This application claims benefit of priority to Japanese Patent Application No. 2021-172606 filed Oct. 21, 2021, the entire content of which is incorporated herein by reference.
The present disclosure relates to an inductor component.
Conventionally, as an inductor component, there is an inductor component described in Japanese Patent No. 6024243. The inductor component described in Japanese Patent No. 6024243 includes an element body containing metal magnetic powder, an inductor wire provided in the element body, and two vertical wires provided in the element body, connected to both ends of the inductor wire, and extending to a principal surface of the element body. The element body includes a resin (hereinafter, referred to as the “metal magnetic powder-containing resin”) containing the metal magnetic powder.
Incidentally, it has been found that the inductor component described in Japanese Patent No. 6024243 has the following problems. After the vertical wire is formed, when the vertical wire is covered with the metal magnetic powder-containing resin, the metal magnetic powder excessively enters a side surface of the vertical wire, and a contact area between the metal magnetic powder and the vertical wire increases. As a result, there is a problem that a leak path is formed between the vertical wires.
Therefore, the present disclosure provides an inductor component capable of suppressing formation of a leak path between vertical wires.
An inductor component according to an aspect of the present disclosure includes an element body that includes a plurality of magnetic powders at least one of which contains an Fe element as a main component and has a first principal surface and a second principal surface; and an inductor wire that is provided in the element body and extends along a plane parallel to the first principal surface. The inductor component further includes a vertical wire that is provided in the element body, is connected to an end of the inductor wire, and extends to the first principal surface in a direction orthogonal to the first principal surface; and a conductive protection film that covers at least a part of a side surface of the vertical wire extending along a direction orthogonal to the first principal surface and has a higher hardness than the vertical wire.
According to the above aspect, since at least a part of the side surface of the vertical wire is covered with the conductive protection film having the higher hardness than the vertical wire, entry of the conductive protection film and the magnetic powder into the vertical wire can be reduced. Therefore, a contact area between the conductive protection film and the magnetic powder can be reduced while a contact area between the vertical wire and the conductive protection film at the entry portion is reduced, and a conduction path between the vertical wire and the magnetic powder can be reduced. As a result, when vertical wires are provided at both ends of the inductor wire or a plurality of inductor wires are provided, it is possible to suppress formation of a leak path between the vertical wires.
Preferably, in an embodiment of the inductor component, the conductive protection film is in contact with at least one of the plurality of magnetic powders, and the magnetic powder in contact is in contact with the conductive protection film without entering the side surface of the vertical wire.
According to the above embodiment, the conduction path between the vertical wire and the magnetic powder can be further reduced, and the formation of the leak path between the vertical wires can be suppressed when the vertical wires are provided at both ends of the inductor wire or when a plurality of inductor wires are provided. Note that the fact that the magnetic powder does not enter the side surface of the vertical wire means that the magnetic powder does not enter the inside of a main plane of the side surface of the vertical wire with respect to the main plane. Therefore, if the entire magnetic powder is located outside the plane, the magnetic powder does not enter the side surface of the vertical wire although the magnetic powder enters the conductive protection film.
Preferably, in an embodiment of the inductor component, a thickness of the conductive protection film is smaller than an equivalent circle diameter of the vertical wire in a section orthogonal to an extending direction of the vertical wire, and an electrical resistivity of the conductive protection film is larger than an electrical resistivity of the vertical wire.
According to the above embodiment, since the electrical resistivity of the conductive protection film is larger than the electrical resistivity of the vertical wire, the formation of the leak path can be further suppressed. In addition, since the thickness of the conductive protection film is relatively small, a proportion occupied by the vertical wire having a low electrical resistivity increases in a current path including the vertical wire and the conductive protection film. As a result, an increase in electric resistance in the current path can be suppressed.
Preferably, in an embodiment of the inductor component, the conductive protection film includes a plurality of layers.
According to the above embodiment, various characteristics such as close contact and stress of the conductive protection film can be appropriately adjusted.
Preferably, in an embodiment of the inductor component, each of the plurality of layers has a different hardness.
According to the above embodiment, various characteristics such as close contact and stress of the conductive protection film can be appropriately adjusted.
Preferably, in an embodiment of the inductor component, each of the plurality of layers has a different electrical resistivity.
According to the above embodiment, various characteristics such as close contact and stress of the conductive protection film can be appropriately adjusted.
Preferably, in an embodiment of the inductor component, the vertical wire and the conductive protection film are exposed to the first principal surface.
According to the above embodiment, since an exposed surface of the vertical wire is surrounded by the conductive protection film having a high hardness on the first principal surface, the vertical wire can be suppressed from extending along the first principal surface when the first principal surface is ground.
Preferably, in an embodiment of the inductor component, the inductor component further includes an external terminal provided on the first principal surface, and the external terminal is directly connected to at least a part of the vertical wire and the conductive protection film.
According to the above embodiment, the electric resistance between the external terminal and the vertical wire can be reduced.
Preferably, in an embodiment of the inductor component, the inductor component further includes a first insulating layer provided on the first principal surface.
According to the above embodiment, when there are a plurality of external terminals, a short circuit between the external terminals can be suppressed.
Preferably, in an embodiment of the inductor component, a surface shape of the conductive protection film is an uneven shape.
According to the above embodiment, the element body enters the irregularities of the conductive protection film, so that an anchor effect is generated, and the close contact between the conductive protection film and the element body can be secured.
