVA
440
9
0.0001




850





PSM
RLLQERGVAYI
440
11





851





PSM
RLQDFDKSNPI
649
11





852





PAP
RLQGGVLV
257
8





853





PAP
RLQGGVLVNEI
257
11





854





PSA
RLSEPAEL
121
8
0.0004




855





PSA
RLSEPAELT
121
9
0.0003




856





PSA
RLSEPAELTDA
121
11
0.0007




857





Kallikrein
RLSEPAKI
125
8
−0.0001
0.0005
0.0007
−0.0001
−0.0001
858





Kallikrein
RLSEPAKIT
125
9
−0.0001
−0.0002
0.0009
−0.0001
−0.0002
859





Kallikrein
RLSEPAKITDV
125
11
0.0015
0.0043
0.0210
0.0002
0.0006
860





PSM
RMMNDQLM
662
8





861





PSM
RMMNDQLMFL
662
10
0.5100
1.6000
1.3000
0.0930
0.0005
862





PSM
RQIYVAAFT
730
9





863





PSM
RQIYVAAFTV
730
10





864





PSM
RTEDFFKL
181
8





865





PSM
RTILFASWDA
414
10





866





PAP
RTLMSAMT
111
8





867





PAP
RTLMSAMTNL
111
10
0.0150




868





PAP
RTLMSAMTNLA
111
11





869





PSM
RVDGTPLM
463
8





870





PSM
RVDCTPLMYSL
463
11





871





PSM
SAFSPQGM
162
8





872





PAP
SAHDTTVSGL
287
10
0.0002




873





PAP
SAMTNLAA
115
8





874





PAP
SAMTNLAAL
115
9
0.0043




875





PSM
SAVKNFTEI
634
9
0.0001




876





PSM
SAVKNFTEIA
634
10





877





Kallikrein
SIALSVGCT
7
9
−0.0001
0.0006
0.0087
0.0006
0.0004
878





Kallikrein
SIALSVGCTGA
7
11
0.0029
0.0066
0.0160
0.0100
0.0055
879





PSM
SIEGNYTL
455
8





880





PSM
SIEGNYTLRV
455
10
0.0001




881





Kallikrein
SIEPEEFL
159
8
0.0001




882





PSA
SIEPEEFL
155
8
0.0001




883





PSA
SIEPEEFLT
155
9
0.0001




884





PSM
SIINEDGNEI
129
10
0.0001




885





PSM
SISMKMPQEM
613
10





886





PAP
SIWNPILL
130
8





887





PSA
SLFHPEDT
75
8
0.0003
0.0032
0.0028
−0.0001
−0.0001
888





PSA
SLFHPEDTGQV
75
11
0.0190




889





PSM
SLFSAVKNFT
631
10
0.0010




890





PAP
SLGFLFLL
15
8





891





Kallikrein
SLHLLSNDM
175
9
0.0003
0.0720
0.0180
−0.0001
0.0004
892





Kallikrein
SLHLLSNDMCA
175
11
0.0390
1.9000
0.6900
0.0005
0.0004
893





PSM
SLKVPYNV
322
8





894





Kallikrein
SLLKHQSL
104
8
0.0002
0.0007
0.0002
−0.0001
−0.0001
895





PSA
SLLKNRFL
100
8
0.0020




896





PAP
SLLSLYGI
242
8





897





Kallikrein
SLQCVSLHL
170
9
0.0100
0.0840
0.0240
0.0006
0.0031
898





Kallikrein
SLQCVSLHLL
170
10
0.0099
0.4000
0.0920
0.0059
0.0008
899





PAP
SLSLGFLFL
13
9
0.0200




900





PAP
SLSLGFLFLL
13
10
0.0170




901





PSM
SLVHNLTKEL
472
10
0.0002




902





PSM
SMKHPQEM
615
8





903





PSM
SMKHPQEMKT
615
10
0.0001




904





Kallikrein
SQPWQVAV
35
8





905





PSA
SQPWQVLV
31
8





906





PSA
SQPWQVLVA
31
9





907





Kallikrein
SQVWLGRHNL
71
10





908





PSM
SQWKEFGL
98
8





909





PSM
SQWKEFGLDSV
98
11





910





PSA
STCSGDSGGPL
203
11
0.0005
0.0150
0.0092
0.0002
0.0035
911





PAP
STDVDRTL
106
8





912





PAP
STDVDRTLM
106
9





913





PAP
STDVDRTLMSA
106
11





914





PSM
STEWAEENSRL
431
11





915





PSM
STNEVTRI
348
8





916





PSM
STNEVTRIYNV
348
11





917





PSM
STQKVKMHI
338
9
0.0001




918





PSM
SVELAHYDV
107
9
0.0001




919





PSM
SVELAHYDVL
107
10
0.0002




920





PSM
SVELAHYDVLL
107
11





921





Kallikrein
SVGCTGAV
11
8
0.0004
0.0006
0.0022
0.0003
−0.0001
922





Kallikrein
SVGGTGAVPL
11
10
0.0024
0.0760
0.0065
0.0026
0.0035
923





Kallikrein
SVGCTGAVPLI
11
11
0.0100
0.0010
0.0007
0.0007
0.0005
924





PAP
SVHNFTLPSWA
217
11





925





PSA
SVILLGRHSL
67
10
0.0001




926





PAP
SVLAKELKFV
29
10
0.0031




927





PAP
SVLAKELKFVT
29
11





928





PSM
SVSFDSLESA
626
10





929





PSM
SVSFDSLFSAV
626
11





930





PSA
SVTWIGAA
7
8
0.0001




931





PSA
SVTWIGAAPL
7
10
0.0001




932





PSA
SVTWIGAAPLI
7
11
0.0001




933





PSM
SVYETYEL
554
8





934





PSM
SVYETYELV
554
9
0.0073




935





PSA
TAAHCIRNKSV
58
11
0.0005
0.0057
0.0085
0.0004
0.0105
936





PSM
TARRPRWL
14
8





937





PSM
TARRPRWLCA
14
10





938





PSM
TILFASWDA
415
9





939





PAP
TLGKLSGL
190
8





940





PAP
TLKSEEFQKRL
171
11





941





PAP
TLMSAMTNL
112
9
0.0650




942





PAP
TLMSAMTNLA
112
10
0.0065




943





PAP
TLMSAMTNLAA
112
11





944





PAP
TLPSWATEDT
222
10
0.0002




945





PAP
TLPSWATEDTM
222
11





946





PSM
TLRVDCTPL
461
9
0.0012




947





PSM
TLRVDCTPLM
461
10
0.0008




948





PSA
TLSVTWIGA
5
9
0.0016




949





PSA
TLSVTWIGAA
5
10
0.0007




950





PAP
TMTKLREL
231
8





951





PAP
TMTKLRELSEL
231
11





952





Kallikrein
TQEPALGT
143
8





953





PSA
TQEPALGT
139
8





954





Kallikrein
TQEPALGTT
143
9





955





PSA
TQEPALGTT
139
9





956





PAP
TQHEPYPL
335
8





957





PAP
TQHEPYPLM
335
9





958





PAP
TQHEPYPLML
335
10





959





PSM
TQIPHLAGT
78
9





960





PAP
TQIPSYKKL
275
9





961





PAP
TQIPSYKKLI
275
10





962





PAP
TQIPSYKKLIM
275
11





963





PSM
TQKVKMHI
339
8





964





PSM
TQKVKMHIHST
339
11





965





PAP
TQLGMEQHYEL
71
11





966





Kallikrein
TTCYASGWGSI
150
11
−0.0001
0.0009
0.0025
0.0005
0.1400
967





PSA
TTCYASGWGSI
146
11
−0.0001
0.0009
0.0025
0.0005
0.1400
968





PAP
TTNSHQGT
374
8





969





PAP
TTVSGLQM
291
8





970





PAP
TTVSGLQMA
291
9





971





PAP
TTVSGLQMAL
291
10
0.0020




972





PSM
TVAQVRGGM
575
9





973





PSM
TVAQVRGGMV
575
10
0.0005




974





PAP
TVPLSEDQL
145
9
0.0002




975





PAP
TVPLSEDQLL
145
10
0.0001




976





PSM
TVQAAAET
738
8





977





PSM
TVQAAAETL
738
9
0.0002




978





PAP
TVSGLQMA
292
8





979





PAP
TVSGLQMAL
292
9
0.0044




980





PAP
TVSGLQMALDV
292
11





981





PSM
VAAFTVQA
734
8





982





PSM
VAAFTVQAA
734
9





983





PSM
VAAFTVQAAA
734
10





984





PSM
VAQVRGGM
576
8





985





PSM
VAQVRGGMV
576
9
0.0002




986





PSA
VASRGRAV
38
8
−0.0001
−0.0001
−0.0001
−0.0001
−0.0001
987





PSM
VATARRPRWL
12
10
0.0001




988





Kallikrein
VAVYSHGWA
40
9
−0.0001
−0.0001
0.0002
0.0002
0.0004
989





PSM
VAYINADSSI
447
10
0.0001




990





PSM
VIARYGKV
201
8





991





PSM
VIGTLRGA
358
8





992





PSM
VIGTLRGAV
358
9
0.0002




993





PSM
VILGGHRDSWV
372
11





994





PSA
VILLGRHSL
68
9
0.0003




995





PSM
VILYSDPA
225
8





996





PAP
VIPQDWST
363
8





997





PAP
VIPQDWSTECM
363
11





998





PSA
VISNDVCA
174
8
0.0001




999





PSA
VISNDVCAQV
174
10
0.0008




1000





PSM
VLAGGFFL
27
8





1001





PSM
VLAGGFFLL
27
9
0.1300
19.0000
0.3000
0.1200
0.0028
1002





PAP
VLAKELKFV
30
9
0.0590




1003





PAP
VLAKELKFVT
30
10
0.0021




1004





PAP
VLAKELKFVTL
30
11





1005





Kallikrein
VLGLPTQEPA
138
10
0.0008
0.0150
0.0110
0.0004
−0.0001
1006





Kallikrein
VLGLPTQEPAL
138
11
−0.0001
0.0007
0.0003
0.0003
0.0006
1007





PSM
VLLSYPNKT
115
9
0.0002




1008





PSM
VLPFDCRDYA
592
10
0.0013




1009





PSM
VLPFDCRDYAV
592
11





1010





PSM
VLRKYADKI
603
9
0.0002




1011





PSM
VLRMMNDQL
660
9
0.0001




1012





PSM
VLRMMNDQLM
660
10
0.0003




1013





Kallikrein
VLSIALSV
5
8
0.0050
0.0790
0.0200
0.0024
0.0003
1014





Kallikrein
VLSIALSVGCT
5
11
0.0002
0.0011
0.0048
0.0004
0.0005
1015





PSA
VLTAAHCI
56
8
0.0001




1016





Kallikrein
VLTAAHCL
60
8
0.0002
0.0034
0.0001
0.0001
0.0002
1017





PSA
VLVASRGRA
36
9
0.0001




1018





PSA
VLVASRGRAV
36
10
0.0003




1019





Kallikrein
VLVHPQWV
53
8
0.0001




1020





PSA
VLVHPQWV
49
8
0.0001




1021





Kallikrein
VLVHPQWVL
53
9
0.0200




1022





PSA
VLVHPQWVL
49
9
0.0200




1023





Kallikrein
VLVHPQWVLT
53
10
0.0001




1024





PSA
VLVHPQWVLT
49
10
0.0001




1025





Kallikrein
VLVHPQWVLTA
53
11
0.0130




1026





PSA
VLVHPQWVLTA
49
11
0.0130




1027





PAP
VLVNEILNHM
262
10
0.0008




1028





PSA
VMDLPTQEPA
134
10
0.0001




1029





PSA
VMDLPTQEPAL
134
11
0.0021
0.0042
0.0014
0.0001
0.0003
1030





PSM
VQAAAETL
739
8





1031





PSM
VQAAAETLSEV
739
11





1032





PSM
VQRGNILNL
253
9





1033





Kallikrein
VTEFMLCA
192
8
−0.0001
0.0003
0.0005
0.0007
0.0007
1034





Kallikrein
VTEFMLCAGL
192
10
0.0008
0.0180
0.0068
0.0004
0.0030
1035





PSA
VTKFMLCA
188
8
0.0001
0.0002
0.0031
−0.0001
−00001
1036





PSM
VTRIYNVI
352
8





1037





PSM
VTRIYNVIGT
352
10





1038





PSM
VTRIYNVIGTL
352
11





1039





PSA
VTWIGAAPL
8
9
0.0110




1040





PSA
VTWIGAAPLI
8
10
0.0019




1041





PSA
VTWIGAAPLIL
8
11
0.0013
0.0005
0.0009
0.0011
0.0002
1042





PSA
VVFLTLSV
1
8
0.0002




1043





PSA
VVFLTLSVT
1
9
0.0008




1044





PSA
VVFLTLSVTWI
1
11
0.0069




1045





PSM
VVHEIVRSFGT
394
11





1046





Kallikrein
VVHYRKWI
246
8
0.0001
0.0021
−0.0001
0.0001
−0.0001
1047





PSA
VVHYRKWI
242
8
0.0001
0.0021
−0.0001
0.0001
−0.0001
1048





Kallikrein
VVHYRKWIKDT
246
11
0.0001
0.0001
0.0002
0.0001
0.0004
1049





PSA
VVHYRKWIKDT
242
11
0.0001
0.0001
0.0002
−0.0001
0.0004
1050





Kallikrein
VVKVLGLPT
135
9
−0.0001
−0.0005
0.0007
0.0008
−0.0002
1051





PSM
VVLRKYADKI
602
10
0.0001




1052





PSM
WAEENSRL
434
8





1053





PSM
WAEENSRLL
434
9
0.0001




1054





Kallikrein
WAHCGGVL
47
8
−0.0001
0.0003
0.0005
0.0001
0.0070
1055





Kallikrein
WAHCGGVLV
47
9
−0.0001
0.0004
0.0067
0.0007
0.0310
1056





PAP
WATEDTMT
226
8





1057





PAP
WATEDTMTKL
226
10
0.0002




1058





PSA
WIGAAPLI
10
8
0.0005




1059





PSA
WIGAAPLIL
10
9
0.0005




1060





Kallikrein
WIKDTIAA
252
8
0.0002
0.0120
0.1700
0.0002
−0.0001
1061





PSA
WIKDTIVA
248
8
0.0001




1062





PSM
WLCAGALV
20
8





1063





PSM
WLCAGALVL
20
9
0.0180




1064





PSM
WLCAGALVLA
20
10
0.0120




1065





PAP
WLDRSVLA
25
8





1066





PAP
WLDRSVLAKEL
25
11





1067





PAP
WQPIPVHT
138
8





1068





PAP
WQPIPVHTV
138
9





1069





PAP
WQPIPVHTVPL
138
11





1070





Kallikrein
WQVAVYSHGWA
38
11





1071





PSA
WQVLVASRGRA
34
11





1072





PSA
WVLTAAHCI
55
9
0.0008




1073





Kallikrein
WVLTAAHCL
59
9
0.0003
0.0018
0.0001
0.0160
0.0007
1074





PSM
YADKIYSI
607
8





1075





PSM
YADKIYSISM
607
10





1076





PSM
YAGESFPGI
700
9
0.0013




1077





PSM
YAPSSHNKYA
692
10





1078





PSM
YARTEDFFKL
179
10
0.0002




1079





PAP
YASCHLTEL
310
9
0.0037




1080





Kallikrein
YASGWGSI
153
8
−0.0001
0.0009
0.0003
0.0003
0.0120
1081





PSA
YASGWGSI
149
8
−0.0001
0.0009
0.0003
0.0003
0.0120
1082





PSM
YAVVLRKYA
600
9





1083





PSM
YAYRRCIA
277
8





1084





PSM
YAYRRGIAEA
277
10





1085





PSM
YAYRRGIAEAV
277
11





1086





PSM
YINADSSI
449
8





1087





PAP
YIRKRYRKFL
84
10
0.0002




1088





PAP
YIRSTDVDRT
103
10





1089





PAP
YIRSTDVDRTL
103
11





1090





Kallikrein
YTKVVHYRKWI
243
11
0.0001
−0.0001
0.0004
−0.0001
0.0008
1091





PSA
YTKVVHYRKWL
239
11
0.0001
−0.0001
0.0004
−0.0001
0.0008
1092





PSM
YTLRVDCT
460
8





1093





PSM
YTLRVDCTPL
460
10
0.0015




1094





PSM
YTLRVDCTPLM
460
11





1095





PSM
YVAAFTVQA
733
9





1096





PSM
YVAAFTVQAA
733
10





1097





PSM
YVAAFTVQAAA
733
11





1098
















TABLE IX










Prostate A03 Supermotif with Binding Data




















No. of





Seq.






Amino





Id.


Protein
Sequence
Position
Acids
A*0301
A*1101
A*3101
A*3301
A*6801
No.




















PSA
AAHCIRNK
59
8





1099






PSA
AAPLILSR
13
8





1100





PAP
AAPLLLAR
3
8





1101





PSM
AAVVHEIVR
392
9





1102





PSM
ALFDIESK
711
8





1103





Kallikrein
ALPEKPAVYTK
235
11





1104





PSA
ALPERPSLYTK
231
11





1105





PSM
ASGRARYTK
531
9
0.0086
0.2700



1106





PAP
ATEDTMTK
227
8
0.0003
0.0039



1107





PAP
ATEDTMTKLR
227
10





1108





PSM
ATNITPKHNMK
49
11





1109





PAP
ATQFPSYK
274
8
0.0180
0.0700



1110





PAP
ATQIPSYKK
274
9
0.1000
1.2000



1111





PSM
AVATARRPR
11
9





1112





PSM
AVKNFTEIASK
635
11





1113





Kallikrein
AVPLIQSR
17
8





1114





PSM
AVVHEIVR
393
8





1115





PSM
AVVLRKYADK
601
10
0.0026
0.0210



1116





Kallikrein
AVYTKVVHYR
241
10





1117





Kallikrein
AVYTKVVHYRK
241
11





1118





Kallikrein
CAGLWTGGK
198
9





1119





PSA
CAGRWTGGK
194
9
0.0006
0.0015



1120





PSA
CAQVHPQK
180
8





1121





PSA
CAQVHPQKVTK
180
11





1122





Kallikrein
CARAYSEK
184
8





1123





PSM
CSGKIVIAR
196
9





1124





PAP
CSPSCPLER
347
9
0.0040
0.0006



1125





Kallikrein
CTGAVPLIQSR
14
11





1126





PSM
DALFDIESK
710
9
0.0006
0.0002



1127





PSM
DAQKLLEK
301
8





1128





PSM
DIESKVDPSK
714
10
0.0003
0.0002



1129





PAP
DLFGIWSK
201
8





1130





PSM
DLVYVNYAR
173
9





1131





Kallikrein
DMCARAYSEK
182
10





1132





PSM
DMKINCSGK
191
9





1133





PSA
DMSLLKNR
98
8
0.0003
0.0001



1134





PSA
DMSLLKNRFLR
98
11





1135





PSM
DSAVATAR
9
8





1136





PSM
DSAVATARR
9
9





1137





PSM
DSAVATARRPR
9
11





1138





PSM
DSLFSAVK
630
8





1139





Kallikrein
DSSHDLMLLR
116
10





1140





PSA
DSSHDLMLLR
112
10





1141





PSM
DSSIEGNYTLR
453
11





1142





PSM
DSSWRGSLK
316
9
0.0032
0.0003



1143





PAP
DTFPTDPIK
51
9
0.0001
0.0001



1144





PSA
DVCAQVHPQK
178
10
0.0007
0.0011



1145





PSM
DVLLSYPNK
114
9
0.0006
0.0010



1146





PSM
EATNITPK
48
8





1147





PSM
EIASKFSER
641
9
0.0006
0.0002



1148





PAP
EILNHMKR
266
8





1149





PSM
EIVRSFGTLK
397
10





1150





PSM
EIVRSFGTLKK
397
11





1151





PAP
ELESETLK
166
8





1152





PAP
ELGEYIRK
80
8





1153





PAP
ELGEYIRKR
80
9





1154





PAP
ELGEYIRKRYR
80
11





1155





PSM
ELKAENIK
64
8





1156





PSM
ELKAENIKK
64
9





1157





PAP
ELKFVTLVFR
34
10
0.0014
0.0037



1158





PSM
ESKVDPSK
716
8





1159





PAP
ESYKHEQVYIR
95
11





1160





PSM
ETDSAVATAR
7
10





1161





PSM
ETDSAVATARR
7
11





1162





PAP
ETLKSEEFQK
170
10
0.0004
0.0140



1163





PAP
ETLKSEEFQKR
170
11





1164





PSM
ETYELVEK
557
8





1165





PSM
FIDPLGLPDR
675
10





1166





PSM
FLDELKAENIK
61
11





1167





PSM
FLFGWFIK
37
8





1168





PAP
FLFLLFFWLDR
18
11





1169





PAP
FLLFFWLDR
20
9
0.0024
0.0004



1170





PSM
FSERLQDFDK
646
10
0.0003
0.0007



1171





PSM
FSGMPRISK
506
9





1172





PSM
FTEIASKFSER
639
11





1173





PSM
FTGNFSTQK
333
9





1174





PSM
FTGNFSTQKVK
333
11





1175





PAP
FVTLVFRHGDR
37
11





1176





PSA
GAAPLILSR
12
9
0.0150
0.0350



1177





PSM
GAAVVHEIVR
391
10





1178





Kallikrein
GAVPLIQSR
16
9





1179





PSM
GIASGRAR
529
8





1180





PSM
GIASGRARYTK
529
11





1181





PAP
GIHKQKEK
248
8





1182





PAP
GIHKQKEKSR
248
10





1183





PSM
GLPDRPFYR
680
9
0.0460
0.0280



1184





PSM
GSAPPDSSWR
311
10
0.0006
0.1400



1185





PSA
GSEPCALPER
226
10





1186





Kallikrein
GSIEPEEFLR
158
10





1187





PSM
GSTEWAEENSR
430
11





1188





PSM
GTEQNFQLAK
85
10





1189





PSM
GTLKKEGWR
403
9





1190





PSM
GTLKKEGWRPR
403
11





1191





PSM
GTLRGAVEPDR
360
11





1192





PSM
HIHSTNEVTR
345
10





1193





Kallikrein
HLLSNDMCAR
177
10





1194





PAP
HLTELYFEK
314
9
0.2700
0.5300



1195





PSM
HLTVAQVR
573
8





1196





PSM
HSTNEVTR
347
8





1197





PSM
HVIYAPSSHNK
689
11





1198





PSM
IARYGKVFR
202
9





1199





PSM
IASGRARYTK
530
10





1200





PSM
IASKFSER
642
8





1201





PSM
ISMKHPQEMK
614
10
0.1900
0.1100



1202





PSM
ITPKHNMK
52
8





1203





Kallikrein
IVGGWECEK
25
9
0.0410
0.0190
0.0002
0.0006
0.0018
1204





PSA
IVGGWECEK
21
9
0.0410
0.0190
0.0002
0.0006
0.0018
1205





PSM
IVIARYGK
200
8





1206





PSM
IVIARYGKVFR
200
11





1207





PSM
IVLPFDCR
591
8





1208





PSM
IVRSFGTLK
398
9
0.1700
0.0087



1209





PSM
IVRSFGTLKK
398
10
0.0260
0.0006



1210





PSM
KAFLDELK
59
8





1211





PSM
KAWGEVKR
723
8





1212





PSM
KIVIARYGK
199
9
0.0740
1.0000



1213





PSM
KIYSISMK
610
8





1214





PAP
KSEEFQKR
173
8





1215





PSM
KSLYESWTK
491
9
0.4000
2.1000



1216





PSM
KSLYESWTKK
491
10
0.3200
0.0810



1217





PSM
KSNPIVLR
655
8





1218





PSM
KSPDEGFEGK
482
10
0.0044
0.0210



1219





PSA
KSVILLGR
66
8





1220





PSM
KVFRGNKVK
207
9
0.1600
0.1200



1221





PSM
KVKNAQLAGAK
213
11





1222





PSA
KVTKFMLCAGR
187
11





1223





Kallikrein
KVVHYRKWIK
245
10
0.0450
0.0450



1224





PSA
KVVHYRKWIK
241
10
0.0450
0.0450



1225





PSM
LAKQIQSQWK
92
10
0.0031
0.0007



1226





PAP
LLFFWLDR
21
8





1227





PSM
LLGFLFGWFIK
34
11





1228





Kallikrein
LLKHQSLR
105
8





1229





PSA
LLKNRFLR
101
8





1230





Kallikrein
LLRLSEPAK
123
9





1231





PAP
LLSLYGIHK
243
9
0.0760
0.2000



1232





PAP
LLSLYGIHKQK
243
11





1233





Kallikrein
LLSNDMCAR
178
9





1234





PAP
LLYLPFRNCPR
153
11





1235





Kallikrein
LMLLRLSEPAK
121
11





1236





PSM
LMYSLVHNLTK
469
11





1237





PAP
LSLLSLYGIHK
241
11





1238





PAP
LSLYGIHK
244
8





1239





PAP
LSLYGIHKQK
244
10
0.0520
0.0370



1240





Kallikrein
LSNDMCAR
179
8





1241





PSA
LTAAHCIR
57
8





1242





PSA
LTAAHCIRNK
57
10
0.1400
0.0830



1243





Kallikrein
LTAAHCLK
61
8





1244





Kallikrein
LTAAHCLKK
61
9





1245





PAP
LTELYFEK
315
8
0.0014
0.0100



1246





PSM
LVEKFYDPMFK
561
11





1247





PAP
LVFRKGDR
40
8
0.0003
0.0002



1248





PSM
LVHNLTKELK
473
10





1249





PAP
LVNEILNHMK
263
10
0.0560
0.1200



1250





PAP
LVNEILNHMKR
263
11





1251





PSM
LVYVNYAR
174
8





1252





Kallikrein
MLCAGLWTGGK
196
11





1253





PSA
MLCAGRWTGGK
192
11





1254





Kallikrein
MLLRLSEPAK
122
10





1255





PSM
MMNDQLMFLER
663
11





1256





Kallikrein
MSLLKHQSLR
103
10





1257





PSA
MSLLKNRFLR
99
10
0.0070
0.0110



1258





PSM
NAQLAGAK
216
8





1259





PSM
NITPKHNMK
51
9





1260





Kallikrein
NLFEPEDTGQR
79
11





1261





PSM
NLPGGGVQR
247
9





1262





PSM
NMKAFLDELK
57
10





1263





Kallikrein
NMSLLKHQSLR
102
11





1264





PSM
NSIVLPFDCR
589
10





1265





Kallikrein
NSQVWLGR
70
8





1266





PSM
NSRLLQER
438
8





1267





PSM
PADYFAPGVK
231
10





1268





PSA
PAELTDAVK
125
9
0.0002
0.0002
0.0004
0.0006
0.0001
1269





Kallikrein
PAKITDVVK
129
9





1270





PSM
PANEYAYR
273
8





1271





PSM
PANEYAYRR
273
9
0.0001
0.0002



1272





Kallikrein
PAVYTKVVHYR
240
11





1273





PAP
PIDTFPTDPIK
49
11





1274





PSM
PIGYYDAQK
296
9





1275





PSM
PLGLPDRPFYR
678
11





1276





PSA
PLYDMSLLK
95
9
0.2400
0.0370
0.0002
0.0006
0.0001
1277





PSA
PLYDMSLLKNR
95
11





1278





Kallikrein
PLYNMSLLK
99
9





1279





PSM
PSKAWGEVK
721
9





1280





PSM
PSKAWGEVKR
721
10
0.0003
0.0002



1281





PSA
PSLYTKVVHYR
236
11





1282





PSM
PSPEFSGMPR
502
10





1283





PAP
PSWATEDTMTK
224
11





1284





PSM
QLAKQIQSQWK
91
11





1285





PAP
QLLYLPFR
152
8





1286





PSA
QVHPQKVTK
182
9
0.0060
0.0140
0.0028
0.0014
0.0051
1287





PSA
QVLVASRGR
35
9
0.0021
0.0018



1288





PAP
QVYIRSTDVDR
101
11





1289





PAP
RAAPLLLAR
2
9
0.1500
0.1200



1290





PAP
RATQIPSYK
273
9
0.0210
0.0600



1291





PAP
RATQIPSYKK
273
10
0.0053
0.0250



1292





Kallikrein
RIVGGWECEK
24
10
0.0460
0.0670



1293





PSA
RIVGGWECEK
20
10
0.0460
0.0670



1294





PSM
RIYNVIGTLR
354
10
0.3700
0.4300



1295





PSM
RLGIASGR
527
8





1296





PSM
RLGIASGRAR
527
10





1297





PSM
RSFGTLKK
400
8





1298





PAP
RSVLAKELK
28
9
0.0490
0.1100



1299





PSM
RTEDFFKLER
181
10





1300





PSM
SAPPDSSWR
312
9
0.0006
0.0012



1301





PSM
SAVATARR
10
8





1302





PSM
SAVATARRPR
10
10





1303





PSM
SIEGNYTLR
455
9





1304





Kallikrein
SIEPEEFLR
159
9





1305





Kallikrein
SIEPEEFLRPR
159
11





1306





PSA
SIEPEEFLTPK
155
11





1307





PSM
SISMKHPQEMK
613
11





1308





PSM
SIVLPFDCR
590
9
0.0006
0.0220



1309





Kallikrein
SLLKHQSLR
104
9





1310





PSA
SLLKNRFLR
100
9
0.0024
0.0470



1311





PAP
SLLSLYGIHK
242
10
0.4900
2.3000



1312





PSM
SLVHNLTK
472
8





1313





PSM
SLVHNLTKELK
472
11





1314





PSM
SLYESWTK
492
8





1315





PSM
SLYESWTKK
492
9
1.0000
2.0000



1316





PAP
SLYGIHKQK
245
9
1.1000
0.8000



1317





PAP
SLYGIHKQKEK
245
11





1318





PSA
SLYTKVVHYR
237
10
0.2800
0.2300



1319





PSA
SLYTKVVHYRK
237
11





1320





PSM
SMKHPQEMK
615
9
0.1100
0.0720



1321





Kallikrein
SSHDLMLLR
117
9
0.0039
1.2000



1322





PSA
SSHDLMLLK
113
9
0.0039
1.2000



1323





PSM
SSIEGNYTLR
454
10
0.0007
0.0910



1324





PSM
SSNEATNITPK
45
11





1325





PSM
SSWRGSLK
317
8





1326





PSM
STEWAEENSR
431
10
0.0005
0.0016



1327





PAP
SVLAKELK
29
8
0.0017
0.0061



1328





PSM
SVYETYELVEK
554
11





1329





PSA
TAAHCIRNK
58
9
0.0094
0.0140



1330





Kallikrein
TAAHCLKK
62
8





1331





PSM
TLKKEGWR
404
8





1332





PSM
TLKKEGWRPR
404
10
0.0007
0.0002



1333





PSM
TLKKEGWRPRR
404
11





1334





PAP
TLKSEEFQK
171
9
00006
0.0078



1335





PAP
TLKSEEFQKR
171
10
0.0007
0.0001



1336





PSM
TLRGAVEPDR
361
10
0.0003
0.0002



1337





PAP
TLVFRHGDR
39
9
0.0006
0.0002



1338





PSM
VATARRPR
12
8





1339





PSM
VIARYGKVFR
201
10





1340





PSM
VIYAPSSHNK
690
10
0.5400
0.7900



1341





PSM
VLLSYPNK
115
8





1342





PSM
VLRKYADK
603
8





1343





PSA
VLTAAHCIR
56
9
0.0002
0.0005



1344





PSA
VLTAAHCIRNK
56
11





1345





Kallikrein
VLTAAHCLK
60
9





1346





Kallikrein
VLTAAHCLKK
60
10





1347





PSA
VLVASRGR
36
8





1348





PAP
VLVNEILNHMK
262
11





1349





PSM
VSFDSLFSAVK
627
11





1350





PSA
VTKFMLCAGR
188
10
0.0003
0.0120



1351





PAP
VTLVFRHGDR
38
10





1352





Kallikrein
VVHYRKWIK
246
9
0.0072
0.0930
0.5500
0.0490
0.0028
1353





PSA
VVIIYRKWIK
242
9
0.0072
0.0930
0.5500
0.0490
0.0028
1354





PSM
VVLRKYADK
602
9
0.0390
0.0660



1355





PAP
WATEDTMTK
226
9
0.0006
0.0002



1356





PAP
WATEDTMTKLR
226
11





1357





PSA
WIGAAPLILSR
10
11





1358





PAP
WLDRSVLAK
25
9
0.0035
0.0150



1359





PSA
WVLTAAHCIR
55
10
0.0004
0.0001



1360





Kallikrein
WVLTAAHCLK
59
10





1361





Kallikrein
WVLTAAHCLKK 59
11





1362





PSM
YADKIYSISMK
607
11





1363





PSM
YAPSSHNK
692
8





1364





PSM
YARTEDFFK
179
9





1365





PSM
YAVVLRKYADK
600
11





1366





PAP
YIRKRYRK
84
8





1367





PAP
YIRSTDVDR
103
9





1368





PAP
YLPFRNCPR
155
9





1369





PSM
YSLVHNLTK
471
9
0.0600
0.5400



1370





PSM
YTKNWETNK
537
9





1371





Kallikrein
YTKVVHYR
243
8





1372





PSA
YTKVVHYR
239
8





1373





Kallikrein
YTKVVHYRK
243
9
0.0006
0.0580
1.2000
2.8000
1.3000
1374





PSA
YTKVVHYRK
239
9
0.0006
0.0580
1.2000
2.8000
1.3000
1375





PSM
YVILGGHR
371
8





1376

















TABLE X










Prostate A24 Supermotif Peptides



with Binding Data


















Seq.






Amino

Id.


Protein
Sequence
Position
Acids
A*2401
No.
















