1. Field of the Invention
The present invention relates in general to the field of signal processing, and, more specifically, to a system and method that includes inductor over-current protection in a switching power converter based on one or more non-inductor-current signals.
2. Description of the Related Art
Switching power converters convert supplied power into a form and magnitude that is useful for numerous electronic products including cellular telephones, computing devices, personal digital assistants, televisions, other switching power converters, and lamps, such as light emitting diode and gas discharge type lamps. For example, alternating current (AC)-to-direct current (DC) switching power converters are often configured to convert AC voltages from an AC voltage source into DC voltages. DC-to-DC switching power converters are often configured to convert DC voltages of one level from a DC voltage source into DC voltages of another level. Switching power converters are available in many types, such as boost-type, buck-type, boost-buck type, and Cúk type converters. The switching power converters are controlled by a controller that controls one or more power regulation switches. Switching of the power regulation switch controls the link voltage of the switching power converter and, in some embodiments, also controls power factor correction.
The switching power converter includes a power regulation switch 108, and the power control system 100 also includes a controller 110 to control power regulation switch 108. Switch 108 is an n-channel, metal oxide semiconductor field effect transistor (FET). In other embodiments, switch 108 is a bipolar junction transistor or an insulated gate bipolar junction transistor. Controller 110 generates a gate drive control signal CS0 to control the switching period and “ON” (conduction) time of switch 108. Controlling the switching period and “ON” time of switch 108 provides power factor correction and regulates the link voltage VLINK. Switch 108 regulates the transfer of energy from the line input voltage VX through inductor 112 to link capacitor 114. The inductor current iL ramps ‘up’ when switch 108 is “ON”, and diode 116 prevents link capacitor 114 from discharging through switch 108. When switch 108 is OFF, diode 116 is forward biased, and the inductor current iL ramps down as the current iL recharges link capacitor 114. The time period during which the inductor current iL ramps down is referred to as an “inductor flyback period”. The switching power converter 102 also includes a low pass, electromagnetic interference (EMI) filter 118 to filter any high frequency signals from the line input voltage VX. The EMI filter 118 consists of inductor 120 and capacitor 122.
Link capacitor 114 supplies stored energy to load 117. Load 117 can be any type of load such as another switching power converter, light source, or any other electronic device. The capacitance of link capacitor 114 is sufficiently large so as to maintain a substantially constant output, link voltage VLINK, as established by controller 110. The link voltage VLINK remains substantially constant during constant load conditions. However, as load conditions change, the link voltage VLINK changes. The controller 110 responds to the changes in link voltage VLINK and adjusts the control signal CS0 to restore a substantially constant link voltage VLINK as quickly as possible.
Controller 110 maintains control of the inductor current iL to ensure safe operation of switching power converter 102. Numerous fault conditions can occur that can cause the inductor current iL to exceed normal operating limitations. For example, ringing in the EMI filter 118 can cause the inductor current iL to exceed normal operating conditions. “Ringing” refers to oscillations of a signal around a nominal value of the signal. Ringing can be associated with sharp (i.e. high frequency component) transitions. To maintain control of the inductor current iL, switching power converter 102 includes an inductor current sense resistor 124 connected in series with switch 108 to sense the inductor current iL. The inductor current iL causes an inductor current signal in the form of inductor current sense voltage ViL
Controller 110 controls switch 108 and, thus, controls power factor correction and regulates output power of the switching power converter 102. The goal of power factor correction technology is to make the switching power converter 102 appear resistive to the voltage source 104. Thus, controller 110 attempts to control the inductor current iL so that the average inductor current iL is linearly and directly related to the line input voltage VX. Prodić, Compensator Design and Stability Assessment for Fast Voltage Loops of Power Factor Correction Rectifiers, IEEE Transactions on Power Electronics, Vol. 22, No. 5, September 2007, pp. 1719-1729 (referred to herein as “Prodić”), describes an example of controller 110. The controller 110 supplies a pulse width modulated (PWM) control signal CS0 to control the conductivity of switch 108. The values of the pulse width and duty cycle of control signal CS0 generally depend on feedback signals, namely, the line input voltage VX, the link voltage VLINK, and inductor current sense voltage ViL
To monitor the inductor current iL when energy is being transferred to the inductor 112 during time t2 (
Sensing the inductor current iL across inductor current sense resistor 124 results in power losses equal to iL2R, and “R” is the resistance value of inductor current sense resistor 124. Generally the value of “R” is chosen so that the losses associated with sensing the inductor current across inductor current sense resistor 124 are at least approximately 0.5-1% loss in total efficiency. However, when operating at above 90% efficiency, a 1% energy loss represents at least 10% of the losses. Additionally, controller 110 includes two extra terminals 130 and 132 to respectively sense inductor current sense voltage ViL
In one embodiment of the present invention, an apparatus includes a controller. The controller is configured to detect an over-current condition of an inductor current in a switching power converter using at least one non-inductor-current signal.
In another embodiment of the present invention, an apparatus includes a controller. The controller is configured to detect an over-current condition of an inductor current in a switching power converter without using a signal generated using a resistor in series with a power regulation switch of the switching power converter.
In one embodiment of the present invention, a method includes detecting an over-current condition of an inductor current in a switching power converter using a non-inductor-current signal.
In another embodiment of the present invention, a power supply includes a switching power converter. The switching power converter includes a reference terminal, an input terminal to receive an input voltage, an inductor coupled to the input terminal, a power regulation switch coupled between the inductor and the reference terminal, a capacitor coupled to the switch, the inductor, and the reference terminal, and an output terminal coupled to the capacitor to provide a link voltage. The power supply further includes a controller. The controller is configured to detect an over-current condition of an inductor current in the switching power converter using a non-inductor-current signal.
The present invention may be better understood, and its numerous objects, features and advantages made apparent to those skilled in the art by referencing the accompanying drawings. The use of the same reference number throughout the several figures designates a like or similar element.
A power control system includes a switching power converter and a controller. The controller is configured to detect an over-current condition of an inductor current in the switching power converter using at least one non-inductor-current signal. An inductor current signal is a signal that represents an inductor current and varies directly with the inductor current. For example, inductor current sense voltage ViL
In at least one embodiment, an inductor over-current condition represents a condition when the inductor current exceeds a predetermined threshold value. For example, in at least one embodiment, an inductor over-current condition can arise when energy is being transferred to an inductor of the switching power converter via an inductor current. Electromagnetic interference (EMI) filter interactions, such as ringing in the EMI filter, and other conditions can cause the inductor current to exceed a safe operating level. Sudden rises in the inductor current can also cause an inductor over-current condition. Sudden rises in the inductor current can be difficult to detect. Consequently, the controller can miscalculate timing of a power regulation switch control signal and inadvertently cause the switching power converter to enter into continuous conduction mode (CCM). Entering CCM can result in unintended, potentially damaging output voltages and input currents.
