This document relates to mattresses, and more particularly, but not by way of limitation, to inflatable air mattress systems.
In one aspect, an air bed system includes a plurality of peripheral devices. The system further includes a pump unit configured to adjust a firmness of an air mattress, the pump unit includes a pump. The system further includes a controller configured to execute instructions that cause the pump unit to wirelessly pair with at least one of the plurality of peripheral devices. The pump unit is configured to: receive at least one control signal addressed to the at least one of the plurality of peripheral devices, and transmit the at least one control signal to the addressed device.
Implementations can include any, all, or none of the following features. The plurality of peripheral devices include a first peripheral device having a peripheral device controller configured to: receive the at least one control signal transmitted by the controller of the pump device; and control behavior of the associated peripheral device in accordance with the at least one control signal. The plurality of peripheral devices include an adjustable foundation having an adjustable foundation controller in communication with the controller of the pump unit to receive one or more control signals transmitted by the controller of the pump unit; and an air mattress pad having an air controller in communication with the controller of the pump unit to receive one or more control signals transmitted by the controller of the pump unit. The pump unit includes a pump unit housing containing the pump and the controller of the pump unit, wherein the air mattress includes an air chamber, wherein the pump is fluidically connected to the air chamber by an air hose extending from the pump unit housing to the air chamber, and wherein the plurality of peripheral devices are external to the pump unit housing and the air chamber. The plurality of peripheral devices are physically separated from the pump unit. The controller of the pump unit is configured to execute instructions that cause the pump unit to: form a wireless network with the plurality of peripheral devices, each of the peripheral devices including a peripheral device controller configured to 1) form the wireless network with the pump unit and 2) control behavior of the associated peripheral device in accordance with a control signal received from the pump device over the wireless network; and transmit at least one control signal to one of the plurality of peripheral device controllers over the wireless network. The pump unit device further includes an encasement that physically houses the pump and the controller. The instructions further cause the pump unit to: detect a new peripheral device including a peripheral device controller configured to 1) form the wireless network with the pump unit and 2) control behavior of the associated peripheral device in accordance with a control signal received from the pump device over the wireless network; and add the new peripheral device to the wireless network. The instructions further cause the pump unit to receive a data update configured to modify a user interface to include features specific to the new peripheral device. The instructions further cause the pump unit to receive a data update from the new peripheral device.
In one aspect, a method of operating a pump unit of an air bed system. The pump unit includes a pump and a controller, the method includes a method of operating a pump unit of an air bed system. The pump unit includes a pump and a controller. The method further includes adjusting firmness of an air mattress via the pump unit by driving the pump to modify air pressure in an air chamber of the air mattress. The method further includes executing instructions via the controller of the pump unit to cause the pump unit to wirelessly pair with at least one of a plurality of peripheral devices. The method further includes receiving via the controller of the pump unit at least one control signal addressed to the at least one of the plurality or peripheral devices. The method further includes transmitting via the controller of the pump unit the at least one control signal the at least one of the plurality of peripheral devices.
Implementations can include any, all, or none of the following features. The plurality of peripheral devices include a first peripheral device having a peripheral device controller, the method further including receiving by the peripheral device controller the at least one control signal transmitted by the controller of the pump device; and controlling behavior of the associated peripheral device by the peripheral device controller in accordance with the at least one control signal. The pump unit includes a pump unit housing containing the pump and the controller of the pump unit, wherein the pump is fluidically connected to the air chamber by an air hose extending from the pump unit housing to the air chamber, and wherein the plurality of peripheral devices are external to the pump unit housing and the air chamber. The method including forming a wireless network via the pump unit with the plurality of peripheral devices, each of the peripheral devices comprising a peripheral device controller configured to 1) form the wireless network with the pump unit and 2) control behavior of the associated peripheral device in accordance with a control signal received from the pump device over the wireless network; and transmitting at least one control signal via the pump unit to one of the plurality of peripheral device controllers over the wireless network. The method including detecting a new peripheral device via the controller of the pump unit; adding the new peripheral device to the wireless network via the controller of the pump unit; and receiving a data update via the controller of the pump unit to modify a user interface to include features specific to the new peripheral device, wherein the data update is optionally received from the new peripheral device.