PSM
AFIDPLGL
674
8

1377






PSM
AFLDELKAENI
60
11

1378





PSM
AFTVQAAAETL
736
11

1379





PAP
ALDVYNGL
299
8

1380





PAP
ALDVYNGLL
299
9

1381





PAP
ALFPPEGVSI
122
10

1382





PAP
ALFPPEGVSIW
122
11

1383





Kallikrein
ALGTTCYASGW
147
11

1384





PSA
ALGTTCYASGW
143
11

1385





Kallikrein
ALPEKPAVY
235
9

1386





PSA
ALPERPSL
231
8

1387





PSA
ALPERPSLY
231
9

1388





PSM
ALVLAGGF
25
8

1389





PSM
ALVLAGGFF
25
9

1390





PSM
ALVLAGGFFL
25
10

1391





PSM
ALVLAGGFFLL
25
11

1392





PAP
AMTNLAAL
116
8

1393





PAP
AMTNLAALP
116
9
0.0150
1394





PSM
ATARRPRW
13
8

1395





PSM
ATARRPRWL
13
9

1396





PAP
ATEDTMTKL
227
9

1397





PAP
ATLGKLSGL
189
9

1398





PSM
ATNITPKHNM
49
10

1399





PAP
ATQIPSYKKL
274
10

1400





PAP
ATQIPSYKKLI
274
11

1401





PSM
AVATARKPRW
11
10

1402





PSM
AVATARRPRWL
11
11

1403





PSM
AVEPDRYVI
365
9

1404





PSM
AVEPDRYVIL
365
10

1405





PSM
AVKNFTEI
635
8

1406





Kallikrein
AVPLTQSRI
17
9

1407





PSM
AVVHEIVRSF
393
10

1408





PSM
AVVLRKYADKI
601
11

1409





Kallikrein
AVYTKVVHY
241
9

1410





PSM
AWGEVKRQI
724
9

1411





PSM
AWGEVKRQIY
724
10

1412





PSM
AYINADSSI
448
9
0.0190
1413





Kallikrein
AYSEKVTEF
187
9

1414





Kallikrein
AYSEKVTEFM
187
10

1415





Kallikrein
AYSEKVTEFML
187
11

1416





PSA
CIRNKSVI
62
8

1417





PSA
CIRNKSVIL
62
9

1418





PSA
CIRNKSVILL
62
10

1419





Kallikrein
CLKKNSQVW
66
9

1420





Kallikrein
CLKKNSQVWL
66
10

1421





Kallikrein
CTGAVPLI
14
8

1422





PSM
CTPLMYSL
466
8

1423





Kallikrein
CVSLHLLSNDM
173
11

1424





Kallikrein
CYASGWGSI
152
9
0.1700
1425





PSA
CYASGWGSI
148
9
0.1700
1426





PSM
DFDKSNPI
652
8

1427





PSM
DFDKSNPIVL
652
10

1428





PSM
DFEVFFQRL
520
9

1429





PSM
DFEVFFQRLGI
520
11

1430





PSM
DFFKLERDM
184
9

1431





PSM
DFFKLERDMKI
184
11

1432





PAP
DFIATLGKL
186
9
0.0002
1433





PSM
DIVPPFSAF
156
9

1434





PAP
DLFGIWSKVY
201
10

1435





PSA
DLPTQEPAL
136
9

1436





Kallikrein
DLVLSIAL
3
8

1437





PSM
DMKINCSGKI
191
10

1438





PSA
DMSLLKNRF
98
9
0.0001
1439





PSA
DMSLLKNRFL
98
10

1440





Kallikrein
DTCGGDSGGPL
207
11

1441





PAP
DTFPTDPI
SI
8

1442





PAP
DTMTKLREL
230
9

1443





PAP
DTTVSGLQM
290
9

1444





PAP
DTTVSGLQMAL
290
11

1445





PAP
DVDRTLMSAM
108
10

1446





Kallikrein
DVVKVLGL
134
8

1447





PAP
DVYNGLLPPY
301
10

1448





PSM
DYAVVLRKY
599
9

1449





PSM
DYFAPGVKSY
233
10

1450





PSM
EFGLDSVEL
102
9

1451





PSM
EFGLLGSTEW
425
10

1452





Kallikrein
EFLRPRSL
164
8

1453





PSA
EFLTPKKL
160
8

1454





Kallikrein
EFMLCAGL
194
8

1455





Kallikrein
EFMLCAGLW
194
9

1456





PAP
EFQKRLHPY
176
9

1457





PSM
EFSGMPRI
505
8

1458





PSM
EFSGMPRISKL
505
11

1459





PSM
EIASKFSERL
641
10

1460





PSM
EIFNTSLF
137
8

1461





PSM
EIVRSFGTL
397
9

1462





PSM
ELAHYDVL
109
8

1463





PSM
ELAHYDVLL
109
9

1464





PSM
ELAHYDVLLSY
109
11

1465





PSM
ELANSIYL
586
8

1466





PSM
ELANSIVLPF
586
10

1467





PAP
ELGEYIRKRY
80
10

1468





PSM
ELKAENIKKF
64
10

1469





PSM
ELKAENIKKFL
64
11

1470





PAP
ELKFVTLVF
34
9

1471





PSM
ELKSPDEGF
480
9

1472





PAP
ELSELSLL
237
8

1473





PAP
ELSELSLLSL
237
10

1474





PAP
ELSELSLLSLY
237
11

1475





PAP
ELSLLSLY
240
8

1476





PAP
ELSLLSLYGI
240
10

1477





PSA
ELTDAVKVM
127
9

1478





PSA
ELTDAVKVMDL
127
11

1479





PSM
ELVEKFYDPM
560
10

1480





PSM
ELVEKFYDPMF
560
11

1481





PAP
ELVGPVIPQDW
358
11

1482





PAP
ELYFEKGEY
317
9

1483





PAP
ELYFEKGEYF
317
10

1484





PSM
EMKTYSVSF
621
9
0.0010
1485





PAP
ETLKSEEF
170
8

1486





PSM
ETNKFSGY
542
8

1487





PSM
ETNKFSGYPL
542
10

1488





PSM
ETNKFSGYPLY
542
11

1489





PAP
ETQHEPYPL
334
9

1490





PAP
ETQHEPYPLM
334
10

1491





PAP
ETQHEPYPLML
334
11

1492





PSM
ETYELVEKF
557
9

1493





PSM
ETYELVEKFY
557
10

1494





PSM
EVFFQRLGI
522
9

1495





PSM
EVKRQIYVAAF
727
11

1496





PSM
EVTRIYNVI
351
9

1497





PSM
EWAEENSRL
433
9

1498





PSM
EWAEENSRLL
433
10

1499





PSM
EYAYRRGI
276
8

1500





PAP
EYFVEMYY
324
8

1501





PAP
EYIRKRYRKF
83
10
0.0067
1502





PAP
EYIRKRYRKYL
83
11

1503





PSM
FFKLERDM
185
8

1504





PSM
FFKLERDMKI
185
10

1505





PSM
FFLLGFLF
32
8

1506





PSM
FFLLGFLFGW
32
10
0.0026
1507





PSM
FFLLGFLFGWF
32
11

1508





PAP
FFWLDRSVL
23
9
0.0017
1509





PAP
FIATLGKL
187
8

1510





PAP
FIATLGKLSGL
187
11

1511





PSM
FIKSSNEATNI
42
11

1512





PSM
FLDELKAENI
61
10

1513





PSM
FLERAFIDPL
670
10

1514





PAP
FLFLLFFW
18
8

1515





PAP
FLFLLFFWL
18
9

1516





PAP
FLFLLFFWL
33
9

1517





PSM
FLLGFLFGWF
33
10

1518





PSM
FLLGFLFGWFI
33
11

1519





PSA
FLTLSVTW
3
8

1520





PSA
FLTLSVTWI
3
9

1521





PSM
FLYNFTQI
73
8

1522





PSM
FLYNFTQIPHL
73
11

1523





Kallikrein
FMLCAGLW
195
8

1524





PSA
FMLCAGRW
191
8

1525





PSM
FTEIASKF
639
8

1526





PSM
FTVQAAAETL
737
10

1527





PAP
FWLDRSVL
24
8

1528





PSM
FYDPMFKY
565
8

1529





PSM
FYDPMFKYHL
565
10
1.1000
1530





PSM
GFEGKSLY
487
8

1531





PSM
GFEGKSLYESW
487
11

1532





PSM
GFFLLGFL
31
8

1533





PSM
GFFLLGFLF
31
9
0.0190
1534





PSM
GFFLLGFLFGW
31
11

1535





PAP
GFGQLTQL
66
8

1536





PAP
GFGQLTQLGM
66
10

1537





PSM
GFLFGWFI
36
8

1538





PAP
GFLFLLFF
17
8

1539





PAP
GFLFLLFFW
17
9
0.0016
1540





PAP
GFLFLLFFWL
17
10
0.0007
1541





PSM
GIAEAVGL
282
8

1542





PSM
GIAEAVGLPSI
282
11

1543





PSM
GIASGRARY
529
9

1544





PAP
GIHKQKEKSRL
248
11

1545





PAP
GIWSKVYDPL
204
10

1546





PAP
GIWSKVYDPLY
204
11

1547





PSM
GIYDALFDI
707
9

1548





PSM
GLDSVELAHY
104
10

1549





PAP
GLHGQDLF
196
8

1550





PAP
GLHGQDLFGI
196
10

1551





PAP
GLHGQDLFGIW
196
11

1552





PSM
GLLGSTEW
427
8

1553





PAP
GLLPPYASCHL
305
11

1554





PSM
GLPDRPFY
680
8

1555





PSM
GLPSIPVHPI
288
10

1556





Kallikrein
GLPTQEPAL
140
9

1557





PAP
GLQMALDVY
295
9

1558





PAP
GMEQHYEL
74
8

1559





PAP
GMEQHYELGEY
74
11

1560





PSM
GMPEGDLVY
168
9

1561





PSM
GMPRISKL
508
8

1562





PSM
GMVFELANSI
582
10
0.0002
1563





PSM
GTEQNFQL
85
8

1564





PSM
GTLKKEGW
403
8

1565





Kallikrein
GTTCYASGW
149
9

1566





PSA
GTTCYASGW
145
9

1567





PSM
GVAYINADSSI
446
11

1568





PSM
GVILYSDPADY
224
11

1569





PSM
GVKSYPDGW
238
9

1570





PSM
GVKSYPDGWNL
238
11

1571





Kallikrein
GVLQGITSW
221
9

1572





PSA
GVLQGITSW
217
9

1573





Kallikrein
GVLVHPQW
52
8

1574





PSA
GVLVHPQW
48
8

1575





Kallikrein
GVLVHPQWVL
52
10

1576





PSA
GVLVHPQWVL
48
10

1577





PAP
GVLVNEIL
261
8

1578





PAP
GVLVNEILNHM
261
11

1579





PSM
GVQRGNIL
252
8

1580





PSM
GVQRGNILNL
252
10

1581





PAP
GVSIWNPI
128
8

1582





PAP
GVSIWNPIL
128
9

1583





PAP
GVSIWNPILL
128
10

1584





PAP
GVSIWNPILLW
128
11

1585





Kallikrein
GWAHCGGVL
46
9

1586





Kallikrein
GWECEKHSQPW
28
11

1587





PSA
GWECEKHSQPW
24
11

1588





Kallikrein
GWGSIEPEEF
156
10
0.0001
1589





PSA
GWGSIEPEEF
152
10
0.0001
1590





Kallikrein
GWGSIEPEEFL
156
11

1591





PSA
GWGSIEPEEFL
152
11

1592





PSM
GWRPRRTI
409
8

1593





PSM
GWRPRRTIL
409
9

1594





PSM
GWRPRRTILF
409
10
0.0540
1595





PSM
GYENVSDI
150
8

1596





PSM
GYPANEYAY
271
9

1597





PSM
GYPLYHSVY
548
9

1598





PSM
GYYDAQKL
298
8

1599





PSM
GYYDAQKLL
298
9

1600





PSM
HIHSTNEVTRI
345
11

1601





PSM
HLAGTEQNF
82
9

1602





PSM
HLAGTEQNFQL
82
11

1603





PSM
HLTVAQVRGGM
573
11

1604





PAP
HMKRATQI
270
8

1605





PAP
HMKRATQIPSY
270
11

1606





PAP
HTVPLSEDQL
144
10

1607





PAP
HTVPLSEDQLL
144
11

1608





PSM
HYDVLLSY
112
8

1609





PAP
HYELGEYI
78
8

1610





Kallikrein
HYRKWIKDTI
248
10
0.0550
1611





PSA
HYRKWIKDTI
244
10
0.0550
1612





PSM
IINEDGNEI
130
9

1613





PSM
IINEDGNEIF
130
10

1614





PSM
ILFASWDAEEF
416
11

1615





PSM
ILGGHRDSW
373
9

1616





PSM
ILGGHRDSWVF
373
11

1617





PSA
ILLGRHSL
69
8

1618





PSA
ILLGRHSLF
69
9

1619





PAP
ILNHMKRATQI
267
11

1620





PSM
ILNLNGAGDPL
258
11

1621





PSA
ILSRIVGGW
17
9

1622





PSM
ILYSDPADY
226
9

1623





PSM
ILYSDPADYF
226
10

1624





Kallikrein
ITDVVKVL
132
8

1625





Kallikrein
ITDVVKVLGL
132
10

1626





PSM
ITPKHNMKAF
52
10

1627





PSM
ITPKHNMKAFL
52
11

1628





Kallikrein
ITSWGPEPCAL
226
11

1629





PSA
ITSWGSEPCAL
222
11

1630





PSM
IVIARYGKVF
200
10

1631





PSM
IVLPFDCRDY
591
10

1632





PSM
IVLRMMNDQL
659
10

1633





PSM
IVLRMMNDQLM
659
11

1634





PSM
IVPPFSAF
157
8

1635





PSM
IVRSFGTL
398
8

1636





PAP
IWNPILLW
131
8

1637





PAP
IWNPILLWQPI
131
11

1638





PAP
IWSKVYDPL
205
9
0.0024
1639





PAP
IWSKVYDPLY
205
10

1640





PSM
IYAPSSHNKY
691
10

1641





PSM
IYDALFDI
708
8

1642





PSM
IYNVIGTL
355
8

1643





PSM
KFLYNFTQI
72
9

1644





PSA
KFMLCAGRW
190
9
0.0310
1645





PSM
KFSERLQDF
645
9

1646





PSM
KFSGYPLY
545
8

1647





PSM
KFYDPMFKY
564
9

1648





PSM
KFYDPMFKYHL
564
11

1649





PSM
KINCSGKI
193
8

1650





PSM
KINCSGKIVI
193
10

1651





Kallikrein
KITDVVKVL
131
9

1652





Kallikrein
KITDVVKVLGL
131
11

1653





PSM
KIVIARYGKVF
199
11

1654





PSM
KLERDMKI
187
8

1655





PSM
KLGSGNDF
514
8

1656





PSM
KLGSGNDFEVF
514
11

1657





PSA
KLQCVDLHVI
166
10

1658





PAP
KLRELSEL
234
8

1659





PAP
KLRELSELSL
234
10

1660





PAP
KLRELSELSLL
234
11

1661





PAP
KLSGLHGQDL
193
10

1662





PAP
KLSGLHGQDLF
193
11

1663





PSM
KTHPNYISI
122
9

1664





PSM
KTHPNYISII
122
10

1665





PSM
KTYSVSFDSL
623
10

1666





PSM
KTYSVSFDSLF
623
11

1667





PSM
KVDPSKAW
718
8

1668





PSM
KVPYNVGPGF
324
10

1669





Kallikrein
KVTEFMLCAGL
191
11

1670





Kallikrein
KVVHYRKW
245
8

1671





PSA
KVVHYRKW
241
8

1672





Kallikrein
KVVHYRKWI
245
9

1673





PSA
KVVHYRKWI
241
9

1674





PSM
KYADKIYSI
606
9
12.0000
1675





PSM
KYADKIYSISM
606
11

1676





PSM
KYAGESFPGI
699
10

1677





PSM
KYAGESFPGIY
699
11

1678





PSM
LFASWDAEEF
417
10

1679





PSM
LFEPPPPGY
143
9

1680





PAP
LFFWLDRSVL
22
10
0.0045
1681





PAP
LFGIWSKVY
202
9

1682





PSA
LFRPEDTGQVF
76
11

1683





PAP
LFLLFFWL
19
8

1684





PAP
LFPPEGVSI
123
9
0.0033
1685





PAP
LFPPEGVSIW
123
10
0.0140
1686





PSM
LFSAVKNF
632
8

1687





PSM
LFSAVKNFTEI
632
11

1688





PSA
LILSRIVGGW
16
10

1689





Kallikrein
LIQSRIVGGW
20
10

1690





PAP
LLARAASL
7
8

1691





PAP
LLARAASLSL
7
10

1692





PAP
LLFFWLDRSVL
21
11

1693





PSM
LLGFLFGW
34
8

1694





PSM
LLGFLFGWF
34
9

1695





PSM
LLGFLFGWFI
34
10

1696





PSA
LLGRHSLF
70
8

1697





PAP
LLLARAASL
6
9

1698





PAP
LLLARAASLSL
6
11

1699





PAP
LLPPYASCHL
306
10

1700





PSM
LLQERGVAY
441
9

1701





PSM
LLQERGVAYI
441
10

1702





PSA
LLRLSEPAEL
119
10

1703





Kallikrein
LLRLSEPAKT
123
10

1704





Kallikrein
LLSNDMCARAY
178
11

1705





PSM
LMFLERAF
668
8

1706





PSM
LMFLERAFI
668
9
0.0075
1707





PAP
LMSAMTNL
113
8

1708





PAP
LMSAMTNLAAL
113
11

1709





PSM
LMYSLVHNL
469
9

1710





PSA
LTDAVKVM
128
8

1711





PSA
LTDAVKVMDL
128
10

1712





PAP
LTELYFEKGEY
315
11

1713





PSA
LTLSVTWI
4
8

1714





PSM
LTPGYPANEY
268
10

1715





PSA
LTPKKLQCVDL
162
11

1716





PAP
LTQLGMEQHY
70
10
0.0022
1717





PSM
LTVAQVRGGM
574
10

1718





Kallikrein
LVCNGVLQGI
217
10

1719





PSA
LVCNGVLQGI
213
10

1720





PSM
LVEKFYDPM
561
9

1721





PSM
LVEKEYDPMF
561
10

1722





PAP
LVFRHGDRSPI
40
11

1723





PAP
LVGPVIPQDW
359
10

1724





PSM
LVHNLTKEL
473
9

1725





Kallikrein
LVHPQWVL
54
8

1726





PSA
LVHPQWVL
50
8

1727





PSM
LVLAGGFF
26
8

1728





PSM
LVLAGGFFL
26
9

1729





PSM
LVLAGGFFLL
26
10

1730





PAP
LVNETLNHM
263
9

1731





PAP
LYCESVHNF
213
9
0.4400
1732





PAP
LYCESVHNFTL
213
11

1733





PSA
LYDMSLLKNRF
96
11
0.1200
1734





PAP
LYFEKGEY
318
8

1735





PAP
LYFEKGEYF
318
9
2.5000
1736





PSM
LYHSVYETY
551
9

1737





PSM
LVHSVYETYEL
551
11

1738





PAP
LYLPFRNCPRF
154
11

1739





PSM
LYNFTQIPHL
74
10
0.2300
1740





PSM
LYSDPADY
227
8

1741





PSM
LYSDPADYF
227
9
0.4400
1742





PSA
LYTKVVHY
238
8

1743





PSA
LYTKVVHYRKW
238
11

1744





PSM
MFLERAFI
669
8

1745





PSM
MFLERAFIDPL
669
11

1746





PSA
MLLRLSEPAEL
118
11

1747





Kallikrein
MLLRLSEPAKI
122
11

1748





PAP
MLPGCSPSCPL
343
11

1749





PSM
MMNDQLMF
663
8

1750





PSM
MMNDQLMFL
663
9

1751





PAP
MTKLRELSEL
232
10

1752





PAP
MTNLAALF
117
8

1753





PSM
MVFELANSI
583
9

1754





PSM
MVFELANSIVL
583
11

1755





Kallikrein
MWDLVLSI
1
8

1756





Kallikrein
MWDLVLSIAL
1
10

1757





PSM
MYSLVHNL
470
8

1758





PSM
NFQLAKQI
89
8

1759





PSM
NFSTQKVKM
336
9

1760





PSM
NFSTQKVKMHI
336
11

1761





PSM
NFTEIASKF
638
9
0.0001
1762





PSM
NFTQIPHL
76
8

1763





PSM
NIKKFLYNF
69
9

1764





PSM
NITPKHNM
51
8

1765





PSM
NITPKHNMKAF
51
11

1766





PSM
NLNGAGDPL
260
9

1767





PSM
NMKAFLDEL
57
9

1768





Kallikrein
NMSLLKHQSL
102
10

1769





PSM
NVGPGFTGNF
328
10

1770





PSM
NVSDIVPPF
153
9

1771





PSM
NWETNKFSGY
540
10

1772





PSM
NYARTEDE
178
8

1773





PSM
NYARTEDEF
178
9
0.7700
1774





PSM
NYARTEDFFKL
178
11

1775





PSM
NYTLRVDCTPL
459
11

1776





PSM
PFDCRDYAVVL
594
11

1777





PAP
PFRNCPRF
157
8

1778





PAP
PFRNCPRFQEL
157
11

1779





PSM
PFSAFSPQGM
160
10

1780





PSM
PFYRHVIY
685
8

1781





PAP
PIDTFPTDPI
49
10

1782





PSM
PIGYYDAQKL
296
10

1783





PSM
PIGYYDAQKLL
296
11

1784





PAP
PIKESSWPQGF
57
11

1785





PAP
PILLWQPI
134
8

1786





PAP
PIPVHTVPL
140
9

1787





PSM
PIVLRMMNDQL
658
11

1788





PAP
PLERFAEL
352
8

1789





PSM
PLGLPDRPF
678
9

1790





PSM
PLGLPDRPFY
678
10

1791





PSA
PLILSRIVGGW
15
11

1792





Kallikrein
PLIQSRIVGGW
19
11

1793





PAP
PLLLARAASL
5
10

1794





PSM
PLMYSLVHNL
468
10

1795





PAP
PLSEDQLL
147
8

1796





PAP
PLSEDQLLY
147
9

1797





PAP
PLSEDQLLYL
147
10

1798





PSM
PLTPGYPANEY
267
11

1799





Kallikrein
PLVCNGVL
216
8

1800





PSA
PLVCNGVL
212
8

1801





Kallikrein
PLVCNGVLQGI
216
11

1802





PSA
PLVCNGVLQGI
212
11

1803





PAP
PLYCESVHNF
212
10

1804





PSA
PLYDMSLL
95
8

1805





PSM
PLYHSVYETY
550
10

1806





Kallikrein
PLYNMSLL
99
8

1807





PAP
PTDPIKESSW
54
10

1808





PSM
PVHPIGYY
293
8

1809





Kallikrein
PVSHSFPHPL
91
10

1810





Kallikrein
PVSHSFPHPLY
91
11

1811





Kallikrein
PWQVAVYSHGW
37
11

1812





PAP
PYASCHLTEL
309
10
0.0240
1813





PAP
PYASCHLTELY
309
11

1814





PAP
PYKDFIATL
183
9
0.1100
1815





PSM
PYNVGPGF
326
8

1816





PAP
QIPSYKKL
276
8

1817





PAP
QIPSYKKLI
276
9

1818





PAP
QIPSYKKLIM
276
10

1819





PAP
QIPSYKKLIMY
276
11

1820





PSM
QIQSQWKEF
95
9

1821





PSM
QIQSQWKEFGL
95
11

1822





PSM
QLAGAKGVI
218
9

1823





PSM
QLAGAKGVIL
218
10

1824





PSM
QLAGAKGVILY
218
11

1825





PSM
QLAKQIQSQW
91
10

1826





PAP
QLGMEQHY
72
8

1827





PAP
QLGMEQHYEL
72
10

1828





PSM
QLMFLERAF
667
9

1829





PSM
QLMFLERAFI
667
10

1830





PAP
QLTQLGMEQHY
69
11

1831





PAP
QMALDVYNGL
297
10
0.0001
1832





PAP
QMALDVYNGLL
297
11

1833





Kallikrein
QVAVYSHGW
39
9

1834





PSA
QVFQVSHSF
84
9

1835





PSA
QVHPQKVTKF
182
10

1836





PSA
QVHPQKVTKFM
182
11

1837





PSM
QVRGGMVF
578
8

1838





PSM
QVRGGMVFEL
578
10

1839





PSA
QVSHSFPHPL
87
10

1840





PSA
QVSHSFPHPLY
87
11

1841





Kallikrein
QVWLGRHNL
72
9

1842





Kallikrein
QVWLGRFINLF
72
10

1843





PSA
QWVLTAAHCI
54
10
0.0007
1844





Kallikrein
QWVLTAAHCL
58
10

1845





PAP
RFAELVGPVI
355
10
0.0037
1846





PAP
RFQELESETL
163
10
0.0001
1847





PSM
RISKLGSGNDF
511
11

1848





PSM
RIYNVIGTL
354
9

1849





PSM
RLGIASGRARY
527
11

1850





PAP
RLHPYKDF
180
8

1851





PAP
RLHPYKDFI
180
9

1852





PSM
RLLQERGVAY
440
10

1853





PSM
RLLQERGVAYI
440
11

1854





PSM
RLQDFDKSNPI
649
11

1855





PAP
RLQGGVLVNEI
257
11

1856





PSA
RLSEPAEL
121
8

1857





Kallikrein
RLSEPAKI
125
8

1858





PSM
RMMNDQLM
662
8

1859





PSM
RMMNDQLMF
662
9

1860





PSM
RMMNDQLMFL
662
10

1861





PSM
RTEDFFKL
181
8

1862





PSM
RTILFASW
414
8

1863





PAP
RTLMSAMTNL
111
10

1864





PSM
RVDCTPLM
463
8

1865





PSM
RVDCTPLMY
463
9

1866





PSM
RVDCTPLMYSL
463
11

1867





Kallikrein
RVPVSHSF
89
8

1868





PSM
RWLCAGAL
19
8

1869





PSM
RWLCAGALVL
19
10

1870





PAP
RYRKFLNESY
88
10
0.0057
1871





PSM
RYTKNWETNKF
536
11

1872





PSM
SFGTLKKEGW
401
10

1873





PSM
SFPGIYDAL
704
9

1874





PSM
SFPGIYDALF
704
10

1875





PSA
SFPHPLYDM
91
9
0.0007
1876





PSA
SFPHPLYDMSL
91
11

1877





Kallikrein
SFPHPLYNM
95
9

1878





Kallikrein
SFPHPLYNMSL
95
11

1879





PSM
SIEGNYTL
455
8

1880





Kallikrein
SIEPEEFL
159
8

1881





PSA
SIEPEEFL
155
8

1882





PSM
SIINEDGNEI
129
10

1883





PSM
SIINEDGNEIF
129
11

1884





PSM
SIPVHPIGY
291
9

1885





PSM
SIPVHPIGYY
291
10

1886





PSM
SISMKHPQEM
613
10

1887





PSM
SIVLPFDCRDY
590
11

1888





PAP
SIWNPILL
130
8

1889





PAP
SIWNPILLW
130
9

1890





PSM
SLFEPPPPGY
142
10

1891





PSM
SLFSAVKNF
631
9

1892





PAP
SLGFLFLL
15
8

1893





PAP
SLGFLFLLF
15
9

1894





PAP
SLGFLPLLFF
15
10

1895





PAP
SLGFLFLLFFW
15
11

1896





Kallikrein
SLHLLSNDM
175
9

1897





Kallikrein
SLLKHQSL
104
8

1898





PSA
SLLKNRFL
100
8

1899





PAP
SLLSLYGI
242
8

1900





Kallikrein
SLQCVSLHL
170
9

1901





Kallikrein
SLQCVSLHLL
170
10

1902





PAP
SLSLGFLF
13
8

1903





PAP
SLSLGFLFL
13
9

1904





PAP
SLSLGFLFLL
13
10

1905





PAP
SLSLGFLFLLF
13
11

1906





PSM
SLVHNLTKEL
472
10

1907





PSA
SLYTKVVHY
237
9

1908





PSM
SMKHPQEM
615
8

1909





PSM
SMKHPQEMKTY
615
11

1910





PSA
STCSGDSGGPL
203
11

1911





PAP
STDVDRTL
106
8

1912





PAP
STDVDRTLM
106
9

1913





PSM
STEWAEENSRL
431
11

1914





PSM
STNEVTRI
348
8

1915





PSM
STNEVTRIY
348
9

1916





PSM
STQKVKMHI
338
9

1917





PSM
SVELAHYDVL
107
10

1918





PSM
SVELAHYDVLL
107
11

1919





Kallikrein
SVGCTGAVPL
11
10

1920





Kallikrein
SVGCTGAVPLI
11
11

1921





PAP
SVHNFTLPSW
217
10

1922





PSA
SVILLGRHSL
67
10

1923





PSA
SVILLGRHSLF
67
11

1924





PAP
SVLAKELKF
29
9

1925





PSM
SVSFDSLF
626
8

1926





PSA
SVTWIGAAPL
7
10

1927





PSA
SVTWIGAAPLI
7
11

1928





PSM
SVYETYEL
554
8

1929





PAP
SWATEDTM
225
8

1930





PAP
SWATEDTMTKL
225
11

1931





PSM
SWDAEEFGL
420
9

1932





PSM
SWDAEEFGLL
420
10

1933





Kallikrein
SWGPEPCAL
228
9

1934





PSA
SWGSEPCAL
224
9
0.0001
1935





PAP
SWPQGFGQL
62
9
0.0013
1936





PSM
SWRGSLKVPY
318
10

1937





PSM
SWTKKSPSPEF
496
11

1938





PAP
SYKHEQVY
96
8

1939





PAP
SYKHEQVYI
96
9
0.2600
1940





PAP
SYKKLIMY
279
8

1941





PSM
SYPDGWNL
241
8

1942





PSM
SYPNKTHPNY
118
10

1943





PSM
SYPNKTHPNYI
118
11

1944





PAP
TLGKLSGL
190
8

1945





PAP
TLKSEEFQKRL
171
11

1946





PAP
TLMSAMTNL
112
9

1947





PAP
TLPSWATEDTM
222
11

1948





PSM
TLRGAVEPDRY
361
11

1949





PSM
TLRVDCTPL
461
9

1950





PSM
TLRVDCTPLM
461
10

1951





PSM
TLRVDCTPLMY
461
11

1952





PAP
TMTKLREL
231
8

1953





PAP
TMTKLRELSEL
231
11

1954





Kallikrein
TTCYASGW
150
8

1955





PSA
TTCYASGW
146
8

1956





Kallikrein
TTCYASGWGSI
150
11

1957





PSA
TTCYASGWGSI
146
11

1958





PAP
TTVSGLQM
291
8

1959





PAP
TTVSGLQMAL
291
10

1960





PSM
TVAQVRGGM
575
9

1961





PSM
TVAQVRGGMVF
575
11

1962





PAP
TVPLSEDQL
145
9

1963





PAP
TVPLSEDQLL
145
10

1964





PAP
TVPLSEDQLLY
145
11

1965





PSM
TVQAAAETL
738
9

1966





PAP
TVSGLQMAL
292
9

1967





PSA
TWIGAAPL
9
8

1968





PSA
TWIGAAPLI
9
9
0.1100
1969





PSA
TWIGAAPLIL
9
10
0.3600
1970





PSM
TYELVEKF
558
8

1971





PSM
TYELVEKFY
558
9

1972





PSM
TYSVSFDSL
624
9

1973





PSM
TYSVSFDSLF
624
10
3.2000
1974





PSM
VFELANSI
584
8

1975





PSM
VFELANSIVL
584
10

1976





PSM
VFFQRLGI
523
8

1977





PSA
VFLTLSVTW
2
9
2.1000
1978





PSA
VFLTLSVTWI
2
10
0.0062
1979





PSA
VFQVSHSF
85
8

1980





PAP
VFRHGDRSPI
41
10
0.0005
1981





PSM
VIARYGKVF
201
9

1982





PSM
VILGGHRDSW
372
10

1983





PSA
VILLGRHSL
68
9

1984





PSA
VILLGRHSLF
68
10

1985





PSM
VILYSDPADY
225
10

1986





PSM
VILYSDPADYF
225
11

1987





PAP
VIPQDWSTECM
363
11

1988





PSM
VIYAPSSHNKY
690
11

1989





PSM
VLAGGFFL
27
8

1990





PSM
VLAGGFFLL
27
9

1991





PSM
VLAGGFFLLGF
27
11

1992





PAP
VLAKELKF
30
8

1993





PAP
VLAKELKFVTL
30
11

1994





Kallikrein
VLGLPTQEPAL
138
11

1995





PSM
VLPFDCRDY
592
9

1996





Kallikrein
VLQGITSW
222
8

1997





PSA
VLQGITSW
218
8

1998





PSM
VLRKYADKI
603
9

1999





PSM
VLRKYADKIY
603
10

2000





PSM
VLRMMNDQL
660
9

2001





PSM
VLRMMNDQLM
660
10

2002





PSM
VLRMMNDQLMF
660
11

2003





PSA
VLTAAHCI
56
8

2004





Kallikrein
VLTAAHCL
60
8

2005





Kallikrein
VLVHPQWVL
53
9

2006





PSA
VLVHPQWVL
49
9

2007





PAP
VLVNEILNHM
262
10

2008





PSA
VMDLPTQEPAL
134
11

2009





Kallikrein
VTEFMLCAGL
192
10

2010





Kallikrein
VTEFMLCAGLW
192
11

2011





PSA
VTKFMLCAGRW
188
11

2012





PSM
VTRIYNVI
352
8

2013





PSM
VTRIYNVIGTL
352
11

2014





PSA
VTWIGAAPL
8
9

2015





PSA
VTWIGAAPLI
8
10

2016





PSA
VTWIGAAPLIL
8
11

2017





PSA
VVFLTLSVTW
1
10

2018





PSA
VVFLTLSVTWI
1
11

2019





PSM
VVHEIVRSF
394
9

2020





Kallikrein
VVHYRKWI
246
8

2021





PSA
VVHYRKWI
242
8

2022





PSM
VVLRKYADKI
602
10

2023





PSM
VVLRKYADKIY
602
11

2024





Kallikrein
VWLGRHNL
73
8

2025





Kallikrein
VWLGRHNLF
73
9

2026





PSM
VYETYELVEKF
555
11

2027





PAP
VYNGLLPPY
302
9
0.0320
2028





Kallikrein
VYTKVVHY
242
8

2029





Kallikrein
VYTKVVHYRKW
242
11

2030





PSM
VYVNYARTEDF
175
11

2031





PSA
WIGAAPLI
10
8

2032





PSA
WIGAAPLIL
10
9

2033





PSM
WLCAGALVL
20
9

2034





PAP
WLDRSVLAKEL
25
11

2035





Kallikrein
WLGRHNLF
74
8

2036





PSM
WTKKSPSPEF
497
10

2037





PSA
WVLTAAHCI
55
9

2038





Kallikrein
WVLTAAHCL
59
9

2039





PSM
YFAPGVKSY
234
9

2040





PAP
YFEKGEYF
319
8

2041





PAP
YFEKGEYFVEM
319
11

2042





PSM
YINADSSI
449
8

2043





PAP
YIRKRYRKF
84
9

2044





PAP
YIRKRYRKFL
84
10

2045





PAP
YIRSTDVDRTL
103
11

2046





PAP
YLPPRNCPRF
155
10

2047





PSM
YTKNWETNKF
537
10

2048





Kallikrein
YTKVVHYRKW
243
10

2049





PSA
YTKVVHYRKW
239
10

2050





Kallikrein
YTKVVHYRKWI
243
11

2051





PSA
YTKVVHYRKWI
239
11

2052





PSM
YTLRVDCTPL
460
10

2053





PSM
YTLRVDCTPLM
460
11

2054





PSM
YVILGGHRDSW
371
11

2055





PSM
YVNYARTEDF
176
10

2056





PSM
YVNYARTEDFF
176
11

2057





PSM
YYDAQKLL
299
8

2058





PSM
YYDAQKLLEKM
299
11

2059





PAP
YYRNETQHEPY
330
11

2060

















TABLE X1










Prostate B07 Supermotif Peptides



with Binding Data


















Seq.






Amino

Id.


Protein
Sequence
Position
Acids
B*0702
No.
















PSM
APGVKSYPDGW
236
11

2061






PSA
APLILSRI
14
8

2062





PSA
APLILSRIV
14
9
0.0007
2063





PAP
APLLLARA
4
8

2064





PAP
APLLLARAA
4
9
0.0210
2065





PAP
APLLLARAASL
4
11

2066





PSM
APPDSSWRGSL
313
11

2067





PSM
APSSHNKY
693
8

2068





PSM
APSSHNKYA
693
9
0.0003
2069





PAP
CPLERFAEL
351
9
0.0810
2070





PAP
CPLERFAELV
351
10
0.0054
2071





PSM
DPADYFAPGV
230
10
0.0002
2072





PAP
DPIKESSW
56
8

2073





PSM
DPLGLPDRPF
677
10
0.0001
2074





PSM
DPLGLPDRPFY
677
11

2075





PSM
DPLTPGYPA
266
9
0.0001
2076





PAP
DPLYCESV
211
8

2077





PAP
DPLYCESVHNF
211
11

2078





PSM
DPMFKYHL
567
8

2079





PSM
DPMFKYHLTV
567
10
0.0001
2080





PSM
DPMFKYHLTVA
567
11

2081





PSM
DPQSGAAV
387
8

2082





PSM
DPQSGAAVV
387
9
0.0011
2083





PSM
DPSKAWGEV
720
9
0.0002
2084





PSA
EPAELTDA
124
8

2085





PSA
EPAELTDAV
124
9
0.0001
2086





PSA
EPAELTDAVKV
124
11

2087





Kallikrein
EPAKITDV
128
8

2088





Kallikrein
EPAKITDVV
128
9

2089





Kallikrein
EPAKITDVVKV
128
11

2090





Kallikrein
EPALGTTCY
145
9

2091





PSA
EPALGTTCY
141
9

2092





Kallikrein
EPALGTTCYA
145
10
0.0002
2093





PSA
EPALGTTCYA
141
10
0.0002
2094





Kallikrein
EPCALPEKPA
232
10

2095





Kallikrein
EPCALPEKPAV
232
11

2096





PSA
EPCALPERPSL
228
11

2097





PSM
EPDRYVIL
367
8

2098





Kallikrein
EPEDTGQRV
82
9

2099





Kallikrein
EPEDTGQRVPV
82
11

2100





Kallikrein
EPEEFLRPRSL
161
11

2101





PSA
EPEEFLTPKKL
157
11

2102





PSM
EPPPPGYENV
145
10
0.0001
2103





PSM
FPGIYDAL
705
8

2104





PSM
FPGIYDALF
705
9
0.0013
2105





PSM
FPGIYDALFDI
705
11

2106





PSA
FPHPLYDM
92
8

2107





PSA
FPHPLYDMSL
92
10
1.1000
2108





PSA
FPHPLYDMSLL
92
11

2109





Kallikrein
FPHPLYNM
96
8

2110





Kallikrein
FPHPLYNMSL
96
10

2111





Kallikrein
FPHPLYNMSLL
96
11

2112





PAP
FPPEGVSI
124
8

2113





PAP
FPPEGVSIW
124
9
0.0001
2114





PAP
FPTDPIKESSW
53
11

2115





PSM
GPGFTGNF
330
8

2116





Kallikrein
GPLVCNGV
215
8

2117





PSA
GPLVCNGV
211
8

2118





Kallikrein
GPLVCNGVL
215
9
0.0280
2119





PSA
GPLVCNGVL
211
9
0.0280
2120





PAP
GPVIPQDW
361
8

2121





PSA
HPEDTGQV
78
8

2122





PSA
HPEDTGQVF
78
9
0.0006
2123





PSA
HPEDTGQVFQV
78
11

2124





PSM
HPIGYYDA
295
8

2125





PSM
HPIGYYDAQKL
295
11

2126





PSA
HPLYDMSL
94
8

2127





PSA
HPLYDMSLL
94
9
0.0018
2128





Kallikrein
HPLYNMSL
98
8

2129





Kallikrein
HPLYNMSLL
98
9

2130





PSM
HPNYISII
124
8

2131





PSM
HPQEMKTY
618
8

2132





PSM
HPQEMKTYSV
618
10
0.0003
2133





PSA
HPQKVTKF
184
8

2134





PSA
HPQKVTKYM
184
9
0.1700
2135





PSA
HPQKVTKFML
184
10
0.0230
2136





Kallikrein
HPQWVLTA
56
8

2137





PSA
HPQWVLTA
52
8

2138





Kallikrein
HPQWVLTAA
56
9
0.0240
2139





PSA
HPQWVLTAA
52
9
0.0240
2140





PAP
HPYKDFIA
182
8

2141





PAP
HPYKDFIATL
182
10
0.0150
2142





PSM
IPHLAGTEQNF
80
11

2143





PAP
IPQDWSTECM
364
10
0.0019
2144





PAP
IPSYKKLI
277
8

2145





PAP
IPSYKKLIM
277
9
5.8000
2146





PAP
IPSYKKLIMY
277
10

2147





PSM
IPVHPIGY
292
8

2148





PSM
IPVHPIGYY
292
9
0.0007
2149





PSM
IPVHPIGYYDA
292
11

2150





PAP
IPVHTVPL
141
8

2151





Kallikrein
KPAVYTKV
239
8

2152





Kallikrein
KPAVYTKVV
239
9

2153





Kallikrein
KPAVYTKVVHY
239
11

2154





PSM
LPDRPFYRHV
681
10
0.0007
2155





PSM
LPDRPFYRHVI
681
11

2156





Kallikrein
LPEKPAVY
236
8

2157





Kallikrein
LPEKPAVYTKV
236
11

2158





PSA
LPERPSLY
232
8

2159





PSA
LPERPSLYTKV
232
11

2160





PSM
LPFDCRDY
593
8

2161





PSM
LPFDCRDYA
593
9
0.0011
2162





PSM
LPFDCRDYAV
593
10
0.0150
2163





PSM
LPFDCRDYAVV
593
11

2164





PAP
LPFRNCPRF
156
9
0.0049
2165





PAP
LPGCSPSCPL
344
10
0.0360
2166





PSM
LPGGGVQRGNI
248
11

2167





PAP
LPPYASCHL
307
9
0.0029
2168





PSM
LPSIPVHPI
289
9
0.0790
2169





PSM
LPSIPVHPIGY
289
11

2170





PAP
LPSWATEDTM
223
10
0.0032
2171





Kallikrein
LPTQEPAL
141
8

2172





PSA
LPTQEPAL
137
8

2173





PSM
MPEGDLVY
169
8

2174





PSM
MPEGDLVYV
169
9
0.0001
2175





PSM
MPEGDLVYVNY
169
11

2176





PAP
NPILLWQPI
133
9
0.0026
2177





PAP
NPILLWQPIPV
133
11

2178





PSM
NPIVLRMM
657
8

2179





PSM
PPDSSWRGSL
314
10
0.0012
2180





PAP
PPEGVSIW
125
8

2181





PAP
PPEGVSIWNPI
125
11

2182





PSM
PPFSAFSPQGM
159
11

2183





PSM
PPGYENVSDI
148
10
0.0001
2184





PSM
PPGYENVSDIV
148
11

2185





PSM
PPPGYENV
147
8

2186





PSM
PPPGYENVSDI
147
11

2187





PSM
PPPPGYENV
146
9
0.0001
2188





PAP
PPYASCHL
308
8

2189





PAP
PPYASCHLTEL
308
11

2190





PAP
QPIPVHTV
139
8

2191





PAP
QPIPVHTVPL
139
10
0.2400
2192





Kallikrein
QPWQVAVY
36
8

2193





PSA
QPWQVLVA
32
8

2194





Kallikrein
RPDEDSSHDL
112
10

2195





Kallikrein
RPDEDSSHDLM
112
11

2196





PSM
RPFYRHVI
684
8

2197





PSM
RPFYRHVIY
684
9
0.4700
2198





PSM
RPFYRHVIYA
684
10
0.7200
2199





PSA
RPGDDSSHDL
108
10
0.0117
2200





PSA
RPGDDSSHDLM
108
11

2201





PSM
RPRRTILF
411
8

2202





PSM
RPRRTILFA
411
9
0.7800
2203





PSM
RPRRTILFASW
411
11

2204





Kallikrein
RPRSLQCV
167
8

2205





Kallikrein
RPRSLQCVSL
167
10

2206





PSM
RPRWLCAGA
17
9
0.3200
2207





PSM
RPRWLCAGAL
17
10
5.2000
2208





PSM
RPRWLCAGALV
17
11

2209





PSA
RPSLYTKV
235
8

2210





PSA
RPSLYTKVV
235
9

2211





PSA
RPSLYTKVVHY
235
11

2212





PSM
SPDEGFEGKSL
483
11

2213





PSM
SPEFSGMPRI
503
10
0.0020
2214





PSA
SPIDTFPTDPI
48
11

2215





PSM
SPQGMPEGDL
165
10
0.0002
2216





PSM
SPQGMPEGDLV
165
11

2217





PSA
SPSGPLERF
348
9
0.0066
2218





PSA
SPSCPLERFA
348
10
0.0002
2219





PSM
SPSPEFSGM
501
9
0.0025
2220





PSM
TPGYPANEY
269
9
0.0012
2221





PSM
TPGYPANEYA
269
10
0.0001
2222





PSM
TPGYPANEYAY
269
11

2223





PSM
TPKHNMKA
53
8

2224





PSM
TPKHNMKAF
53
9
0.0990
2225





PSM
TPKHNMKAFL
53
10
0.0200
2226





PSA
TPKKLQCV
163
8

2227





PSA
TPKKLQCVDL
163
10
0.0006
2228





PSM
TPLMYSLV
467
8

2229





PSM
TPLMYSLVHNL
467
11

2230





Kallikrein
VPLIQSRI
18
8

2231





Kallikrein
VPLIQSRIV
18
9

2232





PSA
VPLSEDQL
146
8

2233





PSA
VPLSEDQLL
146
9
0.0002
2234





PSA
VPLSEDQLLY
146
10
0.0011
2235





PSA
VPLSEDQLLYL
146
11

2236





Kallikrein
VPVSHSFPHPL
90
11

2237





PSM
VPYNVGPGF
325
9
0.0039
2238





PSA
WPQGFGQL
63
8

2239





PSA
WPQGFGQLTQL
63
11

2240





PSM
YPANEYAY
272
8

2241





PSM
YPLYHSVY
549
8

2242





PSM
YPLYHSVYETY
549
11

2243





PSM
YPNKTHPNY
119
9
0.0001
2244





PSM
YPNKTHPNYI
119
10
0.0035
2245
















TABLE XII










Prostate B27 Supermotif with Binding Data















No. of
Seq.






Amino
Id.


Protein
Sequence
Position
Acids
No.