Preferably, in an embodiment of the inductor component, the conductive protection film is further provided between the vertical wire and the inductor wire, and the vertical wire is electrically connected to the inductor wire with the conductive protection film interposed therebetween.
According to the above embodiment, since the conductive protection film can also be formed at the time of forming the vertical wire, the inductor component can be easily manufactured.
Preferably, in an embodiment of the inductor component, at least a part of the inductor wire is covered with a second insulating layer, and the conductive protection film is in contact with the element body and the second insulating layer.
According to the above embodiment, since the conductive protection film is in contact with the second insulating layer covering at least a part of the inductor wire, the close contact between the conductive protection film and the second insulating layer can be secured. In addition, since the conductive protection film is also in contact with the element body, a volume of the element body can be increased as compared with a case where the conductive protection film is not in contact with the element body, and inductance acquisition efficiency can be improved.
Preferably, in an embodiment of the inductor component, a wire length of the vertical wire is larger than a thickness of the inductor wire in a direction orthogonal to the first principal surface.
According to the above embodiment, the volume of the element body can be increased, and the inductance can be increased.
Preferably, in an embodiment of the inductor component, the inductor wire includes a plurality of inductor wires, and the plurality of inductor wires are disposed on the same plane parallel to the first principal surface and electrically separated from each other.
According to the above embodiment, an inductor array can be configured, and the inductance density can be increased.
Preferably, in an embodiment of the inductor component, the inductor wire extends along a plane parallel to the first principal surface, the inductor wire includes a plurality of inductor wires, and the plurality of inductor wires are disposed side by side in a direction orthogonal to the first principal surface and are electrically connected in series
According to the above embodiment, the inductance can be increased.
Preferably, in an embodiment of the inductor component, the conductive protection film includes at least one of a Ti element, an Ni element, an Fe element, and a Cu element.
According to the above embodiment, when vertical wires are provided at both ends of the inductor wire or a plurality of inductor wires are provided, formation of a leak path between the vertical wires can be more effectively suppressed.
Preferably, in an embodiment of the inductor component, the vertical wire is made of the same material as the inductor wire and includes at least one of an Ag element and a Cu element.
According to the above embodiment, the electric resistance of the vertical wire can be reduced.
Preferably, in an embodiment of the inductor component, the conductive protection film has a higher hardness than the magnetic powder.
According to the above embodiment, it is possible to further suppress entry of the magnetic powder into the vertical wire.
Preferably, in an embodiment of the inductor component, the conductive protection film has a lower hardness than the magnetic powder.
According to the above embodiment, since the magnetic powder can enter the conductive protection film, the close contact between the conductive protection film and the element body can be improved by the anchor effect.
Preferably, in an embodiment of the inductor component, the plurality of magnetic powders include a magnetic powder having a higher hardness than the conductive protection film and a magnetic powder having a lower hardness than the conductive protection film.
According to the above embodiment, it is possible to suppress entry of the magnetic powder into the vertical wire and to improve the close contact between the conductive protection film and the element body.
According to an inductor component according to one aspect of the present disclosure, it is possible to suppress formation of a leak path between vertical wires.
Hereinafter, an inductor component which is one aspect of the present disclosure will be described in detail with reference to illustrated embodiments. Note that the drawings include some schematic drawings, and may not reflect actual dimensions or ratios.
An inductor component 1 is mounted on an electronic device such as a personal computer, a DVD player, a digital camera, a TV, a mobile phone, or car electronics, and is, for example, a component having a rectangular parallelepiped shape as a whole. However, the shape of the inductor component 1 is not particularly limited, and may be a columnar shape, a polygonal columnar shape, a truncated cone shape, or a polygonal frustum shape.
As illustrated in
In the drawings, a thickness direction of the inductor component 1 is defined as a Z direction, a forward Z direction is defined as an upper side, and a reverse Z direction is defined as a lower side. In a plane orthogonal to the Z direction of the inductor component 1, a length direction of the inductor component 1 is defined as an X direction, and a width direction of the inductor component 1 is defined as a Y direction.
The element body 10 has a first principal surface 10a and a second principal surface 10b, and a first side surface 10c, a second side surface 10d, a third side surface 10e, and a fourth side surface 10f that are located between the first principal surface 10a and the second principal surface 10b and connect the first principal surface 10a and the second principal surface 10b.
The first principal surface 10a and the second principal surface 10b are disposed opposite to each other in the Z direction, the first principal surface 10a is disposed in the forward Z direction, and the second principal surface 10b is disposed in the reverse Z direction. The first side surface 10c and the second side surface 10d are disposed opposite to each other in the X direction, the first side surface 10c is disposed in the reverse X direction, and the second side surface 10d is disposed in the forward X direction. The third side surface 10e and the fourth side surface 10f are disposed opposite to each other in the Y direction, the third side surface 10e is disposed in the reverse Y direction, and the fourth side surface 10f is disposed in the forward Y direction.
The element body 10 has a first magnetic layer 11 and a second magnetic layer 12 sequentially stacked along the forward Z direction. Each of the first magnetic layer 11 and the second magnetic layer 12 includes a plurality of magnetic powders and a resin containing the plurality of magnetic powders. The resin is, for example, an organic insulating material including an epoxy-based resin, a phenol-based resin, a liquid crystal polymer-based resin, a polyimide-based resin, an acrylic resin, or a mixture containing them. The magnetic powder is, for example, an FeSi-based alloy such as FeSiCr, an FeCo-based alloy, an Fe-based alloy such as NiFe, or an amorphous alloy thereof. Therefore, as compared with a magnetic layer made of ferrite, DC superposition characteristics can be improved by the magnetic powder, and magnetic powders are insulated from each other by the resin, so that a loss (iron loss) at a high frequency is reduced.
