The application relates to an electronics fabrication technology, and more particularly relates to an inductor structure and a fabricating method thereof.
Inductors and transformers are essential components of microelectronic circuits such as switching voltage regulators, radio frequency (RF) circuits, and Electro Magnetic Interference (EMI) mitigation circuits, etc. As microelectronic systems advance toward higher integration and complexity within continuously decreased form factor, it is of great importance to realize high inductance over a miniaturized footprint. In that case, inductors and transformers can achieve the necessary on-die or on-package integration to realize a high-performance circuit, such as an integrated voltage regulator, etc. An effective way of achieving high inductance of an integrated inductor or transformer is to use a stripline-type magnetic thin film inductor, which has two magnetic thin film layers (lower and upper layers) wrapping around cylindrical insulation material, and metal wires pass through the cylindrical insulation material.
However, it is difficult to fabricate such structures in a semiconductor process due to limitations of planar process techniques.
Thus, how to provide an integrated inductor structure with a high inductance effectively is a problem needs to be solved.
Embodiments of the present application provide an inductor structure and a fabricating method thereof, which provides an inductor structure with a high inductance effectively.
In a first aspect, present application provides an inductor structure. The inductor structure includes a first magnetic material layer; an insulation layer formed on the first magnetic material layer; at least one conductive wire structure, which passes through the insulation layer; and a second magnetic material layer, formed on the insulation layer. The insulation layer includes a polymer structure of which a longitudinal length is greater than a lateral length, and the polymer structure includes an arched upper surface, a first side surface, a second side surface, and a bottom surface in a longitudinal direction. At least one of a corner between the arched upper surface and the first side surface and a corner between the arched upper surface and the second side surface is a rounded corner, and at least one of an angle formed between the first side surface and the bottom surface and an angle formed between the second side surface and the bottom surface is less than 90 degree.
According to embodiments of the present application, the inductor structure has two magnetic material layers supported by a long trapezoid like prism structure, which can realize a high inductance. In addition, the long trapezoid like prism structure has an arched upper surface and rounded corner transition, and the bottom surface is less than 90 degree, which ensures smooth film deposition and magnetic characteristics, and thus the high inductance of an integrated inductor or transformer is achieved effectively.
In a second aspect, present application provides an inductive device. The inductive device includes at least one inductor structure of the first aspect.
In a third aspect, present application provides a method of forming an inductor structure. The method includes: forming a first magnetic material layer; forming a first photoresist layer, through which at least one conductive wire structure passes, over the first magnetic material layer; performing a pattern definition with lithography on the first photoresist layer; coating a second photoresist layer over the at least one conductive wire structure passes and the dielectric layer; developing the first photoresist layer and the second photoresist layer; forming a second magnetic material layer on the insulation layer.
According to a first implementation of third aspect, the method further includes performing settlement for a first preset duration after coating the second photoresist layer and before developing.
According to a second implementation of third aspect, the method further includes forming a dielectric layer on the first magnetic material layer, wherein the forming a first photoresist layer, through which at least one conductive wire structure passes, over the first magnetic material layer includes: forming at least one conductive wire structure passes on the dielectric layer, coating a first photoresist layer over the at least one conductive wire structure passes and the dielectric layer.
In a fourth aspect, present application provides a method of forming an inductor structure. The method includes forming a first magnetic material layer; forming an insulation layer, through which at least one conductive wire structure passes, on the first magnetic material layer, wherein the insulation layer includes a polymer structure of which a longitudinal length is greater than a lateral length, and the polymer structure includes an arched upper surface, a first side surface, a second side surface, a bottom surface in a longitudinal direction, wherein at least one of a corner between the arched upper surface and the first side surface and a corner between the arched upper surface and the second side surface is a rounded corner, and at least one of an angle formed between the first side surface and the bottom surface and an angle formed between the second side surface and the bottom surface is less than 90 degree; and forming a second magnetic material layer on the insulation layer.
According to a first implementation of fourth aspect, the forming an insulation layer, through which at least one conductive wire structure passes, on the first magnetic material layer includes: forming an insulation layer, through which at least one conductive wire structure passes, on the first magnetic material layer; forming a first photoresist layer, through which at least one conductive wire structure passes, over the first magnetic material layer; performing a pattern definition with lithography on the first photoresist layer; coating a second photoresist layer over the at least one conductive wire structure passes and the dielectric layer; developing the first photoresist layer and the second photoresist layer.