Kallikrein
AHCGGVLV
48
8
2246






PSA
AHCIRNKSV
60
9
2247





PSA
AHCIRNKSVI
60
10
2248





PSA
AHCIRNKSVIL
60
11
2249





Kallikrein
AHCLKKNSQV
64
10
2250





Kallikrein
AHCLKKNSQVW
64
11
2251





PAP
AHDITVSGL
288
9
2252





PAP
AHDTTVSGLQM
288
11
2253





PSM
AHYDVLLSY
111
9
2254





PAP
AKELKFVTL
32
9
2255





PAP
AKELKFVTLV
32
10
2256





PAP
AKELKFVTLVF
32
11
2257





PSM
AKGVILYSDPA
222
11
2258





Kallikrein
AKTTDVVKV
130
9
2259





Kallikrein
AKITDVVKVL
130
10
2260





PSM
AKQIQSQW
93
8
2261





PSM
AKQIQSQWKEF
93
11
2262





PAP
ARAASLSL
9
8
2263





PAP
ARAASLSLGF
9
10
2264





PAP
ARAASLSLGFL
9
11
2265





Kallikrein
ARAYSEKV
185
8
2266





Kallikrein
ARAYSEKVTEF
185
11
2267





PSM
ARRPRWLCA
15
9
2268





PSM
ARRPRWLCAGA
15
11
2269





PSM
ARTEDFFKL
180
9
2270





PAP
CHLTELYF
313
8
2271





PSM
CRDYAVVL
597
8
2272





PSM
CRDYAVVLRKY
597
11
2273





PSM
DKIYSISM
609
8
2274





PSM
DKSNPIVL
654
8
2275





PSM
DKSNPIVLRM
654
10
2276





PSM
DKSNPIVLRMM
654
11
2277





PSM
DRPFYRHV
683
8
2278





PSM
DRPFYRHVI
683
9
2279





PSM
DRPFYRHVIY
683
10
2280





PSM
DRPFYRHVIYA
683
11
2281





PAP
DRSPIDTF
46
8
2282





PAP
DRSVLAKEL
27
9
2283





PAP
DRSVLAKELKF
27
11
2284





PAP
DRTLMSAM
110
8
2285





PAP
DRTLMSAMTNL
110
11
2286





PSM
EKFYDPMF
563
8
2287





PSM
EKFYDPMFKY
563
10
2288





PAP
EKGEYFVEM
321
9
2289





PAP
EKGEYFVEMY
321
10
2290





PAP
EKGEYFVEMYY
321
11
2291





Kallikrein
EKHSQPWQV
32
9
2292





PSA
EKHSQPWQV
28
9
2293





Kallikrein
EKHSQPWQVA
32
10
2294





Kallikrein
EKHSQPWQVAV
32
11
2295





PSA
EKHSQPWQVL
28
10
2296





PSA
EKHSQPWQVLV
28
11
2297





Kallikrein
EKPAVYTKV
238
9
2298





Kallikrein
EKPAVYTKVV
238
10
2299





PAP
EKSRLQGGV
254
9
2300





PAP
EKSRLQGGVL
254
10
2301





PAP
EKSRLQGGVLV
254
11
2302





Kallikrein
EKVTEFML
190
8
2303





Kallikrein
EKVTEFMLCA
190
10
2304





PSM
ERAFIDPL
672
8
2305





PSM
ERAFIDPLGL
672
10
2306





PAP
ERFAELVGPV
354
10
2307





PAP
ERFAELVGPVI
354
11
2308





PSM
ERGVAYINA
444
9
2309





PSA
ERPSLYTKV
234
9
2310





PSA
ERPSLYTKVV
234
10
2311





PSA
FHPEDTGQV
77
9
2312





PSA
FHPEDTGQVF
77
10
2313





PSM
FKLERDMKI
186
9
2314





PSM
FKYHLTVA
570
8
2315





PSM
FKYIALTVAQV
570
10
2316





PSM
FRGNKVKNA
209
9
2317





PSM
FRGNKVKNAQL
209
11
2318





PAP
FRHGDRSPI
42
9
2319





PAP
FRNCPRFQEL
158
10
2320





PSM
GHRDSWVF
376
8
2321





PSM
GHRDSWVFGGI
376
11
2322





PSM
GKIVIARY
198
8
2323





PSM
GKIVIARYGKV
198
11
2324





PAP
GKLSGLHGQDL
192
11
2325





PSM
GKSLYESW
490
8
2326





PSM
GKVFRGNKV
206
9
2327





PSM
GRARYTKNW
533
9
2328





PSA
GRAVCGGV
42
8
2329





PSA
GRAVCGGVL
42
9
2330





PSA
GRAVGGGVLV
42
10
2331





PAP
HKQKEKSRL
250
9
2332





PSM
HRDSWVFGGI
377
10
2333





PAP
IHKQKEKSRL
249
10
2334





PSM
IHSTNEVTRI
346
10
2335





PSM
IHSTNEVTRIY
346
11
2336





PAP
IKESSWPQGF
58
10
2337





PSM
IKKFLYNF
70
8
2338





PSM
IKKFLYNFTQI
70
11
2339





PSM
IKSSNEATNI
43
10
2340





PAP
IRKRYRKF
85
8
2341





PAP
IRKRYRKFL
85
9
2342





PSA
IRNKSVIL
63
8
2343





PSA
IRNKSVILL
63
9
2344





PAP
IRSTDVDRTL
104
10
2345





PAP
IRSTDVDRTLM
104
11
2346





PSM
KHNMKAFL
55
8
2347





PSM
KHNMKAFLDEL
55
11
2348





PSM
KHPQEMKTY
617
9
2349





PSM
KHPQEMKTYSV
617
11
2350





Kallikrein
KHSQPWQV
33
8
2351





PSA
KHSQPWQV
29
8
2352





Kallikrein
KHSQPWQVA
33
9
2353





Kallikrein
KHSQPWQVAV
33
10
2354





Kallikrein
KHSQPWQVAVY
33
11
2355





PSA
KHSQPWQVL
29
9
2356





PSA
KHSQPWQVLV
29
10
2357





PSA
KHSQPWQVLVA
29
11
2358





PSM
KKEGWRPRRTI
406
11
2359





PSM
KKFLYNFTQI
71
10
2360





PAP
KKLIMYSA
281
8
2361





PSA
KKLQCVDL
165
8
2362





PSA
KKLQCVDLHV
165
10
2363





PSA
KKLQCVDLHVI
165
11
2364





Kallikrein
KKNSQVWL
68
8
2365





PSM
KKSPSPEF
499
8
2366





PSM
KKSPSPEFSGM
499
11
2367





PAP
KRATQIPSY
272
9
2368





PAP
KRLHPYKDF
179
9
2369





PAP
KRLHPYKDFI
179
10
2370





PAP
KRLHPYKDFIA
179
11
2371





PSM
KRQIYVAA
729
8
2372





PSM
KRQIYVAAF
729
9
2373





PSM
KRQIYVAAFTV
729
11
2374





PAP
KRYRKFLNESY
87
11
2375





PSM
LHETDSAV
5
8
2376





PSM
LHETDSAVA
5
9
2377





PSM
LHETDSAVATA
5
11
2378





PAP
LHGQDLFGI
197
9
2379





PAP
LHGQDLFGIW
197
10
2380





Kallikrein
LHLLSNDM
176
8
2381





Kallikrein
LHLLSNDMCA
176
10
2382





PAP
LHPYKDFI
181
8
2383





PAP
LHPYKDFIA
181
9
2384





PAP
LHPYKDFIATL
181
11
2385





PSA
LHVISNDV
172
8
2386





PSA
LHVISNDVCA
172
10
2387





PSM
LKAENIKKF
65
9
2388





PSM
LKAENIKKFL
65
10
2389





PSM
LKAENIKKFLY
65
11
2390





PAP
LKFVTLVF
35
8
2391





Kallikrein
LKKNSQVW
67
8
2392





Kallikrein
LKKNSQVWL
67
9
2393





PAP
LKSEEFQKRL
172
10
2394





PSM
LKSPDEGF
481
8
2395





PSM
LKVPYNVGPGF
323
11
2396





PAP
LRELSELSL
235
9
2397





PAP
LRELSELSLL
235
10
2398





PSM
LRGAVEPDRY
362
10
2399





PSM
LRGAVEPDRYV
362
11
2400





PSM
LRKYADKI
604
8
2401





PSM
LRKYADKIY
604
9
2402





PSM
LRKYADKIYSI
604
11
2403





PSA
LRLSEPAEL
120
9
2404





Kallikrein
LRLSEPAKI
124
9
2405





PSM
LRMMNDQL
661
8
2406





PSM
LRMMNDQLM
661
9
2407





PSM
LRMMNDQLMF
661
10
2408





PSM
LRMMNDQLMFL
661
11
2409





Kallikrein
LRPDEDSSHDL
111
11
2410





PSA
LRPGDDSSHDL
107
11
2411





Kallikrein
LRPRSLQCV
166
9
2412





Kallikrein
LRPRSLQCVSL
166
11
2413





PSM
LRVDCTPL
462
8
2414





PSM
LRVDCTPLM
462
9
2415





PSM
LRVDCTPLMY
462
10
2416





PSM
MHIHSTNEV
344
9
2417





PSM
MKAFLDEL
58
8
2418





PSM
MKAFLDELKA
58
10
2419





PSM
MKHPQEMKTY
616
10
2420





PSM
MKINCSGKI
192
9
2421





PSM
MKINCSGKIV
192
10
2422





PSM
MKINCSGKIVI
192
11
2423





PAP
MKRATQIPSY
271
10
2424





PSM
MKTYSVSF
622
8
2425





PSM
MKTYSVSFDSL
622
11
2426





PAP
MRAAPLLL
1
8
2427





PAP
MRAAPLLLA
1
9
2428





PAP
MRAAPLLLARA
1
11
2429





PAP
NHMKRATQI
269
9
2430





PSM
NKFSGYPL
544
8
2431





PSM
NKFSGYPLY
544
9
2432





PSM
NKTHPNYI
121
8
2433





PSM
NKTHPNYISI
121
10
2434





PSM
NKTHPNYISII
121
11
2435





PSM
NKVKNAQL
212
8
2436





PSM
NKVKNAQLA
212
9
2437





PSM
NKVKNAQLAGA
212
11
2438





PSM
NKYAGESF
698
8
2439





PSM
NKYAGESFPGI
698
11
2440





PSM
PHLAGTEQNF
81
10
2441





PSA
PHPLYDMSL
93
9
2442





PSA
PHPLYDMSLL
93
10
2443





Kallikrein
PHPLYNMSL
97
9
2444





Kallikrein
PHPLYNMSLL
97
10
2445





PSM
PKHNMKAF
54
8
2446





PSM
PKHNMKAFL
54
9
2447





PSA
PKKLQCVDL
164
9
2448





PSA
PKKLQCVDLHV
164
11
2449





PAP
PRFQELESETL
162
11
2450





PSM
PRRTILFA
412
8
2451





PSM
PRRTILFASW
412
10
2452





Kallikrein
PRSLQCVSL
168
9
2453





Kallikrein
PRSLQCVSLHL
168
11
2454





PSM
PRWLCAGA
18
8
2455





PSM
PRWLCAGAL
18
9
2456





PSM
PRWLCAGALV
18
10
2457





PSM
PRWLCAGALVL
18
11
2458





PAP
QHEPYPLM
336
8
2459





PAP
QHEPYPLML
336
9
2460





PAP
QHYELGEY
77
8
2461





PAP
QHYELGEYI
77
9
2462





PAP
QKEKSRLQGGV
252
11
2463





PSM
QKLLEKMGGSA
303
11
2464





PAP
QKRLHPYKDF
178
10
2465





PAP
QKRLHPYKDFI
178
11
2466





PSA
QKVTKFML
186
8
2467





PSA
QKVTKFMLCA
186
10
2468





PSM
QRGNILNL
254
8
2469





PSM
QRGNILNLNGA
254
11
2470





PSM
QRLGIASGRA
526
10
2471





Kallikrein
QRVPVSHSF
88
9
2472





PAP
RHGDRSPI
43
8
2473





PAP
RHGDRSPIDTF
43
11
2474





PAP
RKFLNESY
90
8
2475





PAP
RKRYRKFL
86
8
2476





Kallikrein
RKWIKDTI
250
8
2477





PSA
RKWIKDTI
246
8
2478





Kallikrein
RKWIKDTIA
250
9
2479





Kallikrein
RKWIKDTIAA
250
10
2480





PSA
RKWIKDTIV
246
9
2481





PSA
RKWIKDTIVA
246
10
2482





PSM
RKYADKIY
605
8
2483





PSM
RKYADKIYSI
605
10
2484





PSM
RRGIAEAV
280
8
2485





PSM
RRGIAEAVGL
280
10
2486





PSM
RRPRWLCA
16
8
2487





PSM
RRPRWLCAGA
16
10
2488





PSM
RRPRWLCAGAL
16
11
2489





PSM
RRTILFASW
413
9
2490





PSM
RRTILFASWDA
413
11
2491





Kallikrein
SHDLMLLRL
118
9
2492





PSA
SHDLMLLRL
114
9
2493





Kallikrein
SHGWAHCGGV
44
10
2494





Kallikrein
SHGWAHCGGVL
44
11
2495





PSM
SHNKYAGESF
696
10
2496





Kallikrein
SHSFPHPL
93
8
2497





PSA
SHSFPHPL
89
8
2498





Kallikrein
SHSFPHPLY
93
9
2499





PSA
SHSFPHPLY
89
9
2500





PSA
SHSFPHPLYDM
89
11
2501





Kallikrein
SHSFPHPLYNM
93
11
2502





PSM
SKAWGEVKRQI
722
11
2503





PSM
SKFSERLQDF
644
10
2504





PSM
SKLGSGNDF
513
9
2505





PSM
SKLGSGNDFEV
513
11
2506





PSM
SKVDPSKA
717
8
2507





PSM
SKVDPSKAW
717
9
2508





PAP
SKVYDPLY
207
8
2509





PSA
SRGRAVCGGV
40
10
2510





PSA
SRGRAVCGGVL
40
11
2511





PSM
SRLLQERGV
439
9
2512





PSM
SRLLQERGVA
439
10
2513





PSM
SRLLQERGVAY
439
11
2514





PAP
SRLQGGVL
256
8
2515





PAP
SRLQGGVLV
256
9
2516





PSM
THPNYISI
123
8
2517





PSM
THPNYISII
123
9
2518





PSM
TKELKSPDEGF
478
11
2519





PSA
TKFMLCAGRW
189
10
2520





PSM
TKKSPSPEF
498
9
2521





PAP
TKLRELSEL
233
9
2522





PAP
TKLRELSELSL
233
11
2523





PSM
TKNWETNKF
538
9
2524





Kallikrein
TKVVHYRKW
244
9
2525





PSA
TKVVHYRKW
240
9
2526





Kallikrein
TKVVHYRKWI
244
10
2527





PSA
TKVVHYRKWI
240
10
2528





PSM
TRIYNVIGTL
353
10
2529





PSM
VHEIVRSF
395
8
2530





PSM
VHEIVRSFGTL
395
11
2531





PAP
VHNFTLPSW
218
9
2532





PAP
VHNFTLPSWA
218
10
2533





PSM
VHNLTKEL
474
8
2534





PSM
VHPIGYYDA
294
9
2535





PSA
VHPQKVTKF
183
9
2536





PSA
VHPQKVTKFM
183
10
2537





PSA
VHPQKVTKFML
183
11
2538





Kallikrein
VHPQWVLTA
55
9
2539





PSA
VHPQWVLTA
51
9
2540





Kallikrein
VHPQWVLTAA
55
10
2541





PSA
VHPQWVLTAA
51
10
2542





PAP
VHTVPLSEDQL
143
11
2543





Kallikrein
VHYRKWIKDTI
247
11
2544





PSA
VHYRKWIKDTI
243
11
2545





PSM
VKMHIHSTNEV
342
11
2546





PSM
VKNAQLAGA
214
9
2547





PSM
VKNFTEIA
636
8
2548





PSM
VKNFTEIASKF
636
11
2549





PSM
VKRQIYVA
728
8
2550





PSM
VKRQIYVAA
728
9
2551





PSM
VKRQIYVAAF
728
10
2552





PSM
VKSYPDGW
239
8
2553





PSM
VKSYPDGWNL
239
10
2554





PSM
VRGGMVFEL
579
9
2555





PSM
VRGGMVFELA
579
10
2556





PSM
WKEFGLDSV
100
9
2557





PSM
WKEFGLDSVEL
100
11
2558





PSM
WRGSLKVPY
319
9
2559





PSM
WRGSLKVPYNV
319
11
2560





PSM
WRPRRTIL
410
8
2561





PSM
WRPRRTILF
410
9
2562





PSM
WRPRRTILFA
410
10
2563





PSM
YHLTVAQV
572
8
2564





PSM
YHSVYETY
552
8
2565





PSM
YHSVYETYEL
552
10
2566





PSM
YHSVYETYELV
552
11
2567





PAP
YKDFIATL
184
8
2568





PAP
YKDFIATLGKL
184
11
2569





PAP
YKHEQVYI
97
8
2570





PAP
YKKLIMYSA
280
9
2571





PAP
YRKFLNESY
89
9
2572





Kallikrein
YRKWIKDTI
249
9
2573





PSA
YRKWIKDTI
245
9
2574





Kallikrein
YRKWIKDTIA
249
10
2575





Kallikrein
YRKWIKDTIAA
249
11
2576





PSA
YRKWIKDTIV
245
10
2577





PSA
YRKWIKDTIVA
245
11
2578





PAP
YRNETQHEPY
331
10
2579





PSM
YRRGIAEA
279
8
2580





PSM
YRRGIAEAV
279
9
2581





PSM
YRRGIAEAVGL
279
11
2582
















TABLE XIII










Prostate B58 Supermotif with Binding Data















No. of
Seq.






Amino
Id.


Protein
Sequence
Position
Acids
No.















PSM
AAAETLSEV
741
9
2583






PSM
AAAETLSEVA
741
10
2584





PSM
AAETLSEV
742
8
2585





PSM
AAETLSEVA
742
9
2586





PSM
AAFTVQAA
735
8
2587





PSM
AAFTVQAAA
735
9
2588





PSA
AAHCIRNKSV
59
10
2589





PSA
AAHCIRNKSVI
59
11
2590





Kallikrein
AAHCLKKNSQV
63
11
2591





PAP
AALFPPEGV
121
9
2592





PAP
AALFPPEGVSI
121
11
2593





PSA
AAPLILSRI
13
9
2594





PSA
AAPLILSRIV
13
10
2595





PAP
AAPLLLARA
3
9
2596





PAP
AAPLLLARAA
3
10
2597





PAP
AASLSLGF
11
8
2598





PAP
AASLSLGFL
11
9
2599





PAP
AASLSLGFLF
11
10
2600





PAP
AASLSLGFLFL
11
11
2601





PSM
AAVVHEIV
392
8
2602





PSM
AAVVHEIVRSF
392
11
2603





PAP
ASCHLTEL
311
8
2604





PAP
ASCHLTELY
311
9
2605





PAP
ASCHLTELYF
311
10
2606





PSM
ASGRARYTKNW
531
11
2607





PSM
ASKFSERL
643
8
2608





PSM
ASKFSERLQDF
643
11
2609





PAP
ASLSLGFL
12
8
2610





PAP
ASLSLGFLF
12
9
2611





PAP
ASLSLGFLFL
12
10
2612





PAP
ASLSLGFLFLL
12
11
2613





PSA
ASRGRAVCGGV
39
11
2614





PSM
ASWDAEEF
419
8
2615





PSM
ASWDAEEFGL
419
10
2616





PSM
ASWDAEEFGLL
419
11
2617





PSM
ATARRPRW
13
8
2618





PSM
ATARRPRWL
13
9
2619





PSM
ATARRPRWLCA
13
11
2620





PAP
ATEDTMTKL
227
9
2621





PAP
ATLGKLSGL
189
9
2622





PSM
ATNITPKHNM
49
10
2623





PAP
ATQIPSYKKL
274
10
2624





PAP
ATQIPSYKKLI
274
11
2625





PSM
CAGALVLA
22
8
2626





PSM
CAGALYLAGGF
22
11
2627





Kallikrein
CALPEKPA
234
8
2628





Kallikrein
CALPEKPAV
234
9
2629





Kallikrein
CALPEKPAVY
234
10
2630





PSA
CALPERPSL
230
9
2631





PSA
CALPERPSLY
230
10
2632





PSA
CAQVHPQKV
180
9
2633





Kallikrein
CARAYSEKV
184
9
2634





PSA
CSGDSGGPL
205
9
2635





PSA
CSGDSGGPLV
205
10
2636





PSM
CSGKIVIA
196
8
2637





PSM
CSGKIVIARY
196
10
2638





PAP
CSPSCPLERF
347
10
2639





PAP
CSPSCPLERFA
347
11
2640





Kallikrein
CTGAVPLI
14
8
2641





PSM
CTPLMYSL
466
8
2642





PSM
GTPLMYSLV
466
9
2643





PSM
DAEEFGLL
422
8
2644





PSM
DALFDIESKV
710
10
2645





PSM
DAQKLLEKM
301
9
2646





PSA
DAVKVMDL
130
8
2647





Kallikrein
DSGGPLVCNGV
212
11
2648





PSA
DSGGPLVCNGV
208
11
2649





PSM
DSLFSAVKNF
630
10
2650





Kallikrein
DSSHDLML
116
8
2651





PSA
DSSHDLML
112
8
2652





Kallikrein
DSSHDLMLL
116
9
2653





PSA
DSSHDLMLL
112
9
2654





Kallikrein
DSSHDLMLLRL
116
11
2655





PSA
DSSHDLMLLRL
112
11
2656





PSM
DSSIEGNY
453
8
2657





PSM
DSSIEGNYTL
453
10
2658





PSM
DSSWRGSL
316
8
2659





PSM
DSSWRGSLKV
316
10
2660





PSM
DSVELAHY
106
8
2661





PSM
DSVELAHYDV
106
10
2662





PSM
DSVELAHYDVL
106
11
2663





PSM
DSWVFGGI
379
8
2664





Kallikrein
DTCGGDSGGPL
207
11
2665





PAP
DTFPTDPI
51
8
2666





Kallikrein
DTGQRVPV
85
8
2667





PSA
DTGQVFQV
81
8
2668





PAP
DTMTKLREL
230
9
2669





PAP
DTTVSGLQM
290
9
2670





PAP
DTTVSGLQMA
290
10
2671





PAP
DTTVSGLQMAL
290
11
2672





PSM
EATNITPKHNM
48
11
2673





PSM
EAVGLPSI
285
8
2674





PSM
EAVGLPSIPV
285
10
2675





PAP
ESETLKSEEF
168
10
2676





PSM
ESFPGIYDA
703
9
2677





PSM
ESFPGIYDAL
703
10
2678





PSM
ESFPGIYDALF
703
11
2679





PSM
ESKVDPSKA
716
9
2680





PSM
ESKVDPSKAW
716
10
2681





PAP
ESSWPQGF
60
8
2682





PAP
ESSWPQGFGQL
60
11
2683





PAP
ESVHNFTL
216
8
2684





PAP
ESVHNFTLPSW
216
11
2685





PAP
ESYKHEQV
95
8
2686





PAP
ESYKHEQVY
95
9
2687





PAP
ESYKHEQVYI
95
10
2688





PSM
ETDSAVATA
7
9
2689





PAP
ETLKSEEF
170
8
2690





PSM
ETNKFSGY
542
8
2691





PSM
ETNKFSGYPL
542
10
2692





PSM
ETNKFSGYPLY
542
11
2693





PAP
ETQHEPYPL
334
9
2694





PAP
ETQHEPYPLM
334
10
2695





PAP
ETQHEPYPLML
334
11
2696





PSM
ETYELVEKF
557
9
2697





PSM
ETYELVEKFY
557
10
2698





PAP
FAELVGPV
356
8
2699





PAP
FAELVGPVI
356
9
2700





PSM
FAPGVKSY
235
8
2701





PSM
FASWDAEEF
418
9
2702





PSM
FASWDAEEFGL
418
11
2703





PSM
FSAFSPQGM
161
9
2704





PSM
FSAVKNFTEI
633
10
2705





PSM
FSAVKNFTEIA
633
11
2706





PSM
FSERLQDF
646
8
2707





PSM
FSGMPRISKL
506
10
2708





PSM
FSGYPLYHSV
546
10
2709





PSM
FSGYPLYHSVY
546
11
2710





PSM
FSPQGMPEGDL
164
11
2711





PSM
FSTQKVKM
337
8
2712





PSM
FSTQKVKMHI
337
10
2713





PSM
FTEIASKF
639
8
2714





PSM
FTGNFSTQKV
333
10
2715





PSM
FTQIPHLA
77
8
2716





PSM
FTVQAAAETL
737
10
2717





PSA
GAAPLILSRI
12
10
2718





PSA
GAAPLILSRIV
12
11
2719





PSM
GAAVVHEI
391
8
2720





PSM
GAAVVHEIV
391
9
2721





PSM
GAGDPLTPGY
263
10
2722





PSM
GAKGVILY
221
8
2723





PSM
GALVLAGGF
24
9
2724





PSM
GALVLAGGFF
24
10
2725





PSM
GALVLAGGFFL
24
11
2726





PSM
GAVEPDRY
364
8
2727





PSM
GAVEPDRYV
364
9
2728





PSM
GAVEPDRYVI
364
10
2729





PSM
GAVEPDRYVIL
364
11
2730





Kallikrein
GAVPLIQSRI
16
10
2731





Kallikrein
GAVPLIQSRIV
16
11
2732





PSM
GSAPPDSSW
311
9
2733





PSM
GSGNDFEV
516
8
2734





PSM
GSGNDFEVF
516
9
2735





PSM
GSGNDFEVFF
516
10
2736





Kallikrein
GSIEPEEF
158
8
2737





PSA
GSIEPEEF
154
8
2738





Kallikrein
GSIEPEEFL
158
9
2739





PSA
GSIEPEEFL
154
9
2740





PSM
GSLKVPYNV
321
9
2741





PSM
GTEQNFQL
85
8
2742





PSM
GTEQNFQLA
85
9
2743





PSM
GTLKKEGW
403
8
2744





Kallikrein
GTTCYASGW
149
9
2745





PSA
GTTCYASGW
145
9
2746





Kallikrein
HSFPHPLY
94
8
2747





PSA
HSFPHPLY
90
8
2748





PSA
HSFPHPLYDM
90
10
2749





Kallikrein
HSFPHPLYNM
94
10
2750





Kallikrein
HSQPWQVA
34
8
2751





Kallikrein
HSQPWQVAV
34
9
2752





Kallikrein
HSQPWQVAVY
34
10
2753





PSA
HSQPWQVL
30
8
2754





PSA
HSQPWQVLV
30
9
2755





PSA
HSQPWQVLVA
30
10
2756





PSM
HSTNEVTRI
347
9
2757





PSM
HSTNEVTRIY
347
10
2758





PSM
HSVYETYEL
553
9
2759





PSM
HSVYETYELV
553
10
2760





PAP
HTVPLSEDQL
144
10
2761





PAP
HTVPLSEDQLL
144
11
2762





PSM
IAEAVGLPSI
283
10
2763





Kallikrein
IALSVGCTGA
8
10
2764





Kallikrein
IALSVGCTGAV
8
11
2765





PSM
IARYGKVF
202
8
2766





PSM
IASGRARY
530
8
2767





PSM
IASKFSERL
642
9
2768





PAP
IATLGKLSGL
188
10
2769





PSM
ISIINEDGNEI
128
11
2770





PSM
ISKLGSGNDF
512
10
2771





PSM
ISMKHPQEM
614
9
2772





PSA
ISNDVCAQV
175
9
2773





Kallikrein
ITDVVKVL
132
8
2774





Kallikrein
ITDVVKVLGL
132
10
2775





PSM
ITPKHNMKA
52
9
2776





PSM
ITPKHNMKAF
52
10
2777





PSM
ITPKHNMKAFL
52
11
2778





Kallikrein
ITSWGPEPCA
226
10
2779





Kallikrein
ITSWGPEPCAL
226
11
2780





PSA
ITSWGSEPCA
222
10
2781





PSA
ITSWGSEPCAL
222
11
2782





PSM
KAENIKKF
66
8
2783





PSM
KAENIKKFL
66
9
2784





PSM
KAENIKKFLY
66
10
2785





PSM
KAFLDELKA
59
9
2786





PSM
KAWGEVKRQI
723
10
2787





PSM
KAWGEVKRQIY
723
11
2788





PAP
KSEEFQKRL
173
9
2789





PSM
KSNPIVLRM
655
9
2790





PSM
KSNPIVLRMM
655
10
2791





PSM
KSPSPEFSGM
500
10
2792





PAP
KSRLQGGV
255
8
2793





PAP
KSRLQGGVL
255
9
2794





PAP
KSRLQGGVLV
255
10
2795





PSM
KSSNEATNI
44
9
2796





PSA
KSVILLGRHSL
66
11
2797





PSM
KSYPDGWNL
240
9
2798





PSM
KTHPNYISI
122
9
2799





PSM
KTHPNYISII
122
10
2800





PSM
KTYSVSFDSL
623
10
2801





PSM
KTYSVSFDSLF
623
11
2802





PAP
LAALFPPEGV
120
10
2803





PSM
LAGAKGVI
219
8
2804





PSM
LAGAKGVIL
219
9
2805





PSM
LAGAKGVILY
219
10
2806





PSM
LAGGFFLL
28
8
2807





PSM
LAGGFFLLGF
28
10
2808





PSM
LAGGFFLLGFL
28
11
2809





PSM
LAGTEQNF
83
8
2810





PSM
LAGTEQNFQL
83
10
2811





PSM
LAGTEQNFQLA
83
11
2812





PSM
LAHYDVLL
110
8
2813





PSM
LAHYDVLLSY
110
10
2814





PAP
LAKELKFV
31
8
2815





PAP
LAKELKFVTL
31
10
2816





PAP
LAKELKFVTLV
31
11
2817





PSM
LAKQIQSQW
92
9
2818





PSM
LANSIVLPF
587
9
2819





PAP
LARAASLSL
8
9
2820





PAP
LARAASLSLGF
8
11
2821





PAP
LSEDQLLY
148
8
2822





PAP
LSEDQLLYL
148
9
2823





PAP
LSEDQLLYLPF
148
11
2824





PAP
LSELSLLSL
238
9
2825





PAP
LSELSLLSLY
238
10
2826





PSA
LSEPAELTDA
122
10
2827





PSA
LSEPAELTDAV
122
11
2828





Kallikrein
LSEPAKITDV
126
10
2829





Kallikrein
LSEPAKITDVV
126
11
2830





PAP
LSGLHGQDL
194
9
2831





PAP
LSGLHGQDLF
194
10
2832





PAP
LSLGFLFL
14
8
2833





PAP
LSLGFLFLL
14
9
2834





PAP
LSLGFLFLLF
14
10
2835





PAP
LSLGFLFLLFF
14
11
2836





PAP
LSLLSLYGI
241
9
2837





Kallikrein
LSNDMCARA
179
9
2838





Kallikrein
LSNDMCARAY
179
10
2839





PSA
LSRIVGGW
18
8
2840





Kallikrein
LSVGCTGA
10
8
2841





Kallikrein
LSVGCTGAV
10
9
2842





Kallikrein
LSVGCTGAVPL
10
11
2843





PSA
LSVTWIGA
6
8
2844





PSA
LSVTWIGAA
6
9
2845





PSA
LSVTWIGAAPL
6
11
2846





PSM
LSYPNKTHPNY
117
11
2847





PSA
LTDAVKVM
128
8
2848





PSA
LTDAVKVMDL
128
10
2849





PAP
LTELYFEKGEY
315
11
2850





PSA
LTLSVTWI
4
8
2851





PSA
LTLSVTWIGA
4
10
2852





PSA
LTLSVTWIGAA
4
11
2853





PSM
LTPGYPANEY
268
10
2854





PSM
LTPGYPANEYA
268
11
2855





PSA
LTPKKLQCV
162
9
2856





PSA
LTPKKLQCVDL
162
11
2857





PAP
LTQLGMEQHY
70
10
2858





PSM
LTVAQVRGGM
574
10
2859





PSM
LTVAQVRGGMV
574
11
2860





PAP
MALDVYNGL
298
9
2861





PAP
MALDVYNGLL
298
10
2862





PAP
MSAMTNLA
114
8
2863





PAP
MSAMTNLAA
114
9
2864





PAP
MSAMTNLAAL
114
10
2865





PAP
MSAMTNLAALF
114
11
2866





Kallikrein
MSLLKHQSL
103
9 2867





PSA
MSLLKNRF
99
8
2868





PSA
MSLLKNRFL
99
9
2869





PAP
MTKLRELSEL
232
10
2870





PAP
MTNLAALF
117
8
2871





PSM
NADSSIEGNY
451
10
2872





PSM
NAQLAGAKGV
216
10
2873





PSM
NAQLAGAKGVI
216
11
2874





Kallikrein
NSQVWLGRHNL
70
11
2875





PSM
NSRLLQERGV
438
10
2876





PSM
NSRLLQERGVA
438
11
2877





PSM
PADYFAPGV
231
9
2878





PSA
PAELTDAV
125
8
2879





PSA
PAELTDAVKV
125
10
2880





PSA
PAELTDAVKVM
125
11
2881





Kallikrein
PAKITDVV
129
8
2882





Kallikrein
PAKITDVVKV
129
10
2883





Kallikrein
PAKITDVVKVL
129
11
2884





Kallikrein
PALGTTCY
146
8
2885





PSA
PALGTTCY
142
8
2886





Kallikrein
PALGTTCYA
146
9
2887





PSA
PALGTTCYA
142
9
2888





PSM
PANEYAYRRGI
273
11
2889





Kallikrein
PAVYTKVV
240
8
2890





Kallikrein
PAVYTKVVHY
240
10
2891





PAP
PSCPLERF
349
8
2892





PAP
PSCPLERFA
349
9
2893





PAP
PSCPLERFAEL
349
11
2894





PSM
PSIPVHPI
290
8
2895





PSM
PSIPVHPIGY
290
10
2896





PSM
PSIPVHPIGYY
290
11
2897





PSM
PSKAWGEV
721
8
2898





PSA
PSLYTKVV
236
8
2899





PSA
PSLYTKVVHY
236
10
2900





PSM
PSPEFSGM
502
8
2901





PSM
PSPEFSGMPRI
502
11
2902





PSM
PSSHNKYA
694
8
2903





PAP
PSWATEDTM
224
9
2904





PAP
PSYKKLIM
278
8
2905





PAP
PSYKKLIMY
278
9
2906





PAP
PSYKKLIMYSA
278
11
2907





PAP
PTDPIKESSW
54
10
2908





PSM
QAAAETLSEV
740
10
2909





PSM
QAAAETLSEVA
740
11
2910





PSM
QSGAAVVHEI
389
10
2911





PSM
QSGAAVVHEIV
389
11
2912





PSM
QSQWKEFGL
97
9
2913





Kallikrein
QSRIVGGW
22
8
2914





PAP
RAAPLLLA
2
8
2915





PAP
RAAPLLLARA
2
10
2916





PAP
RAAPLLLARAA
2
11
2917





PAP
RAASLSLGF
10
9
2918





PAP
RAASLSLGFL
10
10
2919





PAP
RAASLSLGFLF
10
11
2920





PSM
RAFIDPLGL
673
9
2921





PSM
RARYTKNW
534
8
2922





PAP
RATQIPSY
273
8
2923





PAP
RATQIPSYKKL
273
11
2924





PSA
RAVCGGVL
43
8
2925





PSA
RAVCGGVLV
43
9
2926





Kallikrein
RAYSEKVTEF
186
10
2927





Kallikrein
RAYSEKVTEFM
186
11
2928





PSM
RSFGTLKKEGW
400
11
2929





Kallikrein
RSLQCVSL
169
8
2930





Kallikrein
RSLQCVSLHL
169
10
2931





Kallikrein
RSLQCVSLHLL
169
11
2932





PAP
RSTDVDRTL
105
9
2933





PAP
RSTDVDRTLM
105
10
2934





PAP
RSVLAKEL
28
8
2935





PAP
RSVLAKELKF
28
10
2936





PAP
RSVLAKELKFV
28
11
2937





PSM
RTEDFFKL
181
8
2938





PSM
RTILFASW
414
8
2939





PSM
RTILFASWDA
414
10
2940





PAP
RTLMSAMTNL
111
10
2941





PAP
RTLMSAMTNLA
111
11
2942





PSM
SAFSPQGM
162
8
2943





PAP
SAHDTTVSGL
287
10
2944





PAP
SAMTNLAA
115
8
2945





PAP
SAMTNLAAL
115
9
2946





PAP
SAMTNLAALF
115
10
2947





PSM
SAPPDSSW
312
8
2948





PSM
SAVATARRPRW
10
11
2949





PSM
SAVKNFTEI
634
9
2950





PSM
SAVKNFTEIA
634
10
2951





Kallikrein
SSHDLMLL
117
8
2952





PSA
SSHDLMLL
113
8
2953





Kallikrein
SSHDLMLLRL
117
10
2954





PSA
SSHDLMLLRL
113
10
2955





PSM
SSHNKYAGESF
695
11
2956





PSM
SSIEGNYTL
454
9
2957





PSM
SSIEGNYTLRV
454
11
2958





PSM
SSNEATNI
45
8
2959





PAP
SSWPQGFGQL
61
10
2960





PSM
SSWRGSLKV
317
9
2961





PSM
SSWRGSLKVPY
317
11
2962





PSA
STCSGDSGGPL
203
11
2963





PAP
STDVDRTL
106
8
2964





PAP
STDVDRTLM
106
9
2965





PAP
STDVDRTLMSA
106
11
2966





PSM
STEWAEENSRL
431
11
2967





PSM
STNEVTRI
348
8
2968





PSM
STNEVTRIY
348
9
2969





PSM
STNEVTRIYNV
348
11
2970





PSM
STQKVKMHI
338
9
2971





PSA
TAAHCIRNKSV
58
11
2972





PSM
TARRPRWL
14
8
2973





PSM
TARRPRWLCA
14
10
2974





PSM
TSLFEPPPPGY
141
11
2975





Kallikrein
TSWGPEPCA
227
9
2976





Kallikrein
TSWGPEPCAL
227
10
2977





PSA
TSWGSEPCA
223
9
2978





PSA
TSWGSEPCAL
223
10
2979





Kallikrein
TTCYASGW
150
8
2980





PSA
TTCYASGW
146
8
2981





Kallikrein
TTCYASGWGSI
150
11
2982





PSA
TTCYASGWGSI
146
11
2983





PAP
TTVSGLQM
291
8
2984





PAP
TTVSGLQMA
291
9
2985





PAP
TTVSGLQMAL
291
10
2986





PSM
VAAFTVQA
734
8
2987





PSM
VAAFTVQAA
734
9
2988





PSM
VAAFTVQAAA
734
10
2989





PSM
VAQVRGGM
576
8
2990





PSM
VAQVRGGMV
576
9
2991





PSM
VAQVRGGMVF
576
10
2992





PSA
VASRGRAV
38
8
2993





PSM
VATARRPRW
12
9
2994





PSM
VATARRPRWL
12
10
2995





Kallikrein
VAVYSHGW
40
8
2996





Kallikrein
VAVYSHGWA
40
9
2997





PSM
VAYINADSSI
447
10
2998





PSM
VSDIVPPF
154
8
2999





PSM
VSDIVPPFSA
154
10
3000





PSM
VSDIVPPFSAF
154
11
3001





PSM
VSFDSLFSA
627
9
3002





PSM
VSFDSLFSAV
627
10
3003





PAP
VSGLQMAL
293
8
3004





PAP
VSGLQMALDV
293
10
3005





PAP
VSGLQMALDVY
293
11
3006





Kallikrein
VSHSFPHPL
92
9
3007





PSA
VSHSFPHPL
88
9
3008





Kallikrein
VSHSFPHPLY
92
10
3009





PSA
VSHSFPHPLY
88
10
3010





PAP
VSIWNPIL
129
8
3011





PAP
VSIWNPILL
129
9
3012





PAP
VSIWNPILLW
129
10
3013





Kallikrein
VSLHLLSNDM
174
10
3014





Kallikrein
VTEFMLCA
192
8
3015





Kallikrein
VTEFMLCAGL
192
10
3016





Kallikrein
VTEFMLCAGLW
192
11
3017





PSA
VTKFMLCA
188
8
3018





PSA
VTKFMLCAGRW
188
11
3019





PSM
VTRIYNVI
352
8
3020





PSM
VTRIYNVIGTL
352
11
3021





PSA
VTWIGAAPL
8
9
3022





PSA
VTWIGAAPLI
8
10
3023





PSA
VTWIGAAPLIL
8
11
3024





PSM
WAEENSRL
434
8
3025





PSM
WAEENSRLL
434
9
3026





Kallikrein
WAHCGGVL
47
8
3027





Kallikrein
WAHCGGVLV
47
9
3028





PAP
WATEDTMTKL
226
10
3029





PAP
WSKVYDPL
206
8
3030





PAP
WSKVYDPLY
206
9
3031





PSM
WTKKSPSPEF
497
10
3032





PSM
YADKIYSI
607
8
3033





PSM
YADKIYSISM
607
10
3034





PSM
YAGESFPGI
700
9
3035





PSM
YAGESFPGIY
700
10
3036





PSM
YAPSSHNKY
692
9
3037





PSM
YAPSSHNKYA
692
10
3038





PSM
YARTEDFF
179
8
3039





PSM
YARTEDFFKL
179
10
3040





PAP
YASCHLTEL
310
9
3041





PAP
YASCHLTELY
310
10
3042





PAP
YASCHLTELYF
310
11
3043





Kallikrein
YASGWGSI
153
8
3044





PSA
YASGWGSI
149
8
3045





PSM
YAVVLRKY
600
8
3046





PSM
YAVVLRKYA
600
9
3047





PSM
YAYRRGIA
277
8
3048





PSM
YAYRRGIAEA
277
10
3049





PSM
YAYRRGIAEAV
277
11
3050





PAP
YSAHDTTV
286
8
3051





PAP
YSAHDTTVSGL
286
11
3052





PSM
YSDPADYF
228
8
3053





PSM
YSDPADYFA
228
9
3054





Kallikrein
YSEKVTEF
188
8
3055





Kallikrein
YSEKVTEFM
188
9
3056





Kallikrein
YSEKVTEFML
188
10
3057





Kallikrein
YSHGWAHCGGV
43
11
3058





PSM
YSISMKHPQEM
612
11
3059





PSM
YSLVHNLTKEL
471
11
3060





PSM
YSVSFDSL
625
8
3061





PSM
YSVSFDSLF
625
9
3062





PSM
YSVSFDSLFSA
625
11
3063





PSM
YTKNWETNKF
537
10
3064





Kallikrein
YTKVVHYRKW
243
10
3065





PSA
YTKVVHYRKW
239
10
3066





Kallikrein
YTKVVHYRKWI
243
11
3067





PSA
YTKVVHYRKWI
239
11
3068





PSM
YTLRVDCTPL
460
10
3069





PSM
YTLRVDCTPLM
460
11
3070
















TABLE XIV










Prostate B62 Supermotif with Binding Data















No. of
Seq.






Amino
Id.


Protein
Sequence
Position
Acids
No.