The first inductor wire 21 and the second inductor wire 22 are disposed between the first magnetic layer 11 and the second magnetic layer 12, and extend along a plane parallel to the first principal surface 10a. Specifically, the first magnetic layer 11 exists in the reverse Z direction of the first inductor wire 21 and the second inductor wire 22, and the second magnetic layer 12 exists in the direction orthogonal to the forward Z direction and the forward Z direction of the first inductor wire 21 and the second inductor wire 22.
The first inductor wire 21 extends linearly along the X direction when viewed from the Z direction. When the second inductor wire 22 is viewed from the Z direction, a part of the second inductor wire 22 extends linearly along the X direction, and the other part extends linearly along the Y direction, that is, the second inductor wire 22 extends in an L shape.
The thicknesses of the first and second inductor wires 21 and 22 are preferably, for example, 40 µm or more and 120 µm or less (i.e., from 40 µm to 120 µm). As examples of the first and second inductor wires 21 and 22, the thickness is 35 µm, the wire width is 50 µm, and the maximum space between the wires is 200 µm.
The first inductor wire 21 and the second inductor wire 22 are made of a conductive material, for example, a low electric resistance metal material such as Cu, Ag, Au, or Al. The first inductor wire 21 and the second inductor wire 22 may be wires including not only a single metal such as Cu or Ag but also an alloy containing a Cu element or an Ag element. In the present embodiment, the inductor component 1 includes only one layer of the first and second inductor wires 21 and 22, and the height of the inductor component 1 can be reduced. Note that the inductor wire may have a two-layer structure of a seed layer and an electrolytic plating layer, or may contain Ti or Ni as the seed layer.
A first end 21a of the first inductor wire 21 is electrically connected to the first columnar wire 31, and a second end 21b of the first inductor wire 21 is electrically connected to the second columnar wire 32. That is, the first inductor wire 21 has a pad portion having a large line width at the first and second ends 21a and 21b, and is directly connected to the first and second columnar wires 31 and 32 at the pad portions.
A first end 22a of the second inductor wire 22 is electrically connected to the third columnar wire 33, and a second end 22b of the second inductor wire 22 is electrically connected to the second columnar wire 32. That is, the second inductor wire 22 has a pad portion at the first end 22a, and is directly connected to the third columnar wire 33 at the pad portion. The second end 22b of the second inductor wire 22 is common to the second end 21b of the first inductor wire 21.
The first end 21a of the first inductor wire 21 and the first end 22a of the second inductor wire 22 are located on the side of the first side surface 10c of the element body 10 when viewed from the Z direction. The second end 21b of the first inductor wire 21 and the second end 22b of the second inductor wire 22 are located on the side of the second side surface 10d of the element body 10 when viewed from the Z direction.
A first extended wire 201 is connected to each of the first end 21a of the first inductor wire 21 and the first end 22a of the second inductor wire 22, and the first extended wire 201 is exposed from the first side surface 10c. A second extended wire 202 is connected to the second end 21b of the first inductor wire 21 and the second end 22b of the second inductor wire 22, and the second extended wire 202 is exposed from the second side surface 10d.
The first extended wire 201 and the second extended wire 202 are wires to be connected to a power supply wire when electrolytic plating is additionally performed after the shapes of the first and second inductor wires 21 and 22 are formed in the manufacturing process of the inductor component 1. In an inductor substrate state before the inductor component 1 is cut with the dicing machine by the power supply wire, electrolytic plating can be additionally easily performed, and the distance between the wires can be decreased. Further, by additionally performing electrolytic plating and decreasing the distance between the wires of the first and second inductor wires 21 and 22, magnetic coupling between the first and second inductor wires 21 and 22 can be enhanced. In addition, by providing the first extended wire 201 and the second extended wire 202, the strength can be secured at the time of cutting the element body 10 when the inductor component 1 is cut with the dicing machine, and the yield at the time of manufacturing can be improved.
The first to third columnar wires 31 to 33 extend in the Z direction from the inductor wires 21 and 22 and penetrate the inside of the second magnetic layer 12. The columnar wire corresponds to a “vertical wire” described in the claims.
The first columnar wire 31 extends from a top surface of the conductive protection film 90 provided on a top surface of the first end 21a of the first inductor wire 21 to the first principal surface 10a of the element body 10, and the end face of the first columnar wire 31 is exposed from the first principal surface 10a of the element body 10. The second columnar wire 32 extends from the top surface of the conductive protection film 90 provided on a top surface of the second end 21b of the first inductor wire 21 to the first principal surface 10a of the element body 10, and the end face of the second columnar wire 32 is exposed from the first principal surface 10a of the element body 10. The third columnar wire 33 extends from the top surface of the conductive protection film 90 provided on a top surface of the first end 22a of the second inductor wire 22 to the first principal surface 10a of the element body 10, and the end face of the third columnar wire 33 is exposed from the first principal surface 10a of the element body 10. “The end face of the columnar wire is exposed from the first principal surface of the element body” includes not only a case where the entire end face of the columnar wire is exposed to the outside of the inductor component 1 but also a case where a part or an entire portion of the end face of the columnar wire is covered with an external terminal or the like.