In at least one embodiment, by monitoring at least one non-inductor-current signal, the controller can protect the switching power converter from damaging conditions such as an excessive inductor current and CCM operation by a DCM power control system. In at least one embodiment, the controller monitors two non-inductor-current signals: (i) an input signal representing an input voltage to the switching power converter and (ii) a link voltage signal representing a link (i.e. output) voltage of the switching power converter. In at least one embodiment, when energy is transferred to the inductor from an input voltage source, an accumulation of samples of the input voltage signal is directly proportional to the inductor current. The accumulation of the input voltage signal can be measured in volt-second terms and compared to a predetermined threshold volt-second value to determine if an inductor over-current condition exists. In at least one embodiment, if the inductor over-current condition exists, the controller takes remedial action, such as decreasing the amount of current flowing into the inductor. In at least one embodiment, the controller decreases the amount of current flowing into the inductor by turning the power regulation switch “OFF”, i.e. causing the power regulation switch to stop conducting.
In another embodiment, the final value of the input signal accumulation represents an initial accumulator value during an inductor flyback time. During the inductor flyback time, the current accumulator value A(n)VS
The controller 304 includes an inductor over-current module 306. Using at least one non-inductor-current signal, the inductor over-current module 306 determines whether an inductor over-current condition exists in switching power converter 302. In the embodiment of power control system 300, input voltage signal VX′ represents the input voltage Vx, and link voltage signal VLINK′ represents the link voltage VLINK. In at least one embodiment, input voltage signal Vx′ and link voltage signal VLINK are scaled versions of respective input voltage Vx and link voltage VLINK. In at least one embodiment, the input voltage signal Vx′ and link voltage signal VLINK′ are two non-inductor-current signals used by the inductor over-current module 306 to detect an inductor over-current condition. The particular scaling is a matter of design choice. By using non-inductor-current signals to detect an inductor over-current condition, in at least one embodiment, switching power converter 302 does not include an inductor current sense resistor such as inductor current sense resistor 120.
In at least one embodiment, inductor overcurrent module 306 utilizes the input signal VX′ to determine an over-current condition exists corresponding to the inductor current iL reaching a level that could damage switching power converter 302 and/or load 117. In at least one embodiment, inductor overcurrent module 306 utilizes both the input voltage signal VX′ and the link voltage signal VLINK′ to determine an over-current condition corresponding to the inductor current iL being non-zero prior to when controller 304 would normally generate a next pulse of duty cycle modulated, switch control signal CS1. If the controller 302 generates a pulse of switch control signal CS1 prior to the inductor current iL reaching zero at the end of the inductor flyback time, the switching power converter will enter CCM. Entering CCM when the controller 302 normally controls the switching power converter 302 in DCM can cause the controller 302 to make erroneous calculations when generating the switch control signal CS1. The resulting switch control signal CS1 could alter a desired link voltage VLINK, cause instability in controller 304, cause abnormally high inductor current iL values, and, thus, potentially damage to the switching power converter 302 and/or load 117.
The inductor over-current module 306 generates an over-current condition signal VS_OVR and provides the over-current condition signal VS_OVR to switch control signal generator 308. In at least one embodiment, in response to detecting an inductor over-current condition, inductor over-current module 306 generates the over-current condition signal VS_OVR to indicate the over-current condition. As subsequently discussed in more detail, the switch control signal generator 308 responds to the over-current condition signal VS_OVR by generating control signal CS1 to resolve the inductor over-current condition.
The particular type(s) of inductor over-current condition(s) detectable by inductor over-current module 306 is(are) a matter of design choice. In at least one embodiment, inductor over-current module 306 detects an abnormally high inductor current iL and a non-zero inductor current iL that could cause the switching power converter 302 to operate in CCM.
Switch control generator 308 generates switch control signal CS1 to control conductivity of power regulation switch 310. The type of power regulation switch 310 is a matter of design choice. In at least one embodiment, switch 310 is an n-channel MOSFET. In other embodiments, switch 310 is a bipolar junction transistor or an insulated gate bipolar junction transistor. The particular configuration of switch control generator 308 is also a matter of design choice. In at least one embodiment, switch control generator 308 includes both hardware and software (including firmware) to generate control signal CS1. In at least one embodiment, in non-inductor over-current conditions, switch control generator 308 generates switch control signal CS1 to operate power regulation switch 310 and thereby provide power factor correction and regulation of link voltage VLINK as illustratively described in U.S. patent application Ser. No. 11/967,269, entitled “Power Control System Using a Nonlinear Delta-Sigma Modulator with Nonlinear Power Conversion Process Modeling,” inventor John L. Melanson, and filed on Dec. 31, 2007 (referred to herein as “Melanson I”). Melanson I is hereby incorporated by reference in its entirety. During detected inductor current over-current conditions, inductor over-current module 306 utilizes the over-current condition signal VS_OVR to, for example, modify the switch control signal CS1.
Referring to
In at least one embodiment, the ADCs 402 and 404 are designed to have a response time sufficient to sample and digitize values of the input voltage signal VX′ and the link voltage signal VLINK′ that can cause any type of inductor over-current condition addressed by inductor over-current module 410 within the t1 and t2 time periods. In at least one embodiment, time period t1 is less than or equal to 10 microseconds (μs) and greater than or equal to 500 nanoseconds (ns), i.e. 500 ns≦t1≦10 μs. In at least one embodiment, the bandwidth of link voltage VLINK is controlled by capacitance CLINK of link capacitor 114, and the bandwidth of the input voltage VX is controlled by the capacitance CRECT of filter capacitor 118. In at least one embodiment, for a 110V input voltage VX, the sampling frequency of ADCs 402 and 404 is 1.3 MHz. In at least one embodiment, the sampling frequencies of ADCs 402 and 404 are set independently and are respectively 1.875 MHz and 0.725 MHz. An exemplary value of the capacitance CLINK is 100ρF, and an exemplary capacitance value of CRECT is 0.47ρF.
The digital signal processor (DSP) 412 determines pulse widths and periods of switch control signal CS1 and provides the pulse width and period data in pulse width and period signal PWP. Pulse width and period signal PWP can be one or more distinct signals, e.g. separate pulse width and period control signals, that indicate the pulse width and period of switch control signal CS1. In at least one embodiment, DSP 412 determines the pulse width and period signal PWP as described in Melanson I. From Melanson I, the pulse width and period signal PWP of DSP 412 would consist of a pulse width control signal QPW(n) and a period control signal QP(n). The particular configuration of DSP 412 is a matter of design choice. In at least one embodiment, DSP 412 is configured as an integrated circuit. In at least one embodiment, DSP 412 accesses and executes software stored in optional memory 414. In at least one embodiment, DSP 412 is implemented using discrete logic components.