In one aspect, a pump unit device includes a pump. The device further includes a controller configured to execute instructions that cause the pump unit to: form a wireless network with a plurality of peripheral devices, each of the peripheral devices includes a peripheral device controller configured to 1) form the wireless network with the pump unit and 2) control behavior of the associated peripheral device in accordance with a control signal received from the pump device over the wireless network. The device further includes transmit at least one control signal to one of the plurality of peripheral device controllers over the wireless network. a pump unit device includes a pump. The device further includes a controller configured to execute instructions that cause the pump unit to: form a wireless network with a plurality of peripheral devices, each of the peripheral devices includes a peripheral device controller configured to 1) form the wireless network with the pump unit and 2) control behavior of the associated peripheral device in accordance with a control signal received from the pump device over the wireless network. The device further includes transmit at least one control signal to one of the plurality of peripheral device controllers over the wireless network.
Implementations can include any, all, or none of the following features. The pump unit device further includes an encasement that physically houses the pump and the controller. The instructions further cause the pump unit to: detect a new peripheral device including a peripheral device controller configured to 1) form the wireless network with the pump unit and 2) control behavior of the associated peripheral device in accordance with a control signal received from the pump device over the wireless network; and add the new peripheral device to the wireless network. The instructions further cause the pump unit to receive a data update configured to modify a user interface to include features specific to the new peripheral device. The instructions further cause the pump unit to receive a data update from the new peripheral device.
Some embodiments are illustrated by way of example and not limitation in the figures of the accompanying drawings in which:
As depicted in
As seen in
In addition to the smart devices 22, one or more remote controls may be used to transmit control signals to one or more of the pump 12, the foundation controller 14, and the thermoelectric engine 16. For example, a remote control 30A may transmit control signals 32 to the pump 12, a remote control 30B may transmit control signals 34 to the foundation controller 14, and a remote control 30C may transmit control signals 36 to the thermoelectric engine 16. The remote controls 30A, 30B, and 30C are collectively referred to in this disclosure as “remote controls 30.” The remote controls 30 may communicate using any number of communication techniques, including, for example, IEEE 802.15.4, radio frequency (RF), such as at 310 Megahertz (MHz), infrared, and the like.
As seen in the example configuration shown in
In other example configurations, the bridge 26 may broadcast one or more device-specific control signals to one or more specific devices, e.g., the pump 12, which performs the requested function, e.g., increase firmness of an air chamber, while the other devices, e.g., the foundation controller 14 and the thermoelectric engine 16, do not receive the device-specific control signal.
Thus, in the system shown in
In contrast to the system 10 shown and described above with respect to
As seen in
For example, because the pump 32 receives all the control signals from the smart devices 22 and/or the universal remote control 34 and either acts upon or transmits those control signals to the various components of the air bed system, the pump 32 has state awareness of all the devices of the system. By way of specific example, a user may use the smart device 22 (or the universal remote control 34) to transmit control signals to increase the firmness of the air mattress and raise a head portion of the frame of the air bed system. The pump 32 receives the control signals and determines, e.g., via a controller in the pump (not depicted), that it (the pump 32) is the designated recipient of one of the control signals and acts accordingly to increase the firmness of the air mattress. After determining that the other control signal is designated for the foundation controller 14, the pump 32 transmits the control signal to the foundation controller 16. In response, the foundation controller 14 controls one or more articulation motors (not depicted) in order to raise the head portion of the frame. Because the pump 32 received both control signals, the pump 32 is aware of the position of the frame. In this manner, the pump has state awareness of all the devices of the system.
The control signals transmitted by the smart devices 22 and/or the universal remote control 34 to the pump 32 may use any one or more of numerous wireless communication standards, including, for example, Bluetooth, Bluetooth low energy (LE), Wi-Fi, cellular, IEEE 802.15, and the like. Similarly, the control signals 35 transmitted by the pump 32 to the various other components of the system may use any one or more of numerous wireless communication standard, including, for example, Bluetooth, Bluetooth LE, Wi-Fi, cellular, IEEE 802.15, and the like.