Therefore, the first columnar wire 31, the second columnar wire 32, and the third columnar wire 33 linearly extend in a direction orthogonal to the first principal surface 10a from the first inductor wire 21 and the second inductor wire 22 to the end face exposed from the first principal surface 10a. As a result, the first external terminal 41, the second external terminal 42, and the third external terminal 43 can be connected to the first inductor wire 21 and the second inductor wire 22 at a shorter distance, and a decrease in resistance or an increase in inductance of the inductor component 1 can be realized. The first to third columnar wires 31 to 33 are made of a conductive material. The first to third columnar wires 31 to 33 are made of the same material as the inductor wires 21 and 22, and preferably include at least one of an Ag element and a Cu element. As a result, the electric resistance of the first to third columnar wires 31 to 33 can be further reduced. The conductive material may be a conductive paste, for example, an Ag paste.
Note that, when the first and second inductor wires 21 and 22 are covered with an insulating layer made of a non-magnetic material, the first to third columnar wires 31 to 33 may be electrically connected to the first and second inductor wires 21 and 22 with a via wire penetrating the insulating layer interposed therebetween. The via wire is a conductor having a line width (a diameter and a sectional area) smaller than that of the columnar wire. In this case, the “vertical wire” described in the claims includes the via wire and the columnar wire. Further, in this case, the conductive protection film may be formed at a position covering the side surface and the bottom surface of the via wire, or may not be formed around the via wire.
The conductive protection film 90 protects the first to third columnar wires 31 to 33 from the magnetic powder of the second magnetic layer 12. The conductive protection film 90 has a higher hardness than the first to third columnar wires 31 to 33. The “hardness” described in the present specification can be calculated by Vickers hardness measurement. However, when it is difficult to measure the Vickers hardness, for example, an evaluation target may be subjected to elemental analysis by energy dispersive X-ray spectroscopy (EDX) or the like, and “hardness” may be set with reference to hardness data of a bulk metal of a metal element that has been found. The “conductive” in the conductive protection film means that the electrical resistivity is 10-6 Ω•m or less.
The conductive protection film 90 includes, for example, at least one of a Ti element, an Ni element, an Fe element, and a Cu element. Ti is excellent in the close contact with an organic resin, and has a higher hardness than Cu and Ag used for the conductive materials of the inductor wires 21 and 22. Ni also has a higher hardness than Cu and Ag. Since Ni is a magnetic metal, the inductance of the inductor component 1 can be improved when the conductive protection film 90 includes Ni. Fe and Cu have high affinity with the magnetic material and the first to third columnar wires 31 to 33. The conductive protection film 90 is particularly preferably made of Ti. As a result, when Ti is adopted as the seed layer, the conductive protection film 90 can be formed of the same material as the seed layer, so that the inductor component 1 can be easily manufactured. The conductive protection film 90 may be a single layer or a plurality of layers.
The conductive protection film 90 covers the side surface and the bottom surface of each of the first to third columnar wires 31 to 33. Specifically, the conductive protection film 90 covers a side surface 31s and a bottom surface 31b of the first columnar wire 31, a side surface 32s and a bottom surface 32b of the second columnar wire 32, and a side surface 33s and a bottom surface 33b of the third columnar wire 33. The side surface 31s, the side surface 32s, and the side surface 33s extend along a direction (Z direction) orthogonal to the first principal surface 10a. The conductive protection film 90 covering the side surface 31s of the first columnar wire 31 is exposed to the first principal surface 10a. The conductive protection film 90 covering the side surface 31s of the first columnar wire 31 is in contact with the second magnetic layer 12. The conductive protection film 90 covering the bottom surface 31b of the first columnar wire 31 is in contact with the top surface of the first end 21a of the first inductor wire 21. In other words, the conductive protection film 90 covering the bottom surface 31b of the first columnar wire 31 is provided between the first columnar wire 31 and the first inductor wire 21, and electrically connects the first columnar wire 31 and the first inductor wire 21. As a result, since the conductive protection film 90 can also be formed at the time of forming the first columnar wire 31, the inductor component 1 can be easily manufactured.
Similarly, the conductive protection film 90 covering the side surface 32s of the second columnar wire 32 is exposed to the first principal surface 10a. The conductive protection film 90 covering the side surface 32s of the second columnar wire 32 is in contact with the second magnetic layer 12. The conductive protection film 90 covering the bottom surface 32b of the second columnar wire 32 is in contact with the top surface of the second end 21b of the first inductor wire 21. In other words, the conductive protection film 90 covering the bottom surface 32b of the second columnar wire 32 is provided between the second columnar wire 32 and the first inductor wire 21, and electrically connects the second columnar wire 32 and the first inductor wire 21. As a result, since the conductive protection film 90 can also be formed at the time of forming the second columnar wire 32, the inductor component 1 can be easily manufactured. In addition, the conductive protection film 90 covering the side surface 33s of the third columnar wire 33 is exposed to the first principal surface 10a. The conductive protection film 90 covering the side surface 33s of the third columnar wire 33 is in contact with the second magnetic layer 12. The conductive protection film 90 covering the bottom surface 33b of the third columnar wire 33 is in contact with the top surface of the first end 22a of the second inductor wire 22. In other words, the conductive protection film 90 covering the bottom surface 33b of the third columnar wire 33 is provided between the third columnar wire 33 and the first inductor wire 21, and electrically connects the third columnar wire 33 and the second inductor wire 22. As a result, since the conductive protection film 90 can also be formed at the time of forming the third columnar wire 33, the inductor component 1 can be easily manufactured.