A switch control signal generator 416 generates control signal CS1 based on the information in the pulse width and period signal PWP received from DSP 412 and an over-current condition signal VS_OVR. As subsequently described in more detail, the inductor over-current module 410 generates the over-current condition signal VS_OVR. In at least one embodiment, if over-current condition signal VS_OVR does not indicate an inductor over-current condition, the switch control signal generator 416 generates the control signal CS1 as described in Melanson I. In at least one embodiment, if over-current condition signal VS_OVR indicates an inductor over-current condition, switch control signal generator 416 modifies control signal CS1. In at least one embodiment, switch control signal generator 416 modifies control signal CS1 by ending a pulse or delaying generation of a pulse of control signal CS1 until the over-current condition is resolved.
The inductor over-current module 410 receives the two non-inductor current input signals VX′(n) and VLINK′(n) and, based on the information in the input signals VX′(n) and VLINK′(n), determines whether one or more types of inductor over-current conditions exist. The particular configuration of the inductor over-current module 410 is a matter of design choice. In at least one embodiment, inductor over-current module 410 is configured as an integrated circuit. In at least one embodiment, controller 400 includes a processor, such as DSP 412, that executes code stored in optional memory 414 to implement the functions of inductor over-current module 410. In at least one embodiment, inductor over-current module 410 is implemented using logic components as described in more detail with reference to the over-current protection module 700 of
The following describes the states and effects thereof of the inverted over-current condition signal VS_OVR and the duty cycle modulation control signal DCM_S:
Referring to
The over-current protection module 700 receives the input voltage signal VX′(n) and discrete link voltage signal VLINK′(n). As previously stated, input voltage signal VX′(n) and link voltage signal VLINK′(n) are non-inductor-current signals representing respective, discrete values of input voltage VX and link voltage VLINK. The over-current protection module 700 includes an accumulator 702 to accumulate values of input voltage signal VX′(n) during a pulse of switch control signal CS1. The accumulator 702 also decrements the current accumulator value A(n)VS
Operation 804 is also an initialization operation. If the switch control signal CS1 is a logical 1, i.e. switch 310 (
Referring to
Operation 806 increments the previous accumulator value A(n−1)VS
When control signal CS1 becomes a logical 1, inductor current iL (
VX=L·diL/dt [1];
where L is the inductance value of inductor 112 (
[2] illustrates that the inductor current iL is related to the accumulation (represented in one embodiment by an integration) of the input voltage VX:
Referring to
To detect an inductor over-current condition caused by a potentially harmful transient increase of inductor current iL, operation 808 compares the current accumulator value A(n)VS
VSOVR
where VPEAKLOW is a minimum root mean square value (RMS) of input voltage VX, VLINK is the desired RMS value of link voltage VLINK, fmax is the maximum frequency of control signal CS1, and 0.85 is a tolerance factor for a tolerance between a stated inductance value of inductor 112 and an actual inductance value of inductor 112. In one embodiment, for VPEAKLOW=127V, VLINK=400V, fmax=80 kHz, VSOVR
Equation VSOVR
LC=VPEAKLOW2·(VLINK−VPEAKLOW)/(4·fmax·PoVLINK) [4];
MaxIpeak=VPEAKLOW·(VLINK−VPEAKLOW)/(fmax·L·VLINK) [5];
L=0.85LC [6];
and
VSOVR
where LC is a maximum inductance value of inductor 112 within the tolerance of an inductance value of inductor 112. PoVLINK represents a maximum power output of switching power converter 302. MaxIpeak is a maximum desired inductor current iL, and L is the inductance value of inductor 112.
Referring to
By returning to operation 806, accumulator 702 continues to accumulate sample values of input voltage signal VX′(n). Assuming that the inductor current iL is not in an over-current condition, i.e. in operation 808 A(n)VS
Operation 814 decrements the previous accumulator value A(n−1)VS
Operation 816 determines whether the current accumulator value A(n)VS
Logic OR gate 722 receives the output signal VSO from comparator 707 and falling edge signal CS1_FE and generates an output signal VS_SEL. The states and interpretation of output signal VS_SEL are as follows:
If output signal VS_SEL is a logical 1 due to state (i), then output signal VS_SEL will allow operation 816 to prevent a new pulse, such as pulse 504, of switch control signal CS1 from occurring if the current accumulator value A(n)VS
Continuing at operation 816, comparator 716 determines whether the current accumulator A(n)VS
In operation 816, if the current accumulator value A(n)VS
Thus, operations 812, 814, and 816 keep the switch control signal CS1 at logical 0 thereby preventing a new pulse of switch control signal CS1 from turning switch 310 ON, until inductor current iL is zero. When the inductor current iL equals 0, the inductor flyback period t2 is over. By keeping the switch control signal CS1 at logical 0, operations 812, 814, and 816 prevent switching power converter 302 from operating in CCM. Operation 818 determines whether DSP 412 has indicated that the switch control signal CS1 should be a logical 1. If DSP 412 has indicated that the switch control signal CS1 should be a logical 1, during exemplary time period t3, operation 818 waits for DSP 412 to indicate that the switch control signal CS1 should be a logical 1. When operation 818 is true, over-current response process 800 returns to operation 806.
Referring to
Operations 806-810 proceed as previously described to accumulate input signal value VX′(n) until operation 808 determines that the current accumulator value A(n)VS
Operations 812-816 delay the onset of the next pulse 506 of switch control signal CS1 until the current accumulator value A(n)VS
Setting the output signal VS_OVR to logical 0 delays the onset of a next pulse of switch control signal CS1 if pulse width and period signal PWP indicates that the next pulse of switch control signal CS1 should begin. Delaying the onset of a next pulse of switch control signal CS1 until the current accumulator value A(n)VS
When operation 816 determines that the current accumulator value A(n)VS
Referring to
Referring to
The over-current protection module 900 also detects the rising edge of switch control signal CS1. Detecting the rising edge of switch control signal CS1 allows over-current protection module 900 to accumulate the difference signal [link voltage signal VLINK′(n) minus input voltage signal VX′(n)] over an entire period, e.g. TT or TT′ (
Referring to
The link-input voltage accumulator 936 accumulates the link voltage signal VLINK′(n) to accumulate [the link voltage signal VLINK′(n) minus the input voltage signal VX′(n) during each period TT* of switch control signal CS1 to generate an output A(n)VLINK-VX
Comparator 946 generates an output signal VTT that is a logical 0 when VLINK′(n)·t1*>{[VLINK′(n)−VX′(n)]·TT*}. Output signal VTT is a logical 1 when {[VLINK′(n)−VX′(n)]·TT*}>VLINK′(n)·t1*. Output signal VTT selects the output of 2:1 multiplexer 948 as output signal VS_OVR when VLINK′(n)·t1*>{[VLINK′(n)−VX′(n)]·TT*}. Output signal VTT selects the output of 2:1 multiplexer 948 as logical 0 when {[VLINK′(n)−VX′(n)]·TT*}>VLINK′(n)·t1*. When output signal VS_SEL is a logical 1 indicating that the inductor current iL (
The states and interpretation of output signals VTT and VS_SEL are as follows:
Thus, a controller in a switching power converter based power control system detects an over-current condition of an inductor current using at least one non-inductor-current signal. In at least one embodiment, the switching power converter does not have a resistor or resistor network to sense the inductor current. The controller indirectly determines a state of the inductor current using at least one non-inductor-current signal.
