The present invention relates to an industrial manipulator, and more particularly, to an industrial robot having an apparatus for driving an attachable/detachable four-bar link mechanism.
In general, an industrial robot refers to a general-purpose machine which has both motor functions and intelligence like human beings. Specifically, the industrial robot indicates a general-purpose machine which may be provided with an operating arm based on an engineering method, vision and tactile sensations to understand its environment, a function of planning and executing a working order by itself, and a unit to communicate with an operator, may freely operate, and may be programmed to perform various operations as an integrated mechanical system.
The industrial robot is designed to have an operation and loading weight optimized in the corresponding industrial field or operation process. Therefore, the industrial robot has a limitation in exhibiting different loading weights in various environments or processes like a common robot.
The common robot may refer to a robot which commonly uses a robot body. Specifically, only an end effector or tool in the robot body may be replaced depending on different operations, and a process program for a corresponding operation in a robot controller may be replaced to support another operation.
As shown in
In the robot, a first joint 41 corresponding to the rotating axis 30 serves to rotate a first frame 51 about the base 10, a second joint 42 corresponding to the rotating axis 31 serves to vertically rotate a second frame 52 about the first frame 51, and a third joint 43 corresponding to the straight axis 20 serves to advance and retreat a third frame 53 with respect to the second frame 52.
Since the polar coordinate robot has an excellent vertical motion characteristic with respect to a vertical surface, the polar coordinate robot may perform an operation in a place of which the working area is wide and which is inclined. Therefore, the polar coordinate robot is suitable for a welding operation or coating process.
Meanwhile, when the conventional industrial robot inclusive of the polar coordinate robot is designed, it is very important to decide the loading weight of the industrial robot, in order to determine the use or purpose of the robot. The loading weight is decided by an actuator, a decelerator, a power transmission mechanism which form a joint.
Therefore, when the manufactured industrial robot is to be used for different use, there are difficulties in applying the industrial robot, as long as the loading weight thereof is not allowed. Therefore, a method capable of increasing the loading weight is strongly required.
In order to increase the loading weight, the actuator and the decelerator of the joint may be simply changed. In this case, however, the design of the robot is inevitably changed, an additional cost for purchasing a large actuator is required, and the weight of the robot body is increased. Therefore, this is almost the same as an operation of manufacturing a new industrial robot. An example for the structure for increasing the loading weight is disclosed in Korean Patent No. 10-519608 registered on Oct. 6, 2005.
Furthermore, since the conventional industrial robot may have a loading weight only within a predesigned and predetermined range, the conventional industrial robot cannot be used as a robot body of a common robot requiring different loading weights.
Furthermore, when the conventional industrial robot is docked with a separate robot for carrying the industrial robot or transferring the industrial robot, the weight of the robot body is limited. Accordingly, there are difficulties in unconditionally mounting the actuator and the decelerator having a large volume and weight on the robot.
In view of the above, the present invention provides an industrial robot having an apparatus for driving an attachable/detachable four-bar link mechanism, which is capable of changing a loading weight without adding a separate actuator or changing a decelerator capacity, using the apparatus for driving a four-bar link mechanism attached to and detached from a body of the robot.
In accordance with an aspect of the present invention, there is provided an industrial robot having an apparatus for driving an attachable/detachable four-bar link mechanism, which includes: a base frame having a rotating joint for a robot body; a pivot frame having a revolving joint and coupled to the rotating joint; a column frame having a straight-line joint and coupled to the revolving joint; a motor installed in the pivot frame to rotate the column frame; a decelerator receiving a driving force from the motor and attachably/detachably installed on the revolving joint or the pivot frame; and a four-bar link installed between an output shaft of the decelerator and the column frame.
In accordance with the embodiments of the present invention, the loading weight of the industrial robot having an apparatus for driving an attachable/detachable four-bar link mechanism may be increased or decreased by changing the installation position of the decelerator and connecting the attachable/detachable four-bar link between the decelerator and the column frame, without adding a separate actuator or changing the capacity of the decelerator.
Therefore, the loading weight may be changed or the stiffness of the robot may be increased, without significantly increasing the weight of the robot body compared to the addition of a separate actuator.
Furthermore, the industrial robot having an apparatus for driving an attachable/detachable four-bar link mechanism may be used as a body of a common robot requiring different loading weights.
