This disclosure relates to cookware for induction cooktops.
Some conventional cooktops deliver heat to a cooking utensil (e.g., a pan, pot, skillet, etc.) by for example a gas flame or electric resistance coil. In these cooktops, any material that lies between the heat source and the cooking utensil (e.g., a glass cooktop) is also heated. Induction cooktops work differently. In an induction cooktop, an alternating current in an induction coil produces a time dependent magnetic field that induces eddy currents in electrically conductive materials near the coil, such as a ferromagnetic component (or the target material) of induction cooking utensils. As eddy currents flow within the target material, it becomes hot via a joule heating mechanism. Heat in the target is conducted through the body of the cooking utensil to the food surface, and the food is cooked. Unlike gas or electric cooktops, induction cooktops will not directly heat non-conductive materials (such as a glass cooktop) that are placed between the induction coil and the target material. However, any such non-conductive materials placed between the induction coil and the target material may be indirectly heated by the radiant, convective, or conductive heat emanating from the hot target material.
Generally, in one aspect, a cooking utensil for use with an induction cooktop includes an inner wall comprising an electrically conductive material, an outer wall separated from the inner wall by a gap that is devoid of gas such that a vacuum is formed within the gap, and a getter material (such as a Zirconium alloy) disposed within the gap that absorbs at least some gas within the gap.
Implementations may include one or more of the following. The getter material may be heat activated and may have an activation temperature within the normal range of the cooking utensil (e.g., about 100 and 275° C.), or it may be activated at higher temperatures (e.g., about 350 and 500° C.). The vacuum may be formed within the entire gap itself, or a vacuum-sealed thermally resistant material (e.g., aerogel vacuum-sealed between two sheets of material) may be disposed within the gap. The getter material may be disposed within the vacuum gap to create, preserve or increase the magnitude of the vacuum.
The outer wall of the cooking utensil may comprise (or in some cases consist entirely of) an electrically insulating material. The outer wall may be also formed of different materials, such as one type of material (or combination of materials) for the sidewalls of the cooking utensil (e.g., metal) and another type of materials (or combination of materials) for the bottom portion of the utensil (e.g., a non-conductive window). The outer wall may be the outermost wall of the cooking utensil. A reflective layer (e.g., a metallic or dielectric reflector) may be disposed between the inner and outer walls, for example, on the sidewall portion, bottom portion, or both portions of the utensil.
The inner wall of the cooking utensil may include multiple layers of material (e.g., stainless steel and/or aluminum). The inside of the inner wall may include a non-stick coating material. The inner wall may be the innermost wall of the cooking utensil.
Generally, in another aspect, an induction cooking system includes an induction cooktop (in the form of a surface cooktop, self-standing stove, etc.) that includes an induction heating coil and a cooking utensil for use with the cooktop. The cooking utensil includes an inner wall that includes an electrically conductive material, an outer wall separated from the inner wall by a gap that is devoid of gas such that a vacuum is formed within the gap, and a getter material disposed within the gap that absorbs at least some gas within the gap. Implementations of the cooking utensil may include one or more of features and/or characteristics recited above.
Generally, in another aspect, an induction cooking system includes an induction cooktop that includes an induction heating coil and a cooking utensil for use with the cooktop. The cooking utensil includes an inner wall that includes an electrically conductive material, an outer wall separated from the inner wall by a gap that is devoid of gas such that a vacuum is formed within the gap, and a getter material disposed within the gap that absorbs at least some gas within the gap. Implementations of the cooking utensil may include one or more of features and/or characteristics recited above.
Generally, in another aspect, a method for manufacturing an induction cooking utensil includes providing an inner wall that includes at least some electrically conductive material, providing an the outer wall, providing a getter material, and attaching the inner and outer walls such that the getter material is positioned in a gap between the inner wall and outer wall.
Implementations may include one or more of the following. The method may also include forming a vacuum between the inner and outer wall. The method may include attaching the getter material to the outside of the inner wall and/or to the inside of the outer wall. The method may also include activating the getter material after attaching the inner and outer walls (e.g., such that activation of the getter material creates or increases the vacuum between the inner and outer walls). The getter material may have an activation temperature above the normal operating temperate of the utensil. The outer wall of the utensil may be formed of an electrically non-conductive material.
Cookware used with an induction cooktop may be designed to rapidly heat food or liquid while maintaining an outer surface that is cool enough to handle with bare hands or directly place on a wooden dining table (or other heat sensitive surface) without causing damage. To do this, the cookware should be constructed in a way so that any component between the induction coil and the target allows the magnetic field produced by the induction coil to reach the target (that is the component should be essentially invisible to the magnetic field) and also have a high thermal resistance (to abate radiant, convective, and conductive heat transfer from the target material to the outside of the cookware).
For example, as shown in
The inner wall 13 is the target of the induction coil 12 and is formed of an electrically conductive material, and preferably a ferromagnetic material such as 410 stainless steel. The material of the inner wall may be engineered to have a particular Curie point to help prevent the inner wall from exceeding a predetermined temperature (e.g., 250° C.-275° C.).