Although the present invention has been described in detail, it should be understood that various changes, substitutions and alterations can be made hereto without departing from the spirit and scope of the invention as defined by the appended claims.
This application claims the benefit under 35 U.S.C. §119(e) and 37 C.F.R. §1.78 of U.S. Provisional Application No. 61/251,784, filed Oct. 15, 2009, and entitled “Volt-Second Protection”,” which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3316495 | Sherer | Apr 1967 | A |
3423689 | Miller et al. | Jan 1969 | A |
3586988 | Weekes | Jun 1971 | A |
3725804 | Langan | Apr 1973 | A |
3790878 | Brokaw | Feb 1974 | A |
4409476 | Lofgren et al. | Oct 1983 | A |
4415960 | Clark, Jr. | Nov 1983 | A |
4523128 | Stamm et al. | Jun 1985 | A |
4677366 | Wilkinson et al. | Jun 1987 | A |
4683529 | Bucher | Jul 1987 | A |
4737658 | Kronmuller et al. | Apr 1988 | A |
4739462 | Farnsworth et al. | Apr 1988 | A |
4937728 | Leonardi | Jun 1990 | A |
4940929 | Williams | Jul 1990 | A |
4977366 | Powell | Dec 1990 | A |
4980898 | Silvian | Dec 1990 | A |
5001620 | Smith | Mar 1991 | A |
5003454 | Bruning | Mar 1991 | A |
5055746 | Hu et al. | Oct 1991 | A |
5109185 | Ball | Apr 1992 | A |
5121079 | Dargatz | Jun 1992 | A |
5173643 | Sullivan et al. | Dec 1992 | A |
5264780 | Bruer et al. | Nov 1993 | A |
5278490 | Smedley | Jan 1994 | A |
5383109 | Maksimovic et al. | Jan 1995 | A |
5424932 | Inou et al. | Jun 1995 | A |
5430635 | Liu | Jul 1995 | A |
5479333 | McCambridge et al. | Dec 1995 | A |
5481178 | Wilcox et al. | Jan 1996 | A |
5565761 | Hwang | Oct 1996 | A |
5589759 | Borgato et al. | Dec 1996 | A |
5638265 | Gabor | Jun 1997 | A |
5691890 | Hyde | Nov 1997 | A |
5747977 | Hwang | May 1998 | A |
5757635 | Seong | May 1998 | A |
5764039 | Choi et al. | Jun 1998 | A |
5768111 | Zaitsu | Jun 1998 | A |
5783909 | Hochstein | Jul 1998 | A |
5798635 | Hwang et al. | Aug 1998 | A |
5808453 | Lee et al. | Sep 1998 | A |
5874725 | Yamaguchi | Feb 1999 | A |
5912812 | Moriarty, Jr. | Jun 1999 | A |
5946206 | Shimizu et al. | Aug 1999 | A |
5960207 | Brown | Sep 1999 | A |
5962989 | Baker | Oct 1999 | A |
5994885 | Wilcox et al. | Nov 1999 | A |
6037754 | Harper | Mar 2000 | A |
6043633 | Lev et al. | Mar 2000 | A |
6084450 | Smith et al. | Jul 2000 | A |
6091233 | Hwang | Jul 2000 | A |
6125046 | Jang et al. | Sep 2000 | A |
6160724 | Hemena et al. | Dec 2000 | A |
6181114 | Hemena et al. | Jan 2001 | B1 |
6229292 | Redl et al. | May 2001 | B1 |
6259614 | Ribarich et al. | Jul 2001 | B1 |
6300723 | Wang et al. | Oct 2001 | B1 |
6304066 | Wilcox et al. | Oct 2001 | B1 |
6304473 | Telefus | Oct 2001 | B1 |
6343026 | Perry | Jan 2002 | B1 |
6356040 | Preis et al. | Mar 2002 | B1 |
6369525 | Chang et al. | Apr 2002 | B1 |
6407514 | Glaser et al. | Jun 2002 | B1 |
6407515 | Hesler | Jun 2002 | B1 |
6441558 | Muthu et al. | Aug 2002 | B1 |
6445600 | Ben-Yaakov | Sep 2002 | B2 |
6469484 | L'Hermite et al. | Oct 2002 | B2 |
6495964 | Muthu et al. | Dec 2002 | B1 |
6510995 | Muthu et al. | Jan 2003 | B2 |
6531854 | Hwang | Mar 2003 | B2 |
6580258 | Wilcox et al. | Jun 2003 | B2 |
6583550 | Iwasa | Jun 2003 | B2 |
6628106 | Batarseh et al. | Sep 2003 | B1 |
6646848 | Yoshida et al. | Nov 2003 | B2 |
6657417 | Hwang | Dec 2003 | B1 |
6677738 | Hesse | Jan 2004 | B1 |
6688753 | Calon et al. | Feb 2004 | B2 |
6696803 | Tao et al. | Feb 2004 | B2 |
6724174 | Esteves et al. | Apr 2004 | B1 |
6727832 | Melanson | Apr 2004 | B1 |
6737845 | Hwang | May 2004 | B2 |
6753661 | Muthu et al. | Jun 2004 | B2 |
6756772 | McGinnis | Jun 2004 | B2 |
6768655 | Yang et al. | Jul 2004 | B1 |
6781351 | Mednik et al. | Aug 2004 | B2 |
6839247 | Yang | Jan 2005 | B1 |
6882552 | Telefus et al. | Apr 2005 | B2 |
6894471 | Corva et al. | May 2005 | B2 |
6933706 | Shih | Aug 2005 | B2 |
6940733 | Schie et al. | Sep 2005 | B2 |
6944034 | Shteynberg et al. | Sep 2005 | B1 |
6956750 | Eason et al. | Oct 2005 | B1 |
6963496 | Bimbaud | Nov 2005 | B2 |
6975523 | Kim et al. | Dec 2005 | B2 |
6980446 | Simada et al. | Dec 2005 | B2 |
7034611 | Oswal et al. | Apr 2006 | B2 |
7072191 | Nakao et al. | Jul 2006 | B2 |
7099163 | Ying | Aug 2006 | B1 |
7126288 | Ribarich et al. | Oct 2006 | B2 |
7161816 | Shteynberg et al. | Jan 2007 | B2 |
7180250 | Gannon | Feb 2007 | B1 |
7221130 | Ribeiro et al. | May 2007 | B2 |
7233135 | Noma et al. | Jun 2007 | B2 |
7246919 | Porchia et al. | Jul 2007 | B2 |
7266001 | Notohamiprodjo et al. | Sep 2007 | B1 |
7276861 | Shteynberg et al. | Oct 2007 | B1 |
7288902 | Melanson | Oct 2007 | B1 |
7292013 | Chen et al. | Nov 2007 | B1 |
7295452 | Liu | Nov 2007 | B1 |
7345458 | Kanai et al. | Mar 2008 | B2 |
7375476 | Walter et al. | May 2008 | B2 |
7388764 | Huynh et al. | Jun 2008 | B2 |
7394210 | Ashdown | Jul 2008 | B2 |
7411379 | Chu et al. | Aug 2008 | B2 |