Furthermore, since the existing decelerator is used to increase the loading weight of the industrial robot having an apparatus for driving an attachable/detachable four-bar link mechanism, it is possible to reduce a manufacturing cost, compared to a robot having a separate actuator or decelerator to increase a loading weight.
Hereinafter, an apparatus for driving an attachable/detachable four-bar link mechanism in accordance with embodiments of the present invention will be described in detail with reference to
Referring to
The robot body 100 includes a base frame 110, a pivot frame 120, a column frame 130, and the straight-line movement unit 139. The base frame 110 includes a plurality of level adjusters 111 for controlling the height thereof according to a screw tightening method. The pivot frame 120 is coupled to pivot in an R direction illustrated in
The plurality of level adjusters 111 for height control is formed to protrude downward from the bottom surface of the base frame 110.
Furthermore, a rotating joint 112 corresponding to a first joint of the robot body 100 is provided between the base frame 110 and the pivot frame 120 or over the base frame 110. The rotating joint 112 may include a motor-driven main actuator and a deceleration gear box (not illustrated) which are coupled inside a housing of the base frame 110. The rotating joint 112 serves to rotate the pivot frame 102 in the R direction based on the base frame 110.
When the pivot frame 120 pivots in the R direction, it may mean that the pivot frame 120 or a bottom plate 121 of the pivot frame 120 and components or assemblies installed or formed over the bottom plate pivot about the base frame 110.
The bottom plate 121 of the pivot frame 120 may include a vertical bracket 129 and a bearing support 500. The vertical bracket 129 is used to install a decelerator 350 and the bearing support 500 serves to rotatably support an output shaft 359 of the decelerator 350 when the decelerator 350 is installed.
A revolving joint 300 corresponding to a second joint of the robot body 100 is disposed to rotate the column frame 130 in the P direction between left and right pivot protrusions 122 and 123 protruding upward from both sides of the bottom plate 121 of the pivot frame 120.
The column frame 130 has a joint hole 136 formed on one side surface or both side surfaces of the upper end portion thereof and reserved for a revolving link unit 620 of a four-bar link 600 which will be described in detail with reference to
The revolving joint 300 includes a servo motor 310 installed on the bottom plate 121 of the pivot frame 120, a first pulley 320 installed on a rotational shaft of the servo motor 310, a first timing belt 330 having one side coupled to the first pulley 320, and a second pulley 340 coupled to the other side of the first timing belt 330, in order to generate a basic loading weight (for example, 5˜10 kgf). The second pulley 340 has an input shaft 351 coupled to the decelerator 350. In this embodiment, the decelerator 350 may include a harmonic drive.
Basically, the housing of the decelerator 350 may be installed on the upper portion of the outer surface of the right pivot protrusion 123 through six attachable installation bolts.
The first pulley 320 and the first timing belt 330 or a second timing belt 331 and the second pulley 340, which will be described with reference to
Furthermore, the servo motor 310 and the pulley-belt type power transmission mechanism may serve as an actuator for the revolving joint 300.
The output shaft 359 of the decelerator 350 is coupled to transmit an output torque to the column frame 130. That is, an end of the output shaft 359 of the decelerator 350 is connected to the column frame 130 through the right pivot protrusion 123.
Furthermore, a straight-line joint 400 corresponding to a third joint of the robot body 100 may be provided with a telescopic mechanism between the column frame 130 and the straight-line movement unit 139. In this regard, the telescopic mechanism may include an internal actuator (for example, a rack and pinion deceleration driving device) to move the end effector and tool assembly 200 by advancing or retreating the straight-line movement unit 139 in the Q direction with respect to the column frame 130.
When the decelerator 350 is attachably coupled to the revolving joint 300 as illustrated in
The coupling relation and operation relation of the revolving joint 300 exhibiting the basic loading weight will be described with reference to
As shown in
The end of the output shaft 359 receiving the output corresponding to the deceleration ratio of the decelerator 350 is connected to one side surface of the column frame 130 through a shaft center hole of a first bearing assembly 125 in a mounting space 124 formed in the right pivot protrusion 123, thereby revolving the column frame 130 in the P direction in response to the output.