According to a first implementation of fourth aspect, the method further includes: performing settlement for a first preset duration after coating the second photoresist layer and before developing.
According to a second implementation of fourth aspect, the method further includes: forming a dielectric layer on the first magnetic material layer, wherein the forming a first photoresist layer, through which at least one conductive wire structure passes, over the first magnetic material layer includes forming at least one conductive wire structure passes on the dielectric layer, coating a first photoresist layer over the at least one conductive wire structure passes and the dielectric layer.
In some implementations, the rounded corner is convex and/or portions of the first side surface and the second side surface close to the bottom surface are concave, which ensures smooth film deposition and magnetic characteristics.
In some implementations, a ratio of bottom width to height of a cross section of the polymer structure is greater than or equal to 3.
In some implementations, the height of the cross section is greater than or equal to 10 μm.
In some implementations, the polymer structure has a glass transition temperature greater than 200 degree Celsius after polymerization
In some implementations, a footprint of the insulation layer has a ratio of length to width greater than or equal to 1.5.
In some implementations, a radius of the arched upper surface is at least 4 times greater than a radius of the at least one rounded corner. With the increased radius ratio between top surface and rounded corner, the top surface possesses less steep transition from the highest point toward the edge. Therefore, the effect of the gravitational force upon magnetic anisotropy can be greatly reduced. This is to ensure the desired magnetization polarity of magnetic material layer.
In some implementations, a profile of the arched upper surface is one of a segmental arc and an elliptical arc.
In some implementations, the polymer structure is made of cured photoresist material, and the polymer structure is fabricated by forming a first photoresist layer, through which at least one conductive wire structure passes, over the first magnetic material layer; performing a pattern definition with lithography on the first photoresist layer; coating a second photoresist layer over the at least one conductive wire structure passes and the dielectric layer; performing settlement for a first preset duration after coating the second photoresist layer; developing the first photoresist layer and the second photoresist layer.
In some implementations, the first preset duration ranges from 1 hour to 3 hours to allow sufficient diffusion of photo-acid molecules, produced by the selectively exposed portion on the first photoresist layer, toward unexposed region of the first photoresist layer and second layer of photoresist.
In some implementations, the dielectric layer is made of cured photoresist material.
It should be noted that, spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
When fabricating an inductor structure with two magnetic thin film layers, a lower magnetic thin film may be formed on a substrate, then a long mesa insulation structure or layer, through which a conductive wire structure passes, may be formed on the lower magnetic thin film, and an upper magnetic thin film may be sputtered onto the long mesa insulation structure. Such insulation structure may be made of polymerized photoresist. Therefore, the lower and upper magnetic thin film layers may form a tube that is structurally supported by the long mesa insulation structure, for example, a cylindrical insulation structure. A conventional method is to utilize thermal reflow to deform a rectangular polymerized photoresist structure to obtain the cylindrical insulation structure. However, the polymerized photoresist has to be less thermal stable to enable easy deformation at relatively low temperature. For photoresist material with high thermal stability, this method becomes very ineffective. Additionally, commercial products with such integrated micro inductors also require that such polymer possesses high temperature stability from reliability perspective. Thus, it is difficult to fabricate such a 3D curved polymer structure.
In addition, to be compatible with a commercial semiconductor fabrication process, the insulation structure between the two magnetic thin film layers may be a trapezoid like prism structure with rounded corners to ensure smooth film deposition and magnetic characteristics, while the lower magnetic thin film can be fabricated as a flat layer.
The embodiments of the present application address the challenges of fabricating an insulation structure with an arched cross-sectional profile, for example, using higher thermal stable insulation material. Certainly, the embodiments of the present application may use the less thermal stable insulation material. Particularly, the embodiments of the present application provide a method for fabricating a long trapezoidal polymer prism structure, and the resulted polymer prism structure possesses an arched upper or curved top surface and rounded corner transitions. Such polymer prism structure may form a foundation to realize an integrated micro inductor or transformer on a silicon die or wafer.
Embodiments of the present application may employ a lithography, which is also called photolithography, photomasking, masking, photoetching processing, or microlithography. The photolithography, also termed optical lithography or Ultraviolet (UV) lithography, is a process used in microfabrication. It uses light to transfer a geometric pattern from a photomask to a light-sensitive or photosensitive chemical “photoresist”, or simply “resist,” on the substrate.