7511437 | Lys et al. | Mar 2009 | B2 |
7538499 | Ashdown | May 2009 | B2 |
7554473 | Melanson | Jun 2009 | B2 |
7569996 | Holmes et al. | Aug 2009 | B2 |
7583136 | Pelly | Sep 2009 | B2 |
7606532 | Wuidart | Oct 2009 | B2 |
7656103 | Shteynberg et al. | Feb 2010 | B2 |
7667986 | Artusi et al. | Feb 2010 | B2 |
7684223 | Wei | Mar 2010 | B2 |
7710047 | Shteynberg et al. | May 2010 | B2 |
7719246 | Melanson | May 2010 | B2 |
7719248 | Melanson | May 2010 | B1 |
7746043 | Melanson | Jun 2010 | B2 |
7746671 | Radecker et al. | Jun 2010 | B2 |
7750738 | Bach | Jul 2010 | B2 |
7756896 | Feingold | Jul 2010 | B1 |
7777563 | Midya et al. | Aug 2010 | B2 |
7804256 | Melanson | Sep 2010 | B2 |
7804480 | Jeon et al. | Sep 2010 | B2 |
7834553 | Hunt et al. | Nov 2010 | B2 |
7872883 | Elbanhawy | Jan 2011 | B1 |
7894216 | Melanson | Feb 2011 | B2 |
8008898 | Melanson et al. | Aug 2011 | B2 |
8169806 | Sims et al. | May 2012 | B2 |
8193717 | Leiderman | Jun 2012 | B2 |
8222772 | Vinciarelli | Jul 2012 | B1 |
8242764 | Shimizu et al. | Aug 2012 | B2 |
8369109 | Niedermeier et al. | Feb 2013 | B2 |
8441210 | Shteynberg et al. | May 2013 | B2 |
8536799 | Grisamore et al. | Sep 2013 | B1 |
8610364 | Melanson et al. | Dec 2013 | B2 |
20020065583 | Okada | May 2002 | A1 |
20030090252 | Hazucha | May 2003 | A1 |
20030111969 | Konishi et al. | Jun 2003 | A1 |
20030160576 | Suzuki | Aug 2003 | A1 |
20030174520 | Bimbaud | Sep 2003 | A1 |
20030214821 | Giannopoulos et al. | Nov 2003 | A1 |
20030223255 | Ben-Yaakov | Dec 2003 | A1 |
20040004465 | McGinnis | Jan 2004 | A1 |
20040037094 | Muegge et al. | Feb 2004 | A1 |
20040046683 | Mitamura et al. | Mar 2004 | A1 |
20040196672 | Amei | Oct 2004 | A1 |
20050057237 | Clavel | Mar 2005 | A1 |
20050168492 | Hekstra et al. | Aug 2005 | A1 |
20050197952 | Shea et al. | Sep 2005 | A1 |
20050207190 | Gritter | Sep 2005 | A1 |
20050222881 | Booker | Oct 2005 | A1 |
20050231183 | Li et al. | Oct 2005 | A1 |
20050270813 | Zhang et al. | Dec 2005 | A1 |
20050275354 | Hausman | Dec 2005 | A1 |
20050275386 | Jepsen et al. | Dec 2005 | A1 |
20060002110 | Dowling | Jan 2006 | A1 |
20060013026 | Frank et al. | Jan 2006 | A1 |
20060022648 | Zeltser | Feb 2006 | A1 |
20060116898 | Peterson | Jun 2006 | A1 |
20060184414 | Pappas et al. | Aug 2006 | A1 |
20060214603 | Oh et al. | Sep 2006 | A1 |
20060238136 | Johnson, III et al. | Oct 2006 | A1 |
20060285365 | Huynh et al. | Dec 2006 | A1 |
20070024213 | Shteynberg et al. | Feb 2007 | A1 |
20070055564 | Fourman | Mar 2007 | A1 |
20070103949 | Tsuruya | May 2007 | A1 |
20070124615 | Orr | May 2007 | A1 |
20070126656 | Huang et al. | Jun 2007 | A1 |
20070285031 | Shteynberg et al. | Dec 2007 | A1 |
20080012502 | Lys | Jan 2008 | A1 |
20080018261 | Kastner | Jan 2008 | A1 |
20080027841 | Eder | Jan 2008 | A1 |
20080043504 | Ye | Feb 2008 | A1 |
20080054815 | Kotikalapoodi et al. | Mar 2008 | A1 |
20080062584 | Freitag et al. | Mar 2008 | A1 |
20080062586 | Apfel | Mar 2008 | A1 |
20080116818 | Shteynberg et al. | May 2008 | A1 |
20080117656 | Clarkin | May 2008 | A1 |
20080130322 | Artusi et al. | Jun 2008 | A1 |
20080130336 | Taguchi | Jun 2008 | A1 |
20080150433 | Tsuchida et al. | Jun 2008 | A1 |
20080154679 | Wade | Jun 2008 | A1 |
20080174291 | Hansson et al. | Jul 2008 | A1 |
20080175029 | Jung et al. | Jul 2008 | A1 |
20080224635 | Hayes | Sep 2008 | A1 |
20080232141 | Artusi et al. | Sep 2008 | A1 |
20080239764 | Jacques et al. | Oct 2008 | A1 |
20080259655 | Wei et al. | Oct 2008 | A1 |
20080278132 | Kesterson et al. | Nov 2008 | A1 |
20080290846 | Kanouda et al. | Nov 2008 | A1 |
20080310194 | Huang et al. | Dec 2008 | A1 |
20090059632 | Li et al. | Mar 2009 | A1 |
20090067204 | Ye et al. | Mar 2009 | A1 |
20090070188 | Scott et al. | Mar 2009 | A1 |
20090108677 | Walter et al. | Apr 2009 | A1 |
20090174479 | Yan et al. | Jul 2009 | A1 |
20090184665 | Femo | Jul 2009 | A1 |
20090218960 | Lyons et al. | Sep 2009 | A1 |
20090295300 | King | Dec 2009 | A1 |
20100128501 | Huang et al. | May 2010 | A1 |
20100141317 | Szajnowski | Jun 2010 | A1 |
20100187914 | Rada et al. | Jul 2010 | A1 |
20100238689 | Fei et al. | Sep 2010 | A1 |
20100244793 | Caldwell | Sep 2010 | A1 |
20110110132 | Rausch et al. | May 2011 | A1 |
20110199793 | Kuang et al. | Aug 2011 | A1 |
20110276938 | Perry et al. | Nov 2011 | A1 |
20110291583 | Shen | Dec 2011 | A1 |
20110309760 | Beland et al. | Dec 2011 | A1 |
20120146540 | Khayat et al. | Jun 2012 | A1 |
20120187997 | Liao et al. | Jul 2012 | A1 |
20120248998 | Yoshinaga | Oct 2012 | A1 |
20120320640 | Baurle et al. | Dec 2012 | A1 |
20130181635 | Ling | Jul 2013 | A1 |
20140218978 | Heuken et al. | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
19713814 | Oct 1998 | DE |
0536535 | Apr 1993 | EP |
0632679 | Jan 1995 | EP |
0636889 | Jan 1995 | EP |
0838791 | Apr 1998 | EP |
1213823 | Jun 2002 | EP |
1289107 | Aug 2002 | EP |