The first to third external terminals 41 to 43 are provided on the first principal surface 10a of the element body 10. The first to third external terminals 41 to 43 are made of a conductive material, and have a three-layer structure in which, for example, Cu having low electric resistance and excellent stress resistance, Ni having excellent corrosion resistance, and Au having excellent solder wettability and reliability are arranged in this order from the inside to the outside.
The first external terminal 41 is in contact with the end face of the first columnar wire 31 exposed from the first principal surface 10a of the element body 10 and is electrically connected to the first columnar wire 31. As a result, the first external terminal 41 is electrically connected to the first end 21a of the first inductor wire 21. The second external terminal 42 is in contact with the end face of the second columnar wire 32 exposed from the first principal surface 10a of the element body 10 and is electrically connected to the second columnar wire 32. As a result, the second external terminal 42 is electrically connected to the second end 21b of the first inductor wire 21 and the second end 22b of the second inductor wire 22. The third external terminal 43 is in contact with the end face of the third columnar wire 33, is electrically connected to the third columnar wire 33, and is electrically connected to the first end 22a of the second inductor wire 22.
Each of a bottom surface of the first inductor wire 21 and a bottom surface of the second inductor wire 22 is covered with an insulating layer 61. The insulating layer 61 is made of an insulating material including no magnetic body, and is made of a resin material such as an epoxy-based resin, a phenol-based resin, or a polyimide-based resin. As described above, at least a part of the inductor wires 21 and 22 is covered with the insulating layer 61, so that an insulating property between the inductor wires 21 and 22 and the first magnetic layer 11 can be secured. Note that the insulating layer 61 may contain a non-magnetic filler such as silica, and in this case, the strength, processability, and electrical characteristics of the insulating layer 61 can be improved. The insulating layer 61 corresponds to a “second insulating layer” described in the claims.
The side surface 33s of the third columnar wire 33 is covered with the conductive protection film 90. In the conductive protection film 90, a surface 90s opposite to the side surface 33s of the third columnar wire 33 is in contact with the second magnetic layer 12. In the present embodiment, the surface 90s of the conductive protection film 90 is in contact with at least one (magnetic powder indicated by a reference sign C in
Here, “the magnetic powder does not enter the side surface of the columnar wire (vertical wire)” means that the magnetic powder does not enter the inside of the main plane of the side surface of the columnar wire with respect to the main plane. Therefore, when the entire magnetic powder is located outside the plane, the magnetic powder does not enter the side surface of the columnar wire although the magnetic powder enters the conductive protection film. On the other hand, “the magnetic powder enters the side surface of the columnar wire (vertical wire)” means that a recess exists on the side surface of the columnar wire, and at least a part of the magnetic powder corresponding to the recess enters inside the plane.
According to the inductor component 1, the side surfaces 31s to 33s of the first to third columnar wires 31 to 33 are covered with the conductive protection film 90 having a higher hardness than the first to third columnar wires 31 to 33. For this reason, entry of the conductive protection film 90 and the magnetic powder 100 into the first to third columnar wires 31 to 33 can be reduced. Therefore, it is possible to reduce the contact area between the conductive protection film 90 and the magnetic powder 100 while reducing the contact area between the first to third columnar wires 31 to 33 and the conductive protection film 90 at the entry portion, and the conduction path between the first to third columnar wires 31 to 33 and the magnetic powder 100 can be reduced. As a result, it is possible to suppress formation of a leak path between the respective columnar wires of the first to third columnar wires 31 to 33.
In addition, since the leak path formation can be suppressed by the conductive protection film 90, the filling amount of the second magnetic layer 12 can be made larger than before, and the inductance of the inductor component 1 can be improved.
In addition, since the plurality of inductor wires 21 and 22 are arranged on the same plane parallel to the first principal surface 10a and electrically separated from each other, it is possible to constitute an inductor array and increase the density of inductance.
The end faces of the first to third columnar wires 31 to 33 are exposed from the first principal surface 10a of the element body 10, and the conductive protection film 90 covering the side surfaces of the first to third columnar wires 31 to 33 is also exposed to the first principal surface 10a. As a result, the exposed surfaces of the first to third columnar wires 31 to 33 are surrounded by the conductive protection film 90 having a high hardness on the first principal surface 10a, so that it is possible to suppress the first to third columnar wires 31 to 33 from extending along the first principal surface 10a when the first principal surface 10a is ground. Although the end faces of the first to third columnar wires 31 to 33 and the conductive protection film 90 are exposed to the first principal surface 10a, it is not essential that they are exposed to the outside of the inductor component 1. That is, as in the present embodiment, the end faces of the first to third columnar wires 31 to 33 and the conductive protection film 90 may be covered with the first to third external terminals 41 to 43.
In addition, since the conductive protection film 90 is conductive, the inductance can be secured without reducing the inductance acquisition efficiency as compared with a case where an insulating film is provided on the side surfaces of the first to third columnar wires 31 to 33.
Preferably, the first external terminal 41 is directly connected to at least a part of the first columnar wire 31 and the conductive protection film 90. The second external terminal 42 is directly connected to at least a part of the second columnar wire 32 and the conductive protection film 90. The third external terminal 43 is directly connected to at least a part of the third columnar wire 33 and the conductive protection film 90. According to this configuration, the electric resistance between the first to third external terminals 41 to 43 and the first to third columnar wires 31 to 33 can be reduced.