Referring to
Referring to
For example, the insulation layer 140 may be a long trapezoid like prism structure, for example, a long mesa structure with an arched cross-sectional profile. Both corners 145 and 146 are rounded corner and both the angle formed between the first side surface and the bottom surface and the angle formed between the second side surface and the bottom surface are less than 90 degree.
According to embodiments of the present application, the inductor structure has two magnetic material layers supported by a long trapezoid like prism structure, which can realize a high inductance. In addition, the long trapezoid like prism structure has an arched upper surface and rounded corner transition, and the bottom surface is less than 90 degree, which ensures smooth film deposition and magnetic characteristics, and thus the high inductance of an integrated inductor or transformer is achieved effectively.
Optionally, as another embodiment, the rounded corner is convex. For example, both corners 145 and 146 are convex upward.
Optionally, as another embodiment, a portion 147 of the first side surface close to the bottom surface and a portion 148 of the second side surface close to the bottom surface are concave downward.
According to the embodiments of the present application, the polymer structure may be made of cured photoresist.
According to embodiments of the present application, a cross section of the insulation layer is trapezoidal and has an arched upper profile.
According to embodiments of the present application, the trapezoidal like insulation micro-structure may have a bottom width in the range between 100 μm and 300 μm to enable a sufficiently wide metal conductor or multiple sufficiently wide metal conductors being enclosed. The purpose of including sufficiently wide metal conductor, e.g. copper wiring, is to ensure the resulted inductor possesses meaningfully low Direct Current (DC) resistance, thus low DC loss, especially when such inductor is used as energy storage device in voltage regulator circuit. Meanwhile, to facilitate manufacturability of the trapezoidal insulation structure using available semiconductor wafer processing machines, techniques, and materials, the height of such insulation structure is limited to the range between 10 μm and 40 μm. For the same reason of realizing low DC resistance of the resulted inductor, the height range of the insulation structure enables the fabrication of metal conductor or conductors with thickness between 8 μm and 20 μm. The resulted inductor can have any combination of the bottom width, insulation structure height, and metal conductor thickness from the ranges specified here, respectively. To realize low DC loss, the conductor thickness should be as large as possible in the specified range, while considering the manufacturability limitation of a particular semiconductor fabrication process. Conversely, the height of the trapezoidal insulation structure should be chosen as small as possible in the specified range to achieve the high inductance possible, while satisfying manufacturability of a given fabrication process and providing sufficient electrical insulation between metal conductors and magnetic thin film layers.
According to embodiments of the present application, a footprint of the insulation layer has a ratio of length to width in the range between 2 and 10. To realize an inductor, a bottom magnetic thin film and an upper magnetic thin film are deposited to enclose the insulation structure and conductors passing through it. These magnetic thin films need possess magnetic anisotropy, and magnetic easy axis needs align with longitudinal direction of the insulation structure. The ratio of length to width between 2 and 10 can enhance the needed magnetic anisotropy using geometry characteristics.
According to embodiments of the present application, a radius of the arched upper surface is at least 4 times greater than a radius of the at least one rounded corner. For example, a radius of the arched upper surface is at least 4, 5, or 6 times greater than a radius of the at least one rounded corner. This dimensional relationship is due to the implied ratio of bottom width to height of the trapezoidal like insulation structure. With the increased radius ratio between top surface and rounded corner, the top surface possesses less steep transition from the highest point toward the edge. Therefore, the effect of the gravitational force upon magnetic anisotropy can be greatly reduced. This is to ensure the desired magnetization polarity of magnetic thin film.
According to embodiments of the present application a profile of the arched upper surface is close to an elliptical arc. Because the specified bottom width is always much larger than the height of the trapezoidal like insulation structure, the settling time specified for the process in
According to embodiments of the present application, the polymer structure is made of cured photoresist material, and the polymer structure is fabricated by forming a first photoresist layer, through which at least one conductive wire structure passes, over the first magnetic material layer; performing a pattern definition with lithography on the first photoresist layer; coating a second photoresist layer over the at least one conductive wire structure passes and the dielectric layer; performing settlement for a first preset duration after coating the second photoresist layer; developing the first photoresist layer and the second photoresist layer.