In some example implementations, the pump 32 may be connected to the Internet 36 in order to transmit/receive signals to/from a centralized server 38. For example, in order to ensure that a controller of the pump 32 includes the most recent firmware, the centralized server 38 may transmit a signal 40 over the Internet 36, requesting that the pump 32 transmit a signal that includes its firmware version. Alternatively, the centralized server 38 may transmit a signal over the Internet 36 that indicates the most recent firmware version. If the firmware version is not the most recent version, as determined by either the centralized server 38 or the pump 32, the centralized server 38 may transmit a control signal to the pump 32 that instructs the pump 32 to download the most recent firmware version or the centralized server 38 may transmit the most recent firmware version when the firmware and the pump 32 are available. The pump 32 may update its firmware and/or push the firmware to the universal remote control 34 for updating, e.g., to update a user interface on the remote control 34. The pump 32 and the centralized server 38 may be connected to the Internet 36 using a cellular connection 42 or a network connection 44, such as a wireless network connection or a wired network connection.
In addition, the system depicted in
It should be noted that the various functionalities ascribed to the pump 32 in this disclosure are achieved by the pump controller (which is not depicted for simplicity) executing instructions that are stored in a computer readable medium, for example.
For example, the smart device 22 may be wirelessly connected to the pump 32 via a Bluetooth connection 50, such as Bluetooth LE. In addition, the smart device 22 may be connected to the Internet 36 via a cellular connection 52 over a mobile communications network.
A computer 54, e.g., desktop or laptop computer, may communicate with the pump 32 via a wireless connection 56, e.g., Wi-Fi connection. In addition, the computer 54 may be connected to the Internet 36 by Internet Service Provider (ISP) 58. The computer 54 may be used to collect data from the components of the air bed system, e.g., the pump 32 and the adjustable foundation controller 14, and, in some examples, transmit the data over the Internet 36 for further analysis, e.g., by the centralized server 38 of
One or more hand held universal remote controls 34 may be wirelessly connected to the pump 32 using IEEE 802.15.4, for example, as shown at 60. Similarly, the foundation controller 14 may be wirelessly connected to the pump 32 using IEEE 802.15.4, as shown at 62. Finally, the pump 32 may be controlled using voice activated control 64. The voice activated control 64 may be connected to the pump 32 using a wired interface 66.
The communication standards and protocols described above with respect to
In response to receiving the control signals 28 from the user, the pump 32 may act on the command, e.g., adjusting the air pressure to the adjustable air mattress 18, or transmit the control signal to one of the peripherals in the system. As seen in
In the example shown in
In accordance with this disclosure and as shown in
Future peripherals 74 include, but are not limited to, a home alarm system, home lighting, television(s), room shades, and room and/or home temperature. Upon acquiring a future peripheral 74, the user may pair the future peripheral 74 to the pump 32 and begin controlling that particular device, e.g., a television, using the control signals sent to the pump 32 from the smart device 22 or a universal remote control 34, for example. In this way, the air bed system 30 of this disclosure is designed for unknown, future peripherals to allow for seamless communication and expandability.
An ad-hoc pairing between a peripheral and the pump 32 may be created by automatically or manually binding at least two devices, e.g., a future peripheral such as a television and the pump 32. The creation of ad-hoc wireless networks is well known to those of ordinary skill in the art and, as such, need not be described in detail in this disclosure.
In addition, in some example configurations, the peripherals, e.g., the future peripherals, may include firmware to allow for automatic firmware updates upon binding with the pump 32. For example, upon manually or automatically binding with the pump 32, a new peripheral, e.g., a television, may transmit the new firmware to the remote control 34 through the pump 32 in order to update a user interface on the remote control 34. The updated user interface may include features specific to control of the new peripheral, e.g., the television. In this manner, the user can see the new user interface without having to purchase a new remote control 34 or a new pump 32. Additionally, such a configuration in which the new peripheral includes the new firmware for the remote control 34 and/or the pump 32, reduces or eliminates the need for the centralized server 38 of
In various examples, the controllers and devices described above, e.g., the controller of the pump 32, the foundation controller 14, the thermoelectric engine 16, may each include a processor, a storage device, and a network interface. The processor may be a general purpose central processing unit (CPU) or application-specific integrated circuit (ASIC). The storage device may include volatile or non-volatile static storage (e.g., Flash memory, RAM, EPROM, etc.). The storage device may store instructions which, when executed by the processor, configure the processor to perform the functionality described herein. For example, a processor of the foundation controller may be configured to send a command to a motor to adjust a position of the foundation.