PAP
ALDVYNGL
299
8
3071



PAP
ALDVYNGLL
299
9
3072





PSM
ALFDIESKV
711
9
3073





PAP
ALFPPEGV
122
8
3074





PAP
ALFPPEGVSI
122
10
3075





PAP
ALFPPEGVSTW
122
11
3076





Kallikrein
ALGTTCYA
147
8
3077





PSA
ALGTTCYA
143
8
3078





Kallikrein
ALGTTCYASGW
147
11
3079





PSA
ALGTTCYASGW
143
11
3080





Kallikrein
ALPEKPAV
235
8
3081





Kallikrein
ALPEKPAVY
235
9
3082





PSA
ALPERPSL
231
8
3083





PSA
ALPERPSLY
231
9
3084





Kallikrein
ALSVGCTGA
9
9
3085





Kallikrein
ALSVGCTGAV
9
10
3086





PSM
ALVLAGGF
25
8
3087





PSM
ALVLAGGFF
25
9
3088





PSM
ALVLAGGFFL
25
10
3089





PSM
ALVLAGGFFLL
25
11
3090





PAP
AMTNLAAL
116
8
3091





PAP
AMTNLAALF
116
9
3092





PSM
APGVKSYPDGW
236
11
3093





PSA
APLILSRI
14
8
3094





PSA
APLILSRIV
4
9
3095





PAP
APLLLARA
4
8
3096





PAP
APLLLARAA
4
9
3097





PAP
APLLLARAASL
4
11
3098





PSM
APPDSSWRGSL
313
11
3099





PSM
APSSHNKY
693
8
3100





PSM
APSSHNKYA
693
9
3101





PSM
AQKLLEKM
302
8
3102





PSM
AQLAGAKGV
217
9
3103





PSM
AQLAGAKGVI
217
10
3104





PSM
AQLAGAKGVIL
217
11
3105





PSA
AQVHPQKV
181
8
3106





PSA
AQVHPQKVTKF
181
11
3107





PSM
AQVRGGMV
577
8
3108





PSM
AQVRGGMVF
577
9
3109





PSM
AQVRGGMVFEL
577
11
3110





PSM
AVATARRPRW
11
10
3111





PSM
AVATARRPRWL
11
11
3112





PSA
AVCGGVLV
44
8
3113





PSM
AVEPDRYV
365
8
3114





PSM
AVEPDRYVI
365
9
3115





PSM
AVEPDRYVIL
365
10
3116





PSM
AVGLPSIPV
286
9
3117





PSM
AVKNFTEI
635
8
3118





PSM
AVKNFTEIA
635
9
3119





Kallikrein
AVPLIQSRI
17
9
3120





Kallikrein
AVPLIQSRIV
17
10
3121





PSM
AVVHEIVRSF
393
10
3122





PSM
AVVLRKYA
601
8
3123





PSM
AVVLRKYADKI
601
11
3124





Kallikrein
AVYSHGWA
41
8
3125





Kallikrein
AVYTKVVHY
241
9
3126





PSA
CIRNKSVI
62
8
3127





PSA
CIRNKSVIL
62
9
3128





PSA
CIRNKSVILL
62
10
3129





Kallikrein
CLKKNSQV
66
8
3130





Kallikrein
CLKKNSQVW
66
9
3131





Kallikrein
CLKKNSQVWL
66
10
3132





PAP
CPLERFAEL
351
9
3133





PAP
CPLERFAELV
351
10
3134





PSA
CVDLHVISNDV
169
11
3135





Kallikrein
CVSLHLLSNDM
173
11
3136





PSM
DIESKVDPSKA
714
11
3137





PSM
DIVPPFSA
156
8
3138





PSM
DIVPPFSAF
156
9
3139





PAP
DLFGIWSKV
201
9
3140





PAP
DLFGIWSKVY
201
10
3141





PSA
DLHVISNDV
171
9
3142





PSA
DLHVISNDVCA
171
11
3143





Kallikrein
DLMLLRLSEPA
120
11
3144





PSA
DLMLLRLSEPA
116
11
3145





PSA
DLPTQEPA
136
8
3146





PSA
DLPTQEPAL
136
9
3147





Kallikrein
DLVLSIAL
3
8
3148





Kallikrein
DLVLSIALSV
3
10
3149





PSM
DLVYVNYA
173
8
3150





Kallikrein
DMCARAYSEKV
182
11
3151





PSM
DMKINCSGKI
191
10
3152





PSM
DMKINCSGKIV
191
11
3153





PSA
DMSLLKNRF
98
9
3154





PSA
DMSLLKNRFL
98
10
3155





PSM
DPADYFAPGV
230
10
3156





PAP
DPIKESSW
56
8
3157





PSM
DPLGLPDRPF
677
10
3158





PSM
DPLGLPDRPFY
677
11
3159





PSM
DPLTPGYPA
266
9
3160





PAP
DPLYCESV
211
8
3161





PAP
DPLYCESVHNF
211
11
3162





PSM
DPMFKYHL
567
8
3163





PSM
DPMFKYHLTV
567
10
3164





PSM
DPMFKYHLTVA
567
11
3165





PSM
DPQSGAAV
387
8
3166





PSM
DPQSGAAVV
387
9
3167





PSM
DPSKAWGEV
720
9
3168





PAP
DQLLYLPF
151
8
3169





PSM
DQLMFLERA
666
9
3170





PSM
DQLMFLERAF
666
10
3171





PSM
DQLMFLERAFI
666
11
3172





PSA
DVCAQVHPQKV
178
11
3173





PAP
DVDRTLMSA
108
9
3174





PAP
DVDRTLMSAM
108
10
3175





Kallikrein
DVVKVLGL
134
8
3176





PAP
DVYNGLLPPY
301
10
3177





PAP
DVYNGLLPPYA
301
11
3178





PSM
EIASKFSERL
641
10
3179





PSM
EIFNTSLF
137
8
3180





PAP
EILNHMKRA
266
9
3181





PSM
EIVRSFGTL
397
9
3182





PSM
ELAHYDVL
109
8
3183





PSM
ELAHYDVLL
109
9
3184





PSM
ELAHYDVLLSY
109
11
3185





PSM
ELANSIVL
586
8
3186





PSM
ELANSIVLPF
586
10
3187





PAP
ELGEYIRKRY
80
10
3188





PSM
ELKAENIKKF
64
10
3189





PSM
ELKAENIKKFL
64
11
3190





PAP
ELKFVTLV
34
8
3191





PAP
ELKFVTLVF
34
9
3192





PSM
ELKSPDEGF
480
9
3193





PAP
ELSELSLL
237
8
3194





PAP
ELSELSLLSL
237
10
3195





PAP
ELSELSLLSLY
237
11
3196





PAP
ELSLLSLY
240
8
3197





PAP
ELSLLSLYGI
240
10
3198





PSA
ELTDAVKV
127
8
3199





PSA
ELTDAVKVM
127
9
3200





PSA
ELTDAVKVMDL
127
11
3201





PSM
ELVEKFYDPM
560
10
3202





PSM
ELVEKFYDPMF
560
11
3203





PAP
ELVGPVIPQDW
358
11
3204





PAP
ELYFEKGEY
317
9
3205





PAP
ELYFEKGEYF
317
10
3206





PAP
ELYFEKGEYFV
317
11
3207





PSM
EMKTYSVSF
621
9
3208





PSA
EPAELTDA
124
8
3209





PSA
EPAELTDAV
124
9
3210





PSA
EPAELTDAVKV
124
11
3211





Kallikrein
EPAKITDV
128
8
3212





Kallikrein
EPAKITDVV
128
9
3213





Kallikrein
EPAKITDVVKV
128
11
3214





Kallikrein
EPALGTTCY
145
9
3215





PSA
EPALGTTCY
141
9
3216





Kallikrein
EPALGTTCYA
145
10
3217





PSA
EPALGTTCYA
141
10
3218





Kallikrein
EPCALPEKPA
232
10
3219





Kallikrein
EPCALPEKPAV
232
11
3220





PSA
EPCALPERPSL
228
11
3221





PSM
EPDRYVIL
367
8
3222





Kallikrein
EPEDTGQRV
82
9
3223





Kallikrein
EPEDTGQRVPV
82
11
3224





Kallikrein
EPEEFLRPRSL
161
11
3225





PSA
EPEEFLTPKKL
157
11
3226





PSM
EPPPPGYENV
145
10
3227





PAP
EQHYELGEY
76
9
3228





PAP
EQHYELGEYI
76
10
3229





PSM
EQNFQLAKQI
87
10
3230





PAP
EQVYIRSTDV
100
10
3231





PSM
EVFFQRLGI
522
9
3232





PSM
EVFFQRLGIA
522
10
3233





PSM
EVKRQIYV
727
8
3234





PSM
EVKRQIYVA
727
9
3235





PSM
EVKRQIYVAA
727
10
3236





PSM
EVKRQIYVAAF
727
11
3237





PSM
EVTRIYNV
351
8
3238





PSM
EVTRIYNVI
351
9
3239





PAP
FIATLGKL
187
8
3240





PAP
FIATLGKLSGL
187
11
3241





PSM
FIKSSNEA
42
8
3242





PSM
FIKSSNEATNI
42
11
3243





PSM
FLDELKAENI
61
10
3244





PSM
FLERAFIDPL
670
10
3245





PAP
FLFLLFFW
18
8
3246





PAP
FLFLLFFWL
18
9
3247





PAP
FLLFFWLDRSV
20
11
3248





PSM
FLLGFLFGW
33
9
3249





PSM
FLLGFLFGWF
33
10
3250





PSM
FLLGFLFGWFI
33
11
3251





PAP
FLNESYKHEQV
92
11
3252





Kallikrein
FLRPRSLQCV
165
10
3253





PSA
FLTLSVTW
3
8
3254





PSA
FLTLSVTWI
3
9
3255





PSA
FLTLSVTWIGA
3
11
3256





PSA
FLTPKKLQCV
161
10
3257





PSM
FLYNFTQI
73
8
3258





PSM
FLYNFTQIPHL
73
11
3259





Kallikrein
FMLCAGLW
195
8
3260





PSA
FMLCAGRW
191
8
3261





PSM
FPGIYDAL
705
8
3262





PSM
FPGIYDALF
705
9
3263





PSM
FPGIYDALFDI
705
11
3264





PSA
FPHPLYDM
92
8
3265





PSA
FPHPLYDMSL
92
10
3266





PSA
FPHPLYDMSLL
92
11
3267





Kallikrein
FPHPLYNM
96
8
3268





Kallikrein
FPHPLYNMSL
96
10
3269





Kallikrein
FPHPLYNMSLL
96
11
3270





PAP
FPPEGVSI
124
8
3271





PAP
FPPEGVSIW
124
9
3272





PAP
FPTDPIKESSW
53
11
3273





PAP
FQELESETL
164
9
3274





PAP
FQKRLHPY
177
8
3275





PAP
FQKRLHPYKDF
177
11
3276





PSM
FQLAKQIQSQW
90
11
3277





PSM
FQRLGIASGRA
525
11
3278





PSA
FQVSHSEPHPL
86
11
3279





PSM
GIAEAVGL
282
8
3280





PSM
GIAEAVGLPSI
282
11
3281





PSM
GIASGRARY
529
9
3282





PSM
GIDPQSGA
385
8
3283





PSM
GIDPQSGAA
385
9
3284





PSM
GIDPQSGAAV
385
10
3285





PSM
GIDPQSGAAVV
385
11
3286





PAP
GIHKQKEKSRL
248
11
3287





Kallikrein
GITSWGPEPCA
225
11
3288





PSA
GITSWGSEPCA
221
11
3289





PAP
GIWSKVYDPL
204
10
3290





PAP
GIWSKVYDPLY
204
11
3291





PSM
GIYDALFDI
707
9
3292





PSM
GLDSVELA
104
8
3293





PSM
GLDSVELAHY
104
10
3294





PAP
GLHGQDLF
196
8
3295





PAP
GLHGQDLFGI
196
10
3296





PAP
GLHGQDLFGIW
196
11
3297





PSM
GLLGSTEW
427
8
3298





PSM
GLLGSTEWA
427
9
3299





PAP
GLLPPYASCHL
305
11
3300





PSM
GLPDRPFY
680
8
3301





PSM
GLPDRPFYRHV
680
11
3302





PSM
GLPSIPVHPI
288
10
3303





Kallikrein
GLPTQEPA
140
8
3304





Kallikrein
GLPTQEPAL
140
9
3305





PAP
GLQMALDV
295
8
3306





PAP
GLQMALDVY
295
9
3307





PAP
GMEQHYEL
74
8
3308





PAP
GMEQHYELGEY
74
11
3309





PSM
GMPEGDLV
168
8
3310





PSM
GMPEGDLVY
168
9
3311





PSM
GMPEGDLVYV
168
10
3312





PSM
GMPRISKL
508
8
3313





PSM
GMVFELANSI
582
10
3314





PSM
GMVFELANSIV
582
11
3315





PSM
GPGFTGNF
330
8
3316





Kallikrein
GPLVCNGV
215
8
3317





PSA
GPLVCNGV
211
8
3318





Kallikrein
GPLVCNGVL
215
9
3319





PSA
GPLVCNGVL
211
9
3320





PAP
GPVIPQDW
361
8
3321





PAP
GQDLFGIW
199
8
3322





PAP
GQDLFGIWSKV
199
11
3323





PAP
GQLTQLGM
68
8
3324





Kallikrein
GQRVPVSHSF
87
10
3325





PSA
GQVFQVSHSF
83
10
3326





PSM
GVAYINADSSI
446
11
3327





PSM
GVILYSDPA
224
9
3328





PSM
GVILYSDPADY
224
11
3329





PSM
GVKSYPDGW
238
9
3330





PSM
GVKSYPDGWNL
238
11
3331





Kallikrein
GVLQGITSW
221
9
3332





PSA
GVLQGITSW
217
9
3333





Kallikrein
GVLVHPQW
52
8
3334





PSA
GVLVHPQW
48
8
3335





Kallikrein
GVLVHPQWV
52
9
3336





PSA
GVLVHPQWV
48
9
3337





Kallikrein
GVLVHPQWVL
52
10
3338





PSA
GVLVHPQWVL
48
10
3339





PAP
GVLVNEIL
261
8
3340





PAP
GVLVNEILNHM
261
11
3341





PSM
GVQRGNIL
252
8
3342





PSM
GVQRGNILNL
252
10
3343





PAP
GVSIWNPI
128
8
3344





PAP
GVSIWNPIL
128
9
3345





PAP
GVSIWNPILL
128
10
3346





PAP
GVSIWNPILLW
128
11
3347





PSM
HIHSTNEV
345
8
3348





PSM
HIHSTNEVTRI
345
11
3349





PSM
HLAGTEQNF
82
9
3350





PSM
HLAGTEQNFQL
82
11
3351





Kallikrein
HLLSNDMCA
177
9
3352





Kallikrein
HLLSNDMCARA
177
11
3353





PSM
HLTVAQVRGGM
573
11
3354





PAP
HMKRATQI
270
8
3355





PAP
HMKRATQIPSY
270
11
3356





PSA
HPEDTGQV
78
8
3357





PSA
HPEDTGQVF
78
9
3358





PSA
HPEDTGQVFQV
78
11
3359





PSM
HPIGYYDA
295
8
3360





PSM
HPIGYYDAQKL
295
11
3361





PSA
HPLYDMSL
94
8
3362





PSA
HPLYDMSLL
94
9
3363





Kallikrein
HPLYNMSL
98
8
3364





Kallikrein
HPLYNMSLL
98
9
3365





PSM
HPNYISII
124
8
3366





PSM
HPQEMKTY
618
8
3367





PSM
HPQEMKTYSV
618
10
3368





PSA
HPQKVTKF
184
8
3369





PSA
HPQKVTKFM
184
9
3370





PSA
HPQKVTKFML
184
10
3371





Kallikrein
HPQWVLTA
56
8
3372





PSA
HPQWVLTA
52
8
3373





Kallikrein
HPQWVLTAA
56
9
3374





PSA
HPQWVLTAA
52
9
3375





PAP
HPYKDFIA
182
8
3376





PAP
HPYKDFIATL
182
10
3377





PSA
HVISNDVCA
173
9
3378





PSA
HVISNDVCAQV
173
11
3379





PSM
IINEDGNEI
130
9
3380





PSM
IINEDGNEIF
130
10
3381





PSM
ILFASWDA
416
8
3382





PSM
ILFASWDAEEF
416
11
3383





PSM
ILGGHRDSW
373
9
3384





PSM
ILGGHRDSWV
373
10
3385





PSM
ILGGHRDSWVF
373
11
3386





PSA
ILLGRHSL
69
8
3387





PSA
ILLGRHSLF
69
9
3388





PAP
ILLWQPIPV
135
9
3389





PAP
ILNHMKRA
267
8
3390





PAP
ILNHMKRATQI
267
11
3391





PSM
ILNLNGAGDPL
258
11
3392





PSA
ILSRIVGGW
17
9
3393





PSM
ILYSDPADY
226
9
3394





PSM
ILYSDPADYF
226
10
3395





PSM
ILYSDPADYFA
226
11
3396





PAP
IMYSAHDTTV
284
10
3397





PSM
IPHLAGTEQNF
80
11
3398





PAP
IPQDWSTECM
364
10
3399





PAP
IPSYKKLI
277
8
3400





PAP
IPSYKKLIM
277
9
3401





PAP
IPSYKKLIMY
277
10
3402





PSM
IPVHPIGY
292
8
3403





PSM
IPVHPIGYY
292
9
3404





PSM
IPVHPIGYYDA
292
11
3405





PAP
IPVHTVPL
141
8
3406





PSM
IQSQWKEF
96
8
3407





PSM
IQSQWKEFGL
96
10
3408





Kallikrein
IQSRIVGGW
21
9
3409





PSM
IVIARYGKV
200
9
3410





PSM
IVIARYGKVF
200
10
3411





PSM
IVLPFDCRDY
591
10
3412





PSM
IVLPFDCRDYA
591
11
3413





PSM
IVLRMMNDQL
659
10
3414





PSM
IVLRMMNDQLM
659
11
3415





PSM
IVPPFSAF
157
8
3416





PSM
IVRSFGTL
398
8
3417





PSM
KINCSGKI
193
8
3418





PSM
KINCSGKIV
193
9
3419





PSM
KINCSGKIVI
193
10
3420





PSM
KINCSGKIVIA
193
11
3421





Kallikrein
KITDVVKV
131
8
3422





Kallikrein
KITTVVKVL
131
9
3423





Kallikrein
KITDVVKVLGL
131
11
3424





PSM
KIVIARYGKV
199
10
3425





PSM
KIVIARYGKVF
199
11
3426





PSM
KLERDMKI
187
8
3427





PSM
KLGSGNDF
514
8
3428





PSM
KLGSGNDFEV
514
10
3429





PSM
KLGSGNDFEVF
514
11
3430





PSM
KLLEKMGGSA
304
10
3431





PSA
KLQCVDLHV
166
9
3432





PSA
KLQCVDLHVI
166
10
3433





PAP
KLRELSEL
234
8
3434





PAP
KLRELSELSL
234
10
3435





PAP
KLRELSELSLL
234
11
3436





PAP
KLSGLHGQDL
193
10
3437





PAP
KLSGLHGQDLF
193
11
3438





PSM
KMHIHSTNEV
343
10
3439





Kallikrein
KPAVYTKV
239
8
3440





Kallikrein
KPAVYTKVV
239
9
3441





Kallikrein
KPAVYTKVVHY
239
11
3442





PSM
KQIQSQWKEF
94
10
3443





PAP
KQKEKSRL
251
8
3444





PSM
KVDPSKAW
71$
8
3445





PSM
KVDPSKAWGEV
718
11
3446





PSM
KVFRGNKV
207
8
3447





PSM
KVFRGNKVKNA
207
11
3448





PSM
KVKNAQLA
213
8
3449





PSM
KVKNAQLAGA
213
10
3450





Kallikrein
KVLGLPTQEPA
137
11
3451





PSA
KVMDLPTQEPA
133
11
3452





PSM
KVPYNVGPGF
324
10
3453





Kallikrein
KVTEFMLCA
191
9
3454





Kallikrein
KVTEFMLCAGL
191
11
3455





PSA
KVTKFMLCA
187
9
3456





Kallikrein
KVVHYRKW
245
8
3457





PSA
KVVHYRKW
241
8
3458





Kallikrein
KVVHYRKWI
245
9
3459





PSA
KVVHYRKWI
241
9
3460





PAP
KVYDPLYCESV
208
11
3461





PSA
LILSRIVGGW
16
10
3462





PAP
LIMYSAHDTTV
283
11
3463





Kallikrein
LIQSRIVGGW
20
10
3464





PAP
LLARAASL
7
8
3465





PAP
LLARAASLSL
7
10
3466





PSM
LLEKMGGSA
305
9
3467





PAP
LLFFWLDRSV
21
10
3468





PAP
LLFFWLDRSVL
21
11
3469





PSM
LLGFLFGW
34
8
3470





PSM
LLGFLFGWF
34
9
3471





PSM
LLGFLFGWFI
34
10
3472





PSA
LLGRHSLF
70
8
3473





PSM
LLGSTEWA
428
8
3474





PSM
LLHETDSA
4
8
3475





PSM
LLHETDSAV
4
9
3476





PSM
LLHETDSAVA
4
10
3477





PAP
LLLARAASL
6
9
3478





PAP
LLLARAASLSL
6
11
3479





PAP
LLPPYASCHL
306
10
3480





PSM
LLQERGVA
441
8
3481





PSM
LLQERGVAY
441
9
3482





PSM
LLQERGVAYI
441
10
3483





Kallikrein
LLRLSEPA
123
8
3484





PSA
LLRLSEPA
119
8
3485





PSA
LLRLSEPAEL
119
10
3486





Kallikrein
LLRLSEPAKI
123
10
3487





Kallikrein
LLSNDMCA
178
8
3488





Kallikrein
LLSNDMCARA
178
10
3489





Kallikrein
LLSNDMCARAY
178
11
3490





PAP
LLWQPIPV
136
8
3491





PAP
LLWQPIPVHTV
136
11
3492





PSM
LMFLERAF
668
8
3493





PSM
LMFLERAFI
668
9
3494





Kallikrein
LMLLRLSEPA
121
10
3495





PSA
LMLLRLSEPA
117
10
3496





PAP
LMSAMTNL
113
8
3497





PAP
LMSAMTNLA
113
9
3498





PAP
LMSAMTNLAA
113
10
3499





PAP
LMSAMTNLAAL
113
11
3500





PSM
LMYSLVHNL
469
9
3501





PSM
LPDRPFYRHV
681
10
3502





PSM
LPDRPFYRHVI
681
11
3503





Kallikrein
LPEKPAVY
236
8
3504





Kallikrein
LPEKPAVYTKV
236
11
3505





PSA
LPERPSLY
232
8
3506





PSA
LPERPSLYTKV
232
11
3507





PSM
LPFDCRDY
593
8
3508





PSM
LPFDCRDYA
593
9
3509





PSM
LPFDCRDYAV
593
10
3510





PSM
LPFDCRDYAVV
593
11
3511





PAP
LPFRNCPRF
156
9
3512





PAP
LPGCSPSCPL
344
10
3513





PSM
LPGGGVQRGNI
248
11
3514





PAP
LPPYASCHL
307
9
3515





PSM
LPSIPVHPI
289
9
3516





PSM
LPSIPVHPIGY
289
11
3517





PAP
LPSWATEDTM
223
10
3518





Kallikrein
LPTQEPAL
141
8
3519





PSA
LPTQEPAL
137
8
3520





PSA
LQCVDLHV
167
8
3521





PSA
LQCVDLHVI
167
9
3522





Kallikrein
LQCVSLHL
171
8
3523





Kallikrein
LQCVSLHLL
171
9
3524





PSM
LQDFDKSNPI
650
10
3525





PSM
LQDFDKSNPIV
650
11
3526





PSM
LQERGVAY
442
8
3527





PSM
LQERGVAYI
442
9
3528





PSM
LQERGVAYINA
442
11
3529





PAP
LQGGVLVNEI
258
10
3530





PAP
LQGGVLVNEIL
258
11
3531





PAP
LQMALDVY
296
8
3532





PAP
LQMALDVYNGL
296
11
3533





PSA
LVASRGRA
37
8
3534





PSA
LVASRGRAV
37
9
3535





Kallikrein
LVCNGVLQGI
217
10
3536





PSA
LVCNGVLQGI
213
10
3537





PSM
LVEKFYDPM
561
9
3538





PSM
LVEKFYDPMF
561
10
3539





PAP
LVFRHGDRSPI
40
11
3540





PAP
LVGPVIPQDW
359
10
3541





PSM
LVHNLTKEL
473
9
3542





Kallikrein
LVHPQWVL
54
8
3543





PSA
LVHPQWVL
50
8
3544





Kallikrein
LVHPQWVLTA
54
10
3545





PSA
LVHPQWVLTA
50
10
3546





Kallikrein
LVHPQWVLTAA
54
11
3547





PSA
LVHPQWVLTAA
50
11
3548





PSM
LVLAGGFF
26
8
3549





PSM
LVLAGGFFL
26
9
3550





PSM
LVLAGGFFLL
26
10
3551





Kallikrein
LVLSIALSV
4
9
3552





PAP
LVNEILNHM
263
9
3553





Kallikrein
MLLRLSEPA
122
9
3554





PSA
MLLRLSEPA
118
9
3555





PSA
MLLRLSEPAEL
118
11
3556





Kallikrein
MLLRLSEPAKI
122
11
3557





PAP
MLPGCSPSCPL
343
11
3558





PSM
MMNDQLMF
663
8
3559





PSM
MMNDQLMFL
663
9
3560





PSM
MPEGDLVY
169
8
3561





PSM
MPEGDLVYV
169
9
3562





PSM
MPEGDLVYVNY
169
11
3563





PSM
MVFELANSI
583
9
3564





PSM
MVFELANSIV
583
10
3565





PSM
MVFELANSIVL
583
11
3566





PSM
NIKKFLYNF
69
9
3567





PSM
NILNLNGA
257
8
3568





PSM
NITPKHNM
51
8
3569





PSM
NITPKHNMKA
51
10
3570





PSM
NITPKHNMKAF
51
11
3571





PAP
NLAALFPPEGV
119
11
3572





PSM
NLLHETDSA
3
9
3573





PSM
NLLHETDSAV
3
10
3574





PSM
NLLHETDSAVA
3
11
3575





PSM
NLNGAGDPL
260
9
3576





PSM
NMKAFLDEL
57
9
3577





PSM
NMKAFLDELKA
57
11
3578





Kallikrein
NMSLLKHQSL
102
10
3579





PAP
NPILLWQPI
133
9
3580





PAP
NPILLWQPIPV
133
11
3581





PSM
NPIVLRMM
657
8
3582





PSM
NVGPGFTGNF
328
10
3583





PSM
NVIGTLRGA
357
9
3584





PSM
NVIGTLRGAV
357
10
3585





PSM
NVSDIVPPF
153
9
3586





PSM
NVSDIVPPFSA
153
11
3587





PAP
PIDTFPTDPI
49
10
3588





PSM
PIGYYDAQKL
296
10
3589





PSM
PIGYYDAQKLL
296
11
3590





PAP
PIKESSWPQGF
57
11
3591





PAP
PILLWQPI
134
8
3592





PAP
PILLWQPIPV
134
10
3593





PAP
PIPVHTVPL
140
9
3594





PSM
PIVLRMMNDQL
658
11
3595





PAP
PLERFAEL
352
8
3596





PAP
PLERFAELV
352
9
3597





PSM
PLGLPDRPF
678
9
3598





PSM
PLGLPDRPFY
678
10
3599





PSA
PLILSRIV
15
8
3600





PSA
PLILSRIVGGW
15
11
3601





Kallikrein
PLIQSRIV
19
8
3602





Kallikrein
PLIQSRIVGGW
19
11
3603





PAP
PLLLARAA
5
8
3604





PAP
PLLLARAASL
5
10
3605





PSM
PLMYSLVHNL
468
10
3606





PAP
PLSEDQLL
147
8
3607





PAP
PLSEDQLLY
147
9
3608





PAP
PLSEDQLLYL
147
10
3609





PSM
PLTPGYPA
267
8
3610





PSM
PLTPGYPANEY
267
11
3611





Kallikrein
PLVCNGVL
216
8
3612





PSA
PLVCNGVL
212
8
3613





Kallikrein
PLVCNGVLQGI
216
11
3614





PSA
PLVGNGVLQGI
212
11
3615





PAP
PLYCESVHNF
212
10
3616





PSA
PLYDMSLL
95
8
3617





PSM
PLYHSVYETY
550
10
3618





Kallikrein
PLYNMSLL
99
8
3619





PSM
PMFKYHLTV
568
9
3620





PSM
PMFKYHLTVA
568
10
3621





PSM
PPDSSWRGSL
314
10
3622





PAP
PPEGVSIW
125
8
3623





PAP
PPEGVSIWNPI
125
11
3624





PSM
PPFSAFSPQGM
159
11
3625





PSM
PPGYENVSDI
148
10
3626





PSM
PPGYENVSDIV
148
11
3627





PSM
PPPGYENV
147
8
3628





PSM
PPPGYENVSDI
147
11
3629





PSM
PPPPGYENV
146
9
3630





PAP
PPYASCHL
308
8
3631





PAP
PPYASCHLTEL
308
11
3632





PAP
PQDWSTECM
365
9
3633





PSM
PQEMKTYSV
619
9
3634





PSM
PQEMKTYSVSF
619
11
3635





PAP
PQGFGQLTQL
64
10
3636





PSM
PQGMPEGDL
166
9
3637





PSM
PQGMPEGDLV
166
10
3638





PSM
PQGMPEGDLVY
166
11
3639





PSA
PQKVTKFM
185
8
3640





PSA
PQKVTKFML
185
9
364I





PSA
PQKVTKFMLCA
185
11
3642





PSM
PQSGAAVV
388
8
3643





PSM
PQSGAAVVHEI
388
11
3644





Kallikrein
PQWVLTAA
57
8
3645





PSA
PQWVLTAA
53
8
3646





PSA
PQWVLTAAHCI
53
11
3647





Kallikrein
PQWVLTAAHCL
57
11
3648





PSM
PVHPIGYY
293
8
3649





PSM
PVHPIGYYDA
293
10
3650





Kallikrein
PVSHSFPHPL
91
10
3651





Kallikrein
PVSHSFPHPLY
91
11
3652





PAP
QIPSYKKL
276
8
3653





PAP
QIPSYKKLI
276
9
3654





PAP
QIPSYKKLIM
276
10
3655





PAP
QIPSYKKLIMY
276
11
3656





PSM
QIQSQWKEF
95
9
3657





PSM
QIQSQWKEFGL
95
11
3658





PSM
QIYVAAFTV
731
9
3659





PSM
QIYVAAFTVQA
731
11
3660





PSM
QLAGAKGV
218
8
3661





PSM
QLAGAKGVI
218
9
3662





PSM
QLAGAKGVIL
218
10
3663





PSM
QLAGAKGVILY
218
11
3664





PSM
QLAKQIQSQW
91
10
3665





PAP
QLGMEQHY
72
8
3666





PAP
QLGMEQHYEL
72
10
3667





PSM
QLMFLERA
667
8
3668





PSM
QLMFLERAF
667
9
3669





PSM
QLMFLERAFI
667
10
3670





PAP
QLTQLGMEQHY
69
11
3671





PAP
QMALDVYNGL
297
10
3672





PAP
QMALDVYNGLL
297
11
3673





PAP
QPIPVHTV
139
8
3674





PAP
QPIPVHTVPL
139
10
3675





Kallikrein
QPWQVAVY
36
8
3676





PSA
QPWQVLVA
32
8
3677





Kallikrein
QVAVYSHGW
39
9
3678





Kallikrein
QVAVYSHGWA
39
10
3679





PSA
QVFQVSHSF
84
9
3680





PSA
QVHPQKVTKF
182
10
3681





PSA
QVHPQKVTKFM
182
11
3682





PSA
QVLVASRGRA
35
10
3683





PSA
QVLVASRGRAV
35
11
3684





PSM
QVRGGMVF
578
8
3685





PSM
QVRGGMVFEL
578
10
3686





PSM
QVRGGMVFELA
578
11
3687





PSA
QVSHSFPHPL
87
10
3688





PSA
QVSHSFPHPLY
87
11
3689





Kallikrein
QVWLGRHNL
72
9
3690





Kallikrein
QVWLGRHNLF
72
10
3691





PAP
QVYIRSTDV
101
9
3692





PSM
RISKLGSGNDF
511
11
3693





PSM
RIYNVIGTL
354
9
3694





PSM
RLGIASGRA
527
9
3695





PSM
RLGIASGRARY
527
11
3696





PAP
RLHPYKDF
180
8
3697





PAP
RLHPYKDFI
180
9
3698





PAP
RLHPYKDFIA
180
10
3699





PSM
RLLQERGV
440
8
3700





PSM
RLLQERGVA
440
9
3701





PSM
RLLQERGVAY
440
10
3702





PSM
RLLQERGVAYI
440
11
3703





PSM
RLQDFDKSNPI
649
11
3704





PAP
RLQGGVLV
257
8
3705





PAP
RLQGGVLVNEI
257
11
3706





PSA
RLSEPAEL
121
8
3707





PSA
RLSEPAELTDA
121
11
3708





Kallikrein
RLSEPAKI
125
8
3709





Kallikrein
RLSEPAKITDV
125
11
3710





PSM
RMMNDQLM
662
8
3711





PSM
RMMNDQLMF
662
9
3712





PSM
RMMNDQLMFL
662
10
3713





Kallikrein
RPDEDSSHDL
112
10
3714





Kallikrein
RPDEDSSHDLM
112
11
3715





PSM
RPFYRHVI
684
8
3716





PSM
RPFYRHVIY
684
9
3717





PSM
RPFYRHVIYA
684
10
3718





PSA
RPGDDSSHDL
108
10
3719





PSA
RPGDDSSHDLM
108
11
3720





PSM
RPRRTILF
411
8
3721





PSM
RPRRTILFA
411
9
3722





PSM
RPRRTILFASW
411
11
3723





Kallikrein
RPRSLQCV
167
8
3724





Kallikrein
RPRSLQCVSL
167
10
3725





PSM
RPRWLCAGA
17
9
3726





PSM
RPRWLCAGAL
17
10
3727





PSM
RPRWLCAGALV
17
11
3728





PSA
RPSLYTKV
235
8
3729





PSA
RPSLYTKVV
235
9
3730





PSA
RPSLYTKVVHY
235
11
3731





PSM
RQIYVAAF
730
8
3732





PSM
RQIYVAAFTV
730
10
3733





PSM
RVDCTPLM
463
8
3734





PSM
RVDCTPLMY
463
9
3735





PSM
RVDCTPLMYSL
463
11
3736





Kallikrein
RVPVSHSF
89
8
3737





Kallikrein
SIALSVGCTGA
7
11
3738





PSM
SIEGNYTL
455
8
3739





PSM
SIEGNYTLRV
455
10
3740





Kallikrein
SIEPEEFL
159
8
3741





PSA
SIEPEEFL
155
8
3742





PSM
SIINEDGNEI
129
10
3743





PSM
SIINEDGNEIF
129
11
3744





PSM
SIPVHPIGY
291
9
3745





PSM
SIPVHPIGYY
291
10
3746





PSM
SISMKHPQEM
613
10
3747





PSM
SIVLPFDCRDY
590
11
3748





PAP
SIWNPILL
130
8
3749





PAP
SIWNPILLW
130
9
3750





PSM
SLFEPPPPGY
142
10
3751





PSA
SLFHPEDTGQV
75
11
3752





PSM
SLFSAVKNF
631
9
3753





PAP
SLGFLFLL
15
8
3754





PAP
SLGFLFLLF
15
9
3755





PAP
SLGFLFLLFF
15
10
3756





PAP
SLGFLFLLFFW
15
11
3757





Kallikrein
SLHLLSNDM
175
9
3758





Kallikrein
SLHLLSNDMCA
175
11
3759





PSM
SLKVPYNV
322
8
3760





Kallikrein
SLLKHQSL
104
8
3761





PSA
SLLKNRFL
100
8
3762





PAP
SLLSLYGI
242
8
3763





Kallikrein
SLQCVSLHL
170
9
3764





Kallikrein
SLQCVSLHLL
170
10
3765





PAP
SLSLGFLF
13
8
3766





PAP
SUSLGFLFL
13
9
3767





PAP
SLSLGFLFLL
13
10
3768





PAP
SLSLGFLFLLF
13
11
3769





PSM
SLVHNLTKEL
472
10
3770





PSA
SLYTKVVHY
237
9
3771





PSM
SMKHPQEM
615
8
3772





PSM
SMKHPQEMKTY
615
11
3773





PSM
SPDEGFEGKSL
483
11
3774





PSM
SPEFSGMPRI
503
10
3775





PAP
SPIDTFPTDPI
48
11
3776





PSM
SPQGMPEGDL
165
10
3777





PSM
SPQGMPEGDLV
165
11
3778





PAP
SPSCPLERF
348
9
3779





PAP
SPSCPLERFA
348
10
3780





PSM
SPSPEFSGM
501
9
3781





Kallikrein
SQPWQVAV
35
8
3782





Kallikrein
SQPWQVAVY
35
9
3783





PSA
SQPWQVLV
31
8
3784





PSA
SQPWQVLVA
31
9
3785





Kallikrein
SQVWLGRHNL
71
10
3786





Kallikrein
SQVWLGRHNLF
71
11
3787





PSM
SQWKEFGL
98
8
3788





PSM
SQWKEFGLDSV
98
11
3789





PSM
SVELAHYDV
107
9
3790





PSM
SVELAHYDVL
107
10
3791





PSM
SVELAHYDVLL
107
11
3792





Kallikrein
SVGCTGAV
11
8
3793





Kallikrein
SVGCTGAVPL
11
10
3794





Kallikrein
SVGCTGAVPLI
11
11
3795





PAP
SVHNFTLPSW
217
10
3796





PAP
SVHNFTLPSWA
217
11
3797





PSA
SVILLGRHSL
67
10
3798





PSA
SVILLGRHSLF
67
11
3799





PAP
SVLAKELKF
29
9
3800





PAP
SVLAKELKFV
29
10
3801





PSM
SVSFDSLF
626
8
3802





PSM
SVSFDSLFSA
626
10
3803





PSM
SVSFDSLFSAV
626
11
3804





PSA
SVTWIGAA
7
8
3805





PSA
SVTWIGAAPL
7
10
3806





PSA
SVTWIGAAPLI
7
11
3807





PSM
SVYETYEL
554
8
3808





PSM
SVYETYELV
554
9
3809





PSM
TILFASWDA
415
9
3810





PAP
TLGKLSGL
190
8
3811





PAP
TLKSEEFQKRL
171
11
3812





PAP
TLMSAMTNL
112
9
3813





PAP
TLMSAMTNLA
112
10
3814





PAP
TLMSAMTNLAA
112
11
3815





PAP
TLPSWATEDTM
222
11
3816





PSM
TLRGAVEPDRY
361
11
3817





PSM
TLRVDCTPL
461
9
3818





PSM
TLRVDCTPLM
461
10
3819





PSM
TLRVDCTPLMY
461
11
3820





PSA
TLSVTWIGA
5
9
3821





PSA
TLSVTWIGAA
5
10
3822





PAP
TMTKLREL
231
8
3823





PAP
TMTKLRELSEL
231
11
3824





PSM
TPGYPANEY
269
9
3825





PSM
TPGYPANEYA
269
10
3826





PSM
TPGYPANEYAY
269
11
3827





PSM
TPKHNMKA
53
8
3828





PSM
TPKHNMKAF
53
9
3829





PSM
TPKHNMKAFL
53
10
3830





PSA
TPKKLQCV
163
8
3831





PSA
TPKKLQCVDL
163
10
3832





PSM
TPLMYSLV
467
8
3833





PSM
TPLMYSLVHNL
467
11
3834





Kallikrein
TQEPALGTTCY
143
11
3835





PSA
TQEPALGTTCY
139
11
3836





PAP
TQHEPYPL
335
8
3837





PAP
TQHEPYPLM
335
9
3838





PAP
TQHEPYPLML
335
10
3839





PAP
TQIPSYKKL
275
9
3840





PAP
TQIPSYKKLI
275
10
3841





PAP
TQIPSYKKLIM
275
11
3842





PSM
TQKVKMHI
339
8
3843





PAP
TQLGMEQHY
71
9
3844





PAP
TQLGMEQHYEL
71
11
3845





PSM
TVAQVRGGM
575
9
3846





PSM
TVAQVRGGMV
575
10
3847





PSM
TVAQVRGGMVF
575
11
3848





PAP
TVPLSEDQL
145
9
3849





PAP
TVPLSEDQLL
145
10
3850





PAP
TVPLSEDQLLY
145
11
3851





PSM
TVQAAAETL
738
9
3852





PAP
TVSGLQMA
292
8
3853





PAP
TVSGLQMAL
292
9
3854





PAP
TVSGLQMALDV
292
11
3855





PSM
VIARYGKV
201
8
3856





PSM
VIARYGKVF
201
9
3857





PSM
VIGTLRGA
358
8
3858





PSM
VIGTLRGAV
358
9
3859





PSM
VILGGHRDSW
372
10
3860





PSM
VILGGHRDSWV
372
11
3861





PSA
VILLGRHSL
68
9
3862





PSA
VILLGRHSLF
68
10
3863





PSM
VILYSDPA
225
8
3864





PSM
VILYSDPADY
225
10
3865





PSM
VILYSDPADYF
225
11
3866





PAP
VIPQDWSTECM
363
11
3867





PSA
VISNDVCA
174
8
3868





PSA
VISNDVCAQV
174
10
3869





PSM
VIYAPSSHNKY
690
11
3870





PSM
VLAGGFFL
27
8
3871





PSM
VLAGGFFLL
27
9
3872





PSM
VLAGGFFLLGF
27
11
3873





PAP
VLAKELKF
30
8
3874





PAP
VLAKELKFV
30
9
3875





PAP
VLAKELKFVTL
30
11
3876





Kallikrein
VLGLPTQEPA
138
10
3877





Kallikrein
VLGLPTQEPAL
138
11
3878





PSM
VLPFDCRDY
592
9
3879





PSM
VLPFDGRDYA
592
10
3880





PSM
VLPFDCRDYAV
592
11
3881





Kallikrein
VLQGITSW
222
8
3882





PSA
VLQGITSW
218
8
3883





PSM
VLRKYADKI
603
9
3884





PSM
VLRKYADKIY
603
10
3885





PSM
VLRMMNDQL
660
9
3886





PSM
VLRMMNDQLM
660
10
3887





PSM
VLRMMNDQLMF
660
11
3888





Kallikrein
VLSIALSV
5
8
3889





PSA
VLTAAHCI
56
8
3890





Kallikrein
VLTAAHCL
60
8
3891





PSA
VLVASRGRA
36
9
3892





PSA
VLVASRGRAV
36
10
3893





Kallikrein
VLVHPQWV
53
8
3894





PSA
VLVHPQWV
49
8
3895





Kallikrein
VLVHPQWVL
53
9
3896





PSA
VLVHPQWVL
49
9
3897





Kallikrein
VLVHPQWVLTA
53
11
3898





PSA
VLVHPQWVLTA
49
11
3899





PAP
VLVNEILNHM
262
10
3900





PSA
VMDLPTQEPA
134
10
3901





PSA
VMDLPTQEPAL
134
11
3902





Kallikrein
VPLIQSRI
18
8
3903





Kallikrein
VPLIQSRIV
18
9
3904





PAP
VPLSEDQL
146
8
3905





PAP
VPLSEDQLL
146
9
3906





PAP
VPLSEDQLLY
146
10
3907





PAP
VPLSEDQLLYL
146
11
3908





Kallikrein
VPVSHSFPHPL
90
11
3909





PSM
VPYNVGPGF
325
9
3910





PSM
VQAAAETL
739
8
3911





PSM
VQAAAETLSEV
739
11
3912





PSM
VQRGNILNL
253
9
3913





PSA
VVFLTLSV
1
8
3914





PSA
VVFLTLSVTW
1
10
3915





PSA
VVFLTLSVTWI
1
11
3916





PSM
VVHEIVRSF
394
9
3917





Kallikrein
VVHYRKWI
246
8
3918





PSA
VVHYRKWI
242
8
3919





PSM
VVLRKYADKI
602
10
3920





PSM
VVLRKYADKIY
602
11
3921





PSA
WIGAAPLI
10
8
3922





PSA
WIGAAPLIL
10
9
3923





Kallikrein
WIKDTIAA
252
8
3924





PSA
WIKDTIVA
248
8
3925





PSM
WLCAGALV
20
8
3926





PSM
WLGAGALVL
20
9
3927





PSM
WLCAGALVLA
20
10
3928





PAP
WLDRSVLA
25
8
3929





PAP
WLDRSVLAKEL
25
11
3930





Kallikrein
WLGRHNLF
74
8
3931





PAP
WPQGFGQL
63
8
3932





PAP
WPQGFGQLTQL
63
11
3933





PAP
WQPIPVHTV
138
9
3934





PAP
WQPIPVHTVPL
138
11
3935





Kallikrein
WQVAVYSHGW
38
10
3936





Kallikrein
WQVAVYSHGWA
38
11
3937





PSA
WQVLVASRGRA
34
11
3938





PSA
WVLTAAHCI
55
9
3939





Kallikrein
WVLTAAHCL
59
9
3940





PSM
YINADSSI
449
8
3941





PAP
YIRKRYRKF
84
9
3942





PAP
YIRKRYRKFL
84
10
3943





PAP
YIRSTDVDRTL
103
11
3944





PAP
YLPFRNCPRF
155
10
3945





PSM
YPANEYAY
272
8
3946





PSM
YPLYHSVY
549
8
3947





PSM
YPLYHSVYETY
549
11
3948





PSM
YPNKTHPNY
119
9
3949





PSM
YPNKTHPNYI
119
10
3950





PSM
YVAAFTVQA
733
9
3951





PSM
YVAAFTVQAA
733
10
3952





PSM
YVAAFTVQAAA
733
11
3953





PSM
YVILGGHRDSW
371
11
3954





PSM
YVNYARTEDF
176
10
3955





PSM
YVNYARTEDFF
176
11
3956
















TABLE XV










Prostate A01 Motif Peptides with Binding Data
















No. of

Seq.






Amino

Id


Protein
Sequence
Position
Acids
A*0101
No.
