According to embodiments of the present application, the first preset duration ranges from 1 hour to 3 hours to allow sufficient diffusion of photo-acid molecules, produced by the selectively exposed portion on the first photoresist layer, toward unexposed region of the first photoresist layer and second layer of photoresist. The region with photo-acid results in cross-linked photoresist or partially cross-linked photoresist. The subsequent developing step dissolves all uncross-linked photoresist, and the remaining micro-structure with curved surface is the wanted insulation structure.
According to embodiments of the present application, the dielectric layer is made of photoresist material. Certainly, the dielectric layer may also be not photoresist material.
The fabricated inductive structures may be used in various microelectronic circuits such as voltage regulators, RF circuits, EMI mitigation circuits, etc. One of embodiments of the present application is a single phase or multi-phase switching regulator or DC-DC voltage converter. The inductor is the essential energy storage element in the circuit, and forms the output filter with additional output capacitor. Such switching regulator provides needed clean and stable supply voltage to the targeted circuit modules, such as microprocessor, microprocessor processing core, memory module, etc. Another embodiment is a multiphase switching voltage regulator that incorporates multiple integrated micro inductors. Such multiphase voltage regulator is to realize higher response bandwidth to load current change from supplied circuit module, and greatly suppressed ripple noise in voltage rail. Additionally, multiphase switching voltage regulator is capable of handling large current load while maintaining stable supply voltage, and is important for nowadays high performance computing platform, such as servers, desktop computer, laptop computer, tablet, and smartphones. With integrated micro inductors, multiphase switching voltage regulators can be realized with greatly reduced footprint, and becomes attractive to be integrated into continuously shrinking form factor of end-user devices.
According to embodiments of the present application, integrated inductors or transformers may be realized by forming magnetic material layers and insulation material layers on a given substrate in certain order. Such substrate may be package substrate, silicon wafer, or silicon wafer with active transistor circuits.
According to embodiments of the present application, the inductor structure may be integrated inductors and transformers implemented on top of silicon wafer.
According to embodiments of the present application, multiple IVR modules, which utilizes multiple integrated inductors, may be incorporated into a complex multicore microprocessor. The IVR modules enables distributed power supply and power management to achieve power savings and performance improvement.
Benefits of the present application include methods of fabricating trapezoid like polymer prism with arched upper surface to ensure uniform magnetic film deposition for achieving maximized inductance of inductive devices used in integrated circuits. Inductive devices such as inductors and transformers may be fabricated according to the embodiments of the present application. Circuits such as switching voltage regulators and integrated voltage regulators may be fabricated using on-die and/or on package integrated inductors/transformers with magnetic materials according to the embodiments of the present application, and such microelectronic circuits may be utilized in server, networking processor, routers, and mobile applications, for example. Integrated voltage regulators including those used in multicore processors that need partitioned power domain power delivery and power management may benefit from the use of the structures according to embodiments of the present application.
Referring to
The insulation layer 240 may be a long trapezoid like prism structure, for example, a long mesa structure with an arched cross-sectional profile. For example, the insulation layer 240 may have an arched upper surface, a flat bottom surface, a first side surface and a second side surface similar to those in the insulation layer 140 as illustrated in
In addition, the insulation layer 240 may include a first insulation material layer 240a and a second insulation material layer 240b. The first insulation material layer 240a and the second insulation material layer 240b may include the same material, for example, cured photoresist material. Alternatively, the first insulation material layer 240a and the second insulation material layer 240b may have different materials, for example, the first insulation material layer 240a may be cured photoresist material, while the second insulation material layer 240b may be made of another photosensitive polymer material. Alternatively, as another embodiment, the second insulation material layer 240b may be a thin dielectric layer which is not photosensitive polymer material.
For example, the at least one conductive wiring structure 250 may be disposed on the first insulation material layer 240a and the second insulation material layer 240b may be disposed over the first insulation material layer 240a and the at least one conductive wiring structure 250.
Additionally, the inductor structure 200 may further include a substrate 210, and the first magnetic material layer 220 is disposed on the substrate 210. For example, the first magnetic material layer 220 may be fabricated on a surface of a silicon wafer using a conventional commercial semiconductor manufacture line. Alternatively, the substrate 210 may be a printed circuit board in an electronic device.