Preferably, in a section (that is, a section parallel to the XY plane) orthogonal to the extending direction of the first to third columnar wires 31 to 33, the thickness (t1 illustrated in
Preferably, in the section orthogonal to the extending direction of the first to third columnar wires 31 to 33, the thickness of the conductive protection film 90 is 1/10or less of the equivalent circle diameter of each columnar wire of the first to third columnar wires 31 to 33. According to this configuration, it is possible to further suppress an increase in electric resistance of the conductive protection film 90.
Preferably, the conductive protection film 90 has a higher hardness than the magnetic powder 100. According to this configuration, entry of the magnetic powder 100 into the first to third columnar wires 31 to 33 can be further suppressed.
Preferably, the conductive protection film 90 has a lower hardness than the magnetic powder 100. According to this configuration, since the magnetic powder 100 can enter the conductive protection film 90, the close contact between the conductive protection film 90 and the second magnetic layer 12 can be improved by the anchor effect.
Preferably, the plurality of magnetic powder 100 include a magnetic powder 100 having a higher hardness than the conductive protection film 90 and a magnetic powder 100 having a lower hardness than the conductive protection film 90. According to this configuration, it is possible to suppress entry of the magnetic powder 100 into the first to third columnar wires 31 to 33 and to improve the close contact between the conductive protection film 90 and the second magnetic layer 12.
Next, a method for manufacturing the inductor component 1 will be described.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
Preferably, each layer of the conductive protection film 90 has a different hardness. When the hardness of the metal becomes low, the close contact becomes high. Therefore, according to the above configuration, the close contact of the conductive protection film 90 can be appropriately adjusted.
Preferably, each layer of the conductive protection film 90 has a different electrical resistivity. According to the above configuration, various characteristics such as close contact and stress of the conductive protection film 90 can be appropriately adjusted.
As illustrated in
As illustrated in
As illustrated in
The first inductor wire 21A is a wire that is provided above the second inductor wire 22A and extends in a spiral shape along the first principal surface 10a of the element body 10. The number of turns of the first inductor wire 21A is preferably more than one turn. As a result, inductance can be improved. For example, the first inductor wire 21A is spirally wound in a clockwise direction from an outer peripheral end 21b toward an inner peripheral end 21a when viewed from a Z direction. A conductive material of the first inductor wire 21A is similar to the conductive material of the first inductor wire 21 according to the first embodiment.
The second inductor wire 22A is a wire extending in a spiral shape along the first principal surface 10a of the element body 10. The number of turns of the second inductor wire 22A is preferably more than one turn. As a result, inductance can be improved. The second inductor wire 22A is spirally wound in a clockwise direction from an inner peripheral end 22a toward an outer peripheral end 22b when viewed from the Z direction. The second inductor wire 22A is disposed between the first inductor wire 21A and the first magnetic layer 11. As a result, the first inductor wire 21A and the second inductor wire 22A are disposed side by side in the direction (Z direction) orthogonal to the first principal surface 10a. The conductive material of the second inductor wire 22A is similar to the conductive material of the first inductor wire 21 according to the first embodiment. The outer peripheral end 21b of the first inductor wire 21A and the outer peripheral end 22b of the second inductor wire 22A correspond to “ends” described in the claims.
The outer peripheral end 21b of the first inductor wire 21A is connected to the first external terminal 41A with the conductive protection film 90A and the first vertical wire 51 (the via wire 25 and the first columnar wire 31A) on the outer peripheral end 21b interposed therebetween. The inner peripheral end 21a of the first inductor wire 21A is connected to the inner peripheral end 22a of the second inductor wire 22A with the via wire 25 (not illustrated in the drawings) below the inner peripheral end 21a interposed therebetween.
The outer peripheral end 22b of the second inductor wire 22A is connected to the second external terminal 42 with the second vertical wire 52 (the second columnar wire 32A, the second connection wire 82, and the via wire 25) on the outer peripheral end 22b and the conductive protection film 90A interposed therebetween. With the above configuration, the first inductor wire 21A and the second inductor wire 22A are connected in series and electrically connected to the first external terminal 41 and the second external terminal 42.
Note that, in the present embodiment, the first connection wire 81 is provided on the same layer as the second inductor wire 22A. The first connection wire 81 is disposed below (reverse Z direction) the outer peripheral end 21b of the first inductor wire 21A, and is connected only to a bottom surface of the first inductor wire 21A with the via wire 25 interposed therebetween. The first connection wire 81 is not connected to the second inductor wire 22A and is electrically independent. By providing the first connection wire 81, the outer peripheral end 21b of the first inductor wire 21A can be provided in the same layer as the wound portion of the first inductor wire 21A, and disconnection or the like can be suppressed.
The insulating layer 15 is a film-like layer formed on the first magnetic layer 11, and covers at least the first and second inductor wires 21A and 22A. Specifically, the insulating layer 15 covers all bottom and side surfaces of the first and second inductor wires 21A and 22A, and covers top surfaces of the first and second inductor wires 21A and 22A except for connection portions with the via wire 25. The insulating layer 15 has a hole at a position corresponding to the inner peripheral portion of each of the first and second inductor wires 21A and 22A. A thickness of the insulating layer 15 between the top surface of the first magnetic layer 11 and the bottom surface of the second inductor wire 22A is, for example, 10 µm or less.