PSM
ADSSIEGNY
452
9

3957






PSM
AGAKGVILY
220
9

3958





PSM
AGDPLTPGY
264
9
0.0099
3959





PSM
AGESFPGIY
701
9
0.0040
3960





PSM
APSSHNKY
693
8

3961





PAP
ASCHLTELY
311
9
0.7700
3962





PSM
CRDYAVVLRKY
597
11

3963





PSM
CSGKIVIARY
196
10
0.0160
3964





PSM
DSSIEGNY
453
8

3965





PSM
DSVELAHY
106
8

3966





PSM
DYAVVLRKY
599
9

3967





PSM
EGDLVYVNY
171
9
0.0024
3968





PSM
ELAHYDVLLSY
109
11

3969





PAP
ELSELSLLSLY
237
11

3970





PAP
ELSLLSLY
240
8

3971





Kallikrein
EPALGTTCY
145
9
0.0011
3972





PSA
EPALGTTCY
141
9
0.0011
3973





PAP
ESYKHEQVY
95
9
0.0980
3974





PSM
ETNKFSGY
542
8

3975





PSM
ETNKFSGYPLY
542
11

3976





PSM
ETYELVEKFY
557
10
0.0260
3977





PSM
FSGYPLYHSVY
546
11

3978





PSM
FYDPMFKY
565
8

3979





PSM
GESFPGIY
702
8

3980





PSM
GFEGKSLY
487
8

3981





PSM
GIASGRARY
529
9
0.0025
3982





PSM
GLDSVELAHY
104
10
0.4800
3983





PAP
GMEQHYELGEY
74
11

3984





PSM
GMPEGDLVY
168
9
0.0001
3985





PAP
HMKRATQIPSY
270
11

3986





Kallikrein
HSFPHPLY
94
8
0.0260
3987





PSA
HSFPHPLY
90
8
0.0260
3988





Kallikrein
HSQPWQVAVY
34
10

3989





PSM
HSTNEVTRIY
347
10
0.0048
3990





PSM
HYDVLLSY
112
8

3991





PSM
IASGRARY
530
8

3992





PSM
IHSTNEVTRIY
346
11

3993





PSM
INADSSIEGNY
450
11

3994





PAP
IPSYKKLIMY
277
10
0.5700
3995





PAP
IWSKVYDPLY
205
10
0.0012
3996





PSM
IYAPSSHNKY
691
10

3997





PSM
KAENIKKFLY
66
10
0.0001
3998





PSM
KFSGYPLY
545
8

3999





PAP
KGEYFVEMY
322
9
3.4000
4000





PAP
KGEYFVEMYY
322
10
0.0180
4001





Kallikrein
KHSQPWQVAVY
33
11

4002





Kallikrein
KPAVYTKVVHY
239
11

4003





PAP
KRATQIPSY
272
9
0.0011
4004





PSM
KYAGESFPGIY
699
11

4005





PSM
LDSVELAHY
105
9

4006





PSM
LFEPPPPGY
143
9
0.0010
4007





PAP
LGEYIRKRY
81
9
0.7800
4008





PSM
LKAENIKKFLY
65
11

4009





Kallikrein
LLSNDMCARAY
178
11

4010





PAP
LNESYKHEQVY
93
11

4011





Kallikrein
LPEKPAVY
236
8

4012





PSA
LPERPSLY
232
8
0.0002
4013





PSM
LPSIPVHPIGY
289
11

4014





PSM
LQERGVAY
442
8

4015





PAP
LSEDQLLY
148
8

4016





PAP
LSELSLLSLY
238
10
12.0000
4017





Kallikrein
LSNDMCARAY
179
10

4018





PSM
LSYPNKTHPNY
117
11

4019





PAP
LTELYFEKGEY
315
11

4020





PSM
LTPGYPANEY
268
10
0.0082
4021





PAP
LTQLGMEQHY
70
10
0.6200
4022





PSM
LYSDPADY
227
8

4023





PSM
MPEGDLVY
169
8

4024





PSM
MPEGDLVYVNY
169
11

4025





PSM
NADSSIEGNY
451
10
0.4300
4026





PSM
NCSGKIVIARY
195
11

4027





PAP
NESYKHEQVY
94
10
0.0033
4028





PSM
NGAGDPLTPGY
262
11

4029





PSM
NWETNKFSGY
540
10

4030





Kallikrein
PCALPEKPAVY
233
11

4031





PSA
PCALPERPSLY
229
11

4032





PSM
PDEGFEGKSLY
484
11

4033





PAP
PLSEDQLLY
147
9
1.2000
4034





PSM
PSIPVHPIGY
290
10

4035





PSM
PSIPVHPIGYY
290
11

4036





PSA
PSLYTKVVHY
236
10
0.0010
4037





PAP
PSYKKLIMY
278
9
0.0031
4038





Kallikrein
PVSHSFPHPLY
91
11

4039





PAP
PYASCHLTELY
309
11

4040





PSM
QLAGAKGVILY
218
11

4041





PSA
QVSHSFPHPLY
87
11

4042





PSM
RGAVEPDRY
363
9
0.0001
4043





PSM
RGSLKVPY
320
8

4044





PAP
RNETQHEPY
332
9
0.0002
4045





PSA
RPSLYTKVVHY
235
11

4046





PSM
RVDCTPLMY
463
9
11.0000
4047





PAP
SEEFQKRLHPY
174
11

4048





Kallikrein
SHSFPHPLY
93
9
0.0011
4049





PSA
SHSFPHPLY
89
9
0.0011
4050





PSM
SMKHPQEMKTY
615
11

4051





Kallikrein
SNDMCARAY
180
9

4052





PSM
SSWRGSLKVPY
317
11

4053





PSM
STNEVTRIY
348
9
0.0430
4054





PSM
TNEVTRIY
349
8

4055





Kallikrein
TQEPALGTTCY
143
11
0.0190
4056





PSA
TQEPALGTTCY
139
11
0.0190
4057





PSM
TSLFEPPPPGY
141
11

4058





PSM
TYELVEKFY
558
9
0.0010
4059





PAP
VSGLQMALDVY
293
11

4060





Kallikrein
VSHSFPHPLY
92
10
0.1500
4061





PSA
VSHSFPHPLY
88
10
0.1500
4062





PSM
WGEVKRQIY
725
9
0.0010
4063





PAP
WSKVYDPLY
206
9
0.0046
4064





PAP
YASCHLTELY
310
10
0.5500
4065





PSM
YFAPGVKSY
234
9

4066





PSM
YHSVYETY
552
8

4067





PSM
YPANEYAY
272
8

4068
















TABLE XVI










Prostate A03 Motif Peotides with Binding Data
















No. of

Seq.






Amino

Id.


Protein
Sequence
Position
Acids
A*0301
No.
