1460775 | Sep 2004 | EP |
1962263 | Aug 2008 | EP |
2204905 | Jul 2010 | EP |
2232949 | Sep 2010 | EP |
2257124 | Dec 2010 | EP |
2069269 | Aug 1981 | GB |
2008053181 | Mar 2006 | JP |
WO9725836 | Jul 1997 | WO |
0115316 | Jan 2001 | WO |
0184697 | Nov 2001 | WO |
0215386 | Feb 2002 | WO |
2004051834 | Jun 2004 | WO |
WO2006013557 | Feb 2006 | WO |
2006022107 | Mar 2006 | WO |
2007016373 | Feb 2007 | WO |
2008004008 | Jan 2008 | WO |
WO2008072160 | Jun 2008 | WO |
WO2008152838 | Dec 2008 | WO |
2010011971 | Jan 2010 | WO |
2010065598 | Jun 2010 | WO |
2011008635 | Jan 2011 | WO |
Entry |
---|
Texas Instruments, Interleaving Continuous Conduction Mode PFC Controller, UCC28070, SLUS794C, Nov. 2007, revised Jun. 2009, Texas Instruments, Dallas TX. |
Mamano, Bob, “Current Sensing Solutions for Power Supply Designers”, Unitrode Seminar Notes SEM1200, 1999. |
http://toolbarpdf.com/docs/functions-and-features-of-inverters.html printed on Jan. 20, 2011. |
ST Datasheet L6562, Transition-Mode PFC Controller, 2005, STMicroelectronics, Geneva, Switzerland. |
Maksimovic, Regan Zane and Robert Erickson, Impact of Digital Control in Power Electronics, Proceedings of 2004 International Symposium on Power Semiconductor Devices & Ics, Kitakyushu, , Apr. 5, 2010, Colorado Power Electronics Center, ECE Department, University of Colorado, Boulder, CO. |
STMicroelectronics, Transition-Mode PFC Controller, L6562, Nov. 2005, Rev. 8. |
Cheng, Hung L., et al, A Novel Single-Stage High-Power-Factor Electronic Ballast with Symmetrical Topology Power Electronics and Motion Control Conference, 2006. IPEMC 2006. CES/IEEE 5th International, Aug. 14-16, 2006, vol. 50, No. 4, pp. 759-766, Nt. Ilan Univ., Taiwan. |
Fairchild Semiconductor, Theory and Application of the ML4821 Average Current Mode PFC Controller, Fairchild Semiconductor Application Note 42030, Rev. 1.0, Oct. 25, 2000, pp. 1-19, San Jose, California, USA. |
Infineon Technologies AG, Standalone Power Factor Correction (PFC) Controller in Continuous Conduction Mode (CCM), Infineon Power Management and Supply, CCM-PFC, ICE2PCS01G, Version 2.1, Feb. 6, 2007, pp. 1-22, Munchen, Germany. |
International Rectifier, PFC One Cycle Control PFC IC, International Rectifier, Data Sheet No. PD60230 rev. C, IR1150(S)(PbF), Feb. 5, 2007, pp. 1-16, El Segundo, California, USA. |
International Rectifier, IRAC1150-300W Demo Board, User's Guide, Rev. 3.0, International Rectifier Computing and Communications SBU—AC-DC Application Group, pp. 1-18, Aug. 2, 2005, El Segundo, CA USA. |
Lai, Z., et al, A Family of Power-Factor-Correction Controller, Applied Power Electronics Conference and Exposition, 1997. APEC '97 Conference Proceedings 1997, Twelfth Annual, vol. 1, pp. 66-73, Feb. 23-27, 1997, Irvine, California, USA. |
Lee, P., et al, Steady-State Analysis of an Interleaved Boost Converter with Coupled Inductors, IEEE Transaction on Industrial Electronics, vol. 47, No. 4, Aug. 2000, pp. 787-795, Hung Hom, Kowloon, Hong Kong, China. |
Ben-Yaakov, et al, The Dynamics of a PWM Boost Converter with Resistive Input, IEEE Transactions on Industrial Electronics, vol. 46, No. 3, Jun. 1999, pp. 1-8, Negev, Beer-Sheva, Israel. |
ON Semiconductor, Cost Effective Power Factor Controller, NCP1606, pp. 1-22, Mar. 2007, Rev. 3, Denver, Colorado, USA. |
Fairchild Semiconductor, 500W Power-Factor-Corrected (PFC) Converter Design with FAN4810, Application Note 6004, Rev. 1.0.1, pp. 1-10, Oct. 31, 2003, San Jose, California, USA. |
Fairchild Semiconductor, Power Factor Correction (PFC) Basics, Application Note 42047, Rev. 0.9.0, pp. 1-11, Aug. 19, 2004, San Jose, California, USA. |
Fairchild Semiconductor, Design of Power Factor Correction Circuit Using FAN7527B, Application Note AN4121, Rev. 1.0.1, pp. 1-22, May 30, 2002, San Jose, California, USA. |
Fairchild Semiconductor, Low Start-Up Current PFC/PWM Controller Combos FAN4800, Rev. 1.0.5, Nov. 2005, San Jose, California, USA. |
Fairchild Semiconductor, ZVS Average Current PFC Controller FAN 4822, Rev. 1.0.1, pp. 1-10, Aug. 10, 2001, San Jose, California, USA. |
Philips Semiconductor, 90W Resonant SMPS with TEA1610 Swing Chip, Application Note AN99011, pp. 1-28, Sep. 14, 1999, The Netherlands. |
ON Semiconductor, Enhanced, High Voltage and Efficient Standby Mode, Power Factor Controller, NCP1605, pp. 1-32, Feb. 2007, Revised 1, Denver, Colorado, USA. |
ON Semiconductor, Power Factor Controller for Compact and Robust, Continuous Conduction Mode Pre-Converters, NCP1654, pp. 1-10, Mar. 2007, Rev. PO, Denver, Colorado, USA. |
Fairchild Semiconductor, Simple Ballast Controller, KA7541, Rev. 1.0.3, pp. 1-14, Sep. 27, 2001, San Jose, California, USA. |
Fairchild Semiconductor, Power Factor Controller, ML4812, Rev. 1.0.4, pp. 1-18, May 31, 2001, San Jose, California, USA. |