The insulating layer 15 is made of an insulating material that does not contain a magnetic body, and is made of a resin material such as an epoxy-based resin, a phenol-based resin, or a polyimide-based resin. Note that the insulating layer 15 may contain a non-magnetic filler such as silica, and in this case, the strength, processability, and electrical characteristics of the insulating layer 15 can be improved. The insulating layer 15 corresponds to a “second insulating layer” described in the claims.
The first magnetic layer 11 is in close contact with the bottom surfaces of the second magnetic layer 12 and the insulating layer 15. The second magnetic layer 12 is disposed above the first magnetic layer 11. The first and second inductor wires 21A and 22A are disposed between the first magnetic layer 11 and the second magnetic layer 12. The second magnetic layer 12 is formed along the insulating layer 15 so as to cover not only portions on the first and second inductor wires 21A and 22A but also the inner peripheral portions of the first and second inductor wires 21A and 22A.
The first vertical wire 51 is made of a conductive material, is located above the first inductor wire 21A, extends in the Z direction, and penetrates the inside of the second magnetic layer 12. The first vertical wire 51 includes the via wire 25 located above the outer peripheral end 21b of the first inductor wire 21A and extending in the Z direction, and the first columnar wire 31A extending in the forward Z direction from the via wire 25 and penetrating the inside of the first magnetic layer 11.
The second vertical wire 52 is made of a conductive material, is located above the second inductor wire 22A, extends in the Z direction, and penetrates the inside of the insulating layer 15 and the second magnetic layer 12. The second vertical wire 52 includes the via wire 25 located above the outer peripheral end 22b of the second inductor wire 22A and extending in the Z direction, the second connection wire 82 extending in the forward Z direction from the via wire 25 and penetrating the inside of the insulating layer 15, the via wire 25 located above the second connection wire 82 and electrically connected to the second connection wire 82 with the conductive protection film 90A interposed therebetween, and the second columnar wire 32A extending in the forward Z direction from the via wire 25 and penetrating the inside of the second magnetic layer 12. The first and second vertical wires 51 and 52 are made of the same material as the first inductor wire 21A.
A wire length (reference numeral L1 illustrated in
The conductive protection film 90A is a protection film that protects the first and second vertical wires 51 and 52 from the magnetic powder of the second magnetic layer 12. The conductive protection film 90A has a higher hardness than the first and second vertical wires 51 and 52. A material constituting the conductive protection film 90A may be the same as that of the first embodiment.
The conductive protection film 90A covers at least part of the side surfaces of the first vertical wire 51 and the second vertical wire 52. Specifically, the conductive protection film 90A covers the side surface and the bottom surface of the first vertical wire 51 (the via wire 25 and the first columnar wire 31A) and the side surface and the bottom surface of the via wire 52 extending downward from the second columnar wire 32A and the second columnar wire 32A of the second vertical wire 52. The conductive protection film 90A covering the side surface of the first columnar wire 31A is in contact with the second magnetic layer 12. The conductive protection film 90A covering the side surface of the via wire 25 (hereinafter, referred to as the “first via wire”) extending downward from the first columnar wire 31A is in contact with the insulating layer 15. The conductive protection film 90A covering the bottom surface of the first via wire 25 is in contact with the top surface of the outer peripheral end 21b of the first inductor wire 21A. In other words, the conductive protection film 90A covering the bottom surface of the first via wire 25 is provided between the first via wire 25 and the first inductor wire 21A, and electrically connects the first via wire 25 and the first inductor wire 21A.
The conductive protection film 90A covering the side surface of the second columnar wire 32A is in contact with the second magnetic layer 12. The conductive protection film 90A covering the side surface of the via wire 25 (hereinafter, referred to as the “second via wire”) extending downward from the second columnar wire 32A is in contact with the insulating layer 15. The conductive protection film 90A covering the bottom surface of the second via wire 25 is in contact with the top surface of the second connection wire 82. In other words, the conductive protection film 90A covering the bottom surface of the second via wire 25 is provided between the second via wire 25 and the second connection wire 82, and electrically connects the second via wire 25 and the second connection wire 82. With the above configuration, among the side surfaces of the first vertical wire 51 and the second vertical wire 52, the side surface not covered with the insulating layer 15 is covered with the conductive protection film 90A.
The first and second external terminals 41A and 42A are made of a conductive material, and have a three-layer configuration in which, for example, Cu having low electric resistance and excellent stress resistance, Ni having excellent corrosion resistance, and Au having excellent solder wettability and reliability are arranged in this order from the inside to the outside. A thickness of each layer of Cu/Ni/Au is, for example, 5/5/0.01 µm.
The first external terminal 41A is provided on the top surface (first principal surface 10a) of the second magnetic layer 12, and covers the end face of the first columnar wire 31A exposed from the top surface. As a result, the first external terminal 41A is electrically connected to the outer peripheral end 21b of the first inductor wire 21A. The second external terminal 42A is provided on the top surface of the second magnetic layer 12 and covers the end face of the second columnar wire 32A exposed from the top surface. As a result, the second external terminal 42A is electrically connected to the outer peripheral end 22b of the second inductor wire 22A.
The first and second external terminals 41A and 42A are preferably subjected to a rust prevention treatment. Here, the rust prevention treatment means coating with Ni and Au, Ni and Sn, or the like. As a result, copper corrosion due to solder or dust can be suppressed, and the inductor component 1A with high mounting reliability can be provided.