PSM
AAAETLSEVA
741
10

4069






PSM
AAETLSEVA
742
9

4070





PSM
AAFTVQAA
735
8

4071





PSM
AAFTVQAAA
735
9

4072





PSA
AAHCIRNK
59
8

4073





PSA
AAPLILSR
13
8

4074





PAP
AAPLLLAR
3
8

4075





PAP
AAPLLLARA
3
9

4076





PAP
AAPLLLARAA
3
10

4077





PAP
AASLSLGF
11
8

4078





PAP
AASLSLGFLF
11
10

4079





PSM
AAVVHEIVR
392
9

4080





PSM
AAVVHEIVRSF
392
11

4081





PSM
ADKIYSISMK
608
10

4082





PSM
ADKIYSISMKH
608
11

4083





PSM
ADSSIEGNY
452
9

4084





PSM
ADYFAPGVK
232
9
0.0006
4085





PSM
ADYFAPGVKSY
232
11

4086





PSM
AFIDPLGLPDR
674
11

4087





PSM
AFLDELKA
60
8

4088





PSM
AFTVQAAA
736
8

4089





PSM
AGAKGVILY
220
9

4090





PSM
AGALVLAGGF
23
10

4091





PSM
AGALVLAGGFF
23
11

4092





PSM
AGDPLTPGY
264
9

4093





PSM
AGDPLTPGYPA
264
11

4094





PSM
AGESFPGIY
701
9

4095





PSM
AGESFPGIYDA
701
11

4096





PSM
AGGFFLLGF
29
9

4097





PSM
AGGFFLLGFLF
29
11

4098





Kallikrein
AGLWTGGK
199
8

4099





PSA
AGRWTGGK
195
8

4100





PSM
AGTEQNFQLA
84
10

4101





PSM
AGTEQNFQLAK
84
11

4102





PSM
ALFDIESK
711
8

4103





Kallikrein
ALGTTCYA
147
8

4104





PSA
ALGTTCYA
143
8

4105





Kallikrein
ALPEKPAVY
235
9

4106





Kallikrein
ALPEKPAVYTK
235
11

4107





PSA
ALPERPSLY
231
9
0.0170
4108





PSA
ALPERPSLYTK
231
11

4109





Kallikrein
ALSVGCTGA
9
9

4110





PSM
ALVLAGGF
25
8

4111





PSM
ALVLAGGFF
25
9

4112





PAP
AMTNLAALF
116
9

4113





PAP
ASCHLTELY
311
9
0.0002
4114





PAP
ASCHLTELYF
311
10

4115





PSM
ASGRARYTK
531
9
0.0086
4116





PSM
ASKFSERLQDF
643
11

4117





PAP
ASLSLGFLF
12
9

4118





PSM
ASWDAEEF
419
8

4119





PSM
ATARRPRWLCA
13
11

4120





PAP
ATEDTMTK
227
8
0.0003
4121





PAP
ATEDTMTKLR
227
10

4122





PAP
ATLGKLSGLH
189
10

4123





PSM
ATNITPKH
49
8

4124





PSM
ATNITPKHNMK
49
11

4125





PAP
ATQIPSYK
274
8
0.0180
4126





PAP
ATQIPSYKK
274
9
0.1000
4127





PSM
AVATARRPR
11
9

4128





PSA
AVCGGVLVH
44
9

4129





PSM
AVGLPSIPVH
286
10

4130





PSM
AVKNFTEIA
635
9

4131





PSM
AVKNFTEIASK
635
11

4132





Kallikrein
AVPLIQSR
17
8

4133





PSM
AVVHEIVR
393
8

4134





PSM
AVVHEIVRSF
393
10

4135





PSM
AVVLRKYA
601
8

4136





PSM
AVVLRKYADK
601
10
0.0026
4137





Kallikrein
AVYSHGWA
41
8

4138





Kallikrein
AVYSHGWAM
41
9

4139





Kallikrein
AVYTKVVH
241
8

4140





Kallikrein
AVYTKVVHY
241
9

4141





Kallikrein
AVYTKVVHYR
241
10

4142





Kallikrein
AVYTKVVHYRK
241
11

4143





PSM
CAGALVLA
22
8

4144





PSM
CAGALVLAGGF
22
11

4145





Kallikrein
CAGLWTGGK
198
9

4146





PSA
CAGRWTGGK
194
9
0.0006
4147





Kallikrein
CALPEKPA
234
8

4148





Kallikrein
CALPEKPAVY
234
10

4149





PSA
CALPERPSLY
230
10

4150





PSA
CAQVHPQK
180
8

4151





PSA
CAQVHPQKVTK
180
11

4152





Kallikrein
CARAYSEK
184
8

4153





PSM
CSGKIVIA
196
8

4154





PSM
CSGKIVIAR
196
9

4155





PSM
CSGKIVIARY
196
10
0.0600
4156





PAP
CSPSCPLER
347
9
0.0040
4157





PAP
CSPSCPLERF
347
10

4158





PAP
CSPSCPLEREA
347
11

4159





Kallikrein
CTGAVPLIQSR
14
11

4160





PSM
CTPLMYSLVH
466
10

4161





PSM
DALFDIESK
710
9
0.0006
4162





PSM
DAQKLLEK
301
8

4163





PSM
DCRDYAVVLR
596
10

4164





PSM
DCRDYAVVLRK
596
11

4165





PSM
DCTPLMYSLVH
465
11

4166





PSA
DDSSHDLMLLR
111
11

4167





PSM
DFDKSNPIVLR
652
11

4168





PSM
DFEVFFQR
520
8

4169





PSM
DFFKLERDMK
184
10

4170





PAP
DFIATLGK
186
8

4171





PSM
DGNEIFNTSLF
134
11

4172





PSM
DIESKVDPSK
714
10
0.0003
4173





PSM
DIESKVDPSKA
714
11

4174





PSM
DIVPPFSA
156
8

4175





PSM
DIVPPFSAF
156
9

4176





PAP
DLFGIWSK
201
8

4177





PAP
DLFGIWSKVY
201
10

4178





PSA
DLHVISNDVCA
171
11

4179





Kallikrein
DLMLLRLSEPA
120
11

4180





PSA
DLMLLRLSEPA
116
11

4181





PSA
DLPTQEPA
136
8

4182





PSM
DLVYVNYA
173
8

4183





PSM
DLVYVNYAR
173
9

4184





Kallikrein
DMCARAYSEK
182
10

4185





PSM
DMKINCSGK
191
9

4186





PSA
DMSLLKNR
98
8
0.0003
4187





PSA
DMSLLKNRF
98
9

4188





PSA
DMSLLKNRFLR
98
11

4189





PSM
DSAVATAR
9
8

4190





PSM
DSAVATARR
9
9

4191





PSM
DSAVATARRPR
9
11

4192





PSM
DSLFSAVK
630
8

4193





PSM
DSLFSAVKNF
630
10

4194





Kallikrein
DSSHDLMLLR
116
10

4195





PSA
DSSHDLMLLR
112
10

4196





PSM
DSSIEGNY
453
8

4197





PSM
DSSIEGNYTLR
453
11

4198





PSM
DSSWRGSLK
316
9
0.0032
4199





PSM
DSVELAHY
106
8

4200





PAP
DTFPTDPIK
51
9
0.0001
4201





Kallikrein
DTGQRVPVSH
85
10

4202





PSA
DTGQVFQVSH
81
10

4203





PAP
DTTVSGLQMA
290
10

4204





PSA
DVCAQVHPQK
178
10
0.0007
4205





PAP
DVDRTLMSA
108
9

4206





PSM
DVLLSYPNK
114
9
0.0006
4207





PSM
DVLLSYPNKTH
114
11

4208





PAP
DVYNGLLPPY
301
10

4209





PAP
DVYNGLLPPYA
301
11

4210





PSM
EATNITPK
48
8

4211





PSM
EATNITPKH
48
9

4212





PSM
EAVGLPSIPVH
285
11

4213





PAP
ECMTTNSH
371
8

4214





PSM
EDFFKLER
183
8

4215





PSM
EDFFKLERDMK
183
11

4216





PAP
EDQLLYLPF
150
9

4217





PAP
EDQLLYLPFR
150
10

4218





Kallikrein
EDSSHDLMLLR
115
11

4219





Kallikrein
EDTGQRVPVSH
84
11

4220





PSA
EDTGQVFQVSH
80
11

4221





PAP
EDTMTKLR
229
8

4222





PSM
EFGLDSVELA
102
10

4223





PSM
EFGLDSVELAH
102
11

4224





PSM
EFGLLGSTEWA
425
11

4225





PAP
EFQKRLHPY
176
9

4226





PAP
EFQKRLHPYK
176
10

4227





PSM
EFSGMPRISK
505
10

4228





PSM
EGDLVYVNY
171
9

4229





PSM
EGDLVYVNYA
171
10

4230





PSM
EGDLVYVNYAR
171
11

4231





PSM
EGFEGKSLY
486
9

4232





PSM
EGKSLYESWTK
489
11

4233





PSM
EGWRPRRTILF
408
11

4234





PSM
EIASKFSER
641
9
0.0006
4235





PSM
EIFNTSLF
137
8

4236





PAP
EILNHMKR
266
8

4237





PAP
EILNHMKRA
266
9

4238





PSM
EIVRSFGTLK
397
10

4239





PSM
EIVRSFGTLKK
397
11

4240





PSM
ELAHYDVLLSY
109
11

4241





PSM
ELANSIVLPF
586
10

4242





PAP
ELESETLK
166
8

4243





PAP
ELGEYIRK
80
8

4244





PAP
ELGEYIRKR
80
9

4245





PAP
ELGEYIRKRY
80
10

4246





PAP
ELGEYIRKRYR
80
11

4247





PSM
ELKAENIK
64
8

4248





PSM
ELKAENIKK
64
9

4249





PSM
ELKAENIKKF
64
10

4250





PAP
ELKFVTLVF
34
9

4251





PAP
ELKFVTLVFR
34
10
0.0014
4252





PAP
ELKFVTLVFRH
34
11

4253





PSM
ELKSPDEGF
480
9

4254





PAP
ELSELSLLSLY
237
11

4255





PAP
ELSLLSLY
240
8

4256





PAP
ELSLLSLYGH
240
11

4257





PSM
ELVEKFYDPMF
560
11

4258





PAP
ELYFEKGEY
317
9

4259





PAP
ELYFEKGEYF
317
10

4260





PSM
EMKTYSVSF
621
9
0.0005
4261





PAP
EMYYRNETQH
328
10

4262





PAP
ESETLKSEEF
168
10

4263





PSM
ESFPGIYDA
703
9

4264





PSM
ESFPGIYDALF
703
11

4265





PSM
ESKVDPSK
716
8

4266





PSM
ESKVDPSKA
716
9

4267





PAP
ESSWPQGF
60
8

4268





PAP
ESYKHEQVY
95
9
0.0002
4269





PAP
ESYKHEQVYIR
95
11

4270





PSM
ETDSAVATA
7
9

4271





PSM
ETDSAVATAR
7
10

4272





PSM
ETDSAVATARR
7
11

4273





PAP
ETLKSEEF
170
8

4274





PAP
ETLKSEEFQK
170
10
0.0004
4275





PAP
ETLKSEEFQKR
170
11

4276





PSM
ETNKFSGY
542
8

4277





PSM
ETNKFSGYPLY
542
11

4278





PSM
ETYELVEK
557
8

4279





PSM
ETYELVEKF
557
9

4280





PSM
ETYELVEKFY
557
10
0.0006
4281





PSM
EVFFQRLGIA
522
10

4282





PSM
EVKRQIYVA
727
9

4283





PSM
EVKRQIYVAA
727
10

4284





PSM
EVKRQIYVAAF
727
11

4285





PSM
FAPGVKSY
235
8

4286





PSM
FASWDAEEF
418
9

4287





PSM
FDCRDYAVVLR
595
11

4288





PSM
FDIESKVDPSK
713
11

4289





PSM
FDKSNPIVLR
653
10

4290





PSM
FDSLFSAVK
629
9

4291





PSM
FDSLFSAVKNF
629
11

4292





PSM
FFKLERDMK
185
9

4293





PSM
FFLLGFLF
32
8

4294





PSM
FFLLGFLFGWF
32
11

4295





PSM
FFQRLGIA
524
8

4296





PSM
FFQRLGIASGR
524
11

4297





PAP
FFWLDRSVLA
23
10

4298





PAP
FFWLDRSVLAK
23
11

4299





PSM
FGGIDPQSGA
383
10

4300





PSM
FGGIDPQSGAA
383
11

4301





PAP
FGIWSKVY
203
8

4302





PSM
FGLDSVELA
103
9

4303





PSM
FGLDSVELAH
103
10

4304





PSM
FGLDSVELAHY
103
11

4305





PSM
FGLLGSTEWA
426
10

4306





PSM
FGTLKKEGWR
402
10

4307





PSM
FGWFIKSSNEA
39
11

4308





PSM
FIDPLGLPDR
675
10

4309





PSM
FIKSSNEA
42
8

4310





PSM
FLDELKAENIK
61
11

4311





PSM
FLFGWFIK
37
8

4312





PAP
FLFLLFFWLDR
18
11

4313





PAP
FLLFFWLDR
20
9
0.0024
4314





PSM
FLLGFLFGWF
33
10

4315





PAP
FLNESYKH
92
8

4316





PSA
FLRPGDDSSH
106
10

4317





PSA
FLTLSVTWIGA
3
11

4318





PSM
FLYNFTQIPH
73
10
0.0102
4319





PSM
FSAVKNFTEIA
633
11

4320





PSM
FSERLQDF
646
8

4321





PSM
FSERLQDFDK
646
10
0.0003
4322





PSM
FSGMPRISK
506
9

4323





PSM
FSGYPLYH
546
8

4324





PSM
FSGYPLYHSVY
546
11

4325





PSM
FSTQKVKMH
337
9

4326





PSM
FSTQKVKMHIH
337
11

4327





PSM
FTEIASKF
639
8

4328





PSM
FTEIASKFSER
639
11

4329





PSM
FTGNFSTQK
333
9

4330





PSM
FTGNFSTQKVK
333
11

4331





PSM
FTQIPHLA
77
8

4332





PAP
FVTLVFRH
37
8

4333





PAP
FVTLVFRHGDR
37
11

4334





PSA
GAAPLILSR
12
9
0.0150
4335





PSM
GAAVVHEIVR
391
10

4336





PSM
GAGDPLTPGY
263
10

4337





PSM
GAKGVILY
221
8

4338





PSM
GALVLAGGF
24
9

4339





PSM
GALVLAGGFF
24
10

4340





PSM
GAVEPDRY
364
8

4341





Kallikrein
GAVPLIQSR
16
9

4342





PAP
GCSPSCPLER
346
10

4343





PAP
GCSPSCPLERF
346
11

4344





PSM
GDLVYVNY
172
8

4345





PSM
GDLVYVNYA
172
9

4346





PSM
GDLVYVNYAR
172
10

4347





PSM
GDPLTPGY
265
8

4348





PSM
GDPLTPGYPA
265
10

4349





PAP
GDRSPIDTF
45
9

4350





PSM
GFEGKSLY
487
8

4351





PSM
GFFLLGFLF
31
9
0.0005
4352





PSM
GFLFGWFIK
36
9
0.0007
4353





PAP
GFLFLLFF
17
8

4354





PSM
GFTGNFSTQK
332
10

4355





PSM
GGFFLLGF
30
8

4356





PSM
GGFFLLGFLF
30
10

4357





PSM
GGHRDSWVF
375
9

4358





PSM
GGIDPQSGA
384
9

4359





PSM
GGIDPQSGAA
384
10

4360





PSM
GGMVFELA
581
8

4361





PSM
GGSAPPDSSWR
310
11

4362





PAP
GGVLVNEILNH
260
11

4363





Kallikrein
GGWECEKH
27
8

4364





PSA
GGWECEKH
23
8

4365





PSM
GIASGRAR
529
8

4366





PSM
GIASGRARY
529
9

4367





PSM
GIASGRARYTK
529
11

4368





PSM
GIDPQSGA
385
8

4369





PSM
GIDPQSGAA
385
9

4370





PAP
GIHKQKEK
248
8

4371





PAP
GIHKQKEKSR
248
10

4372





Kallikrein
GITSWGPEPCA
225
11

4373





PSA
GITSWGSEPCA
221
11

4374





PAP
GIWSKVYDPLY
204
11

4375





PSM
GLDSVELA
104
8

4376





PSM
GLDSVELAH
104
9

4377





PSM
GLDSVELAHY
104
10

4378





PAP
GLHGQDLF
196
8

4379





PSM
GLLGSTEWA
427
9

4380





PAP
GLLPPYASCH
305
10

4381





PSM
GLPDRPFY
680
8

4382





PSM
GLPDRPFYR
680
9
0.0460
4383





PSM
GLPDRPFYRH
680
10

4384





PSM
GLPSIPVH
288
8

4385





Kallikrein
GLPTQEPA
140
8

4386





PAP
GLQMALDVY
295
9

4387





PAP
GMEQHYELGEY
74
11

4388





PSM
GMPEGDLVY
168
9
0.0007
4389





PSM
GSAPPDSSWR
311
10
0.0006
4390





PSA
GSEPCALPER
226
10

4391





PSM
GSGNDFEVF
516
9

4392





PSM
GSGNDFEVFF
516
10

4393





Kallikrein
GSIEPEEF
158
8

4394





PSA
GSIEPEEF
154
8

4395





Kallikrein
GSIEPEEFLR
158
10

4396





PSM
GSTEWAEENSR
430
11

4397





PSM
GTEQNFQLA
85
9

4398





PSM
GTEQNFQLAK
85
10

4399





PSM
GTLKKEGWR
403
9

4400





PSM
GTLKKEGWRPR
403
11

4401





PSM
GTLRGAVEPDR
360
11

4402





PSM
GVILYSDPA
224
9

4403





PSM
GVILYSDPADY
224
11

4404





PAP
GVLVNEILNH
261
10

4405





Kallikrein
HCGGVLVH
49
8

4406





PAP
HDTTVSGLQMA
289
11

4407





PAP
HGDRSPIDTF
44
10

4408





PAP
HGQDLFGIWSK
198
11

4409





PSM
HIHSTNEVTR
345
10

4410





PSM
HLAGTEQNF
82
9

4411





Kallikrein
HLLSNDMCA
177
9

4412





Kallikrein
HLLSNDMCAR
177
10

4413





Kallikrein
HLLSNDMCARA
177
11

4414





PAP
HLTELYFEK
314
9
0.2700
4415





PSM
HLTVAQVR
573
8

4416





PAP
HMKRATQIPSY
270
11

4417





Kallikrein
HSFPHPLY
94
8
0.0890
4418





PSA
HSFPHPLY
90
8
0.0890
4419





Kallikrein
HSQPWQVA
34
8

4420





Kallikrein
HSQPWQVAVY
34
10

4421





PSA
HSQPWQVLVA
30
10

4422





PSM
HSTNEVTR
347
8

4423





PSM
HSTNEVTRIY
347
10
0.0005
4424





PSA
HVISNDVCA
173
9

4425





PSM
HVIYAPSSH
689
9

4426





PSM
HVIYAPSSHNK
689
11

4427





Kallikrein
IALSVGCTGA
8
10

4428





PSM
IARYGKVF
202
8

4429





PSM
IARYGKVFR
202
9

4430





PSM
IASGRARY
530
8

4431





PSM
IASGRARYTK
530
10

4432





PSM
IASKFSER
642
8

4433





PAP
IATLGKLSGLH
188
11

4434





PSM
IDPLGLPDR
676
9

4435





PSM
IDPLGLPDRPF
676
11

4436





PSM
IDPQSGAA
386
8

4437





PSM
IDPQSGAAVVH
386
11

4438





PAP
IDTFPTDPIK
50
10

4439





PSA
IGAAPLILSR
11
10

4440





PSM
IGYYDAQK
297
8

4441





PSM
IINEDGNEIF
130
10

4442





PSM
ILFASWDA
416
8

4443





PSM
ILFASWDAEEF
416
11

4444





PSM
ILGGHRDSWVF
373
11

4445





PSA
ILLGRHSLF
69
9

4446





PSA
ILLGRHSLFH
69
10

4447





PAP
ILLWQPIPVH
135
10

4448





PAP
ILNHMKRA
267
8

4449





PSM
ILYSDPADY
226
9

4450





PSM
ILYSDPADYF
226
10

4451





PSM
ILYSDPADYFA
226
11

4452





PSM
ISKLGSGNDF
512
10

4453





PSM
ISMKHPQEMK
614
10
0.1900
4454





PSA
ISNDVCAQVH
175
10

4455





PSM
ITPKHNMK
52
8

4456





PSM
ITPKHNMKA
52
9

4457





PSM
ITPKHNMKAF
52
10

4458





Kallikrein
ITSWGPEPCA
226
10

4459





PSA
ITSWGSEPCA
222
10

4460





Kallikrein
IYGGWEGEK
25
9
0.0410
4461





PSA
IVGGWECEK
21
9
0.0410
4462





Kallikrein
IVGGWECEKH
25
10

4463





PSA
IVGGWECEKH
21
10

4464





PSM
IVIARYGK
200
8

4465





PSM
IVIARYGKVF
200
10

4466





PSM
IVIARYGKVFR
200
11

4467





PSM
IVLPFDCR
591
8

4468





PSM
IVLPFDCRDY
591
10

4469





PSM
IVLPFDCRDYA
591
11

4470





PSM
IVPPFSAF
157
8

4471





PSM
IVRSFGTLK
398
9
0.1700
4472





PSM
IVRSFGTLKK
398
10
0.0260
4473





PSM
KAENIKKF
66
8

4474





PSM
KAENIKKFLY
66
10

4475





PSM
KAFLDELK
59
8

4476





PSM
KAFLDELKA
59
9

4477





PSM
KAWGEVKR
723
8

4478





PSM
KAWGEVKRQIY
723
11

4479





PAP
KDFIATLGK
185
9
0.0006
4480





PAP
KFLNESYK
91
8

4481





PAP
KFLNESYKH
91
9

4482





PSM
KFLYNFTQIPH
72
11

4483





PSA
KFMLCAGR
190
8

4484





PSM
KFSERLQDF
645
9

4485





PSM
KFSERLQDFDK
645
11

4486





PSM
KESGYPLY
545
8

4487





PSM
KFSGYPLYH
545
9

4488





PAP
KFVTLVFR
36
8

4489





PAP
KFVTLVFRH
36
9

4490





PSM
KFYDPMFK
564
8

4491





PSM
KFYDPMFKY
564
9

4492





PSM
KFYDPMFKYH
564
10

4493





PAP
KGEYFVEMY
322
9
0.0002
4494





PAP
KGEYFVEMYY
322
10
0.0057
4495





PAP
KGEYFVEMYYR
322
11

4496





PSM
KGVILYSDPA
223
10

4497





PSM
KINCSGKIVIA
193
11

4498





PSM
KIVIARYGK
199
9
0.0740
4499





PSM
KIVIARYGKVF
199
11

4500





PSM
KIYSISMK
610
8

4501





PSM
KIYSISMKH
610
9
0.1800
4502





PSM
KLGSGNDF
514
8

4503





PSM
KLGSGNDFEVF
514
11

4504





PAP
KLIMYSAH
282
8

4505





PSM
KLLEKMGGSA
304
10

4506





PSA
KLQCVDLH
166
8

4507





PAP
KLSGLHGQDLF
193
11

4508





PAP
KSEEFQKR
173
8

4509





PAP
KSEEFQKRLH
173
10

4510





PSM
KSLYESWTK
491
9
0.4000
4511





PSM
KSLYESWTKK
491
10
0.3200
4512





PSM
KSNPIVLR
655
8

4513





PSM
KSPDEGFEGK
482
10
0.0044
4514





PSA
KSVILLGR
66
8

4515





PSA
KSVILLGRH
66
9
0.0025
4516





PSM
KTYSVSFDSLF
623
11

4517





PSM
KVFRGNKVK
207
9
0.1600
4518





PSM
KVFRGNKVKNA
207
11

4519





PSM
KVKNAQLA
213
8

4520





PSM
KVKNAQLAGA
213
10

4521





PSM
KVKNAQLAGAK
213
11

4522





Kallikrein
KVLGLPTQEPA
137
11

4523





PSA
KVMDLPTQEPA
133
11

4524





PSM
KVPYNVGPGF
324
10

4525





Kallikrein
KVTEFMLCA
191
9

4526





PSA
KVTKFMLCA
187
9

4527





PSA
KVTKFMLCAGR
187
11

4528





Kallikrein
KVVHYRKWIK
245
10
0.0450
4529





PSA
KVVHYRKWIK
241
10
0.0450
4530





PSM
LAGAKGVILY
219
10
0.0004
4531





PSM
LAGGFELLGF
28
10

4532





PSM
LAGTEQNF
83
8

4533





PSM
LAGTEQNFQLA
83
11

4534





PSM
LAHYDVLLSY
110
10

4535





PSM
LAKQIQSQWK
92
10
0.0031
4536





PSM
LANSIVLPF
587
9

4537





PAP
LARAASLSLGF
8
11

4538





PSM
LCAGALVLA
21
9

4539





Kallikrein
LCAGLWTGGK
197
10

4540





PSA
LCAGRWTGGK
193
10

4541





PSM
LDELKAENIK
62
10

4542





PSM
LDELKAENIKK
62
11

4543





PAP
LDRSVLAK
26
8

4544





PAP
LDRSVLAKELK
26
11

4545





PSM
LDSVELAH
105
8

4546





PSM
LDSVELAHY
105
9

4547





PAP
LDVYNGLLPPY
300
11

4548





PSM
LFASWDAEEF
417
10

4549





Kallikrein
LFEPEDTGQR
80
10

4550





PSM
LFEPPPPGY
143
9

4551





PAP
LFFWLDRSVLA
22
11

4552





PAP
LFGIWSKVY
202
9

4553





PSA
LFHPEDTGQVF
76
11

4554





PAP
LFLLFFWLDR
19
10

4555





PSM
LFSAVKNF
632
8

4556





PAP
LGEYIRKR
81
8

4557





PAP
LGEYIRKRY
81
9
0.0002
4558





PAP
LGEYIRKRYR
81
10
0.0003
4559





PAP
LGEYIRKRYRK
81
11

4560





PSM
LGFLFGWF
35
8

4561





PSM
LGFLFGWFIK
35
10
0.0007
4562





PAP
LGFLFLLF
16
8

4563





PAP
LGFLFLLFF
16
9

4564





PSM
LGGHRDSWVF
374
10

4565





PSM
LGIASGRA
528
8

4566





PSM
LGIASGRAR
528
9
0.0006
4567





PSM
LGIASGRARY
528
10

4568





PAP
LGKLSGLH
191
8

4569





PSM
LGLPDRPF
679
8

4570





PSM
LGLPDRPFY
679
9

4571





PSM
LGLPDRPFYR
679
10

4572





PSM
LGLPDRPFYRH
679
11

4573





Kallikrein
LGLPTQEPA
139
9

4574





PSA
LGRHSLFH
71
8

4575





PSM
LGSGNDFEVF
515
10

4576





PSM
LGSGNDFEVFF
515
11

4577





PSM
LLEKMGGSA
305
9
0.0006
4578





PAP
LLFFWLDR
21
8

4579





PSM
LLGFLFGWF
34
9

4580





PSM
LLGFLFGWFIK
34
11

4581





PSA
LLGRHSLF
70
8

4582





PSA
LLGRHSLFH
70
9

4583





PSM
LLGSTEWA
428
8

4584





PSM
LLHETDSA
4
8

4585





PSM
LLHETDSAVA
4
10
0.0005
4586





Kallikrein
LLKHQSLR
105
8

4587





PSA
LLKNRFLR
101
8

4588





PAP
LLPPYASCH
306
9
0.0010
4589





PSM
LLQERGVA
441
8

4590





PSM
LLQERGVAY
441
9

4591





Kallikrein
LLRLSEPA
123
8

4592





PSA
LLRLSEPA
119
8

4593





Kallikrein
LLRLSEPAK
123
9

4594





PAP
LLSLYGIH
243
8

4595





PAP
LLSLYGIHK
243
9
0.0760
4596





PAP
LLSLYGIHKQK
243
11

4597





Kallikrein
LLSNDMCA
178
8

4598





Kallikrein
LLSNDMCAR
178
9

4599





Kallikrein
LLSNDMGARA
178
10

4600





Kallikrein
LLSNDMCARAY
178
11

4601





PSM
LLSYPNKTH
116
9
0.0006
4602





PAP
LLWQPIPVH
136
9

4603





PAP
LLYLPFRNCPR
153
11

4604





PSM
LMFLERAF
668
8

4605





Kallikrein
LMLLRLSEPA
121
10

4606





PSA
LMLLRLSEPA
117
10

4607





Kallikrein
LMLLRLSEPAK
121
11

4608





PAP
LMSAMTNLA
113
9
0.0005
4609





PAP
LMSAMTNLAA
113
10
0.0005
4610





PSM
LMYSLVHNLTK
469
11

4611





PAP
LSEDQLLY
148
8

4612





PAP
LSEDQLLYLPF
148
11

4613





PAP
LSELSLLSLY
238
10
0.0005
4614





PSA
LSEPAELTDA
122
10

4615





PAP
LSGLHGQDLF
194
10

4616





PAP
LSLGFLFLLF
14
10

4617





PAP
LSLGFLFLLFF
14
11

4618





PAP
LSLLSLYGIH
241
10
0.0003
4619





PAP
LSLLSLYGIHK
241
11

4620





PAP
LSLYGIHK
244
8

4621





PAP
LSLYGIHKQK
244
10
0.0520
4622





Kallikrein
LSNDMCAR
179
8

4623





Kallikrein
LSNDMCARA
179
9

4624





Kallikrein
LSNDMCARAY
179
10

4625





Kallikrein
LSVGCTGA
10
8

4626





PSA
LSVTWIGA
6
8

4627





PSA
LSVTWIGAA
6
9

4628





PSM
LSYPNKTH
117
8

4629





PSM
LSYPNKTHPNY
117
11

4630





PSA
LTAAHCIR
57
8

4631





PSA
LTAAHCIRNK
57
10
0.1400
4632





Kallikrein
LTAAHCLK
61
8

4633





Kallikrein
LTAAHCLKK
61
9

4634





PAP
LTELYFEK
315
8
0.0014
4635





PAP
LTELYFEKGEY
315
11

4636





PSA
LTLSVTWIGA
4
10

4637





PSA
LTLSVTWIGAA
4
11

4638





PSM
LTPGYPANEY
268
10
0.0005
4639





PSM
LTPGYPANEYA
268
11

4640





PAP
LTQLGMEQH
70
9

4641





PAP
LTQLGMEQHY
70
10
0.0150
4642





PSA
LVASRGRA
37
8

4643





PSM
LVEKFYDPMF
561
10

4644





PSM
LVEKFYDPMFK
561
11

4645





PAP
LVFRHGDR
40
8
0.0003
4646





PSM
LVHNLTKELK
473
10

4647





Kallikrein
LVHPQWVLTA
54
10

4648





PSA
LVHPQWVLTA
50
10

4649





Kallikrein
LVHPQWVLTAA
54
11

4650





PSA
LVHPQWVLTAA
50
11

4651





PSM
LVLAGGFF
26
8

4652





PAP
LVNEILNH
263
8

4653





PAP
LVNEILNHMK
263
10
0.0560
4654





PAP
LVNEILNHMKR
263
11

4655





PSM
LVYVNYAR
174
8

4656





Kallikrein
MCARAYSEK
183
9

4657





PSA
MDLPTQEPA
135
9

4658





PSM
MFKYHLTVA
569
9

4659





Kallikrein
MLCAGLWTGGK
196
11

4660





PSA
MLCAGRWTGGK
192
11

4661





Kallikrein
MLLRLSEPA
122
9

4662





PSA
MLLRLSEPA
118
9

4663





Kallikrein
MLLRLSEPAK
122
10

4664





PSM
MMNDQLMF
663
8

4665





PSM
MMNDQLMFLER
663
11

4666





PAP
MSAMTNLA
114
8

4667





PAP
MSAMTNLAA
114
9

4668





PAP
MSAMTNLAALF
114
11

4669





Kallikrein
MSLLKHQSLR
103
10

4670





PSA
MSLLKNRF
99
8

4671





PSA
MSLLKNRFLR
99
10
0.0070
4672





PAP
MTNLAALF
117
8

4673





PSM
NADSSIEGNY
451
10

4674





PSM
NAQLAGAK
216
8

4675





PSM
NCSGKIVIA
195
9

4676





PSM
NCSGKIVIAR
195
10

4677





PSM
NCSGKIVIARY
195
11

4678





PSM
NDFEVFFQR
519
9

4679





Kallikrein
NDMCARAY
181
8

4680





Kallikrein
NDMCARAYSEK
181
11

4681





PSM
NDQLMFLER
665
9

4682





PSM
NDQLMFLERA
665
10

4683





PSM
NDQLMFLERAF
665
11

4684





PSA
NDVCAQVH
177
8

4685





PSA
NDVCAQVHPQK
177
11

4686





PSM
NFSTQKVK
336
8

4687





PSM
NFSTQKVKMH
336
10

4688





PSM
NFTEIASK
638
8

4689





PSM
NFTEIASKF
638
9
0.0005
4690





PAP
NFTLPSWA
220
8

4691





PSM
NFTQIPHLA
76
9

4692





PSM
NGAGDPLTPGY
262
11

4693





PAP
NGLLPPYA
304
8

4694





PAP
NGLLPYASCH
304
11

4695





PSM
NIKKFLYNF
69
9

4696





PSM
NILNLNGA
257
8

4697





PSM
NITPKHNMK
51
9

4698





PSM
NITPKHNMKA
51
10

4699





PSM
NITPKHNMKAF
51
11

4700





Kallikrein
NLFEPEDTGQR
79
11

4701





PSM
NLLHETDSA
3
9
0.0006
4702





PSM
NLLHETDSAVA
3
11

4703





PSM
NLPGGGVQR
247
9

4704





PSM
NMKAFLDELK
57
10

4705





PSM
NMKAFLDELKA
57
11

4706





Kallikrein
NMSLLKHQSLR
102
11

4707





PSM
NSIVLPFDCR
589
10

4708





Kallikrein
NSQVWLGR
70
8

4709





Kallikrein
NSQVWLGRH
70
9

4710





PSM
NSRLLQER
438
8

4711





PSM
NSRLLQERGVA
438
11

4712





PSM
NVGPGFTGNF
328
10

4713





PSM
NVIGTLRGA
357
9

4714





PSM
NVSDIVPPF
153
9

4715





PSM
NVSDIVPPFSA
153
11

4716





PSM
PADYFAPGVK
231
10

4717





PSA
PAELTDAVK
125
9
0.0002
4718





Kallikrein
PAKITDVVK
129
9

4719





Kallikrein
PALGTTCY
146
8

4720





PSA
PALGTTCY
142
8

4721





Kallikrein
PALGTTCYA
146
9

4722





PSA
PALGTTCYA
142
9

4723





PSM
PANEYAYR
273
8

4724





PSM
PANEYAYRR
273
9
0.0001
4725





Kallikrein
PAVYTKVVH
240
9

4726





Kallikrein
PAVYTKVVHY
240
10

4727





Kallikrein
PAVYTKVVHYR
240
11

4728





Kallikrein
PCALPEKPA
233
9

4729





Kallikrein
PCALPEKPAVY
233
11

4730





PSA
PCALPERPSLY
229
11

4731





PSM
PDEGFEGK
484
8

4732





PSM
PDEGFEGKSLY
484
11

4733





PSM
PDRPFYRH
682
8

4734





PSM
PDRPFYRHVIY
682
11

4735





PSM
PDRYVILGGH
368
10

4736





PSM
PDRYVILGGHR
368
11

4737





PSM
PDSSWRGSLK
315
10

4738





PSM
PFDCRDYA
594
8

4739





PAP
PFRNCPRF
157
8

4740





PSM
PFYRHVIY
685
8

4741





PSM
PFYRHVIYA
685
9

4742





PAP
PGCSPSCPLER
345
11

4743





PSM
PGFTGNFSTQK
331
11

4744





PSM
PGIYDALF
706
8

4745





PSM
PGYPANEY
270
8

4746





PSM
PGYPANEYA
270
9

4747





PSM
PGYPANEYAY
270
10

4748





PSM
PGYPANEYAYR
270
11

4749





PAP
PIDTFPTDPIK
49
11

4750





PSM
PIGYYDAQK
296
9

4751





PAP
PIKESSWPQGF
57
11

4752





PAP
PILLWQPIPVH
134
11

4753





PSM
PLGLPDRPF
678
9

4754





PSM
PLGLPDRPFY
678
10

4755





PSM
PLGLPDRPFYR
678
11

4756





PAP
PLLLARAA
5
8

4757





PSM
PLMYSLVH
468
8

4758





PAP
PLSEDQLLY
147
9
0.0005
4759





PSM
PLTPGYPA
267
8

4760





PSM
PLTPGYPANEY
267
11

4761





PAP
PLYCESVH
212
8

4762





PAP
PLYCESVHNF
212
10

4763





PSA
PLYDMSLLK
95
9
0.2400
4764





PSA
PLYDMSLLKNR
95
11

4765





PSM
PLYHSVYETY
550
10
0.0004
4766





Kallikrein
PLYNMSLLK
99
9

4767





Kallikrein
PLYNMSLLKH
99
10

4768





PSM
PMFKYHLTVA
568
10
0.0005
4769





PAP
PSCPLERF
349
8

4770





PAP
PSCPLERFA
349
9

4771





PSM
PSIPVHPIGY
290
10

4772





PSM
PSIPVHPIGYY
290
11

4773





PSM
PSKAWGEVK
721
9

4774





PSM
PSKAWGEVKR
721
10
0.0003
4775





PSA
PSLYTKVVH
236
9

4776





PSA
PSLYTKVVHY
236
10
0.0079
4777





PSA
PSLYTKVVHYR
236
11

4778





PSM
PSPEFSGMPR
502
10

4779





PSM
PSSHNKYA
694
8

4780





PAP
PSWATEDTMTK
224
11

4781





PAP
PSYKKLIMY
278
9
0.0002
4782





PAP
PSYKKLIMYSA
278
11

4783





PSM
PVHPIGYY
293
8

4784





PSM
PVHPIGYYDA
293
10

4785





Kallikrein
PVSHSFPH
91
8

4786





Kallikrein
PVSHSFPHPLY
91
11

4787





PSM
QAAAETLSEVA
740
11

4788





PAP
QDLFGIWSK
200
9
0.0006
4789





PAP
QDLFGIWSKVY
200
11

4790





PSM
QGMPEGDLVY
167
10

4791





PAP
QIPSYKKLIMY
276
11

4792





PSM
QIQSQWKEF
95
9

4793





PSM
QIYVAAFTVQA
731
11

4794





PSM
QLAGAKGVILY
218
11

4795





PSM
QLAKQIQSQWK
91
11

4796





PAP
QLGMEQHY
72
8

4797





PAP
QLLYLPFR
152
8

4798





PSM
QLMFLERA
667
8

4799





PSM
QLMFLERAF
667
9

4800





PAP
QLTQLGMEQH
69
10

4801





PAP
QLTQLGMEQHY
69
11

4802





PSM
QSGAAVVH
389
8

4803





Kallikrein
QSLRPDEDSSH
109
11

4804





Kallikrein
QVAVYSHGWA
39
10

4805





Kallikrein
QVAVYSHGWAH
39
11

4806





PSA
QVFQVSHSF
84
9

4807





PSA
QVFQVSHSFPH
84
11

4808





PSA
QVHPQKVTK
182
9
0.0060
4809





PSA
QVHPQKVTKF
182
10

4810





PSA
QVLVASRGR
35
9
0.0021
4811





PSA
QVLVASRGRA
35
10

4812





PSM
QVRGGMVF
578
8

4813





PSM
QVRGGMVFELA
578
11

4814





PSA
QVSHSFPH
87
8

4815





PSA
QVSHSFPHPLY
87
11

4816





Kallikrein
QVWLGRHNLF
72
10

4817





PAP
QVYIRSTDVDR
101
11

4818





PAP
RAAPLLLA
2
8

4819





PAP
RAAPLLLAR
2
9
0.1500
4820





PAP
RAAPLLLARA
2
10

4821





PAP
RAAPLLLARAA
2
11

4822





PAP
RAASLSLGF
10
9

4823





PAP
RAASLSLGFLF
10
11

4824





PAP
RATQIPSY
273
8

4825





PAP
RATQIPSYK
273
9
0.0210
4826





PAP
RATQIPSYKK
273
10
0.0053
4827





PSA
RAVCGGVLVH
43
10
0.0110
4828





Kallikrein
RAYSEKVTEF
186
10

4829





PSM
RDMKINCSGK
190
10
0.0021
4830





PSM
RDYAVVLR
598
8

4831





PSM
RDYAVVLRK
598
9
0.0024
4832





PSM
RDYAVVLRKY
598
10

4833





PSM
RDYAVVLRKYA
598
11

4834





PSA
RFLRPGDDSSH
105
11

4835





PAP
RFQELESETLK
163
11

4836





PSM
RGAVEPDR
363
8

4837





PSM
RGAVEPDRY
363
9

4838





PSM
RGGMVFELA
580
9

4839





PSM
RGNILNLNGA
255
10

4840





PSM
RGNKVKNA
210
8

4841





PSM
RGNKVKNAQLA
210
11

4842





PSM
RGSLKVPY
320
8

4843





PSM
RGVAYINA
445
8

4844





PSM
RISKLGSGNDF
511
11

4845





Kallikrein
RIVGGWECEK
24
10
0.0460
4846





PSA
RIVGGWECEK
20
10
0.0460
4847





Kallikrein
RIVGGWEGEKH
24
11

4848





PSA
RIVGGWECEKH
20
11

4849





PSM
RIYNVIGTLR
354
10
0.3700
4850





PSM
RLGIASGR
527
8

4851





PSM
RLGIASGRA
527
9
0.0032
4852





PSM
RLGIASGRAR
527
10

4853





PSM
RLGIASGRARY
527
11

4854





PAP
RLHPYKDF
180
8

4855





PAP
RLHPYKDFIA
180
10
0.0005
4856





PSM
RLLQERGVA
440
9
0.0012
4857





PSM
RLLQERGVAY
440
10
0.0220
4858





PSA
RLSEPAELTDA
121
11

4859





PSM
RMMNDQLMF
662
9

4860





PSM
RSFGTLKK
400
8

4861





Kallikrein
RSLQCVSLH
169
9

4862





PAP
RSVLAKELK
28
9
0.0490
4863





PAP
RSVLAKELKP
28
10

4864





PSM
RTEDFFKLER
181
10

4865





PSM
RTILFASWDA
414
10

4866





PAP
RTLMSAMTNLA
111
11

4867





PSM
RVDCTPLMY
463
9

4868





Kallikrein
RVPVSHSF
89
8

4869





Kallikrein
RVPVSHSFPH
89
10

4870





PAP
SAMTNLAA
115
8

4871





PAP
SAMTNLAALF
115
10

4872





PSM
SAPPDSSWR
312
9
0.0006
4873





PSM
SAVATARR
10
8

4874





PSM
SAVATARRPR
10
10

4875





PSM
SAVKNFTEIA
634
10

4876





PAP
SCHLTELY
312
8

4877





PAP
SCHLTELYF
312
9

4878





PAP
SCHLTELYFEK
312
11

4879





PAP
SCPLERFA
350
8

4880





PSM
SDIVPPFSA
155
9

4881





PSM
SDIVPPFSAF
155
10

4882





PSM
SDPADYFA
229
8

4883





PSM
SFDSLFSA
628
8

4884





PSM
SFDSLFSAVK
628
10

4885





PSM
SFGTLKKEGWR
401
11

4886





PSM
SFPGIYDA
704
8

4887





PSM
SFPGIYDALF
704
10

4888





PSM
SGAAVVHEIVR
390
11

4889





PSM
SGKIVIAR
197
8

4890





PSM
SGKIVIARY
197
9

4891





PSM
SGKIVIARYGK
197
11

4892





PAP
SGLHGQDLF
195
9

4893





PAP
SGLQMALDVY
294
10

4894





PSM
SGMPRISK
507
8

4895





PSM
SGNDFEVF
517
8

4896





PSM
SGNDFEVFF
517
9

4897





PSM
SGNDFEVFFQR
517
11

4898





PSM
SGRARYTK
532
8

4899





Kallikrein
SGWGSIEPEEF
155
11

4900





PSA
SGWGSIEPEEF
151
11

4901





PSM
SGYPLYHSVY
547
10

4902





Kallikrein
SIALSVGCTGA
7
11

4903





PSM
SIEGNYTLR
455
9

4904





Kallikrein
SIEPEEFLR
159
9

4905





Kallikrein
SIEPEEFLRPR
159
11

4906





PSA
SIEPEEFLTPK
155
11

4907





PSM
SIINEDGNEIF
129
11

4908





PSM
SIPVHPIGY
291
9

4909





PSM
SIPVHPIGYY
291
10
0.0940
4910





PSM
SISMKHPQEMK
613
11

4911





PSM
SIVLPFDCR
590
9
0.0006
4912





PSM
SIVLPFDCRDY
590
11

4913





PSM
SLFEPPPPGY
142
10

4914





PSM
SLFSAVKNF
631
9

4915





PAP
SLGFLFLLF
15
9

4916





PAP
SLGFLFLLFF
15
10

4917





Kallikrein
SLHLLSNDMCA
175
11

4918





Kallikrein
SLLKHQSLR
104
9

4919





PSA
SLLKNRFLR
100
9
0.0024
4920





PAP
SLLSLYGIH
242
9
0.0006
4921





PAP
SLLSLYGIHK
242
10
0.4900
4922





Kallikrein
SLQCVSL
170
8

4923





Kallikrein
SLRPDEDSSH
110
10

4924





PAP
SLSLGFLF
13
8

4925





PAP
SLSLGFLFLLF
13
11

4926





PSM
SLVHNLTK
472
8

4927





PSM
SLVHNLTKELK
472
11

4928





PSM
SLYESKVTK
492
8

4929





PSM
SLYESWTKK
492
9
1.0000
4930





PAP
SLYGIHKQK
245
9
1.1000
4931





PAP
SLYGIHKQKEK
245
11

4932





PSA
SLYTKVVH
237
8

4933





PSA
SLYTKVVHY
237
9
0.6800
4934





PSA
SLYTKVVHYR
237
10
0.2800
4935





PSA
SLYTKVVHYRK
237
11

4936





PSM
SMKHPQEMK
615
9
0.1100
4937





PSM
SMKHPQEMKTY
615
11

4938





Kallikrein
SSHDLMLLR
117
9
0.0039
4939





PSA
SSHDLMLLR
113
9
0.0039
4940





PSM
SSHNKYAGESF
695
11

4941





PSM
SSIEGNYTLR
454
10
0.0007
4942





PSM
SSNEATNITPK
45
11

4943





PSM
SSWRGSLK
317
8

4944





PSM
SSWRGSLKVPY
317
11

4945





PAP
STDVDRTLMSA
106
11

4946





PAP
STECMTTNSH
369
10

4947





PSM
STEWAEENSR
431
10
0.0005
4948





PSM
STNEVTRIY
348
9
0.0016
4949





PSM
STQKVKMH
338
8

4950





PSM
STQKVKMHIH
338
10

4951





PAP
SVHNFTLPSWA
217
11

4952





PSA
SVILLGRH
67
8

4953





PSA
SVILLGRHSLF
67
11

4954





PAP
SVLAKELK
29
8
0.0017
4955





PAP
SVLAKELKF
29
9

4956





PSM
SVSFDSLF
626
8

4957





PSM
SVSFDSLFSA
626
10

4958





PSA
SVTWIGAA
7
8

4959





PSM
SVYETYELVEK
554
11

4960





PSA
TAAHCIRNK
58
9
0.0094
4961





Kallikrein
TAAHCLKK
62
8

4962





PSM
TARRPRWLCA
14
10

4963





PSM
TDSAVATA
8
8

4964





PSM
TDSAVATAR
8
9

4965





PSM
TDSAVATARR
8
10

4966





PAP
TDVDRTLMSA
107
10

4967





PAP
TFPTDPIK
52
8

4968





Kallikrein
TGAVPLIQSR
15
10

4969





PSM
TGNFSTQK
334
8

4970





PSM
TGNFSTQKVK
334
10
0.0007
4971





Kallikrein
TGQRVPVSH
86
9

4972





Kallikrein
TGQRVPVSHSF
86
11

4973





PSA
TGQVFQVSH
82
9
0.0002
4974





PSA
TGQVFQVSHSF
82
11

4975





PSM
TILFASWDA
415
9

4976





PAP
TLGKLSGLH
190
9

4977





PSM
TLKKEGWR
404
8

4978





PSM
TLKKEGWRPR
404
10
0.0007
4979





PSM
TLKKEGWRPRR
404
11

4980





PAP
TLKSEEFQK
171
9
0.0006
4981





PAP
TLKSEEFQKR
171
10
0.0007
4982





PAP
TLMSAMTNLA
112
10
0.0005
4983





PAP
TLMSAMTNLAA
112
11

4984





PSM
TLRGAVEPDR
361
10
0.0003
4985





PSM
TLRGAVEPDRY
361
11

4986





PSM
TLRVDCTPLMY
461
11

4987





PSA
TLSVTWIGA
5
9

4988





PSA
TLSVTWIGAA
5
10

4989





PAP
TLVFRHGDR
39
9
0.0006
4990





PSM
TSLFEPPPPGY
141
11

4991





Kallikrein
TSWGPEPCA
227
9

4992





PSA
TSWGSEPCA
223
9

4993





PAP
TTVSGLQMA
291
9

4994





PSM
TVAQVRGGMVF
575
11

4995





PAP
TVPLSEDQLLY
145
11

4996





PAP
TVSGLQMA
292
8

4997





PSM
VAAFTVQA
734
8

4998





PSM
VAAFTVQAA
734
9

4999





PSM
VAAFTVQAAA
734
10

5000





PSM
VAQVRGGMVF
576
10

5001





PSM
VATARRPR
12
8

5002





Kallikrein
VAVYSHGWA
40
9

5003





Kallikrein
VAVYSHGWAH
40
10

5004





PSA
VCAQVHPQK
179
9

5005





PSA
VCGGVLVH
45
8

5006





PSM
VDCTPLMY
464
8

5007





PSM
VDPSKAWGEVK
719
11

5008





PAP
VDRTLMSA
109
8

5009





PSM
VFFQRLGIA
523
9

5010





PSM
VFGGIDPQSGA
382
11

5011





PSA
VFQVSHSF
85
8

5012





PSA
VFQVSHSFPH
85
10

5013





PSM
VFRGNKVK
208
8

5014





PSM
VFRGNKVKNA
208
10

5015





Kallikrein
VGGWECEK
26
8

5016





PSA
VGGWECEK
22
8

5017





Kallikrein
VGGWECEKH
26
9

5018





PSA
VGGWECEKH
22
9

5019





PSM
VGLPSIPVH
287
9

5020





PSM
VGPGFTGNF
329
9

5021





PSM
VIARYGKVF
201
9

5022





PSM
VIARYGKVFR
201
10

5023





PSM
VIGTLRGA
358
8

5024





PSA
VILLGRHSLF
68
10

5025





PSA
VILLGRHSLFH
68
11

5026





PSM
VILYSDPA
225
8

5027





PSM
VILYSDPADY
225
10

5028





PSM
VILYSDPADYF
225
11

5029





PSA
VISNDVCA
174
8

5030





PSA
VISNDVCAQVH
174
11

5031





PSM
VIYAPSSH
690
8

5032





PSM
VIYAPSSHNK
690
10
0.5400
5033





PSM
VIYAPSSHNKY
690
11

5034





PSM
VLAGGFFLLGF
27
11
5035





PAP
VLAKELKF
30
8

5036





Kallikrein
VLGLPTQEPA
138
10

5037





PSM
VLLSYPNK
115
8

5038





PSM
VLLSYPNKTH
115
10

5039





PSM
VLPFDCRDY
592
9

5040





PSM
VLPFDCRDYA
592
10
0.0005
5041





PSM
VLRKYADK
603
8

5042





PSM
VLRKYADKIY
603
10

5043





PSM
VLRMMNDQLMF
660
11

5044





PSA
VLTAAHCIR
56
9
0.0002
5045





PSA
VLTAAHCIRNK
56
11

5046





Kallikrein
VLTAAHCLK
60
9

5047





Kallikrein
VLTAAHCLKK
60
10

5048





PSA
VLVASRGR
36
8

5049





PSA
VLVASRGRA
36
9

5050





Kallikrein
VLVHPQWVLTA
53
11

5051





PSA
VLVHPQWVLTA
49
11

5052





PAP
VLVNEILNH
262
9
0.0019
5053





PAP
VLVNEILNHMK
262
11

5054





PSA
VMDLPTQEPA
134
10

5055





PSM
VSDIVPPF
154
8

5056





PSM
VSDIVPPFSA
154
10

5057





PSM
VSDIVPPFSAF
154
11

5058





PSM
VSFDSLFSA
627
9

5059





PSM
VSFDSLFSAVK
627
11

5060





PAP
VSGLQMALDVY
293
11

5061





Kallikrein
VSHSFPHPLY
92
10
0.0003
5062





PSA
VSHSFPEIPLY
88
10
0.0003
5063





Kallikrein
VTEFMLCA
192
8

5064





PSA
VTKFMLCA
188
8

5065





PSA
VTKFMLCAGR
188
10
0.0003
5066





PAP
VTLVFRHGDR
38
10

5067





PSM
VVHEIVRSF
394
9

5068





Kallikrein
VVHYRKWIK
246
9
0.0072
5069





PSA
VVHYRKWIK
242
9
0.0072
5070





PSM
VVLRKYADK
602
9
0.0390
5071





PSM
VVLRKYADKIY
602
11

5072





Kallikrein
WAHCGGVLVH
47
10

5073





PAP
WATEDTMTK
226
9
0.0006
5074





PAP
WATEDTMTKLR
226
11

5075





Kallikrein
WDLVLSIA
2
8

5076





PSM
WFIKSSNEA
41
9

5077





PSM
WGEVKRQIY
725
9

5078





PSM
WGEVKRQIYVA
725
11

5079





Kallikrein
WGPEPCALPEK
229
11

5080





PSA
WGSEPCALPER
225
11

5081





Kallikrein
WGSIEPEEF
157
9

5082





PSA
WGSIEPEEF
153
9

5083





Kallikrein
WGSIEPEEFLR
157
11

5084





PSA
WIGAAPLILSR
10
11

5085





Kallikrein
WIKDTIAA
252
8

5086





PSA
WIKDTIVA
248
8

5087





PSM
WLCAGALVLA
20
10
0.0026
5088





PAP
WLDRSVLA
25
8

5089





PAP
WLDRSVLAK
25
9
0.0035
5090





Kallikrein
WLGRHNLF
74
8

5091





PAP
WSKVYDPLY
206
9
0.0002
5092





PAP
WSTECMTTNSH
368
11

5093





PSM
WTKKSPSPEF
497
10

5094





PSA
WVLTAAHCIR
55
10
0.0004
5095





Kallikrein
WVLTAAHCLK
59
10

509.6





Kallikrein
WVLTAAHCLKK
59
11

5097





PSM
YADKIYSISMK
607
11

5098





PSM
YAGESFPGIY
700
10

5099





PSM
YAPSSHNK
692
8

5100





PSM
YAPSSHNKY
692
9

5101





PSM
YAPSSHNKYA
692
10

5102





PSM
YARTEDFF
179
8

5103





PSM
YARTEDFFK
179
9

5104





PAP
YASCHLTELY
310
10
0.0003
5105





PAP
YASCHLTELYF
310
11

5106





PSM
YAVVLRKY
600
8

5107





PSM
YAVVLRKYA
600
9

5108





PSM
YAVVLRKYADK
600
11

5109





PSM
YAYRRGIA
277
8

5110





PSM
YAYRRGIAEA
277
10

5111





PAP
YCESVHNF
214
8

5112





PSM
YDALFDIESK
709
10

5113





PSM
YDAQKLLEK
300
9
0.0006
5114





PSA
YDMSLLKNR
97
9

5115





PSA
YDMSLLKNRF
97
10

5116





PAP
YDPLYCESVH
210
10

5117





PSM
YDPMFKYH
566
8

5118





PSM
YDVLLSYPNK
113
10
0.0005
5119





PSM
YFAPGVKSY
234
9

5120





PAP
YFEKGEYF
319
8

5121





PAP
YFVEMYYR
325
8

5122





PAP
YGIHKQKEK
247
9
0.0006
5123





PAP
YGIHKQKEKSR
247
11

5124





PSM
YGKVFRGNK
205
9
0.0006
5125





PSM
YGKVFRGNKVK
205
1.1

5126





PAP
YIRKRYRK
84
8

5127





PAP
YTRKRYRKF
84
9

5128





PAP
YIRSTDVDR
103
9

5129





PAP
YLPFRNCPR
155
9

5130





PAP
YLPFRNCPRF
155
10

5131





PSM
YSDPADYF
228
8

5132





PSM
YSDPADYFA
228
9

5133





Kallikrein
YSEKVTEF
188
8

5134





PSM
YSLVHNLTK
471
9
0.0600
5135





PSM
YSVSFDSLF
625
9

5136





PSM
YSVSFDSLFSA
625
11

5137





PSM
YTKNWETNK
537
9

5138





PSM
YTKNWETNKF
537
10

5139





Kallikrein
YTKVVHYR
243
8

5140





PSA
YTKVVHYR
239
8

5141





Kallikrein
YTKVVHYRK
243
9
0.0006
5142





PSA
YTKVVHYRK
239
9
0.0006
5143





PSM
YVAAFTVQA
733
9

5144





PSM
YVAAFTVQAA
733
10

5145





PSM
YVAAFTVQAAA
733
11

5146





PSM
YVILGGHR
371
8

5147





PSM
YVNYARTEDF
176
10

5148





PSM
YVNYARTEDFF
176
11

5149
















TABLE XVII










Prostate All Motif PeDtides with Binding Data
















No. of

Seq.






Amino

Id.


Protein
Sequence
Position
Acids
A*1101
no.
