Prodic, et al, Digital Controller for High-Frequency Rectifiers with Power Factor Correction Suitable for On-Chip Implementation, Power Conversion Conference—Nagoya, 2007. PCC 2007, Apr. 2-5, 2007, pp. 1527-1531, Toronto, Canada. |
Freescale Semiconductor, Dimmable Light Ballast with Power Factor Correction, Designer Reference Manual, M68HC08 Microcontrollers, DRM067, Rev. 1, pp. 1-72, Dec. 2005, Chandler, Arizona, USA. |
Freescale Semiconductor, Design of Indirect Power Factor Correction Using 56F800/E, Freescale Semiconductor Application Note, AN1965, Rev. 1, pp. 1-20, Jul. 2005, Chandler, Arizona, USA. |
Freescale Semiconductor, Implementing PFC Average Current Mode Control using the MC9S12E128, Application Note AN3052, Addendum to Reference Design Manual DRM064, Rev. 0, pp. 1-8, Nov. 2005, Chandler, Arizona, USA. |
Madigan, et al, Integrated High-Quality Rectifier-Regulators, Industrial Electronics, IEEE Transactions on Industrial Electronics, vol. 46, Issue 4, pp. 749-758, Aug. 1999, Cary, North Carolina, USA. |
Renesas, Renesas Technology Releases Industry's First Critical-Conduction Mode Power Factor Correction Control IC Implementing Interleaved Operations, R2A20112, pp. 1-4, Dec. 18, 2006, Tokyo, Japan. |
Miwa, et al, High Efficiency Power Factor Correction Using Interleaving Techniques, Applied Power Electronics Conference and Exposition, 1992, APEC '92. Conference Proceedings 1992, Seventh Annual, Feb. 23-27, 1992, pp. 557-568, MIT, Cambridge, Massachusetts, USA. |
Noon, Jim, High Performance Power Factor Preregulator UC3855A/B, Texas Instruments, Application Report SLUA146A, pp. 1-35, May 1996—Revised Apr. 2004, Dallas, Texas, USA. |
NXP Semiconductors, TEA1750, Greenchip III SMPS Control IC Product Data Sheet, Rev. 01, pp. 1-29, Apr. 6, 2007, Eindhoven, The Netherlands. |
Turchi, Joel, Power Factor Correction Stages in Critical Conduction Mode, On Semiconductor, Application Note AND8123D, pp. 1-20, Sep. 2003, Rev. 1, Denver, Colorado, USA. |
ON Semiconductor, GreenLine Compact Power Factor Controller: Innovative Circuit for Cost Effective Solutions, MC33260. Semiconductor Components Industries, pp. 1-22, Sep. 2005, Rev. 9, Denver, Colorado, USA. |
Fairchild Semiconductor, Theory and Application of the ML4821 Average Current Mode PFC Controller, Application Note 42030, Rev. 1.0 , Oct. 25, 2000, pp. 1-19, San Jose, California, USA. |
Fairchild Semiconductor, 500W Power-Factor-Corrected (PFC) Converter Design with FAN4810, Application Note 6004, Oct. 31, 2003, pp. 1-10, San Jose, California, USA. |
Garcia, et al, High Efficiency PFC Converter to Meet EN61000-3-2 and A14, pp. 1-6, Mar. 2, 2002, Universidad Politecnica de Madrid, E.T.S.I.I, Di. de Ingenieria Electronica,Madrid, Spain. |
Renesas, Renesas Technology Releases Industry's First Critical-Conduction-Mode Power Factor Correction Control IC Implementing Interleaved Operations, R2A20112, Dec. 18, 2006, pp. 1-4, Tokyo, Japan. |
Renesas, PFC Control IC R2A20111 Evaluation Board, Application Note R2A20111 EVB, Feb. 2007, pp. 1-40,Rev. 1.0, Tokyo, Japan. |
Renesas, Power Factor Correction Controller IC, HA16174P/FP, Rev. 1.0, Jan. 6, 2006, pp. 1-38, Tokyo, Japan. |
Seidel, et al, A Practical Comparison Among High-Power-Factor Electronic Ballasts with Similar Ideas, IEEE Transactions on Industry Applications, vol. 41, No. 6, Nov./Dec. 2005, pp. 1574-1583, Santa Maria, Brazil. |
STMicroelectronics, Transition-Mode PFC Controller, Datasheet L6562, Rev. 8, Nov. 2005, pp. 1-16, Geneva, Switzerland. |
Texas Instruments, UCC281019, 8-Pin Continuous Conduction Mode (CCM) PFC Controller, SLU828B, Revised Apr. 2009, pp. 1-48, Dallas, Texas, USA. |
STMicroelectronics, Advanced Transition-Mode PFC Controller L6563 and L6563A, Mar. 2007, pp. 1-40, Geneva Switzerland. |
STMicroelectronics, CFL/TL Ballast Driver Preheat and Dimming, L6574, Sep. 2003, pp. 1-10, Geneva Switzerland. |
STMicroelectronics, Power Factor Corrector, L6561, Rev. 16, Jun. 2004, pp. 1-13, Geneva, Switzerland. |
Texas Instruments, Avoiding Audible Noise at Light Loads When Using Leading Edge Triggered PFC Converters, Application Report SLUA309A, Mar. 2004—Revised Sep. 2004, pp. 1-4, Dallas, TX, USA. |
Texas Instruments, Startup Current Transient of the Leading Edge Triggered PFC Controllers, Application Report SLUA321, Jul. 2004, pp. 1-4, Dallas, TX, USA. |
Texas Instruments, Current Sense Transformer Evaluation UCC3817, Application Report SLUA308, Feb. 2004, pp. 1-3, Dallas, TX, USA. |
Texas Instruments, 350-W, Two-Phase Interleaved PFC Pre-regulator Design Review, Application Report SLUA369B, Feb. 2005—Revised Mar. 2007, pp. 1-22, Dallas, TX, USA. |
Texas Instruments, Average Current Mode Controlled Power Factor Correction Converter using TMS320LF2407A, Application Report SPRA902A, Jul. 2005, pp. 1-15, Dallas, TX, USA. |
Texas Instruments, Transition Mode PFC Controller, UCC28050, UCC28051, UCC38050, UCC38051, Application Note SLUS515D, Sep. 2002—Revised Jul. 2005, pp. 1-28, Dallas TX, USA. |