The inductor structure 300 may include a first magnetic material layer 320, a second magnetic material layer 330, an insulation layer 340 and at least one conductive wiring structure 350 which are similar to a first magnetic material layer 120, a second magnetic material layer 130, an insulation layer 140 and at least one conductive wiring structure 150, respectively as described in the embodiment of
Referring to
It should be noted that the insulation layer 340 may also include a first insulation material layer and a second insulation material layer as described in the embodiment of
The inductor structure 400 may include an inductor 410, an inductor 420, an insulator 440 and a silicon substrate 450. Each of the inductor 410 and the inductor 420 may include an inductor structure as described in the above embodiments. For example, the inductor 410 may include a first magnetic material layer 411, a second magnetic material layer 412, and an insulation layer 413 disposed between the first magnetic material layer 411 and the second magnetic material layer 412. The inductor 410 may further include a conductive wiring structure 431 which passes through the insulation layer 413. Similarly, the inductor 420 may include a first magnetic material layer 421, a second magnetic material layer 422, and an insulation layer 423 disposed between the first magnetic material layer 421 and the second magnetic material layer 422. The inductor 420 may further include a conductive wiring structure 432 which passes through the insulation layer 423. In addition, the conductive wiring structure 432 is connected to the conductive wiring structure 431 in serial as illustrated in
The insulator 440 may be disposed on the silicon substrate 450, and the inductor 410 and the inductor 420 may be disposed on the insulator 440.
It should be noted that, in
Referring to
An inductive device according to embodiments of the present application includes at least one inductor structure according to embodiments of the present application.
810, Forming a first magnetic material layer.
820, Forming an insulation layer, through which at least one conductive wire structure passes, on the first magnetic material layer, wherein the insulation layer includes a polymer structure of which a longitudinal length is greater than a lateral length, and the polymer structure includes an arched upper surface, a first side surface, a second side surface, a bottom surface in a longitudinal direction, wherein at least one of a corner between the arched upper surface and the first side surface and a corner between the arched upper surface and the second side surface is a rounded corner, and at least one of an angle formed between the first side surface and the bottom surface and an angle formed between the second side surface and the bottom surface is less than 90 degree.
830, Forming a second magnetic material layer on the insulation layer.
According to embodiments of the present application, the inductor structure has two magnetic thin film layers supported by a long trapezoid like prism structure which has an arched upper surface and rounded corner transition. Since the long trapezoid like prism structure is formed without utilizing thermal reflow, achieving high inductance of an integrated inductor or transformer effectively.
According to embodiments of the present application, step 820 includes: forming an insulation layer, through which at least one conductive wire structure passes, on the first magnetic material layer; forming a first photoresist layer, through which at least one conductive wire structure passes, over the first magnetic material layer; performing a pattern definition with lithography on the first photoresist layer; coating a second photoresist layer over the at least one conductive wire structure passes and the dielectric layer; developing the first photoresist layer and the second photoresist layer.
Optionally, as another embodiment, the method further includes: performing settlement for a second preset duration after coating the second photoresist layer and before developing.
Optionally, as another embodiment, the first preset duration ranges from 1 hour to 3 hours.
Optionally, as another embodiment, the method further includes: forming a dielectric layer on the first magnetic material layer, wherein the forming a first photoresist layer, through which at least one conductive wire structure passes, over the first magnetic material layer includes: forming at least one conductive wire structure passes on the dielectric layer; coating a first photoresist layer over the at least one conductive wire structure passes and the dielectric layer.
910, Forming a first magnetic material layer.
920, Forming a first photoresist layer, through which at least one conductive wire structure passes, over the first magnetic material layer.
930, Performing a pattern definition with lithography on the first photoresist layer;
940, Coating a second photoresist layer over the at least one conductive wire structure passes and the dielectric layer.
950, Developing the first photoresist layer and the second photoresist layer.
960, Forming a second magnetic material layer on the insulation layer.
According to embodiments of the present application, the inductor structure has two magnetic thin film layers supported by a long trapezoid like prism structure which has an arched upper surface and rounded corner transition. Since the long trapezoid like prism structure is formed without utilizing thermal reflow, achieving high inductance of an integrated inductor or transformer effectively.
Optionally, as another embodiments, the method further includes: performing settlement for a second preset duration after coating the second photoresist layer and before developing.
According to embodiments of the present application, the first preset duration ranges from 1 hour to 3 hours.
Optionally, as another embodiments, the method further includes: forming a dielectric layer on the first magnetic material layer, and step 920 includes: forming at least one conductive wire structure passes on the dielectric layer, coating a first photoresist layer over the at least one conductive wire structure passes and the dielectric layer.