The other side surface of the column frame 130 is connected to one end of a pivot shaft 126. The other end of the pivot shaft 126 is coupled to a second bearing assembly 128 installed in the mounting space 127 formed in the left pivot protrusion 122.
When the column frame 130 is rotated depending on the output corresponding to the deceleration ratio of the decelerator 350 as the servo motor 310 is driven, the first and second bearing assemblies 125 and 128 serves to rotatably support the column frame 130 while reducing a frictional force based on the left and right pivot protrusions 122 and 123.
In this way, the robot body 100 including the revolving joint 300 illustrated in
Meanwhile, the servo motor 310 is installed so as to be attached to and detached from the bottom plate 121 of the pivot frame 120 through the first or second installation hole 312 or 313, using an attachable installation band or the bracket 311.
The first installation hole 312 is used when the servo motor 310 is installed as illustrated in
The principle of changing the loading weight of the apparatus for driving an attachable/detachable four-bar link mechanism in accordance with the embodiment of the present invention will be described with reference to
Referring to
In such an arrangement state, angles around the respective corner points may be calculated by Equation 1.
where αi represents an input internal angle formed by the input link B and the bottom connection link A; α1 represents a first internal angle formed by the lower connection link A and the diagonal line L from the corner point between the links B and C to the corner point between the links D and A; α2 represents a second internal angle formed by the diagonal line L and the output link D; α3 represents a third internal angle formed by the diagonal line L and the input link B; and α4 represents a fourth internal link formed by the diagonal line L and the top connection link C.
When the first to fourth internal angles α1, α2, α3, and α4, the input link B, and the output link D are used, the relation between an input torque Ti and an output torque To may be described as expressed by Equation 2.
where To represents an output torque of the four-bar link; Ti represents an input torque of the four-bar link; BL represnts the length of the input link B, DL represents the length of the output link D; α2 represents the second internal angle formed by the diagonal line L and the output link D; α3 represents the third internal angle formed by the diagonal line L and the input link B; and α4 represents the fourth internal link formed by the diagonal line L and the top connection link C.
Referring to Equation 2 which is a relational expression between the input torque Ti and the output torque To, it can be seen that the length BL of the input link B and the length DL of the output link D have relations with each other. More specifically, when the length BL of the input link B is larger than the length DL of the output link D, the output torque To decreases with respect to the input torque Ti. On the contrary, when the length BL of the input link B is smaller than the length DL of the output link D, the output torque To increases with respect to the input torque Ti.
Therefore, as shown in
In other words, the apparatus for driving an attachable/detachable four-bar link mechanism in accordance with the embodiment of the present invention may include the four-bar link 600, the pull-belt type power transmission mechanism, the decelerator 350, and the servo motor 310 to implement the changed loading weight (for example, 10˜20 kgf). That is, the changed loading weight may be implemented by changing the installation position of the decelerator 350 and attaching the four-bar link mechanism 600.
Referring to
The servo motor 310 is installed on the bottom plate 121 of the pivot frame 120 at the front side of the left and right pivot protrusions 122 and 123 using the second installation hole 313 of the driving motor 310 (see
The servo motor 310 transmits a motor driving force to the decelerator 350 through the first pulley 320 at the servo motor 310, the second timing belt 331 having a small length than the first timing belt, and the second pulley 340 at the decelerator 350.
The housing of the decelerator 350 separated from the upper portion of the outer surface of the right pivot protrusion 123 is installed on the bottom plate of the pivot frame 120.
More specifically, the housing of the decelerator 350 is attachably fixed to the vertical bracket 129 erected vertically at a front position of the servo motor 310 in the right side of the bottom plate 121 of the pivot frame 120. For example, the housing of the decelerator 350 is coupled to the left side surface of the verical bracket 129.
A protective casing 380 for protecting the first pulley 320, the second timing belt 331, and the second pulley 340 may be installed on the right side surface of the vertical bracket 129. The protective casing 380 has through-holes through which the first and second pulleys 320 and 340 pass. The protective casing 380 may be coupled to a protective cover 381 through a fixing screw or the like so as to cover the opening of the protective casing 380 positioned in the opposite side of the through-holes.
In addition, the output shaft 359 of the decelerator 350 is coupled to the bearing support 500 erected vertically at the front position of the servo motor 310 in the left side of the bottom plate 121 of the pivot frame 120. The bearing support 500 rotatably supports the output shaft 359 of the decelerator 350 such that the output of the output shaft 359 is stably transmitted to the four-bar link 600.