Texas Instruments, Interleaving Continuous Conduction Mode PFC Controller, UCC28070, SLUS794C, Nov. 2007—Revised Jun. 2009, pp. 1-45, Dallas, TX, USA. |
Texas Instruments, BiCMOS Power Factor Preregulator Evaluation Board UCC3817, User's Guide, SLUU077C, Sep. 2000—Revised Nov. 2002, pp. 1-10, Dallas, TX, USA. |
ON Semiconductor, Four Key Steps to Design a Continuous Conduction Mode PFC Stage Using the NCP1653, Application Note AND8184/D, Nov. 2004, pp. 1-8, Phoenix, AZ, USA. |
Unitrode, BiCMOS Power Factor Preregulator, Texas Instruments, UCC2817, UCC2818, UCC3817, UCC3818, SLUS3951, Feb. 2000—Revised Feb. 2006, pp. 1-25, Dallas, TX, USA. |
Unitrode, Optimizing Performance in UC 3854 Power Factor Correction Applications, Design Note DN-39E, Nov. 1994, revised 1999, pp. 1-6, Merrimack, ME, USA. |
Unitrode, High Power-Factor Preregulator, UC1852, UC2852, UC3852, Feb. 5, 2007, pp. 1-8, Merrimack, ME, USA. |
Unitrode, UC3854A/B and UC3855A/B Provide Power Limiting with Sinusoidal Input Current for PFC Front Ends, SLUA196A, Design Note DN-66, Jun. 1995—Revised Nov. 2001, pp. 1-6, Merrimack, ME, USA. |
Unitrode, Programmable Output Power Factor Preregulator, UCC2819, UCC3819, SLUS482B, Apr. 2001—Revised Dec. 2004, pp. 1-16, Merrimack, ME, USA. |
Yao, et al, Soft Switching Circuit for Interleaved Boost Converters, IEEE Transactions on Power Electronics, vol. 22, No. 1, Jan. 2007, pp. 80-86, Zhejiang Univ., Hangzhou. |
Zhang, et al, A New Duty Cycle Control Strategy for Power Factor Correction and FPGA Implementation, IEEE Transactions on Power Electronics, vol. 21, No. 6, Nov. 2006, pp. 1745-1753, Ontario, Canada. |
Zhou, et al, Novel Sampling Algorithm for DSP Controlled 2kW PFC Converter, IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 217-222, Zhejiang Univ., Hangzhou. |
Su, et al, Ultra Fast Fixed-Frequency Hysteretic Buck Converter with Maximum Charging Current Control and Adaptive Delay Compensation for DVS Applications, IEEE Journal of Solid-State Circuits, vol. 43, No. 4, Apr. 2008, pp. 815-822, Hong Kong University of Science and Technology, Hong Kong, China. |
Wong, et al, “Steady State Analysis of Hysteretic Control Buck Converters”, 2008 13th International Power Electronics and Motion Control Conference (EPE-PEMC 2008), pp. 400-404, 2008, National Semiconductor Corporation, Power Management Design Center, Hong Kong, China. |
Zhao, et al, Steady-State and Dynamic Analysis of a Buck Converter Using a Hysteretic PWM Control, 2004 35th Annual IEEE Power Electronics Specialists Conference, pp. 3654-3658, Department of Electrical & Electronic Engineering, Oita University, 2004, Oita, Japan. |
ST Microelectronics, AN993, Application Note, Electronic Ballast Using L6574 & L6561. |
Unitrode Products From Texas Instruments, BiCMOS Power Factor SLUS3951. |
Balogh, Laszlo, et al, Power-Factor Correction with Interleaved Boost Converters in Continuous-Inductor-Current Mode, 1993, pp. 168-174, IEEE, Switzerland. |
Garcia, O., et al, High Efficiency PFC Converter to Meet EN61000-3-2 and A14, Industrial Electronics, 2002. ISIE 2002. Proceedings of the 2002 IEEE International Symposium, vol. 3, pp. 975-980, Div. de Ingenieria Electronica, Univ. Politecnica de Madrid, Spain. |
Lu, et al, Bridgeless PFC Implementation Using One Cycle Control Technique, International Rectifier, 2005, pp. 1-6, Blacksburg, Virginia, USA. |
Brown, et al, PFC Converter Design with IR1150 One Cycle Control IC, International Rectifier, Jun. 2005, Application Note, AN-1077, pp. 1-18, El Segundo, California, USA. |
Linear Technology, Single Switch PWM Controller with Auxiliary Boost Converter, Data Sheet LT1950, Rev. A, Linear Technology Corporation, pp. 1-20, 2003, Milpitas, California, USA. |
Linear Technology, Power Factor Controller, Rev. D, Data Sheet LT1248, Linear Technology Corporation, pp. 1-12, 1993, Milpitas, California, USA. |
Supertex, Inc., HV9931 Unity Power Factor LED Lamp Driver, Supertex, Inc., Application Note AN-H52, 2007, pp. 1-20, Sunnyvale, California, USA. |
Erickson, Robert W., et al, Fundamentals of Power Electronics, Second Edition, Chapter 6, pp. 131-184, 2001, Boulder, Colorado, USA. |
Prodic, Aleksander, Compensator Design and Stability Assessment for Fast Voltage Loops of Power Factor Correction Rectifiers, IEEE Transactions on Power Electronics, vol. 22, Issue 5, Sep. 2007, pp. 1719-1730, Toronto, Canada. |
Hirota, et al, Analysis of Single Switch Delta-Sigma Modulated Pulse Space Modulation PFC Converter Effectively Using Switching Power Device, Power Electronics Specialists Conference, 2002. peso 02. 2002 IEEE 33rd Annual, vol. 2, pp. 682-686, Hyogo, Japan. |
ST Microelectronics, AN993 Application Note, Electronic Ballast with PFC Using L6574 and L6561, pp. 1-20, 2004, Geneva, Switzerland. |
Number | Date | Country | |
---|---|---|---|
61251784 | Oct 2009 | US |