According to embodiments of the present application, the dielectric layer is made of cured photoresist material.
According to embodiments of the present application, the rounded corner is convex and/or the portions of the first side surface and the second side surface close to the bottom surface are concave.
According to embodiments of the present application, a ratio of bottom width to height of a cross section of the polymer structure is greater than or equal to 3.
According to embodiments of the present application, the height of the cross section is greater than or equal to 10 μm.
According to embodiments of the present application, the polymer structure has a glass transition temperature greater than 200 degree Celsius after polymerization.
According to embodiments of the present application, a footprint of the insulation layer has a ratio of length to width greater than or equal to 1.5.
According to embodiments of the present application, a radius of the arched upper surface is at least 4 times greater than a radius of the at least one rounded corner.
According to embodiments of the present application, a profile of the arched upper surface is one of a segmental arc and an elliptical arc.
1010, Forming a first magnetic material layer on a substrate.
For example, the substrate may be a silicon wafer or a printed circuit board. The embodiment may be described by taking a wafer as an example. In addition, before coating, a substrate preparation, for example, cleaning and pre-baking process may be performed, and may be accomplished by one or more of the following processes: substrate cleaning to remove contamination, dehydration bake to remove water, and addition of an adhesion promote. The substrate preparation may improve the adhesion of material, for example, cured photoresist material or the insulation material to the substrate.
The first magnetic material layer may be formed on the substrate by utilizing deposition techniques such as sputtering, electroplating, or chemical vapor deposition (CVD). For example, the first magnetic material layer may be sputtered on the substrate.
1015, Forming an insulation material layer on the first magnetic film layer for insulating the first magnetic film layer from at least one conductive wiring structure.
Specifically, the insulation material layer may be a thin dielectric layer. For example, the insulation material layer may be coated on the first magnetic material layer. The insulation material layer may include any suitable material, including silicon oxide, sapphire, other suitable insulating materials, and/or combinations thereof. The insulation layer is formed by any suitable process, such as implantation, oxidation, deposition, and/or other suitable process. Alternatively, the insulation layer may also be cured photoresist material.
1020, Forming the at least one conductive wiring structure on the insulation material layer.
For example, the at least one conductive wiring structure on the insulation material layer may be formed through a conventional metal etching process. The conductive wire structure may include any suitable conductive material, such as aluminum, copper, titanium, tantalum, tungsten, molybdenum, tantalum nitride, nickel silicide, cobalt silicide, TiN, WN, TiAl, TiAlN, TaCN, TaC, TaSiN, metal alloys, and/or combinations thereof.
1025, Coating a first photoresist layer covering the conductive wiring structure on the insulation material layer.
The first photoresist layer may be formed by any suitable process to any suitable thickness. The coating technique may include spin-coating, spray-coating, dip-coating, flow-coating, vacuum deposition (e.g., physical vapor deposition or chemical vapor deposition), evaporation, or lamination, etc.
For example, a thin, uniform coating of photoresist may be accomplished by a process of spin coating. The photoresist may be obtained by dissolving solid components in a solvent and poured onto the insulation material layer, which is then spun on a turntable at a high speed, thus producing a desired film. At the end of coating, film of photoresist covers the wafer, ready for soft bake.
1030, Performing a soft bake process.
The soft bake, also called prebake or post-apply bake, involves drying the photoresist after spin coat by removing this excess solvent, for example, is used to evaporate the volatile solvent in the photoresist, and make the photoresist into a solid, enhancing the adhesion force of the photoresist. There are several methods that can be used to bake photoresists, for example, oven bake, hotplate baking and proximity baking. After soft bake, the wafer is cooled. After cooling, the wafer is ready for its lithographic exposure.
1035, Performing a lithography pattern definition on the first photoresist layer.
Contact and proximity lithography are the simplest methods of exposing a photoresist (for example, a negative photoresist) through a master pattern called a photomask, and a conventional method of exposure is projection printing in which an image of the mask is projected onto the wafer. There are two major classes of projection lithography tools—scanning and step-and-repeat systems.
1040, Performing short settling of the photoresist layer after the lithography pattern definition.
For example, after the lithography pattern definition, the wafer is stood for a preset duration and the duration is in the range of 20 minutes to 60 minutes, for example, 40 minutes.