The coating film 50 is made of an insulating material, is provided on the top surface of the second magnetic layer 12, and exposes the end faces of the first and second columnar wires 31A and 32A and the first and second external terminals 41A and 42A. By the coating film 50, it is possible to suppress the short circuit between the first external terminal 41A and the second external terminal 42A. The coating film 50 corresponds to a “first insulating layer” described in the claims. Note that the coating film 50 may be formed on the side of the bottom surface of the first magnetic layer 11.
According to the present embodiment, among the side surfaces of the first and second vertical wires 51 and 52, the side surface not covered with the insulating layer 15 is covered with the conductive protection film 90A having a higher hardness than the first and second vertical wires 51 and 52. Therefore, entry of the conductive protection film 90A and the magnetic powder 100 into the first and second vertical wires 51 and 52 can be reduced. As a result, it is possible to reduce the contact area between the conductive protection film 90A and the magnetic powder 100 while reducing the contact area between the first and second vertical wires 51 and 52 and the conductive protection film 90A at the entry portion, and the conduction path between the first and second vertical wires 51 and 52 and the magnetic powder 100 can be reduced. As a result, leak path formation between the respective vertical wires of the first and second vertical wires 51 and 52 can be suppressed.
In addition, since the plurality of inductor wires 21A and 22A are disposed side by side in the direction orthogonal to the first principal surface 10a and are electrically connected in series, the inductance can be increased as compared with a case where there is only one inductor wire.
Next, a method for manufacturing the inductor component 1A will be described.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
A wire length L2 of the columnar wires 31B and 32B is larger than a thickness t2 of the inductor wires 21A and 22A in a direction (Z direction) orthogonal to the first principal surface 10a. As a result, as compared with a case where the wire length L2 is smaller than the thickness t2, the volume of the second magnetic layer 12, that is, the volume of an element body 10 can be increased, so that the inductance of an inductor component 1B can be increased.
An insulating layer 15B covers the bottom surface and all the side surfaces other than the side surface constituting the inner periphery of the first inductor wire 21A among the side surfaces of the first inductor wire 21A. The insulating layer 15B covers a portion of a top surface of the first inductor wire 21A excluding a connection portion with the first columnar wire 31B, a top surface of the first extended wire 201 of the top layer, a top surface of the second extended wire 202 of the top layer, and a top surface of a portion constituting the turn on the inner peripheral side of the first inductor wire 21A. The insulating layer 15B provided on the top surface of the first inductor wire 21A is in contact with a part of the conductive protection film 90B covering the side surface of the first columnar wire 31B and a part of the conductive protection film 90B covering the side surface of the second columnar wire 32B. That is, the conductive protection film 90B is in contact with both the insulating layer 15B and the second magnetic layer 12. In addition, the insulating layer 15B covers all of the bottom surface and the side surfaces of the second inductor wire 22A, and covers a portion of the top surface of the second inductor wire 22A excluding a connection portion with the via wire 25. The insulating layer 15B corresponds to a “second insulating layer” described in the claims.
According to the present embodiment, since the conductive protection film 90B is in contact with the insulating layer 15B, the close contact between the conductive protection film 90B and the insulating layer 15B can be secured. In addition, since the conductive protection film 90B is also in contact with the second magnetic layer 12, the volume of the second magnetic layer 12 can be increased as compared with a case where the conductive protection film 90B is not in contact with the second magnetic layer 12, and the inductance acquisition efficiency can be improved.
As compared with the contents described in the manufacturing method of the fourth embodiment, in a manufacturing method of the inductor component 1B, the inductor component 1B can be manufactured by various methods such that the first columnar wire 31B is directly connected to the first inductor wire 21A and the second columnar wire 32B is directly connected to the second connection wire 82, without providing the via wire 25.
Note that the present disclosure is not limited to the above-described embodiments, and can be changed in design without departing from the gist of the present disclosure. For example, the respective feature points of the first to fifth embodiments may be variously combined.
In the above embodiments, two inductor wires of the first inductor wire and the second inductor wire are disposed in the element body, but one or three or more inductor wires may be disposed, and at this time, the number of external terminals and the number of columnar wires are also four or more.
In the above embodiments, in one inductor component, the number of columnar wires (vertical wires) is two or three, but is not limited thereto, and may be one or four or more. When the number of columnar wires is one, for example, the number of inductor wires may be one, the first end of the inductor wire may be connected to the columnar wire, and the second end may be connected only to the extended wire extended to the side surface of the element body. In this case, when the two inductor components are adjacent to each other, it is possible to suppress formation of the leak path between the columnar wires.
In the above embodiments, the “inductor wire” is to give the inductance to the inductor component by generating a magnetic flux in the magnetic layer when a current flows, and the structure, shape, material, and the like of the inductor wire are not particularly limited. In particular, various known wire shapes such as meander wire can be used without being limited to a straight line or a curved line (spiral = two-dimensional curved line) extending on a plane as in the embodiments. In addition, the total number of inductor wires is not limited to one layer or two layers, and a multilayer configuration of three or more layers may be used. In addition, the shape of the columnar wire is rectangular when viewed from the Z direction, but may be circular, elliptical, or oval.
Number | Date | Country | Kind |
---|---|---|---|
2021-172606 | Oct 2021 | JP | national |