PSA
AAHCIRNK
59
8

5150






PSA
AAPLILSR
13
8

5151





PAP
AAPLLLAR
3
8

5152





PSM
AAVVHEIVR
392
9

5153





PSM
ADKIYSISMK
608
10

5154





PSM
ADKIYSISMKH
608
11

5155





PSM
ADSSIEGNY
452
9

5156





PSM
ADYFAPGVK
232
9
0.0051
5157





PSM
ADYFAPGVKSY
232
11

5158





PSM
AFIDPLGLPDR
674
11

5159





PSM
AGAKGVILY
220
9

5160





PSM
AGDPLTPGY
264
9

5161





PSM
AGESFPGIY
701
9

5162





Kallikrein
AGLWTGGK
199
8

5163





PSA
AGRWTGGK
195
8

5164





PSM
AGTEQNFQLAK
84
11

5165





PSM
ALFDIESK
711
8

5166





Kallikrein
ALPEKPAVY
235
9

5167





Kallikrein
ALPEKPAVYTK
235
11

5168





PSA
ALPERPSLY
231
9
0.0013
5169





PSA
ALPERPSLYTK
231
II

5170





PSM
ANEYAYRR
274
8

5171





PSM
ANSIVLPFDCR
588
11

5172





PAP
ASCHLTELY
311
9
0.0550
5173





PSM
ASGRARYTK
531
9
0.2700
5174





PAP
ATEDTMTK
227
8
0.0039
5175





PAP
ATEDTMTKLR
227
10

5176





PAP
ATLGKLSGLH
189
10

5177





PSM
ATNITPKH
49
8

5178





PSM
ATNITPKHNMK
49
11

5179





PAP
ATQIPSYK
274
8
0.0700
5180





PAP
ATQIPSYKK
274
9
1.2000
5181





PSM
AVATARRPR
11
9

5182





PSA
AVCGGVLVH
44
9

5183





PSM
AVGLPSIPVH
286
10

5184





PSM
AVKNFTEIASK
635
11

5185





Kallikrein
AVPLIQSR
17
8

5186





PSM
AVVHEIVR
393
8

5187





PSM
AVVLRKYADK
601
10
0.0210
5188





Kallikrein
AVYSHGWAH
41
9

5189





Kallikrein
AVYTKVVH
241
8

5190





Kallikrein
AVYTKVVHY
241
9

5191





Kallikrein
AVYTKVVHYR
241
10

5192





Kallikrein
AVYTKVVHYRK
241
11

5193





Kallikrein
CAGLWTGGK
198
9

5194





PSA
CAGRWTGGK
194
9
0.0015
5195





Kallikrein
CALPEKPAVY
234
10

5196





PSA
CALPERPSLY
230
10

5197





PSA
CAQVHPQK
180
8

5198





PSA
CAQVHPQKVTK
180
11

5199





Kallikrein
CARAYSEK
184
8

5200





PSM
CSGKIVIAR
196
9

5201





PSM
CSGKIVIARY
196
10
0.0490
5202





PAP
CSPSCPLER
347
9
0.0006
5203





Kallikrein
CTGAVPLIQSR
14
11

5204





PSM
CTPLMYSLVH
466
10

5205





PSM
DALFDIESK
710
9
0.0002
5206





PSM
DAQKLLEK
301
8

5207





PSM
DCRDYAVVLR
596
10

5208





PSM
DCRDYAVVLRK
596
11

5209





PSM
DCTPLMYSLVH
465
11

5210





PSA
DDSSHDLMLLR
111
11

5211





PSM
DFDKSNPIVLR
652
11

5212





PSM
DFEVFFQR
520
8

5213





PSM
DFFKLERDMK
184
10

5214





PAP
DFIATLGK
186
8

5215





PSM
DIESKVDPSK
714
10
0.0002
5216





PAP
DLFGIWSK
201
8

5217





PAP
DLFGIWSKVY
201
10

5218





PSM
DLVYVNYAR
173
9

5219





Kallikrein
DMCARAYSEK
182
10

5220





PSM
DMKINCSGK
191
9

5221





PSA
DMSLLKNR
98
8
0.0001
5222





PSA
DMSLLKNRFLR
98
11

5223





PSM
DSAVATAR
9
8

5224





PSM
DSAVATARR
9
9

5225





PSM
DSAVATARRPR
9
11

5226





PSM
DSLFSAVK
630
8

5227





Kallikrein
DSSHDLMLLR
116
10

5228





PSA
DSSHDLMLLR
112
10

5229





PSM
DSSIEGNY
453
8

5230





PSM
DSSIEGNYTLR
453
11

5231





PSM
DSSWRGSLK
316
9
0.0003
5232





PSM
DSVELAHY
106
8

5233





PAP
DTFPTDPIK
51
9
0.0001
5234





Kallikrein
DTGQRVPVSH
85
10

5235





PSA
DTGQVFQVSH
81
10

5236





PSA
DVCAQVHPQK
178
10
0.0011
5237





PSM
DVLLSYPNK
114
9
0.0010
5238





PSM
DVLLSYPNKTH
114
11

5239





PAP
DVYNGLLPPY
301
10

5240





PSM
EATNITPK
48
8

5241





PSM
EATNITPKH
48
9

5242





PSM
EAVGLPSIPVH
285
11

5243





PAP
ECMTTNSH
371
8

5244





PSM
EDFFKLER
183
8

5245





PSM
EDFFKLERDMK
183
11

5246





PAP
EDQLLYLPFR
150
10

5247





Kallikrein
EDSSHDLMLLR
115
11

5248





Kallikrein
EDTGQRVPVSH
84
11

5249





PSA
EDTGQVFQVSH
80
11

5250





PAP
EDTMTKLR
229
8

5251





PSM
EFGLDSVELAH
102
11

5252





PAP
EFQKRLHPY
176
9

5253





PAP
EFQKRLHPYK
176
10

5254





PSM
EFSGMPRISK
505
10

5255





PSM
EGDLVYVNY
171
9

5256





PSM
EGDLVYVNYAR
171
11

5257





PSM
EGFEGKSLY
486
9

5258





PSM
EGKSLYESWTK
489
11

5259





PSM
EIASKFSER
641
9
0.0002
5260





PAP
EILNHMKR
266
8

5261





PSM
EIVRSFGTLK
397
10

5262





PSM
EIVRSFGTLKK
397
11

5263





PSM
ELAHYDVLLSY
109
11

5264





PAP
ELESETLK
166
8

5265





PAP
ELGEYIRK
80
8

5266





PAP
ELGEYIRKR
80
9

5267





PAP
ELGEYIRKRY
80
10

5268





PAP
ELGEYIRKRYR
80
11

5269





PSM
ELKAENIK
64
8

5270





PSM
ELKAENIKK
64
9

5271





PAP
ELKFVTLVFR
34
10
0.0037
5272





PAP
ELKFYTLVFRH
34
11

5273





PAP
ELSELSLLSLY
237
11

5274





PAP
ELSLLSLY
240
8

5275





PAP
ELSLLSLYGIH
240
11

5276





PAP
ELYFEKGEY
317
9

5277





PAP
EMYYRNETQH
328
10

5278





PSM
ENIKKYLY
68
8

5279





PSM
ENSRLLQER
437
9

5280





PSM
ESKVDPSK
716
8

5281





PAP
ESYKHEQVY
95
9
0.0002
5282





PAP
ESYKHEQVYIR
95
11

5283





PSM
ETDSAVATAR
7
10

5284





PSM
ETDSAVATARR
7
11

5285





PAP
ETLKSEEFQK
170
10
0.0140
5286





PAP
ETLKSEEFQKR
170
11

5287





PSM
ETNKFSGY
542
8

5288





PSM
ETNKFSGYPLY
542
11

5289





PSM
ETYELVEK
557
8

5290





PSM
ETYELVEKFY
557
10
0.0002
5291





PSM
FAPGVKSY
235
8

5292





PSM
FDCRDYAVVLR
595
11

5293





PSM
FDIESKVDPSK
713
11

5294





PSM
FDKSNPIVLR
653
10

5295





PSM
FDSLFSAVK
629
9

5296





PSM
FFKLERDMK
185
9

5297





PSM
FFQRLGIASGR
524
11

5298





PAP
FFWLDRSVLAK
23
11

5299





PAP
FGIWSKVY
203
8

5300





PSM
FGLDSVELAH
103
10

5301





PSM
FGLDSVELAHY
103
11

5302





PSM
FGTLKKEGWR
402
10

5303





PSM
FIDPLGLPDR
675
10

5304





PSM
FLDELKAENIK
61
11

5305





PSM
FLFGWFIK
37
8

5306





PAP
FLFLLFFWLDR
18
11

5307





PAP
FLLFFWLDR
20
9
0.0004
5308





PAP
FLNESYKH
92
8

5309





PSA
FLRPGDDSSH
106
10

5310





PSM
FLYNFTQIPH
73
10
0.0036
5311





PSM
FSERLQDFDK
646
10
0.0007
5312





PSM
FSGMPRISK
506
9

5313





PSM
FSGYPLYH
546
8

5314





PSM
FSGYPLYHSVY
546
11

5315





PSM
FSTQKVKMH
337
9

5316





PSM
FSTQKVKMHIH
337
11

5317





PSM
FTEIASKFSER
639
11

5318





PSM
FTGNFSTQK
333
9

5319





PSM
FTGNFSTQKVK
333
11

5320





PAP
FVTLVFRH
37
8

5321





PAP
FVTLVFRHGDR
37
11

5322





PSA
GAAPLILSR
12
9
0.0350
5323





PSM
GAAVVHEIVR
391
10

5324





PSM
GAGDPLTPGY
263
10

5325





PSM
GAKGVILY
221
8

5326





PSM
GAVEPDRY
364
8

5327





Kallikrein
GAVPLIQSR
16
9

5328





PAP
GCSPSCPLER
346
10

5329





PSM
GDLVYVNY
172
8

5330





PSM
GDLVYVNYAR
172
10

5331





PSM
GDPLTPGY
265
8

5332





PSM
GFEGKSLY
487
8

5333





PSM
GFLFGWFIK
36
9
0.0014
5334





PSM
GFTGNFSTQK
332
10

5335





PSM
GGSAPPDSSWR
310
11

5336





PAP
GGVLVNEILNH
260
11

5337





Kallikrein
GGWECEKH
27
8

5338





PSA
GGWECEKH
23
8

5339





PSM
GIASGRAR
529
8

5340





PSM
GIASGRARY
529
9

5341





PSM
GIASGRARYTK
529
11

5342





PAP
GIHKQKEK
248
8

5343





PAP
GIHKQKEKSR
248
10

5344





PAP
GIWSKVYDPLY
204
11

5345





PSM
GLDSVELAH
104
9

5346





PSM
GLDSVELAHY
104
10

5347





PAP
GLLPPYASGH
305
10

5348





PSM
GLPDRPFY
680
8

5349





PSM
GLPDRPFYR
680
9
0.0280
5350





PSM
GLPDRPFYRH
680
10

5351





PSM
GLPSIPVH
288
8

5352





PAP
GLQMALDVY
295
9

5353





PAP
GMEQHYELGEY
74
11

5354





PSM
GMPEGDLVY
168
9
0.0002
5355





PSM
GNDFEVFFQR
518
10

5356





PSM
GNFSTQKVK
335
9

5357





PSM
GNFSTQKVKMH
335
11

5358





PSM
GSAPPDSSWR
311
10
0.1400
5359





PSA
GSEPALPER
226
10

5360





Kallikrein
GSIEPEEFLR
158
10

5361





PSM
GSTEWAEENSR
430
11

5362





PSM
GTEQNFQLAK
85
10

5363





PSM
GTLKKEGWR
403
9

5364





PSM
GTLKKEGWRPR
403
11

5365





PSM
GTLRGAVEPDR
360
11

5366





PSM
GVILYSDPADY
224
11

5367





PAP
GVLVNEILNH
261
10

5368





Kallikrein
HCGGVLVH
49
8

5369





PAP
HGQDLFGIWSK
198
11

5370





PSM
HIHSTNEVTR
345
10

5371





Kallikrein
HLLSNDMCAR
177
10

53.72





PAP
HLTELYFEK
314
9
0.5300
5373





PSM
HLTVAQVR
573
8

5374





PAP
HMKRATQIPSY
270
11

5375





PSM
HNLTKELK
475
8

5376





PSM
HNMKAFLDELK
56
11

5377





Kallikrein
HSFPHPLY
94
8
0.0006
5378





PSA
HSFPHPLY
90
8
0.0006
5379





Kallikrein
HSQPWQVAVY
34
10

5380





PSM
HSTNEVTR
347
8

5381





PSM
HSTNEVTRIY
347
10
0.0002
5382





PSM
HVIYAPSSH
689
9

5383





PSM
HVIYAPSSHNK
689
11

5384





PSM
IARYGKVFR
202
9

5385





PSM
IASGRARY
530
8

5386





PSM
IASGRARYTK
530
10

5387





PSM
IASKFSER
642
8

5388





PAP
IATLGKLSGLH
188
11

5389





PSM
IDPLGLPDR
676
9

5390





PSM
IDPQSGAAVVH
386
11

5391





PAP
IDTFPTDPIK
50
10

5392





PSA
IGAAPLILSR
11
10

5393





PSM
IGYYDAQK
297
8

5394





PSA
ILLGRHSLFH
69
10

5395





PAP
ILLWQPIPVH
135
10

5396





PSM
ILYSDPADY
226
9

5397





PSM
INADSSIEGNY
450
11

5398





PSM
INCSGKIVIAR
194
11

5399





PSM
ISMKHPQEMK
614
10
0.1100
5400





PSA
ISNDVCAQVH
175
10

5401





PSM
ITPKHNMK
52
8

5402





Kallikrein
IVGGWECEK
25
9
0.0190
5403





PSA
IVGGWECEK
21
9
0.0190
5404





Kallikrein
IVGGWECEKH
25
10

5405





PSA
IVGGWECEKH
21
10

5406





PSM
IVIARYGK
200
8

5407





PSM
IVIARYGKVFR
200
11

5408





PSM
IVLPFDCR
591
8

5409





PSM
IVLPFDCRDY
591
10

5410





PSM
IVRSFGTLK
398
9
0.0087
5411





PSM
IVRSFGTLKK
398
10
0.0006
5412





PSM
KAENIKKFLY
66
10

5413





PSM
KAFLDELK
59
8

5414





PSM
KAWGEVKR
723
8

5415





PSM
KAWGEVKRQIY
723
11

5416





PAP
KDFIATLGK
185
9
0.0004
5417





PAP
KFLNESYK
91
8

5418





PAP
KFLNESYKH
91
9

5419





PSM
KFLYNFTQIPH
72
11

5420





PSA
KFMLCAGR
190
8

5421





PSM
KFSERLQDFDK
645
11

5422





PSM
KFSGYPLY
545
8

5423





PSM
KFSGYPLYH
545
9

5424





PAP
KFVTLVFR
36
8

5425





PAP
KFVTLVFRH
36
9

5426





PSM
KFYDPMFK
564
8

5427





PSM
KFYDPMFKY
564
9

5428





PSM
KFYDPMFKYH
564
10

5429





PAP
KGEYFVEMY
322
9
0.0002
5430





PAP
KGEYFVEMYY
322
10
0.0890
5431





PAP
KGEYFVEMYYR
322
11

5432





PSM
KIVIARYGK
199
9
1.0000
5433





PSM
KIYSISMK
610
8

5434





PSM
KIYSISMKH
610
9
0.1200
5435





PAP
KLIMYSAH
282
8

5436





PSA
KLQCVDLH
166
8

5437





PSM
KNAQLAGAK
215
9

5438





PSM
KNFTEIASK
637
9

5439





Kallikrein
KNSQVWLGR
69
9

5440





Kallikrein
KNSQVWLGRH
69
10

5441





PSM
KNWETNKFSGY
539
11

5442





PAP
KSEEFQKR
173
8

5443





PAP
KSEEFQKRLH
173
10

5444





PSM
KSLYESWTK
491
9
2.1000
5445





PSM
KSLYESWTKK
491
10
0.0810
5446





PSM
KSNPIVLR
655
8

5447





PSM
KSPDEGFEGK
482
10
0.0210
5448





PSA
KSVILLGR
66
8

5449





PSA
KSVILLGRH
66
9
0.0014
5450





PSM
KVFRGNKVK
207
9
0.1200
5451





PSM
KVKNAQLAGAK
213
11

5452





PSA
KVTKFMLCAGR
187
11

5453





Kallikrein
KVVHYRKWIK
245
10
0.0450
5454





PSA
KVVHYRKWIK
241
10
0.0450
5455





PSM
LAGAKGVILY
219
10
0.0002
5456





PSM
LAHYDVLLSY
110
10

5457





PSM
LAKQIQSQWK
92
10
0.0007
5458





Kallikrein
LCAGLWTGGK
197
10

5459





PSA
LCAGRWTGGK
193
10

5460





PSM
LDELKAENIK
62
10

5461





PSM
LDELKAENIKK
62
11

5462





PAP
LDRSVLAK
26
8

5463





PAP
LDRSVLAKELK
26
11

5464





PSM
LDSVELAH
105
8

5465





PSM
LDSVELAHY
105
9

5466





PAP
LDVYNGLLPPY
300
11

5467





Kallikrein
LFEPEDTGQR
80
10

5468





PSM
LFEPPPPGY
143
9

5469





PAP
LFGIWSKVY
202
9

5470





PAP
LFLLFFWLDR
19
10

5471





PAP
LGEYIRKR
81
8

5472





PAP
LGEYIRKRY
81
9
0.0002
5473





PAP
LGEYIRKRYR
81
10
0.0002
5474





PAP
LGEYIRKRYRK
81
11

5475





PSM
LGFLFGWFIK
35
10
0.3700
5476





PSM
LGIASGRAR
528
9
0.0002
5477





PSM
LGIASGRARY
528
10

5478





PAP
LGKLSGLH
191
8

5479





PSM
LGLPDRPFY
679
9

5480





PSM
LGLPDRPFYR
679
10

5481





PSM
LGLPDRPFYRH
679
11

5482





PSA
LGRHSLFH
71
8

5483





PAP
LLFFWLDR
21
8

5484





PSM
LLGFLFGWFIK
34
11

5485





PSA
LLGRHSLFH
70
9

5486





Kallikrein
LLKHQSLR
105
8

5487





PSA
LLKNRFLR
101
8

5488





PAP
LLPPYASCH
306
9
0.0002
5489





PSM
LLQERGVAY
441
9

5490





Kallikrein
LLRLSEPAK
123
9

5491





PAP
LLSLYGIH
243
8

5492





PAP
LLSLYGIHK
243
9
0.2000
5493





PAP
LLSLYGIHKQK
243
11

5494





Kallikrein
LLSNDMCAR
178
9

5495





Kallikrein
LLSNDMCARAY
178
11

5496





PSM
LLSYPNKTH
116
9
0.0003
5497





PAP
LLWQPIPVH
136
9

5498





PAP
LLYLPFRNCPR
153
11

5499





Kallikrein
LMLLRLSEPAK
121
11

5500





PSM
LMYSLVHNLTK
469
11

5501





PAP
LNESYKHEQVY
93
11

5502





PAP
LSEDQLLY
148
8

5503





PAP
LSELSLLSLY
238
10
0.0004
5504





PAP
LSLLSLYGIH
241
10
0.0002
5505





PAP
LSLLSLYGIHK
241
11

5506





PAP
LSLYGIHK
244
8

5507





PAP
LSLYGIHKQK
244
10
0.0370
5508





Kallikrein
LSNDMCAR
179
8

5509





Kallikrein
LSNDMCARAY
179
10

5510





PSM
LSYPNKTH
117
8

5511





PSM
LSYPNKTHPNY
117
11

5512





PSA
LTAAHCIR
57
8

5513





PSA
LTAAHCIRNK
57
10
0.0830
5514





Kallikrein
LTAAHCLK
61
8

5515





Kallikrein
LTAAHCLKK
61
9

5516





PAP
LTELYFEK
315
8
0.0100
5517





PAP
LTELYFEKGEY
315
11

5518





PSM
LTPGYPANEY
268
10
0.0002
5519





PAP
LTQLGMEQH
70
9

5520





PAP
LTQLGMEQHY
70
10
0.0024
5521





PSM
LVEKFYDPMFK
561
11

5522





PAP
LVFRHGDR
40
8
0.0002
5523





PSM
LVHNLTKELK
473
10

5524





PAP
LVNEILNH
263
8

5525





PAP
LVNEILNHMK
263
10
0.1200
5526





PAP
LVNEILNHMKR
263
11

5527





PSM
LVYVNYAR
174
8

5528





Kallikrein
MCARAYSEK
183
9

5529





Kallikrein
MLCAGLWTGGK
196
11

5530





PSA
MLCAGRWTGGK
192
11

5531





Kallikrein
MLLRLSEPAK
122
10

5532





PSM
MMNDQLMFLER
663
11

5533





PSM
MNDQLMFLER
664
10

5534





Kallikrein
MSLLKHQSLR
103
10

5535





PSA
MSLLKNRFLR
99
10
0.0110
5536





PSM
NADSSIEGNY
451
10

5537





PSM
NAQLAGAK
216
8

5538





PSM
NCSGKIVIAR
195
10

5539





PSM
NCSGKIVIARY
195
11

5540





PSM
NDFEVFFQR
519
9

5541





Kallikrein
NDMCARAY
181
8

5542





Kallikrein
NDMCARAYSEK
181
11

5543





PSM
NDQLMFLER
665
9

5544





PSA
NDVCAQVH
177
8

5545





PSA
NDVCAQVHPQK
177
11

5546





PSM
NFSTQKVK
336
8

5547





PSM
NFSTQKVKMH
336
10

5548





PSM
NFTEIASK
638
8

5549





PSM
NGAGDPLTPGY
262
11

5550





PAP
NGLLPPYASCH
304
11

5551





PSM
NITPKHNMK
51
9

5552





Kallikrein
NLFEPEDTGQR
79
11

5553





PSM
NLPGGGVQR
247
9

5554





PSM
NMKAFLDELK
57
10

5555





Kallikrein
NMSLLKHQSLR
102
11

5556





PSM
NSIVLPFDCR
589
10

5557





Kallikrein
NSQVWLGR
70
8

5558





Kallikrein
NSQVWLGRH
70
9

5559





PSM
NSRLLQER
438
8

5560





PSM
PADYFAPGVK
231
10

5561





PSA
PAELTDAVK
125
9
0.0002
5562





Kallikrein
PAKITDVVK
129
9

5563





Kallikrein
PALGTTCY
146
8

5564





PSA
PALGTTCY
142
8

5565





PSM
PANEYAYR
273
8

5566





PSM
PANEYAYRR
273
9
0.0002
5567





Kallikrein
PAVYTKVVH
240
9

5568





Kallikrein
PAVYTKVVHY
240
10

5569





Kallikrein
PAVYTKVVHYR
240
11

5570





Kallikrein
PCALPEKPAVY
233
11

5571





PSA
PCALPERPSLY
229
11

5572





PSM
PDEGFEGK
484
8

5573





PSM
PDEGFEGKSLY
484
11

5574





PSM
PDRPFYRH
682
8

5575





PSM
PDRPFYRHVIY
682
11

5576





PSM
PDRYVILGGH
368
10

5577





PSM
PDRYVILGGHR
368
11

5578





PSM
PDSSWRGSLK
315
10

5579





PSM
PFYRHVIY
685
8

5580





PAP
PGCSPSCPLER
345
11

5581





PSM
PGFTGNFSTQK
331
11

5582





PSM
PGYPANEY
270
8

5583





PSM
PGYPANEYAY
270
10

5584





PSM
PGYPANEYAYR
270
11

5585





PAP
PIDTFPTDPIK
49
11

5586





PSM
PIGYYDAQK
296
9

5587





PAP
PILLWQPIPVH
134
11

5588





PSM
PLGLPDRPFY
678
10

5589





PSM
PLGLPDRPFYR
678
11

5590





PSM
PLMYSLVH
468
8

5591





PAP
PLSEDQLLY
147
9
0.0001
5592





PSM
PLTPGYPANEY
267
11

5593





PAP
PLYCESVH
212
8

5594





PSA
PLYDMSLLK
95
9
0.0370
5595





PSA
PLYDMSLLKNR
95
11

5596





PSM
PLYHSVYETY
550
10
0.0002
5597





Kallikrein
PLYNMSLLK
99
9

5598





Kallikrein
PLYNMSLLKH
99
10

5599





PSM
PNKTHPNY
120
8

5600





PSM
PSIPVHPIGY
290
10

5601





PSM
PSIPVHPIGYY
290
11

5602





PSM
PSKAWGEVK
721
9

5603





PSM
PSKAWGEVKR
721
10
0.0002
5604





PSA
PSLYTKVVII
236
9

5605





PSA
PSLYTKVVHY
236
10
0.0003
5606





PSA
PSLYTKVVHYR
236
11

5607





PSM
PSPEFSGMPR
502
10

5608





PAP
PSWATEDTMTK
224
11

5609





PAP
PSYKKLIMY
278
9
0.0002
5610





PSM
PVHPIGYY
293
8

5611





Kallikrein
PVSHSFPH
91
8

5612





Kallikrein
PVSHSFPHPLY
91
11

5613





PAP
QDLFGIWSK
200
9
0.0008
5614





PAP
QDLFGIWSKVY
200
11

5615





PSM
QGMPEGDLVY
167
10

5616





PAP
QIPSYKKLIMY
276
11

5617





PSM
QLAGAKGVILY
218
11

5618





PSM
QLAKQIQSQWK
91
11

5619





PAP
QLGMEQHY
72
8

5620





PAP
QLLYLPFR
152
8

5621





PAP
QLTQLGMEQII
69
10

5622





PAP
QLTQLGMEQHY
69
11

5623





PSM
QSGAAVVH
389
8

5624





Kallikrein
QSLRPDEDSSH
109
11

5625





Kallikrein
QVAVYSHGWAH
39
11

5626





PSA
QVFQVSHSFPH
84
11

5627





PSA
QVHPQKVTK
182
9
0.0140
5628





PSA
QVLVASRGR
35
9
0.0018
5629





PSA
QVSHSFPH
87
8

5630





PSA
QVSHSFPHPLY
87
11

5631





PAP
QVYIRSTDVDR
101
11

5632





PAP
RAAPLLLAR
2
9
0.1200
5633





PAP
RATQIPSY
273
8

5634





PAP
RATQIPSYK
273
9
0.0600
5635





PAP
RATQIPSYKK
273
10
0.0250
5636





PSA
RAVCGGVLVH
43
10
0.0310
5637





PSM
RDMKINCSGK
190
10
0.0002
5638





PSM
RDYAVVLR
598
8

5639





PSM
RDYAVVLRK
598
9
0.0190
5640





PSM
RDYAVVLRKY
598
10

5641





PSA
RFLRPGDDSSH
105
11

5642





PAP
RFQELESETLK
163
11

5643





PSM
RGAVEPDR
363
8

5644





PSM
RGAVEPDRY
363
9

5645





PSM
RGSLKVPY
320
8

5646





Kallikrein
RIVGGWECEK
24
10
0.0670
5647





PSA
RIVGGWECEK
20
10
0.0670
5648





Kallikrein
RIVGGWECEKH
24
11

5649





PSA
RIVGGWECEKH
20
11

5650





PSM
RIYNVIGTLR
354
10
0.4300
5651





PSM
RLGIASGR
527
8

5652





PSM
RLGIASGRAR
527
10

5653





PSM
RLGIASGRARY
527
11

5654





PSM
RLLQERGVAY
440
10
0.0005
5655





PAP
RNETQHEPY
332
9
0.0002
5656





PSA
RNKSVILLGR
64
10

5657





PSA
RNKSVILLGRH
64
11

5658





PSM
RSFGTLKK
400
8

5659





Kallikrein
RSLQCVSLH
169
9

5660





PAP
RSVLAKELK
28
9
0.1100
5661





PSM
RTEDFFKLER
181
10

5662





PSM
RVDCTPLMY
463
9

5663





Kallikrein
RVPVSHSFPH
89
10

5664





PSM
SAPPDSSWR
312
9
0.0012
5665





PSM
SAVATARR
10
8

5666





PSM
SAVATARRPR
tO
10

5667





PAP
SCHLTELY
312
8

5668





PAP
SCHLTELYFEK
312
11

5669





PSM
SFDSLFSAVK
628
10

5670





PSM
SFGTLKKEGWR
401
11

5671





PSM
SGAAVVHEIVR
390
11

5672





PSM
SGKIVIAR
197
8

5673





PSM
SGKIVIARY
197
9

5674





PSM
SGKIVIARYGK
197
11

5675





PAP
SGLQMALDVY
294
10

5676





PSM
SGMPRISK
507
8

5677





PSM
SGNDFEVFFQR
517
11

5678





PSM
SGRARYTK
532
8

5679





PSM
SGYPLYHSVY
547
10

5680





PSM
SIEGNYTLR
455
9

5681





Kallikrein
SIEPEEFLR
159
9

5682





Kallikrein
SIEPEEFLRPR
159
11

5683





PSA
SIEPEEPLTPK
155
11

5684





PSM
SIPVHPIGY
291
9

5685





PSM
SIPVHPIGYY
291
10
1.4000
5686





PSM
SISMKHPQEMK
613
11

5687





PSM
SIVLPFDCR
590
9
0.0220
5688





PSM
SIVLPFDCRDY
590
11

5689





PSM
SLFEPPPPGY
142
10

5690





Kallikrein
SLLKHQSLR
104
9

5691





PSA
SLLKNRFLR
100
9
0.0470
5692





PAP
SLLSLYGIH
242
9
0.0002
5693





PAP
SLLSLYGIHK
242
10
2.3000
5694





Kallikrein
SLQCVSLH
170
8

5695





Kallikrein
SLRPDEDSSH
110
10

5696





PSM
SLVHNLTK
472
8

5697





PSM
SLVHNLTKELK
472
11

5698





PSM
SLYESWTK
492
8

5699





PSM
SLYESWTKK
492
9
2.0000
5700





PAP
SLYGIHKQK
245
9
0.8000
5701





PAP
SLYGIHKQKEK
245
11

5702





PSA
SLYTKVVH
237
8

5703





PSA
SLYTKVVHY
237
9
0.0140
5704





PSA
SLYTKVVHYR
237
10
0.2300
5705





PSA
SLYTKVVHYRK
237
11

5706





PSM
SMKHPQEMK
615
9
0.0720
5707





PSM
SMKHPQEMKTY
615
11

5708





Kallikrein
SNDMCARAY
180
9

5709





PSA
SNDVCAQVH
176
9

5710





PSM
SNEATNITPK
46
10

5711





PSM
SNEATNITPKH
46
11

5712





Kallikrein
SSHDLMLLR
117
9
1.2000
5713





PSA
SSHDLMLLR
113
9
1.2000
5714





PSM
SSIEGNYTLR
454
10
0.0910
5715





PSM
SSNEATNITPK
45
11

5716





PSM
SSWRGSLK
317
8

5717





PSM
SSWRGSLKVPY
317
11

5718





PAP
STECMTTNSH
369
10

5719





PSM
STEWAEENSR
431
10
0.0016
5720





PSM
STNEVTRIY
348
9
0.0083
5721





PSM
STQKVKMH
338
8

5722





PSM
STQKVKMHIH
338
10

5723





PSA
SVILLGRH
67
8

5724





PAP
SVLAKELK
29
8
0.0061
5725





PSM
SVYETYELVEK
554
11

5726





PSA
TAAHCIRNK
58
9
0.0140
5727





Kallikrein
TAAHCLKK
62
8

5728





PSM
TDSAVATAR
8
9

5729





PSM
TDSAVATARR
8
10

5730





PAP
TFPTDPIK
52
8

5731





Kallikrein
TGAVPLIQSR
15
10

5732





PSM
TGNFSTQK
334
8

5733





PSM
TGNFSTQKVK
334
10
0.0002
5734





Kallikrein
TGQRVPVSH
86
9

5735





PSA
TGQVFQVSH
82
9
0.0002
5736





PAP
TLGKLSGLH
190
9

5737





PSM
TLKKEGWR
404
8

5738





PSM
TLKKEGWRPR
404
10
0.0002
5739





PSM
TLKKEGWRPRR
404
11

5740





PAP
TLKSEEFQK
171
9
0.0078
5741





PAP
TLKSEEFQKR
171
10
0.0001
5742





PSM
TLRGAVEPDR
361
10
0.0002
5743





PSM
TLRGAVEPDRY
361
11

5744





PSM
TLRVDCTPLMY
461
11

5745





PAP
TLVFRHGDR
39
9
0.0002
5746





PSM
TNEVTRIY
349
8

5747





PSM
TNITPKHNMK
50
10

5748





PSM
TNKFSGYPLY
543
10

5749





PSM
TNKFSGYPLYH
543
11

5750





PSM
TSLFEPPPPGY
141
11

5751





PAP
TVPLSEDQLLY
145
11

5752





PSM
VATARRPR
12
8

5753





Kallikrein
VAVYSHGWAR
40
10

5754





PSA
VCAQVHPQK
179
9

5755





PSA
VCGGVLVH
45
8

5756





PSM
VDCTPLMY
464
8

5757





PSM
VDPSKAWGEVK
719
11

5758





PSA
VFQVSHSFPH
85
10

5759





PSM
VFRGNKVK
208
8

5760





Kallikrein
VGGWECEK
26
8

5761





PSA
VGGWECEK
22
8

5762





Kallikrein
VGGWECEKH
26
9

5763





PSA
VGGWECEKH
22
9

5764





PSM
VGLPSIPVH
287
9

5765





PSM
VIARYGKVFR
201
10

5766





PSA
VILLGRHSLFH
68
11

5767





PSM
VILYSDPADY
225
10

5768





PSA
VISNDVCAQVH
174
11

5769





PSM
VIYAPSSH
690
8

5770





PSM
VIYAPSSHNK
690
10
0.7900
5771





PSM
VIYAPSSHNKY
690
11

5772





PSM
VLLSYPNK
115
8

5773





PSM
VLLSYPNKTH
115
10

5774





PSM
VLPFDCRDY
592
9

5775





PSM
VLRKYADK
603
8

5776





PSM
VLRKYADKIY
603
10

5777





PSA
VLTAAHCIR
56
9
0.0005
5778





PSA
VLTAAHCIRNK
56
11

5779





Kallikrein
VLTAAHCLK
60
9

5780





Kallikrein
VLTAAHCLKK
60
10

5781





PSA
VLVASRGR
36
8

5782





PAP
VLVNEILNH
262
9
0.0030
5783





PAP
VLVNEILNHMK
262
11

5784





PAP
VNEILNHMK
264
9

5785





PAP
VNEILNHMKR
264
10

5786





PSM
VNYARTEDFFK
177
11

5787





PSM
VSFDSLFSAVK
627
11

5788





PAP
VSGLQMALDVY
293
11

5789





Kallikrein
VSHSFPHPLY
92
10
0.0015
5790





PSA
VSHSFPHPLY
88
10
0.0015
5791





PSA
VTKFMLCAGR
188
10
0.0120
5792





PAP
VTLVFRHGDR
38
10

5793





Kallikrein
VVHYRKWIK
246
9
0.0930
5794





PSA
VVHYRKWIK
242
9
0.0930
5795





PSM
VVLRKYADK
602
9
0.0660
5796





PSM
VVLRKYADKIY
602
11

5797





Kallikrein
WAHCGGVLVH
47
10

5798





PAP
WATEDTMTK
226
9
0.0002
5799





PAP
WATEDTMTKLR
226
11

5800





PSM
WGEVKRQIY
725
9

5801





Kallikrein
WGPEPCALPEK
229
11

5802





PSA
WGSEPCALPER
225
11

5803





Kallikrein
WGSIEPEEFLR
157
11

5804





PSA
WIGAAPLILSR
10
11

5805





PAP
WLDRSVLAK
25
9
0.0150
5806





PSM
WNLPGGGVQR
246
10

5807





PAP
WSKVYDPLY
206
9
0.0002
5808





PAP
WSTECMTTNSH
368
11

5809





PSA
WVLTAAHCIR
55
10
0.0001
5810





Kallikrein
WVLTAAHGLK
59
10

5811





Kallikrein
WVLTAAHCLKK
59
11

5812





PSM
YADKIYSISMK
607
11

5813





PSM
YAGESFPGIY
700
10

5814





PSM
YAPSSHNK
692
8

5815





PSM
YAPSSHNKY
692
9

5816





PSM
YARTEDFFK
179
9

5817





PAP
YASCHLTELY
310
10
0.0002
5818





PSM
YAVVLRKY
600
8

5819





PSM
YAVVLRKYADK
600
11

5820





PSM
YDALFDIESK
709
10

5821





PSM
YDAQKLLEK
300
9
0.0002
5822





PSA
YDMSLLKNR
97
9

5823





PAP
YDPLYCESVH
210
10

5824





PSM
YDPMFKYH
566
8

5825





PSM
YDVLLSYPNK
113
10
0.0016
5826





PSM
YFAPGVKSY
234
9

5827





PAP
YFVEMYYR
325
8

5828





PAP
YGIHKQKEK
247
9
0.0002
5829





PAP
YGIHKQKEKSR
247
11

5830





PSM
YGKVFRGNK
205
9
0.0002
5831





PSM
YGKVFRGNKVK
205
11

5832





PAP
YIRKRYRK
84
8

5833





PAP
YIRSTDVDR
103
9

5834





PAP
YLPFRNCPR
155
9

5835





PSM
YNFTQIPH
75
8

5836





PAP
YNGLLPPY
303
8

5837





Kallikrein
YNMSLLKH
101
8

5838





PSM
YNVIGTLR
356
8

5839





PSM
YSLVHNLTK
471
9
0.5400
5840





PSM
YTKNWETNK
537
9

5841





Kallikrein
YTKVVHYR
243
8

5842





PSA
YTKVVHYR
239
8

5843





Kallikrein
YTKVVHYRK
243
9
0.0580
5844





PSA
YTKVVHYRK
239
9
0.0580
5845





PSM
YVILGGHR
371
8

5846
















TABLE XVIII










Prostate A24 Motif Peptides with Binding Data
















No. of

Seq.






Amino

Id.


Protein
Sequence
Position
Acids
A*2401
no.
