1045, Coating the second photoresist layer on the photoresist layer. After the short settling, the second photoresist layer is coated on the first photoresist layer.
The coating step may be performed in a manner as described in step 1025, and will not be repeated herein.
1050, Performing long settling after the second photoresist layer is coated. The duration of this settling step is in the range of 60 minutes to 180 minutes, for example, 90 minutes.
Referring to
1055, Performing another soft bake process. After the long settling, another soft take process may be performed in a manner as described in step 1030.
1060, developing the first photoresist layer and the second photoresist to remove unwanted portion.
1065, Performing ultrasonic cleaning and hard bake to obtain a photoresist structure.
Referring to
1070, Forming a second magnetic material layer on the photoresist structure.
The magnetic material layer described in previous embodiment of integrated inductors or transformers can be made of nano-crystalline or amorphous magnetic alloys such as NiFe, CoZrTa, CoZrNb, CoP, CoPb, CoZr, FeCoO, FeCoP, FeCoBSi, and combinations thereof. The first and second magnetic layer described in the embodiment of integrated inductors and transformers may be in form of laminated thin magnetic film layers with insulation layers in between. The insulation layer material may be silicon oxide, Al2O3, or
The first and second magnetic material layers forming integrated inductors and transformers may utilize deposition techniques such as sputtering, electroplating, or chemical vapor deposition (CVD). In one embodiment of the present application, sputtering a thin titanium, tantalum, TiN film, or combinations prior to depositing the first and second magnetic layer may be performed to increase magnetic film adhesion.
According to embodiments of the present application, the inductor structure may be fabricated by coating photoresist on the wafer surface, soft baking photoresist, lithography definition of structure pattern, coating additional layer of photoresist, settling the wafer for some desired duration, having second round soft baking, developing the photoresist to remove unwanted portion, and having hard baking on the remaining polymerized photoresist. The resulted polymer structures have distinguished trapezoid like profile, curved top surface, and rounded corner angle transitions. This profile characteristic enables uniform film deposition of magnetic layer over the raised 3D structures, and is critical to ensure high inductance and electrical performance of fabricated inductors and transformers.
According to embodiments of the present application, a trapezoidal prism structure with a curved top surface is formed, which enables the fabrication of integrated micro inductor or transformer structures utilizing raised 3D prism with smooth surface transition to ensure uniform film deposition of magnetic layers, thus achieving good inductance and consequently electrical performance of a microelectronic device.
It may be clearly understood by a person skilled in the art that, for the purpose of convenient and brief description, for a detailed working process of the foregoing system, device, and unit, reference may be made to a corresponding process in the foregoing method embodiments, which will not be repeated herein.
A person skilled in the art in the art may make modifications to the specific implementation and application scope of the present application based on the embodiments of the present application. Therefore, the content of the specification shall not be construed as a limitation on the present application.
This application is a continuation of International Application No. PCT/CN2017/098240, filed on Aug. 21, 2017, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6160688 | Okumura | Dec 2000 | A |
7247542 | Shie | Jul 2007 | B2 |
8361594 | Gardner et al. | Jan 2013 | B2 |
20080003760 | Gardner et al. | Jan 2008 | A1 |
20120087179 | Jung | Apr 2012 | A1 |
20140339653 | Chang et al. | Nov 2014 | A1 |
20150097267 | Tseng et al. | Apr 2015 | A1 |
20170294504 | Deligianni | Oct 2017 | A1 |
20180308612 | Park | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
104425122 | Mar 2015 | CN |
105097789 | Nov 2015 | CN |
106876372 | Jun 2017 | CN |
106910609 | Jun 2017 | CN |
Entry |
---|
Office Action issued in Chinese Application No. 201780093989.7 dated Aug. 27, 2020, 13 pages (With English Translation). |
Morrow et al., “Design and Fabrication of On-Chip Coupled Inductors Integrated With Magnetic Material for Voltage Regulators,” IEEE Transactions on Magnetics, vol. 47, No. 6, Jun. 2011, pp. 1678-1686. |
Chomnawang et al., “Three-dimensional micromachined on-chip inductors for high frequency applications,” Louisianna State University, LSU Doctoral Dissertation, Dec. 2002, 196 pages. |
PCT International Search Report and Written Opinion issued in International Application No. PCT/CN2017/098240 dated May 31, 2018, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20200194168 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2017/098240 | Aug 2017 | US |
Child | 16797374 | US |