The four-bar link 600 may include an operating arm 610 and a revolving link unit 620. The operating arm 610 is connected to the output shaft 359 of the decelerator 350 according to a shaft coupling method and receives the output of the decelerator 350. The revolving link unit 620 has one end connected to the operating arm 510 according to a rotating joint method and the other end connected to around the joint hole 136 of the upper end portion 132 of the column frame 130.
In the embodiments, the shaft coupling method or rotataing joint method may refer to a method of rotatably coupling any one or combination of a bearing assembly, a shaft-coupling key member, a spline member, a force-fitting member, and a bushing member, that may have a ring-shaped cover attachably provided thereon, to an assembling target such as the operating arm 510 or the revolving link unit, and attaching and detachcing the assembly or member or the combiation, if necessary.
The revolving link unit 620 may include a pair of bent links formed in a Y shape as illustrated in
In case where the change of the loading weight or the increase in stiffness of the robot is required, the decelerator 350 may be detached from the revolving joint 200 illustrated in
Therefore, as illustrated in
On the other hand, when the length of the operating arm 610 is set to be larger than the length of the column frame 130, the loading weight applied to the column frame 130 may decrease as the output torque To relatively decreases with respect to the input torque Ti in Equation 2.
In accordance with the embodiment of the present invention, a plurality of operating arms may be prepared to have various lengths in response to loading weights required.
Furthermore, the operating arm 610 may be provided with a well-known expandsion and contraction adjustment structure such as a telescopic mechanism, a ball joint mechanism, or a screw mechanism to adjust or vary the length of the operating arm 610.
As described above, the position of the decelerator 350 is changed and the four-bar link mechanism 600 is mounted on the robot body 100 in accordance with the embodiment, in order to obtain an effect of changing the loading weight or increasing the torque without performing large design change. However, When the four-bar link 600 becomes unnecessary, the loading weight may be simply changed by removing the four-bar link 600 from the robot body 100. Accordingly, the robot may be utilized as a common robot.
While the invention has been shown and described with respect to the preferred embodiments, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the scope of the invention as defined in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2010-0044867 | May 2010 | KR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/KR2011/002329 | 4/4/2011 | WO | 00 | 11/12/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/142535 | 11/17/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4507043 | Flatau | Mar 1985 | A |
4600355 | Johnson | Jul 1986 | A |
4718815 | Lindgren | Jan 1988 | A |
4776230 | Susnjara | Oct 1988 | A |
4991456 | Shibata et al. | Feb 1991 | A |
5065684 | Hansberry | Nov 1991 | A |
5549018 | Nihei et al. | Aug 1996 | A |
5584646 | Lewis et al. | Dec 1996 | A |
5622084 | Tellden | Apr 1997 | A |
5901613 | Forslund | May 1999 | A |
5975834 | Ogawa et al. | Nov 1999 | A |
6145403 | Aschenbrenner et al. | Nov 2000 | A |
6408710 | Kullborg et al. | Jun 2002 | B1 |
6748819 | Maeguchi et al. | Jun 2004 | B2 |
7591625 | Minami et al. | Sep 2009 | B2 |
7645112 | Minami et al. | Jan 2010 | B2 |
7794194 | Murray et al. | Sep 2010 | B2 |
7798035 | Duval | Sep 2010 | B2 |
8336420 | Carter et al. | Dec 2012 | B2 |
20030221504 | Stoianovici et al. | Dec 2003 | A1 |
20080314181 | Schena | Dec 2008 | A1 |
20110135437 | Takeshita et al. | Jun 2011 | A1 |
20120048047 | Zhang | Mar 2012 | A1 |
20130255429 | Hahakura et al. | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
101585067 | Nov 2009 | CN |
02-059281 | Feb 1990 | JP |
6-071089 | Oct 1994 | JP |
6-320449 | Nov 1994 | JP |
06-320449 | Nov 1994 | JP |
11-033950 | Feb 1999 | JP |
2003-039352 | Feb 2003 | JP |
10-0519608 | Sep 2005 | KR |
Number | Date | Country | |
---|---|---|---|
20130060383 A1 | Mar 2013 | US |