PSM
AFIDPLGL
674
8

5847






PSM
AFLDELKAENI
60
11

5848





PSM
AFTVQAAAETL
736
11

5849





PAP
AMTNLAAL
116
8

5850





PAP
AMTNLAALF
116
9
0.0150
5851





PSM
AWGEVKRQI
724
9

5852





PSM
AYINADSSI
448
9
0.0190
5853





Kallikrein
AYSEKVTEF
187
9

5854





Kallikrein
AYSEKVTEFML
187
11

5855





Kallikrein
CYASGWGSI
152
9
0.1700
5856





PSA
CYASGWGSI
148
9
0.1700
5857





PSM
DFDKSNPI
652
8

5858





PSM
DFDKSNPIVL
652
10

5859





PSM
DFEVFFQRL
520
9

5860





PSM
DFEVFFQRLGI
520
11

5861





PSM
DFFKLERDMKI
184
11

5862





PAP
DFIATLGKL
186
9
0.0002
5863





PSM
DMKINCSGKI
191
10

5864





PSA
DMSLLKNRF
98
9
0.0001
5865





PSA
DMSLLKNRFL
98
10

5866





PSM
EFGLDSVEL
102
9

5867





PSM
EFGLLGSTEW
425
10

5868





Kallikrein
EFLRPRSL
164
8

5869





PSA
EFLTPKKL
160
8

5870





Kallikrein
EFMLCAGL
194
8

5871





Kallikrein
EFMLCAGLW
194
9

5872





PSM
EFSGMPRI
505
8

5873





PSM
EFSGMPRISKL
505
11

5874





PSM
EMKTYSVSF
621
9
0.0010
5875





PSM
EWAEENSRL
433
9

5876





PSM
EWAEENSRLL
433
10

5877





PSM
EYAYRRGI
276
8

5878





PAP
EYIRKRYRKF
83
10
0.0067
5879





PAP
EYIRKRYRKFL
83
11

5880





PSM
FFKLERDMKI
185
10

5881





PSM
FFLLGFLF
32
8

5882





PSM
FFLLGFLFGW
32
10
0.0026
5883





PSM
FFLLGFLFGWF
32
11

5884





PAP
FFWLDRSVL
23
9
0.0017
5885





Kallikrein
FMLCAGLW
195
8

5886





PSA
FMLCAGRW
191
8

5887





PAP
FWLDRSVL
24
8

5888





PSM
FYDPMFKYHL
565
10
1.1000
5889





PSM
GFEGKSLYESW
487
11

5890





PSM
GFFLLGFL
31
8

5891





PSM
GFFLLGFLF
31
9
0.0190
5892





PSM
GFFLLGFLFGW
31
11

5893





PAP
GFGQLTQL
66
8

5894





PSM
GFLFGWFI
36
8

5895





PAP
GFLFLLFF
17
8

5896





PAP
GFLFLLFFW
17
9
0.0016
5897





PAP
GFLFLLFFWL
17
10
0.0007
5898





PAP
GMEQHYEL
74
8

5899





PSM
GMPRISKL
508
8

5900





PSM
GMVFELANSI
582
10
0.0002
5901





Kallikrein
GWAHCGGVL
46
9

5902





Kallikrein
GWECEKHSQPW
28
11

5903





PSA
GWECEKHSQPW
24
11

5904





Kallikrein
GWGSIEPEEF
156
10
0.0001
5905





PSA
GWGSIEPEEF
152
10
0.0001
5906





Kallikrein
GWGSIEPEEFL
156
11

5907





PSA
GWGSIEPEEFL
152
11

5908





PSM
GWRPRRTI
409
8

5909





PSM
GWRPRRTIL
409
9

5910





PSM
GWRPRRTILF
409
10
0.0540
5911





PSM
GYENVSDI
150
8

5912





PSM
GYYDAQKL
298
8

5913





PSM
GYYDAQKLL
298
9

5914





PAP
HMKRATQI
270
8

5915





PAP
HYELGEYI
78
8

5916





Kallikrein
HYRKWIKDTI
248
10
0.0550
5917





PSA
HYRKWIKDTI
244
10
0.0550
5918





PAP
IWNPILLW
131
8

5919





PAP
IWNPILLWQPI
131
11

5920





PAP
IWSKVYDPL
205
9
0.0024
5921





PSM
IYDALFDI
708
8

5922





PSM
IYNVIGTL
355
8

5923





PSM
KFLYNFTQI
72
9

5924





PSA
KFMLCAGRW
190
9
0.0310
5925





PSM
KFSERLQDF
645
9

5926





PSM
KFYDPMFKYHL
564
11

5927





PSM
KYADKIYSI
606
9
12.0000
5928





PSM
KYAGESFPGI
699
10

5929





PSM
LFASWDAEEF
417
10

5930





PAP
LFFWLDRSVL
22
10
0.0045
5931





PSA
LFHPEDTGQVF
76
11

5932





PAP
LFLLFFWL
19
8

5933





PAP
LFPPEGVSI
123
9
0.0033
5934





PAP
LFPPEGVSIW
123
10
0.0140
5935





PSM
LFSAVKNF
632
8

5936





PSM
LFSAVKNFTEI
632
11

5937





PSM
LMFLERAF
668
8

5938





PSM
LMFLERAFI
668
9
0.0075
5939





PAP
LMSAMTNL
113
8

5940





PAP
LMSAMTNLAAL
113
11

5941





PSM
LMYSLVHNL
469
9

5942





PAP
LYCESVHNF
213
9
0.4400
5943





PAP
LYGESVHNFTL
213
11

5944





PSA
LYDMSLLKNRF
96
11
0.1200
5945





PAP
LYFEKGEYF
318
9
2.5000
5946





PSM
LYHSVYETYEL
551
11

5947





PAP
LYLPFRNCPRF
154
11

5948





PSM
LYNFTQIPHL
74
10
0.2300
5949





PSM
LYSDPADYF
227
9
0.4400
5950





PSA
LYTKVVHYRKW
238
11

5951





PSM
MFLERAFI
669
8

5952





PSM
MFLERAFIDPL
669
11

5953





PSM
MMNDQLMF
663
8

5954





PSM
MMNDQLMFL
663
9

5955





Kallikrein
MWDLVLSI
1
8

5956





Kallikrein
MWDLVLSIAL
1
10

5957





PSM
MYSLVHNL
470
8

5958





PSM
NFQLAKQI
89
8

5959





PSM
NFSTQKVKMHI
336
11

5960





PSM
NFTEIASKF
638
9
0.0001
5961





PSM
NFTQIPHL
76
8

5962





PSM
NMKAFLDEL
57
9

5963





Kallikrein
NMSLLKHQSL
102
10

5964





PSM
NYARTEDF
178
8

5965





PSM
NYARTEDFF
178
9
0.7700
5966





PSM
NYARTEDFFKL
178
11

5967





PSM
NYTLRVDCTPL
459
11

5968





PSM
PFDCRDYAVVL
594
11

5969





PAP
PFRNCPRF
157
8

5970





PAP
PFRNCPRFQEL
157
11

5971





Kallikrein
PWQVAVYSHGW
37
11

5972





PAP
PYASCHLTEL
309
10
0.0240
5973





PAP
PYKDFIATL
183
9
0.1100
5974





PSM
PYNVGPGF
326
8

5975





PAP
QMALDVYNGL
297
10
0.0001
5976





PAP
QMALDVYNGLL
297
11

5977





PSA
QWVLTAAHCI
54
10
0.0007
5978





Kallikrein
QWVLTAAHCL
58
10

5979





PAP
RFAELVGPVI
355
10
0.0037
5980





PAP
RFQELESETL
163
10
0.0001
5981





PSM
RMMNDQLMF
662
9

5982





PSM
RMMNDQLMFL
662
10

5983





PSM
RWLCAGAL
19
8

5984





PSM
RWLCAGALVL
19
10

5985





PSM
RYTKNWETNKF
536
11

5986





PSM
SFGTLKKEGW
401
10

5987





PSM
SFPGIYDAL
704
9

5988





PSM
SFPGIYDALF
704
10

5989





PSA
SFPHPLYDMSL
91
11

5990





Kallikrein
SFPHPLYNMSL
95
11

5991





PAP
SWATEDTMTKL
225
11

5992





PSM
SWDAEEFGL
420
9

5993





PSM
SWDAEEFGLL
420
10

5994





Kallikrein
SWGPEPCAL
228
9

5995





PSA
SWGSEPCAL
224
9
0.0001
5996





PAP
SWPQGFGQL
62
9
0.0013
5997





PSM
SWTKKSPSPEF
496
11

5998





PAP
SYKHEQVYI
96
9
0.2600
5999





PSM
SYPDGWNL
241
8

6000





PSM
SYPNKTHPNYI
118
11

6001





PAP
TMTKLREL
231
8

6002





PAP
TMTKLRELSEL
231
11

6003





PSA
TWIGAAPL
9
8

6004





PSA
TWIGAAPLI
9
9
0.1100
6005





PSA
TWIGAAPLIL
9
10
0.3600
6006





PSM
TYELVEKF
558
8

6007





PSM
TYSVSFDSL
624
9

6008





PSM
TYSVSFDSLF
624
10
3.2000
6009





PSM
VFELANSI
584
8

6010





PSM
VFELANSIVL
584
10

6011





PSM
VFFQRLGI
523
8

6012





PSA
VFLTLSVTW
2
9
2.1000
6013





PSA
VFLTLSVTWI
2
10
0.0062
6014





PSA
VFQVSHSF
85
8

6015





PAP
VFRHGDRSPI
41
10
0.0005
6016





PSA
VMDLPTQEPAL
134
11

6017





Kallikrein
VWLGRHNL
73
8

6018





Kallikrein
VWLGRHNLF
73
9

6019





PSM
VYETYELVEKF
555
11

6020





Kallikrein
VYTKVVHYRKW
242
11

6021





PSM
VYVNYARTEDF
175
11

6022





PAP
YFEKGEYF
319
8

6023





PSM
YYDAQKLL
299
8

6024
















TABLE XIX










Prostate DR Supermotif Peptides












Protein
Sequence
Seq. Id. No.
Core Sequence
Core Seq. Id. No
Position
















PAP
---MRAAPLLLARAA
6025
MRAAPLLLA
6300
1






Kallikrein
---MWDLVLSIALSV
6026
MWDLVLSIA
6301
1





PSA
---VVFLTLSVTWIG
6027
VVFLTLSVT
6302
1





Kallikrein
--MWDLVLSIALSVG
6028
WDLVLSIAL
6303
2





PSA
--VVFLTLSVTWIGA
6029
VFLTLSVTW
6304
2





PSA
-VVFLTLSVTWIGAA
6030
FLTLSVTWI
6305
3





PAP
AALFPPEGVSIWNPI
6031
FPPEGVSIW
6306
124





PSA
AAPLILSRIVGGWEC
6032
LILSRIVGG
6307
16





PAP
AAPLLLARAASLSLG
6033
LLLARAASL
6308
6





PAP
AASLSLGFLFLLFFW
6034
LSLGFLFLL
6309
14





PSM
ADKIYSISMKHPQEM
6035
IYSISMKHP
6310
611





PSM
AEAVGLPSIPVHPIG
6036
VGLPSIPVH
6311
287





PSM
AEEFGLLGSTEWAEE
6037
FGLLGSTEW
6312
426





PAP
AELVGPVIPQDWSTE
6038
VGPVIPQDW
6313
360





PSA
AGRWTGGKSTCSGDS
6039
WTGGKSTCS
6314
198





PSA
AHCIRNKSVILLGRH
6040
IRNKSVILL
6315
63





PAP
AKELKFVTLVFRHGD
6041
LKFVTLVFR
6316
35





PAP
ALDVYNGLLPPYASC
6042
VYNGLLPPY
6317
302





Kallikrein
ALSVGGTGAVPLIQS
6043
VGCTGAVPL
6318
12





PSA
APLILSRIVGGWECE
6044
ILSRIVGGW
6319
17





PAP
APLLLARAASLSLGF
6045
LLARAASLS
6320
7





Kallikrein
ARAYSEKVTEFMLCA
6046
YSEKVTEFM
6321
188





Kallikrein
ASGWGSIEPEEFLRP
6047
WGSIEPEEF
6322
157





PSA
ASGWGSIEPEEFLTP
6048
WGSIEPEEF
6323
153





PSM
AVGLPSIPVHPIGYY
6049
LPSIPVHPI
6324
289





PSA
AVKVMDLPTQEPALG
6050
VMDLPTQEP
6325
134





Kallikrein
AVPLIQSRIVGGWEC
6051
LIQSRIVGG
6326
20





PSA
CAQVHPQKVTKFMLC
6052
VHPQKVTKF
6327
183





PAP
CESVHNFTLPSWATE
6053
VHNFTLPSW
6328
218





Kallikrein
CNGVLQGITSWGPEP
6054
VLQGITSWG
6329
222





PSA
CNGVLQGITSWGSEP
6055
VLQGITSWG
6330
218





PAP
CPRFQELESETLKSE
6056
FQELESETL
6331
164





PSM
CTPLMYSLVHNLTKE
6057
LMYSLVHNL
6332
469





PSM
DEGFEGKSLYESWTK
6058
FEGKSLYES
6333
488





PSM
DFEVFFQRLGIASGR
6059
VFFQRLGIA
6334
523





PSA
DLHVISNDVCAQVHP
6060
VISNDVCAQ
6335
174





Kallikrein
DLVLSIALSVGCTGA
6061
LSIALSVGC
6336
6





PSM
DPMFKYHLTVAQVRG
6062
FKYHLTVAQ
6337
570





PSM
DQLMFLERAFIDPLG
6063
MFLERAFID
6338
669





PSM
DRPFYRHVIYAPSSH
6064
FYRHVIYAP
6339
686





PAP
DRSVLAKELKFVTLV
6065
VLAKELKFV
6340
30





PAP
DRTLMSAMTNLAALF
6066
LMSAMTNLA
6341
113





PSM
DSSIEGNYTLRVDCT
6067
IEGNYTLRV
6342
456





PAP
DTTVSGLQMALDVYN
6068
VSGLQMALD
6343
293





Kallikrein
EEFLRPRSLQCVSLH
6069
LRPRSLQCV
6344
166





PSA
EEFLTPKKLQCVDLH
6070
LTPKKLQCV
6345
162





PSM
EFGLDSVELAHYDVL
6071
LDSVELAHY
6346
105





PSM
ERDMKINCSGKIVIA
6072
MKINCSGKI
6347
192





PSM
ERGVAYINADSSIEG
6073
VAYINADSS
6348
447





PSM
ESKVDPSKAWGEVKR
6074
VDPSKAWGE
6349
719





PSM
EVEFQRLGIASGRAR
6075
FQRLGIASG
6350
525





PSM
EYAYRRGIAEAVGLP
6076
YRRGIAEAV
6351
279





PAP
FAELVGPVIPQDWST
6077
LVGPVIPQD
6352
359





PAP
FFWLDRSVLAKELKF
6078
LDRSVLAKE
6353
26





PAP
FGQLTQLGMEQHYEL
6079
LTQLGMEQH
6354
70





PAP
FLFLLFFWLDRSVLA
6080
LLFFWLDRS
6355
21





PSA
FLTLSVTWIGAAPLI
6081
LSVTWIGAA
6356
6





PAP
FQELESETLKSEEFQ
6082
LESETLKSE
6357
167





PSM
FSAFSPQGMPEGDLV
6083
ISPQGMPEG
6358
164





PSM
FSGYPLYHSVYETYE
6084
YPLYHSVYE
6359
549





PSM
FTEIASKFSERLQDF
6085
IASKFSERL
6360
642





PSM
GAAVVHEIVRSFGTL
6086
VVHEIVRSF
6361
394





PSM
GDLVYVNYARTEDFF
6087
VYVNYARTE
6362
175





PSM
GDPLTPGYPANEYAY
6088
LTPGYPANE
6363
268





PSM
GGFFLLGFLFGWFIK
6089
FLLGFLFGW
6364
33





PSM
GGGVQRGNILNLNGA
6090
VQRGNILNL
6365
253





PSA
GGPLVCNGVLQGITS
6091
LVCNGVLQG
6366
213





Kallikrein
GGPLVCNGVLQGITS
6092
LVCNGVLQG
6367
217





PAP
GGVLVNEILNHMKRA
6093
LVNEILNHM
6368
263





PSM
GKSLYESWTKKSPSP
6094
LYESWTKKS
6369
493





PSM
GKVFRGNKVKNAQLA
6095
FRGNKVKNA
6370
209





PSM
GMVFELANSIVLPFD
6096
FELANSIVL
6371
585





PSM
GNEIFNTSLFEPPPP
6097
IFNTSLFEP
6372
138





PSM
GNILNLNGAGDPLTP
6098
LNLNGAGDP
6373
259





PSM
GNKVKNAQLAGAKGV
6099
VKNAQLAGA
6374
214





PSM
GPGFTGNFSTQKVKM
6100
FTGNFSTQK
6375
333





PSA
GPLVCNGVLQGITSW
6101
VCNGVLQGI
6376
214





Kallikrein
GPLVGNGVLQGITSW
6102
VCNGVLQGI
6377
218





PAP
GPVIPQDWSTEGMTT
6103
IPQDWSTEC
6378
364





PAP
GQDLFGIWSKVYDPL
6104
LFGIWSKVY
6379
202





Kallikrein
GQRVPVSHSFPHPLY
6105
VPVSHSFPH
6380
90





PSA
GQVFQVSHSFPHPLY
6106
FQVSHSFPH
6381
86





PSA
GRAVCGGVLVHPQWV
6107
VCGGVLVHP
6382
45





PSM
GVAYINADSSIEGNY
6108
YINADSSIE
6383
449





PSM
GVILYSDPADYFAPG
6109
LYSDPADYF
6384
227





PSA
GVLVHPQWVLTAAHC
6110
VHPQWVLTA
6385
51





Kallikrein
GVLVHPQWVLTAAHC
6111
VHPQWVLTA
6386
55





PAP
GVSIWNPILLWQPIP
6112
IWNPILLWQ
6387
131





PSM
GWNLPGGGVQRGNIL
6113
LPGGGVQRG
6388
248





PSA
HDLMLLRLSEPAELT
6114
MLLRLSEPA
6389
118





Kallikrein
HDLMLLRLSEPAKIT
6115
MLLRLSEPA
6390
122





PSM
HEIVRSFGTLKKEGW
6116
VRSFGTLKK
6391
399





PAP
HEPYPLMLPGCSPSC
6117
YPLMLPGCS
6392
340





PAP
HEQVYIRSTDVDRTL
6118
VYIRSTDVD
6393
102





Kallikrein
HNLFEPEDTGQRVPV
6119
FEPEDTGQR
6394
81





PSA
HPLYDMSLLKNRFLR
6120
YDMSLLKNR
6395
97





Kallikrein
HPLYNMSLLKHQSLR
6121
YNMSLLKHQ
6396
101





PSA
HPQWVLTAAHCIRNK
6122
WVLTAAHCI
6397
55





Kallikrein
HPOWVLTAAHCLKKN
6123
WVLTAAHCL
6398
59





PSA
HSLFHPEDTGQVFQV
6124
FHPEDTGQV
6399
77





PSM
HSVYETYELVEKFYD
6.125
YETYELVEK
6400
556





PSM
HYDVLLSYPNKTHPN
6126
VLLSYPNKT
6401
115





PAP
IDTFPTDPIKESSWP
6127
FPTDPIKES
6402
53





PSM
IGYYDAQKLLEKMGG
6128
YDAQKLLEK
6403
300





PSM
IKKFLYNFTQIPIILA
6129
VLYNPTQIP
6404
73





PAP
ILLWQPIPVHTVPLS
6130
WQPIPVHTV
6405
138





PAP
IPSYKKLIMYSAHDT
6131
YKKLIMYSA
6406
280





Kallikrein
ITSWGPEPCALPEKP
6132
WGPEPCALP
6407
229





PSA
ITSWGSEPCALPERP
6133
WGSEPCALP
6408
225





PSM
IYSISMKHPQEMKTY
6134
ISMKHPQEM
6409
614





PSM
KAFLDELKAENIKKF
6135
LDELKAENI
6410
62





PSM
KEGWRPRRTILFASW
6136
WRPRRTILF
6411
410





PSM
KFLYNFTQIPHLAGT
6137
YNFTQIPHL
6412
75





PSM
KGVILYSDPADYFAP
6138
ILYSDPADY
6413
226





Kllikrein
KPAVYTKVVHYRKWI
6139
VYTKVVHYR
6414
242





PAP
KSRLQGGVLVNEILN
6140
LQGGVLVNE
6415
258





PSM
KVKMHHSTNEVTRI
6141
MHIHSTNEV
6416
344





PSM
KYHLTVAQVRGGMVF
6142
LTVAQVRGG
6417
574





PSM
LAHYDVLLSYPNKTH
6143
YDVLLSYPN
6418
113





PSM
LDELKAENIKKFLYN
6144
LKAENIKKF
6419
65





PAP
LDVYNGLLPPYASCH
6145
YNGLLPPYA
6420
303





PSM
LEKMGGSAPPDSSWR
6146
MGGSAPPDS
6421
309





PAP
LFFWLDRSVLAKELK
6147
WLDRSVLAK
6422
25





PSM
LFGWFIKSSNEATNI
6148
WFIKSSNEA
6423
41





PSM
LGFLFGWFIKSSNEA
6149
LFGWFIKSS
6424
38





Kallikrein
LHLLSNDMCARAYSE
6150
LSNDMCARA
6425
179





PAP
LHPYKDFIATLGKLS
6151
YKDFIATLG
6426
184





PSA
LHVISNDVCAQVHPQ
6152
ISNDVCAQV
6427
175





PAP
LIMYSAHDTTVSGLQ
6153
YSAHDTTVS
6428
286





PAP
LLFFWLDRSVLAKEL
6154
FWLDRSVLA
6429
24





PAP
LLYLPFRNCPRFQEL
6155
LPFRNCPRF
6430
156





PSM
LMFLERAFIDPLGLP
6156
LERAFIDPL
6431
671





PSA
LMLLRLSEPAELTDA
6157
LRLSEPAEL
6432
120





Kallikrein
LMLLRLSEPAKITDV
6158
LRLSEPAKI
6433
124





PAP
LPPYASCHLTELYFE
6159
YASCHLTEL
6434
310





PSM
LPSIPVHPIGYYDAQ
6160
IPVHPIGYY
6435
292





PAP
LPSWATEDTMTKLRE
6161
WATEDTMTK
6436
226





PSA
LQCVDLHVISNDVCA
6162
VDLHVISND
6437
170





Kallikrein
LQCVSLHLLSNDMCA
6163
VSLHLLSND
6438
174





PSM
LQDFDKSNPIVLRMM
6164
FDKSNPIVL
6439
653





Kallikrein
LQGITSWGPEPCALP
6165
ITSWGPEPC
6440
226





PSA
LQGITSWGSEPCALP
6166
ITSWGSEPC
6441
222





PAP
LRELSELSLLSLYGI
6167
LSELSLLSL
6442
238





PSM
LRMMNDQLMFLERAF
6168
MNDQLMFLE
6443
664





PAP
LSELSLLSLYGIHKQ
6169
LSLLSLYGI
6444
241





PAP
LSGLHGQDLFGIWSK
6170
LHGQDLFGI
6445
197





PAP
LSLLSLYGIHKQKEK
6171
LSLYGIHKQ
6446
244





PSM
LVYVNYARTEDFFKL
6172
VNYARTEDF
6447
177





PSM
MFKYHLTVAQVRGGM
6173
YHLTVAQVR
6448
572





PSM
MPRISKLGSGNDFEV
6174
ISKLGSGND
6449
512





PAP
MSAMTNLAALFPPEG
6175
MTNLAALFP
6450
117





Kallikrein
MSLLKHQSLRPDEDS
6176
LKHQSLRPD
6451
106





PSA
MSLLKNRFLRPGDDS
6177
LKNRFLRPG
6452
102





PAP
MTNLAALFPPEGVSI
6178
LAALFPPEG
6453
120





Kallikrein
MWDLVLSIALSVGCT
6179
LVLSTALSV
6454
4





PSM
MYSLVHNLTKELKSP
6180
LVHNLTKEL
6455
473





PAP
NESYKHEQVYIRSTD
6181
YKHEQVYIR
6456
97





PAP
NFTLPSWATEDTMTK
6182
LPSWATEDT
6457
223





PAP
NGLLPPYASCHLTEL
6183
LPPYASCHL
6458
307





Kallikrein
NGVLQGITSWGPEPC
6184
LQGITSWGP
6459
223





PSA
NGVLQGITSWGSEPC
6185
LQGITSWGS
6460
219





Kallikrein
NMSLLKHQSLRPDED
6186
LLKHQSLRP
6461
105





PAP
NPILLWQPIPVHTVP
6187
LLWQPIPVH
6462
136





PSM
NSIVLPFDCRDYAVV
6188
VLPFDCRDY
6463
592





PSM
NTSLFEPPPPGYENV
6189
LFEPPPPGY
6464
143





PSM
NYTLRVDCTPLMYSL
6190
LRVDCTPLM
6465
462





PSM
PADYFAPGVKSYPDG
6191
YFAPGVKSY
6466
234





Kallikrein
PCALPEKPAVYTKVV
6192
LPEKPAVYT
6467
236





PSA
PCALPERPSLYTKVV
6193
LPERPSLYT
6468
232





Kallikrein
PEEFLRPRSLQCVSL
6194
FLRPRSLQC
6469
165





PAP
PEGVSIWNPILLWQP
6195
VSIWNPILL
6470
129





PSA
PHPLYDMSLLKNRFL
6196
LYDMSLLKN
6471
96





Kallikrein
PHPLYNMSLLKHQSL
6197
LYNMSLLKH
6472
100





PAP
PILLWQPIPVHTVPL
6198
LWQPIPVHT
6473
137





PAP
PIPVHTVPLSEDQLL
6199
VHTVPLSED
6474
143





PSA
PKKLQCVDLHVISND
6200
LQCVDLHVI
6475
167





PAP
PLLLARAASLSLGFL
6201
LARAASLSL
6476
8





PAP
PLMLPGCSPSCPLER
6202
LPGCSPSCP
6477
344





PAP
PQDWSTECMTTNSHQ
6203
WSTECMTTN
6478
368





PSM
PQEMKTYSVSFDSLF
6204
MKTYSVSFD
6479
622





PSM
PQGMPEGDLVYVNYA
6205
MPEGDLVYV
6480
169





PSA
PQKVTKFMLCAGRWT
6206
VTKFMLCAG
6481
188





Kallikrein
PRSLQCVSLHLLSND
6207
LQCVSLHLL
6482
171





PSM
PRWLCAGALVLAGGF
6208
LCAGALVLA
6483
21





PSM
PYNVGPGFTGNFSTQ
6209
VGPGFTGNF
6484
329





PAP
PYPLMLPGCSPSGPL
6210
LMLPGCSPS
6485
342





PAP
QGGVLVNEILNHMKR
6211
VLVNEILNH
6486
262





PSM
QIYVAAFTVQAAAET
6212
VAAFTVQAA
6487
734





PSM
QSQWKEFGLDSVELA
6213
WKEFGLDSV
6488
100





Kallikrein
QVWLGRHNLFEPEDT
6214
LGRHNLFEP
6489
75





PAP
QVYIRSTDVDRTLMS
6215
IRSTDVDRT
6490
104





PSA
QWVLTAAHCIRNKSV
6216
LTAAHCIRN
6491
57





Kallikrein
QWVLTAAHCLKKNSQ
6217
LTAAHCLKK
6492
61





PSM
RAFIDPLGLPDRPFY
6218
IDPLGLPDR
6493
676





PSM
RDSWVFGGIDPQSGA
6219
WVFGGIDPQ
6494
381





PSM
RGGMVHFELANSIVLP
6220
MVFELANSI
6495
583





PSM
RHVIYAPSSHNKYAG
6221
IYAPSSHNK
6496
691





Kallikrein
RKWIKDTIAANP---
6222
IKDTIAANP
6497
253





PSA
RKWIKDTIVANP---
6223
IKDTIVANP
6498
249





PSM
RLGIASGRARYTKNW
6224
IASGRARYT
6499
530





PSM
RPRWLCAGALVLAGG
6225
WLCAGALVL
6500
20





PSA
RPSLYTKVVHYRKWI
6226
LYTKVVHYR
6501
238





PSM
RQIYVAAFTVQAAAE
6227
YVAAFTVQA
6502
733





PAP
RSPIDTFPTDPIKES
6228
IDTFPTDPI
6503
50





Kallikrein
RVPVSNSFPHPLYNM
6229
VSHSFPHPL
6504
92





PSM
SDIVPPFSAFSPQGM
6230
VPPFSAFSP
6505
158





Kallikrein
SEKVTEFMLCAGLWT
6231
VTEFMLCAG
6506
192





PSA
SHDLMLLRLSEPAEL
6232
LMLLRLSEP
6507
117





Kallikrein
SHDLMLLRLSEPAKI
6233
LMLLRLSEP
6508
121





Kallikrein
SIALSVGCTGAVPLI
6234
LSVGCTGAV
6509
10





PAP
SKVYDPLYCESVHNF
6235
YDPLYCESV
6510
210





Kallikrein
SLHLLSNDMCARAYS
6236
LLSNDMCAR
6511
178





PAP
SLSLGFLFLLFFWLD
6237
LGFLFLLFF
6512
16





PSM
SNPIVLRMMNDQLMF
6238
IVLRMMNDQ
6513
659





PSA
SQPWQVLVASRGRAV
6239
WQVLVASRG
6514
34





PSA
SRIVGGWECEKHSQP
6240
VGGWECEKH
6515
22





Kallikrein
SRIVGGWECEKHSQP
6241
VGGWECEKH
6516
26





PSM
SRLLQERGVAYINAD
6242
LQERGVAYI
6517
442





PAP
STDVDRTLMSAMTNL
6243
VDRTLMSAM
6518
109





PSM
STEWAEENSRLLQER
6244
WAEENSRLL
6519
434





PSM
SVELAHYDVLLSYPN
6245
LAHYDVLLS
6520
110





PSA
SVILLGRHSLFHPED
6246
LLGRHSLFH
6521
70





PSM
SVSFDSLFSAVKNFT
6247
FDSLFSAVK
6522
629





PSA
SVTWIGAAPLILSRI
6248
WIGAAPLIL
6523
10





PSM
SWVFGGIDPQSGAAV
6249
FGGIDPQSG
6524
383





PSA
TDAVKVMDLPTQEPA
6250
VKVMDLPTQ
6525
132





Kallikrein
TDVVKVLGLPTQEPA
6251
VKVLGLPTQ
6526
136





Kallikrein
TEFMLCAGLWTGGKD
6252
MLCAGLWTG
6527
196





Kallikrein
TGAVPLIQSRIVGGW
6253
VPLIQSRIV
6528
18





PSM
TGNFSTQKVKMHIHS
6254
FSTQKVKMH
6529
337





PSM
TILFASWDAEEFGLL
6255
FASWDAEEF
6530
418





PSM
TLRVDCTPLMYSLVH
6256
VDCTPLMYS
6531
464





PSA
TLSVTWIGAAPLILS
6257
VTWIGAAPL
6532
8





PSM
TNKFSGYPLYHSVYE
6258
FSGYPLYHS
6533
546





PSM
TRIYNVTGTLRGAVE
6259
YNVIGTLRG
6534
356





PSM
TSLFEPPPPGYENVS
6260
FEPPPPGYE
6535
144





PAP
TVPLSEDQLLYLPFR
6261
LSEDQLLYL
6536
148





PSM
TYSVSFDSLFSAVKN
6262
VSFDSLFSA
6537
627





PSM
VAAFTVQAAAETLSE
6263
FTVQAAAET
6538
737





PSM
VAQVRGGMVFELANS
6264
VRGGMVFEL
6539
579





Kallikrein
VAVYSHGWAHCGGVL
6265
YSHGWAHCG
6540
43





PSM
VAYINADSSIEGNYT
6266
INADSSIEG
6541
450





PAP
VEMYYRNETQHEPYP
6267
YYRNETQHE
6542
330





PSN
VFELANSIVLPFDCR
6268
LANSIVLPF
6543
587





PSA
VFQVSHSFPHPLYDM
6269
VSHSFPHPL
6544
88





PSM
VHPIGYYDAQKLLEK
6270
IGYYDAQKL
6545
297





PSA
VILLGRHSLFHPEDT
6271
LGRHSLFHP
6546
71





PSN
VKNFTEIASKFSERL
6272
FTEIASKFS
6547
639





Kallikrein
VLGLPTQEPALGTTC
6273
LPTQEPALG
6548
141





PSM
VLRMMNDQLMFLERA
6274
MMNDQLMFL
6549
663





PSA
VMDLPTQEPALGTTC
6275
LPTQEPALG
6550
137





Kallikrein
VPLIQSRIVGGWECE
6276
IQSRIVGGW
6551
21





PSM
VPPFSAFSPQGMPEG
6277
FSAFSPQGM
6552
161





PSM
VSDIVPPFSAFSPQG
6278
IVPPFSAFS
6553
157





PAP
VSIWNPILLWQPIPV
6279
WNPILLWQP
6554
132





PSA
VTWIGAAPLILSRIV
6280
IGAAPLILS
6555
11





PSA
VVFLTLSVTWIGAAP
6281
LTLSVTWIG
6556
4





Kallikrein
VVKVLGLPTQEPALG
6282
VLGLPTQEP
6557
138





Kallikrein
WDLVLSIALSVGCTG
6283
VLSIALSVG
6558
5





PSM
WKEFGLDSVELAHYD
6284
FGLDSVELA
6559
103





PSM
WNLLHETDSAVATAR
6285
LHETDSAVA
6560
5





PAP
WNPILLWQPIPVHTV
6286
ILLWQPIPV
6561
135





PAP
WQPIPVHTVPLSEDQ
6287
IPVHTVPLS
6562
141





PSM
YAVVLRKYADKTYSI
6288
VLRKYADKI
6563
603





PSM
YDALFDIESKVDPSK
6289
LFDIESKVD
6564
712





PAP
YDPLYCESVHNFTLP
6290
LYCESVHNF
6565
213





PSM
YDPMFKYHLTVAQVR
6291
MFKYHLTVA
6566
569





PSM
YENVSDIVPPFSAFS
6292
VSDIVPPFS
6567
154





PSM
YESWTKKSPSPEFSG
6293
WTKKSPSPE
6568
497





PAP
YKKLIMYSAHDTTVS
6294
LIMYSAHDT
6569
283





PAP
YNGLLPPYASCHLTE
6295
LLPPYASGH
6570
306





PAP
YPLMLPGCSPSCPLE
6296
MLPGGSPSC
6571
343





PSM
YRHVIYAPSSHNKYA
6297
VIYAPSSHN
6572
690





Kallikrein
YRKWIKDTIAANP--
6298
WIKDTIAAN
6573
252





PSA
YRKWIKDTIVANP--
6299
WIKDTIVAN
6574
248
















TABLE XXa










Prostate DR 3a Submotif Peptides












Protein
Sequence
Seq. Id. No.
Core Sequence
Core Seq. Id. No
Position
















PAP
AALFPPEGVSIWNPI
6575
FPPEGVSIW
6615
124






PSM
DQLMFLERAFIDPLG
6576
MFLERAFID
6616
669





PSM
EDFFKLERDMKINCS
6577
FKLERDMKI
6617
186





PAP
EMYYRNETQHEPYPL
6578
YRNETQHEP
6618
331





PSM
FGTLKKEGWRPRRTI
6579
LKKEGWRPR
6619
405





PAP
FQELESETLKSEEFQ
6580
LESETLKSE
6620
167





PSM
GAAVVHEIVRSFGTL
6581
VVHEIVRSF
6621
394





PAP
GGVLVNEILNHMKRA
6582
LVNEILNHM
6622
263





PAP
GLQMALDVYNGLLPP
6583
MALDVYNGL
6623
298





PAP
GPVIPQDWSTECMTT
6584
IPQDWSTEC
6624
364





PSM
GVILYSDPADYFAPG
6585
LYSDPADYF
6625
227





PSM
HNKYAGESFPGIYDA
6586
YAGESFPGI
6626
700





Kallikrein
HNLFEPEDTGQRVPV
6587
FEPEDTGQR
6627
81





Kallikrein
HQSLRPDEDSSHDLM
6588
LRPDEDSSH
6628
111





PSA
HSLFHPEDTGQVFQV
6589
FHPEDTGQV
6629
77





PAP
IDTFPTDPIKESSWP
6590
FPTDPIKES
6630
53





PSM
ISIINEDGNEIFNTS
6591
INEDGNEIF
6631
131





PAP
KGEYFVEMYYRNETQ
6592
YFVEMYYRN
6632
325





PSM
LDELKAENIKKFLYN
6593
LKAENIKKF
6633
65





Kallikrein
LHLLSNDMCARAYSE
6594
LSNDMCARA
6634
179





PSA
LHVISNDVCAQVHPQ
6595
ISNDVCAQV
6635
175





PAP
LLFFWLDRSVLAKEL
6596
FWLDRSVLA
6636
24





PAP
LTELYFEKGEYFVEM
6597
LYFEKGEYF
6637
318





PSM
MWNLLHETDSAVATA
6598
LLHETDSAV
6638
4





PAP
NESYKHEQVYIRSTD
6599
YKHEQVYIR
6639
97





PSM
NSRLLQERGVAYINA
6600
LLQERGVAY
6640
441





PSM
NYTLRVDCTPLMYSL
6601
LRVDCTPLM
6641
462





PSM
RGAVEPDRYVILGGH
6602
VEPDRYVIL
6642
366





PSM
RGGMVFELANSIVLP
6603
MVFELANSI
6643
583





PAP
SETLKSEEFQKRLHP
6604
LKSEEFQKR
6644
172





PAP
TVPLSEDQLLYLPFR
6605
LSEDQLLYL
6645
148





PSM
TYSVSFDSLFSAVKN
6606
VSFDSLFSA
6646
627





PSM
VAYINADSSIEGNYT
6607
INADSSIEG
6647
450





PSM
VLRMMNDQLMFLERA
6608
MMNDQLMFL
6648
663





Kallikrein
WGSIEPEEFLRPRSL
6609
IEPEEFLRP
6649
160





PSA
WGSIEPEEFLTPKKL
6610
IEPEEFLTP
6650
156





PSM
WKEFGLDSVELAHYD
6611
FGLDSVELA
6651
103





PAP
YDPLYCESVHNFTLP
6612
LYCESVHNF
6652
213





PSM
YISIINEDGNEIFNT
6613
IINEDGNEI
6653
130





PAP
YRKFLNESYKHEQVY
6614
FLNESYKHE
6654
92





PSM
AKQIQSQWKEFGLDS
6655
IQSQWKEFG
6675
96





PSM
DALFDIESKVDPSKA
6656
FDIESKVDP
6676
713





PSM
DKIYSISMKHPQEMK
6657
YSISMKHPQ
6677
612





PSM
DMKINCSGKIVIARY
6658
INCSGKIVI
6678
194





PAP
DPLYCESVHNFTLPS
6659
YCESVHNFT
6679
214





PSM
FFKLERDMKINCSGK
6660
LERDMKINC
6680
188





PSM
HVIYAPSSHNKYAGE
6661
YAPSSHNKY
6681
692





PSM
IYNVIGTLRGAVEPD
6662
VIGTLRGAV
6682
358





PAP
KKLIMYSAHDTTVSG
6663
IMYSAHDTT
6683
284





PAP
LTQLGMEQHYELGEY
6664
LGMEQHYEL
6684
73





PSM
MKAFLDELKAENIKK
6665
FLDELKAEN
6685
61





PSM
PSKAWGEVKRQIYVA
6666
AWGEVKRQI
6686
724





PAP
RKFLNESYKHEQVYI
6667
LNESYKIIEQ
6687
93





PAP
RSVLAKELKFVTLVF
6668
LAKELKFVT
6688
31





PSM
SIVLPFDCRDYAVVL
6669
LPFDCRDYA
6689
593





PSA
SNDVCAQVHPQKVTK
6670
VCAQVHPQK
6690
179





PSM
TDSAVATARRPRWLC
6671
AVATARRPR
6691
11





PAP
TECMTTNSHQGTEDS
6672
MTTNSHQGT
6692
373





PSM
TEWAEENSRLLQERG
6673
AEENSRLLQ
6693
435





PSM
VHNLTKELKSPDEGF
6674
LTKELKSPD
6694
477
















TABLE XXb










Prostate DR 3b Submotif Peptides












Protein
Sequence
Seq. Id. No.
Core Sequence
Core Seq. Id. No
Position
















PSM
AKQIQSQWKEFGLDS
6655
IQSQWKEFG
6675
96






PSM
DALFDIESKVDPSKA
6656
FDIESKVDP
6676
713





PSM
DKIYSISMKHPQEMK
6657
YSISMKHPQ
6677
612





PSM
DMKINCSGKIVIARY
6658
INCSGKIVI
6678
194





PAP
DPLYCESVHNFTLPS
6659
YCESVHNFT
6679
214





PSM
FFKLERDMKINCSGK
6660
LERDMKINC
6680
188





PSM
HVIYAPSSHNKYAGE
6661
YAPSSHNKY
6681
692





PSM
IYNVIGTLRGAVEPD
6662
VIGTLRGAV
6682
358





PAP
KKLIMYSAHDTTVSG
6663
IMYSAHDTT
6683
284





PAP
LTQLGMEQHYELGEY
6664
LGMEQHYEL
6684
73





PSM
MKAFLDELKAENIKK
6665
FLDELKAEN
6685
61





PSM
PSKAWGEVKRQIYVA
6666
AWGEVKRQI
6686
724





PAP
RKFLNESYKHEQVYI
6667
LNESYKIIEQ
6687
93





PAP
RSVLAKELKFVTLVF
6668
LAKELKFVT
6688
31





PSM
SIVLPFDCRDYAVVL
6669
LPFDCRDYA
6689
593





PSA
SNDVCAQVHPQKVTK
6670
VCAQVHPQK
6690
179





PSM
TDSAVATARRPRWLC
6671
AVATARRPR
6691
11





PAP
TECMTTNSHQGTEDS
6672
MTTNSHQGT
6692
373





PSM
TEWAEENSRLLQERG
6673
AEENSRLLQ
6693
435





PSM
VHNLTKELKSPDEGF
6674
LTKELKSPD
6694
477
















TABLE XXI










Population coverage with combined HLA Supertypes









PHENOTYPIC FREQUENCY















North








American


HLA-SUPERTYPES
Caucasian
Black
Japanese
Chinese
Hispanic
Average
















a. Individual Supertypes








A2
45.8
39.0
42.4
45.9
43.0
43.2


A3
37.5
42.1
45.8
52.7
43.1
44.2


B7
43.2
55.1
57.1
43.0
49.3
49.5


A1
47.1
16.1
21.8
14.7
26.3
25.2


A24
23.9
38.9
58.6
40.1
38.3
40.0


B44
43.0
21.2
42.9
39.1
39.0
37.0


B27
28.4
26.1
13.3
13.9
35.3
23.4


B62
12.6
4.8
36.5
25.4
11.1
18.1


B58
10.0
25.1
1.6
9.0
5.9
10.3


b. Combined Supertypes


A2, A3, B7
84.3
86.8
89.5
89.8
86.8
87.4


A2, A3, B7, A24, B44, A1
99.5
98.1
100.0
99.5
99.4
99.3


A2, A3, B7, A24, B44, A1,
99.9
99.6
100.0
99.8
99.9
99.8


B27, B62, B58
















TABLE XXII










Prostate Antigen Peptides








Antigen
Sequence












Binding




affinity ≦200 nM


PSA.117
LMLLRLSEPA


PSA.118
MLLRLSEPAEL


PSA.118
MLLRLSEPA


PSA.143
ALGTTCYA


PSA.161
FLTPKKLQCV


PSA.166
KLQCVDLHV


PAP.6
LLLARAASLSL


PAP.21
LLFFWLDRSV


PAP.30
VLAKELKFV
SEQ ID NO 6827


PAP.92
FLNESYKHEQV


PAP.112
TLMSAMTNL


PAP.135
ILLWQPIPV


PAP.284
IMYSAHDTTV


PAP.299
ALDVYNGLL


PSM.26
LVLAGGFFL


PSM.27
VLAGGFFLL


PSM.168
GMPEGDLVYV


PSM.288
GLPSIPVHPI


PSM.441
LLQERGVAYI


PSM.469
LMYSLVHNL


PSM.662
RMMNDQLMFL


PSM.663
MMNDQLMFL


PSM.667
QLMFLERAFI


PSM.711
ALFDIESKV


HuK2.165
FLRPRSLQCV


HuK2.175
SLHLLSNDMCA


Binding


affinity >200 nM


PSM.4
LLHETDSAV


PSM.25
ALVLAGGFFL


PSM.427
GLLGSTEWA


PSM.514
KLGSGNDFEV
















TABLE XXIIIA A2










supermotif cross-reactive binding data





















A*0201
A*0202
A*0203
A*0206
A*6802
A2 Cross-



Peptide
AA
Sequence
Source
nM
nM
nM
nM
nM
Reactivity




















20.0044
9
LLLARAASL
PAP.6
208
13
29
425

4



63.0136
11
LLLARAASLSL
PAP.6
8.1
3.1
5.3
80
143
5


60.0201
9
LLLARAASV
PAP.6.V9
18
215
6.7
95

4





20.0203
10
LLARAASLSL
PAP.7
500
5.2
63
9250
5714
3


63.0031
10
LLARAASLSV
PAP.7.V10
109
10
21
378
727
4





63.0137
11
AASLSLGFLFL
PAP.11
227
23
53
95

4





1419.51
10
SLSLGFLFLL
PAP.13
40
13
403
21
8560
4


1419.52
10
SLSLGFLFLV
PAP.13.V10
1.8
3.9
17
42
355
5


1419.50
9
SLSLGFLFV
PAP.13.V9
77
25
21
93

4





60.0203
9
FLFLLFFWV
PAP.18.V9
42
307
625
308
90
4





63.0138
11
FLLFFWLDRSV
PAP.20
14
17
2.8
285
364
5





1097.09
10
LLFFWLDRSV
PAP.21
28
0.60
1.6
231

4


1418.23
10
LTFFWLDRSV
PAP.21.T2
118
11
9.6
43
16
5


63.0139
11
LLFFWLDRSVL
PAP.21
65
2.9
2.7
822
4444
3





63.0033
10
SLLAKELKFV
PAP.29.L2
64
5.7
3.8
38
6667
4





1097.171
9
VLAKELKFV
PAP.30
96
3.6
6.7
168

4


63.0142
11
VLAKELKFVTL
PAP.30
6.9
8.1
21
25

4


63.0034
10
VLAKELKFVV
PAP.30.V10
31
12
189
86
2286
4





1419.55
11
FLNESYKHEQV
PAP.92
29
1.4
5.6
381
6154
4





1177.01
9
TLMSAMTNL
PAP.112
43
0.80
2.9
285
296
5


20.0312
10
TLMSAMTNLA
PAP.112
385
3.6
37
3700
6667
3


63.0037
10
TLMSAMTNLV
PAP.112.V10
63
3.9
12
43
242
5


1419.56
9
TLMSAMTNV
PAP.112.V9
10
2.4
3.6
54
62
5





1419.58
10
LLALFPPEGV
PAP.120.L2
5.0
0.70
1.6
148
163
5


1419.59
10
LVALFPPEGV
PAP.120.V2
156
17
4.8
463
28
5





1419.6
10
ALFPPEGVSI
PAP.122
278
11
133
2643

3


1419.61
10
ALFPPEGVSV
PAP.122.V10
15
1.0
18
119
4444
4





63.0041
10
GVSIWNPILV
PAP.128.V10
250
94
23
451
2286
4


60.0207
9
GVSIWNPIV
PAP.128.V9
455
269
909
308

3





63.0042
10
PLLLWQPIPV
PAP.134.L2
238
47
19
336
3333
4





1044.04
9
ILLWQPIPV
PAP.135
3.3
39
1.8
71
1702
4


1418.25
9
ITLWQPIPV
PAP.135.T2
34
1720
6.2
26
32
4





1419.69
10
LLWQPIPVHV
PAP.136.V10
25
1.8
17
287
60
5





1166.11
10
GLHGQDLFGI
PAP.196
26
0.90
2.5
315

4


1419.62
10
GLHGQDLFGV
PAP.196.V10
12
2.3
3.1
18

4





63.0048
10
KLRELSELSV
PAP.234.V10
263
9.1
7.1
49
1818
4





1097.05
10
IMYSAHDTTV
PAP.284
217
1.5
14
411

4


1389.06
10
ILYSAHDITV
PAP.284.L2
385
1.0
15
1480
5714
3





60.0213
9
TVSGLQMAV
PAP.292.V9
294
12
122
195
5.7
5


1177.02
9
ALDVYNGLL
PAP.299
73
29
256
3083

3





1419.64
10
LLPPYASCHV
PAP.306.V10
88
15
16
98
5260
4







--indicates binding affinity >10,000 nM.














TABLE XXIIIB A2










supermotif cross-reactive binding data





















A*0201
A*0202
A*0203
A*0206
A*6802
A2 Cross-



Peptide
AA
Sequence
Source
nM
nM
nM
nM
nM
Reactivity




















1126.10
9
VLAGGFFLL
PSM.27
39
0.20
33
31
2857
4



1389.20
9
VLAGGFFLV
PSM.27.V9
26
0.40
5.0
57
216
5





1129.04
10
GMPEGDLVYV
PSM.168
55
3.1
7.1
161
6154
4


1389.22
10
GLPEGDLVYV
PSM.168.L2
42
2.0
2.1
112
964
4


1418.29
10
GTPEGDLVYV
PSM.168.T2
313
134
53
40
571
4





1129.10
10
GLPSIPVHPI
PSM.288
147
2.7
2.1
2467
308
4


1389.24
10
GLPSIPVHIPV
PSM.288.V10
55
0.70
0.60
308
121
5





1129.01
10
LLQERGVAYI
PSM.441
179
5.7
6.7
861

3





1126.14
9
LMYSLVHNL
PSM.469
64
0.40
2.1
109
320
5





1126.06
10
RMMNDQLMFL
PSM.662
9.8
2.7
7.7
40

4


1126.01
9
MMNDQLMFL
PSM.663
11
0.80
1.7
7.6
195
5


1126.16
10
QLMFLERAFI
PSM.667
98
36
91

30
4





1129.08
9
ALFDIESKV
PSM.711
85
0.70
1.4
148
8889
4


1418.30
9
ATFDIESKV
PSM.711.T2
238
27
44
82
258
5







--indicates binging affinity >10,000 nM.














TABLE XXIIIC A2










supermotif cross-reactive binding data






















Alternate
A*0201
A*0202
A*0203
A*0206
A*6802
A2 Cross-



Peptide
AA
Sequence
Source
Source
nM
nM
nM
nM
nM
Reactivity





















1419.25
11
VVFLTLSVTWI
PSA.1

385
159
63
2846

3



63.0185
11
VVFLTLSVTWV
PSA.1.V11

89
88
71
336

4





63.0186
11
FLTLSVTWIGV
PSA.3.V11

6.8
3.0
18
65
114
5


60.0216
9
FLTLSVTWV
PSA.3.V9

53
8.4
8.3
49

4





60.0217
9
TLSVTWIGV
PSA.5.V9

26
4.9
40
712
229
4





1419.10
11
VLVHPQWVLTA
PSA.49
HuK2.53
294
7.7
101
2056

3


1419.11
11
VLVHPQWVLTV
PSA.49.V11
HuK2.53.V11
11
1.5
16
31
8889
4





63.0109
11
DLMLLRLSEPV
PSA.116.V11
HuK2.120.V11
50
57
29
148
2759
4





63.0014
10
LMLLRLSEPA
PSA.117
HuK2.121
200
17
67
925
5000
3


1418.43
10
LMLLR.LSEPV
PSA.117.V10
HuK2.121.V10
114
67
29
25
6154
4





1419.02
9
MLLRLSEPA
PSA.118
HuK2.122
195
745
145
49

3


1389.10
9
MLLRLSEPV
PSA.118.V9
HuK2.122.V9
36
36
46
638
421
4


1389.12
11
MLLRLSEPAEV
PSA.118.V11

294
331
115
1762
4444
3





1419.01
8
ALGTTCYA
PSA.143
HuK2.147
15
19
13
561

3


1389.14
8
ALGTTCYV
PSA.143.V8
HuK2.147.V8
74
6.4
12
264

4





1098.02
10
FLTPKKLQCV
PSA.161

52
8.3
13
755

3





990.01
9
KLQCVDLHV
PSA.166

79
205
91
6167

3


63.0058
10
KLQCVDLHVV
PSA.166.V10

13
84
9.1
500

4





60.0220
9
KVTKFMLCV
PSA.187.V9

69
518
53
128

3





1419.17
11
PLVCNGVLQGV
PSA.212.V11
HuK2.216.V11
27
127
19
255
4314
4





1418.55
10
LVCNGVLQGV
PSA.213.V10
HuK2.217.V10
10
2.9
12
5.6
3.5
5







--indicates binding affinity >10,000 nM.














TABLE XXIIID A2










supermotif cross-reactive binding data






















Alternate
A*0201
A*0202
A*0203
A*0206
A*6802
A2 Cross-



Peptide
AA
Sequence
Source
Source
nM
nM
nM
nM
nM
Reactivity





















1418.13
9
LLLSIALSV
HuK2.4.L2

88
176
147
189

4






1418.57
11
ILLSVGCTGAV
HuK2.8.L2

36
33
36
308

4


1418.59
11
ITLSVGCTGAV
HuK2.8.T2

294
134
40
206
121
5





1419.05
10
ALSVGCTGAV
HuK2.9

53
75
17
542

3


1418.15
9
ALSVGCTGV
HuK2.9.V9

24
17
9.1
264

4





1418.35
10
SVGCTGAVPV
HuK2.11.V10

104
287
154
552
216
4





1419.10
11
VLVHPQWVLTA
HuK2.53
PSA.49
294
7.7
101
2056

3


1419.11
11
VLVHPQWVLTV
HuK2.532V11
PSA.49.V11
11
1.6
16
31
9378
4





63.0109
11
DLMLLRLSEPV
HuK2.120.V11
PSA.116.V11
50
57
29
148
2759
4





63.0014
10
LMLLRLSEPA
HuK2.121
PSA.117
200
17
67
925
5000
3


1418.43
10
LMLLRLSEPV
HuK2.121.V0
PSA.117.V10
1.14
67
29
25
6154
4





1419.02
9
MILLRLSEPA
HuK2.122
PSA.118
195
745
145
49

3


1389.10
9
MLLRLSEPV
HuK2.122.V9
PSA.118.V9
36
36
46
638
421
4





1419.01
8
ALGTTCYA
HuK2.147
PSA.143
15
19
13
561

3


1389.14
8
ALGTTCYV
HuK2.147.V8
PSA.143.V8
74
6.4
12
264

4





1419.07
10
FLRPRSLQCV
HuK2.165

186
4.8
4.2


3





60.0191
9
SLQCVSLHL
HuK2.170

500
51
417
6167
2581
3


1419.66
10
SLQCVSLHLL
HuK2.170

263
4.9
71
446
5000
4


1418.52
10
SLQCVSLHLV
HuK2.170.V10

13
6.3
2.8 .
5.2
205
5


1418.19
9
SLQCVSLHV
HuK2.170.V9

56
165
48
4111
1600
3





1419.14
11
SLHLLSNDMCA
HuK2.175

71
4.8
71


3


1418.66
11
SLHLLSNDMCV
HuK2.175.V11

8.6
0.80
10
2313
2162
3





1419.15
11
HLLSNDMCARA
HuK2.177

417
391
250
374

4


1418.67
11
HLLSNDMCARV
HuK2.177.V11

26
1.3
5.3
37
860
4


1418.20
9
HLLSNDMCV
HuK2.177.V9

119
102
278
176

4





1418.53
10
LLSNDMCARV
HuK2.178.V10

5.3
0.70
4.3
10
1702
4





1418.71
11
KVTEFMLCAGV
HuK2.191.V11

56
10
26
29
143
5


1418.21
9
KVTEFMLCV
HuK2.191.V9

53
27
31
34
6667
4





1418.22
9
FMLCAGLWV
HuK2.195.V9

29
12
91
51

4





1419.17
11
PLVCNGVLQGV
HuK2.216.V11
PSA.212.V11
27
127
19
255
4314
4





1418.55
10
LVCNGVLQGV
HuK2.217.V10
PSA.213.V11
10
2.9
12
5.6
3.5
5







-- indicates binding affinity >10,000 nM.














TABLE XXIVA










Immunogenicity of A2 cross-reactive binding peptides and peptide analogs





























Cross






Peptide



A*0201
A*0202
A*0203
A*0206
A*6802
Reactivity
A2
A2
A2


ID
AA
Sequence
Source
nM
nM
nM
nM
nM
(≦200nM)
peptide
native
in vivo























1419.51
10
SLSLGFLFLL
PAP.13
40
13
403
21
8560
3






1419.52
10
SLSLGFLFLV
PAP.13.V10
1.8
3.9
17
42
355
4





1097.09
10
LLFFWLDRSV
PAP.21
28
0.60
1.6
231

3
3/3

0/3


1418.23
10
LTFFWLDRSV
PAP.21.T2
118
11
9.6
43
16
5
3/3
2/3





1097.17
9
VLAKELKFV
PAP.30
96
3.6
6.7
168

4
1/3

0/3





1177.01
9
TLMSAMTNL
PAP.112
43
0.80
2.9
285
296
3
2/2

3/3





1419.58
10
LLALFPPEGV
PAP.120.L2
5.0
0.72
1.6
146
164
5





1419.61
10
ALFPPEGVSV
PAP.122.V10
15
1.0
18
120
4387
4
1/3
1/3





1044.04
9
ILLWQPIPV
PAP.135
3.3
39
1.8
71
8511
4
5/5

1/6


1418.25
9
ITLWQPLPV
PAP.135.T2
34
1723
6.2
26
32
4
3/3
2/3





1419.69
10
LLWQPIPVHV
PAP.136.V10
25
1.8
17
287
60
4





1166.11
10
GLHGQDLFGI
PAP.196
26
0.9
2.5
315

3


1419.62
10
GLHGQDLFGV
PA.P.196.V10
12
2.3
3.2
18

4





1097.05
10
IMYSAHDTTV
PAP.284
217
1.5
14
411

2
3/3

0/3





1419.64
10
LLPPYASCHV
PAP.306.V10
88
15
16
98
5260
4
















TABLE XXIVB










Immunogenicity of A2 cross-reactive binding peptide and peptide analogs





























Cross






Peptide



A*0201
A*0202
A*0203
A*0206
A*6802
Reactivity
A2
A2
A2


ID
AA
Sequence
Source
nM
nM
nM
nM
nM
(≦200 nM)
peptide
native
in vivo























1126.10
9
VLAGGFFLL
PSM.27
39
0.20
33
31

4
1/2

3/3



1389.20
9
VLAGGFFLV
PSM.27.V9
26
0.40
5.0
57
216
4
1/2
1/2





1129.04
10
GMPEGDLVYY
PSM.168
55
3.1
7.1
161

4
0/1

1/3





1129.10
10
GLPSIPVHPI
PSM.288
147
2.7
2.1
2467
1538
3
2/4

0/3


1389.24
10
GLPSIPVHPV
PSM.288.V10
55
0.70
0.60
308
121
4
4/4
3/4





1129.01
10
LLQERGVAYI
PSM.441
179
5.7
6.7
861

3
3/3





1126.14
9
LMYSLVHNL
PSM.469
64
0.40
2.1
109
1600
4
3/3

3/3





1126.06
10
RMMNDQLMFL
PSM.662
9.8
2.7
7.7
40

4
1/1

20/22


1126.01
9
MMNDQLMFL
PSM.663
11
0.80
1.7
7.6
976
4
2/2

3/3





1129.08
9
ALFDIESKV
PSM.711
85
0.70
1.4
148

4
2/2

3/3

















TABLE XXIVC








Immunogenicity of A2 cross-reactive



binding peptides and peptide analogs


































Peptide



Alternate
A*0201
A*0202
A*0203


ID
AA
Sequence
Source
Source
nM
nM
nM


















1419.27
11
FLTLSVTWIGV
PSA.3.V11

6.8
3.0
18






1419.11
11
VLVHPQWVLTV
PSA49.V11
HuK2.53.V11
11
1.6
16





1419.13
11
DLMLLRLSEPV
PSA.116.V11
HuK2.120.V11
50
57
29





1419.02
9
MLLRLSEPA
PSA.118
HuK2.122
195
745
145


1389.10
9
MLLRLSEPV
PSA.118.V9
HuK2.122.V9
36
36
46





1419.01
8
ALGTTCYA
PSA.143
PSA.143
15
19
13


1389.14
8
ALGTTCYV
PSA.143.V8
HuK2.147.V8
74
6.4
12





1098.02
10
FLTPKKLQCV
PSA.161

52
8.3
13





990.01
9
KLQCVDLHV
PSA.166

79
205
91


1419.24
10
KLQCVDLHVV
PSA.166.V10

13
84
9.5





1419.17
11
PLVCNGVLQGV
PSA.212.V11
HuK2.216.V11
27
127
19






















Cross-







Peptide
A*0206
A*6802
Reactivity
A2
A2
A2



ID
nM
nM
(≦200 nM)
peptide
native
in vivo




















1419.27
65
113
5
3/3
3/3









1419.11
31
9378
4







1419.13
148
2759
4







1419.02
49

3



1389.10
638
421
3
3/3
1/3







1419.01
562

3



1389.14
264

3
2/3
1/3







1098.02
755

3
3/4

0/6







990.01
6167

2
1/2

1/3



1419.24
502

3
1/2
1/2







1419.17
255
4314
3


















TABLE XXIVD








Immunogenicity of A2 cross-reactive



binding peptides and peptide analogs









































Alternate
A*0201
A*0202
A*0203


Peptide
ID
AA
Sequence
Source
Source
nM
nM
nM



















1418.13

9
LLLSIALSV
HuK2.4.L2

88
176
147






1419.05

10
ALSVGCTGAV
HuK2.9

53
75
17





1419.11

11
VLVHPQWVLTV
HuK2.53.V11
PSA49.V11
11
1.6
16





1419.13

11
DLMLLRLSEPV
HuK2.120.V11
PSA.116.V11
50
57
29





1419.02

9
MLLRLSEPA
HuK2.122
PSA.118
195
745
145


1389.10

9
MLLRLSEPV
HuK2.122.V9
PSA.118.V9
36
36
46





1419.01

8
ALGTTCYA
HuK2.147
PSA.143
15
19
13


1389.14

8
ALGTTCYV
HuK2.147.V8
PSA.143.V8
74
6.4
12





1419.07

10
FLRPRSLQCV
HuK2.165

186
4.8
4





1419.14

11
SLHLLSNDMCA
HuK2.175

72
4.8
73





1419.17

11
PLVCNGVLQGV
HuK2.216.V11
PSA.212.V11
27
127
19






















Cross-








A*0206
A*6802
Reactivity
A2
A2
A2



Peptide
nM
nM
(≦200 nM)
peptide
native
in vivo




















1418.13
189

4
2/2
2/2









1419.05
542

3







1419.11
31
9378
4
2/2
2/2







1419.13
148
2759
4
2/2
2/2







1419.02
49

3



1389.10
638
421
3







1419.01
562

3
1/2



1389.14
264

3







1419.07


3
1/3







1419.14


3
1/3







1419.17
255
4314
3
2/2
2/2

















TABLE XXV










DR supermotif and DR3 motif-bearing peptides


cross-reactive binding peptides












DR supermotif
DR3












Antigen
Motif+
Algorithm+*
Motif+
















PAP
67
 39/15
21



PSM
45
25/7
4



PSA
108
 54/20
31



HuK2
45
21/6
4



Total
265
139/48
60









*Number scoring positive in the combined DR1, DR4w4 and DR7 algorithms (≧1/≧2)







Claims
  • 1-37. (canceled)
  • 38. An isolated peptide comprising an oligopeptide less than 13 amino acids in length; wherein said oligopeptide is RMMNDQLMFL (SEQ ID NO:862); and wherein said isolated peptide does not encode a full length protein from prostate specific membrane antigen (PSM).
  • 39. The polypeptide of claim 38, which further comprises a member selected from the group consisting of: (a) at least one cytotoxic T lymphocyte (CTL) epitope; (b) at least one helper T lymphocyte (HTL) epitope; and (c) at least one of the epitopes of Tables VII-XX.
  • 40. The peptide of claim 39, wherein the at least one HTL epitope is a PADRE® epitope.
  • 41. A homopolymer of the peptide of claim 38.
  • 42. A heteropolymer of the peptide of claim 38 and a different peptide.
  • 43. An isolated polynucleotide encoding the peptide of claim 38.
  • 44. A vector comprising the polynucleotide of claim 43.
  • 45. The vector of claim 44, which is a bacterial vector or a viral vector.
  • 46. The vector of claim 44, which is a minigene.
  • 47. A composition comprising the peptide of claim 38 and a pharmaceutical excipient.
  • 48. A composition comprising the peptide of claim 38 and a carrier.
  • 49. A composition comprising the peptide of claim 38 and a lipid.
  • 50. A composition comprising the peptide of claim 38 and one or more other peptides.
  • 51. The composition of claim 50, wherein said peptides are linked by spacer or linker amino acids.
  • 52. The composition of claim 50, wherein said one or more other peptides comprises a member selected from the group consisting of: (a) at least one cytotoxic T-cell (CTL) epitope; and (b) at least one helper T-cell (HTL) epitope.
  • 53. The composition of claim 50, further comprising a member selected from the group consisting of: (a) a liposome, wherein the epitopes are on or within the liposome; and (b) an antigen presenting cell, wherein the epitopes are on or within the antigen presenting cell.
  • 54. A method of inducing an immune response against prostate specific membrane antigen (PSM) comprising administering the composition of claim 47.
  • 55. A method of treating and/or preventing cancer comprising administering the composition of claim 47.
  • 56. The method of claim 55, comprising the use of a prime boost protocol, wherein the prime boost protocol comprises administration of a boosting agent.
  • 57. The method of claim 56, wherein the boosting agent comprises the peptide.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims priority to provisional application 60/171,312 filed Dec. 21, 1999. This application is related to U.S. Ser. No. 09/189,702, filed Nov. 10, 1998, which is a CIP of U.S. Ser. No. 08/205,713 filed Mar. 4, 1994, which is a CIP of abandoned U.S. Ser. No. 08/159,184 filed Nov. 29, 1993, which is a CIP of abandoned U.S. Ser. No. 08/073,205 filed Jun. 4, 1993 which is a CIP of abandoned U.S. Ser. No. 08/027,146 filed Mar. 5, 1993. The present application is also related to U.S. Ser. No. 09/226,775, which is a CIP of abandoned U.S. Ser. No. 08/815,396, which claims benefit of abandoned U.S. Ser. No. 60/013,113. Furthermore, the present application is related to U.S. Ser. No. 09/017,735, which is a CIP of abandoned U.S. Ser. No. 08/589,108; U.S. Ser. No. 08/454,033; and U.S. Ser. No. 08/349,177. The present application is also related to U.S. Ser. No. 09/017,524, U.S. Ser. No. 08/821,739, which claims benefit of abandoned U.S. Ser. No. 60/013,833; and U.S. Ser. No. 08/347,610, which is a CIP of U.S. Ser. No. 08/159,339, which is a CIP of abandoned U.S. Ser. No. 08/103,396, which is a CIP of abandoned U.S. Ser. No. 08/027,746, which is a CIP of abandoned U.S. Ser. No. 07/926,666. The present application is also related to U.S. Ser. No. 09/017,743, which is a CIP of abandoned U.S. Ser. No. 08/590,298; and U.S. Ser. No. 08/452,843, which is a CIP of U.S. Ser. No. 08/344,824, which is a CIP of abandoned U.S. Ser. No. 08/278,634. The present application is also related to PCT application 99/12066 filed May 28, 1999 which claims benefit of provisional U.S. Ser. No. 60/087,192, and U.S. Ser. No. 09/009,953, which is a CIP of abandoned U.S. Ser. No. 60/036,713 and abandoned U.S. Ser. No. 60/037,432. In addition, the present application is related to U.S. Ser. No. 09/098,584, U.S. Ser. No. 09/239,043, U.S. Ser. No. 60/117,486, U.S. Ser. No. 09/350,401, and U.S. Ser. No. 09/357,737. In addition, the present application is related to U.S. patent application entitled “Inducing Cellular Immune Responses to Carcinoembryonic Antigen Using Peptide and Nucleic Acid Compositions”, Attorney Docket No. 018623-014400, filed Dec. 10, 1999; U.S. patent application entitled “Inducing Cellular Immune Responses to p53 Using Peptide and Nucleic Acid Compositions”; Attorney Docket No. 018623-014500, filed Dec. 10, 1999; U.S. patent application entitled “Inducing Cellular Immune Responses to MAGE2/3 Using Peptide and Nucleic Acid Compositions”, Attorney Docket No. 018623-014600, filed Dec. 10, 1999; and U.S. patent application entitled “Inducing Cellular Immune Responses to HER2/neu Using Peptide and Nucleic Acid Compositions”, Attorney Docket No. 018623-014800, filed Dec. 10, 1999. All of the above applications are incorporated herein by reference.

FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT

This invention was funded, in part, by the United States government under grants with the National Institutes of Health. The U.S. government has certain rights in this invention.

Provisional Applications (1)
Number Date Country
60171312 Dec 1999 US
Divisions (1)
Number Date Country
Parent 09633364 Aug 2000 US
Child 11418504 May 2006 US
Continuation in Parts (1)
Number Date Country
Parent 09189702 Nov 1998 US
Child 09633364 Aug 2000 US