The outer wall 14 is designed to stay relatively cool even while the inner wall (and food or liquid within the cooking utensil) is heated to high temperatures for extended periods of time. For example, the induction cooktop may heat the target material to 233° C.-275° C. while the outer surface of the cooking utensil is maintained at about 60° C. or less. In this example, the outer wall 14 is formed at least in part, of an electrically non-conductive material (e.g., an insulator having a resistivity greater than about one ohm-meter), such as glass ceramic, glass, or plastic (e.g., a plastic such as polyether sulfone resin (PES), Liquid Crystal Polymer (LCP), or Polyetheretherketone (PEEK)). For implementations that include a vacuum gap between the inner and outer walls, the material of the outer wall is also preferably formed of material that is impermeable to atmospheric gasses, and either inherently does not outgas, or is provided with a barrier material which prevents outgassing (to preserve the vacuum). Applications which include a vacuum gap (pressures of between 0.001 and 1 torr) significantly reduce both conductive and convective heat transfer from the target surface to the outer surface.
The thin layer of reflective material 17 reflects a significant portion of the radiant heat radiated by the inner wall (i.e., the target of the induction coil) away from the outer surface, thus helping to keep the outer wall 14 relatively cool. This reflective layer may be formed of any material having a high reflectance (e.g., greater than 80% and preferably between 90-100%) and low emissivity (e.g., an emissivity less than about 0.20 and preferably around 0.01-0.04) for radiation in the infrared and visible electromagnetic spectra (e.g., radiation having a wavelength of between 0.4 μm and 1×104 μm). As shown in
The reflective layer may lie between the induction coil and the target (as is shown in
The reflective layer may be formed using any known technique for the particular material. For example, a dielectric reflective layer such as Spectraflect® by Labsphere in North Sutton, N.H. USA (www.labspere.com) may be coated onto the inner surface of the outer wall. Other dielectric reflectors may be produced in sheets and may be adhered to the outer wall. Other metallic reflectors may be coated on thin-film polymeric substrates such as Kapton® by E. I. du Pont de Nemours and Company, Wilmington, Del., USA, which in turn may be adhered to the outer wall. Additionally, evaporation coating may be used to deposit a thin layer of a metallic reflector on the inner surface of the outer wall.
It should be noted that the reflective layer need not be attached to the outer wall. In some implementations, the reflective layer may be disposed on the outer surface of the inner wall. In other implementations, the reflective layer may be a separate structure disposed between the inner and outer walls; for example, a layer of thermal insulating material (e.g., aerogel) may be disposed between the inside of the outer wall and the reflective layer.
Referring again to
The joint 16 between the inner and outer walls may be formed using any known joining technique (e.g., joining with a high-temperature adhesive, mechanical seal (such as an o-ring), or a brazed joint). For implementations that include a vacuum gap between the inner and outer walls (such as shown in
In an implementation that includes a vacuum gap, the pressure in the gap will increase over time regardless of the materials selected for the walls and the quality of the joint due to outgassing of the bulk materials and leakage at the joint. Metallic and glass/glass ceramic materials will outgas very slowly, while polymeric materials will outgas relatively rapidly. As the pressure increases, the thermal resistance of the cooking utensil diminishes. One technique for helping to slow the leakage of gas into a vacuum gap for a polymeric material is to seal the outer wall using a thin film coating such as an ultra low-outgassing epoxy or a metallic coating. In addition, however, a getter material may be disposed between the inner and outer walls to help preserve the vacuum over time (and thus also helping to maintain the cookware's thermal resistance over time).
For example, as shown in
Getter material may also be used to reduce the pressure existing between the inner and outer chambers. For example, a larger amount of getter material may be placed between the inner and outer walls and then activated after the walls are joined to form the vacuum, however the getter will not absorb Argon gas, which is present in the atmosphere. Alternatively, the air in the gap between the inner and outer walls may be evacuated during the joining process to achieve a vacuum at a certain magnitude (e.g., 1 torr) and then getter material may be activated to increase the magnitude of the vacuum (e.g., to 1×10−3 torr).
While the cookware illustrated thus far show single layer inner and outer walls, other implementations may use multi-layered inner and/or outer walls. For example, as shown in
Referring now to
The insulating window 44 may be attached to the metallic sidewall 43 using any known technique for the materials selected, such as, brazing, insert molding, or attaching using an adhesive or a mechanical seal. The joint 47 between the insulating window 44 and metallic sidewalls 43 is preferably air-tight to preserve the vacuum. A piece of getter material 46 is also attached to the outside of the inner wall to preserve the vacuum over time. Any electrically non-conductive material may be used for the window, such as glass-ceramics (e.g., Robax® or Ceran® available from Schott North America, Inc in Elmsford, N.Y. (www.us.schott.com)), technical glasses (e.g., Pyrex® available from Corning Incorporated in Corning, N.Y. (www.corning.com), ceramic white ware (CorningWare® available from Corning Incorporated), or plastic (e.g., PES LCP, or PEEK). In some implementations, the insulating window may extend up into the sidewall portions of the outer wall, while a metallic sidewall may be attached to the outer surface of the insulating window on the side of the cooking utensil.
In some implementations, an induction cooking utensil may not have a vacuum gap that separates the inner and outer walls. For example, as shown in
In another example shown in
A cooking utensil may also include openings in its outer wall to promote convective cooling of the outer wall. For example, as shown in
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention, and, accordingly, other embodiments are within the scope of the following claims.
This application claims benefit from U.S. Provisional Patent Application No. 60/970,795 filed Sep. 7, 2007, 60/970,766 filed Sep. 7, 2007, 60/970,775 filed Sep. 7, 2007, and 60/970,785 filed Sep. 7, 2007, the contents of each of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60970795 | Sep 2007 | US | |
60970766 | Sep 2007 | US | |
60970775 | Sep 2007 | US | |
60970785 | Sep 2007 | US |