In various examples, the network interface of the components may be configured to transmit and receive communications in a variety of wired and wireless protocols. For example, the network interface may be configured to use the 802.11 standards (e.g., 802.11a/b/c/g/n/ac), PAN network standards such as 802.15.4 or Bluetooth, infrared, cellular standards (e.g., 3G/4G etc.), Ethernet, and USB for receiving and transmitting data. The previous list is not intended to exhaustive and other protocols may be used. As shown and described above, not all components need to be configured to use the same protocols.
In various examples, the pump 32 is configured to analyze data collected by a pressure transducer to determine various states of a person lying on the bed. For example, the pump 32 may determine the heart rate or respiration rate of a person lying in the bed. Additional processing may be done using the collected data to determine a possible sleep state of the person. For example, the pump 32 may determine when a person falls asleep and, while asleep, the various sleep states of the person. Further, because the pump 32 acts a hub to the system and, as such, has state awareness of all of the peripheral devices, e.g., the foundation controller 14, a television, the thermoelectric engine 16, the pump may utilize the state information to analyze sleep data of the user. For example, the pump 32 (in particular the controller of the pump 32) may determine that a user achieves a desired sleep state more quickly if the adjustable foundation is in a particular position. The pump 32 may communicate this analysis to the computer 54, thereby allowing the user to react accordingly.
Although an embodiment has been described with reference to specific example embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the invention. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense. The accompanying drawings that form a part hereof, show by way of illustration, and not of limitation, specific embodiments in which the subject matter may be practiced. The embodiments illustrated are described in sufficient detail to enable those skilled in the art to practice the teachings disclosed herein. Other embodiments may be utilized and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. This Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of various embodiments is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled. As it common, the terms “a” and “an” may refer to one or more unless otherwise indicated.
This application is a continuation of U.S. patent application Ser. No. 15/687,796, filed Aug. 28, 2017, now U.S. Pat. No. 10,674,832, which is a continuation of U.S. patent application Ser. No. 14/586,694 filed on Dec. 30, 2014, now U.S. Pat. No. 9,770,114, which claims benefit of U.S. Provisional Application Ser. No. 61/921,615 filed Dec. 30, 2013, the contents of which are incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3727606 | Sielaff | Apr 1973 | A |
4146885 | Lawson, Jr. | Mar 1979 | A |
4299233 | Lemelson | Nov 1981 | A |
4657026 | Tagg | Apr 1987 | A |
4662012 | Tarbet | May 1987 | A |
4766628 | Greer et al. | Aug 1988 | A |
4788729 | Greer et al. | Dec 1988 | A |
D300194 | Walker | Mar 1989 | S |
4829616 | Walker | May 1989 | A |
4890344 | Walker | Jan 1990 | A |
4897890 | Walker | Feb 1990 | A |
4908895 | Walker | Mar 1990 | A |
D313973 | Walker | Jan 1991 | S |
4991244 | Walker | Feb 1991 | A |
5062169 | Kennedy et al. | Nov 1991 | A |
5144706 | Walker et al. | Sep 1992 | A |
5170522 | Walker | Dec 1992 | A |
5197490 | Steiner et al. | Mar 1993 | A |
5235258 | Schuerch | Aug 1993 | A |
5459452 | DePonte | Oct 1995 | A |
D368475 | Scott | Apr 1996 | S |
5509154 | Shafer et al. | Apr 1996 | A |
5515865 | Scanlon | May 1996 | A |
5564140 | Shoenhair et al. | Oct 1996 | A |
5642546 | Shoenhair | Jul 1997 | A |
5652484 | Shafer et al. | Jul 1997 | A |
5675855 | Culp | Oct 1997 | A |
5684460 | Scanlon | Nov 1997 | A |
5699038 | Ulrich et al. | Dec 1997 | A |
5724990 | Ogino | Mar 1998 | A |
5765246 | Shoenhair | Jun 1998 | A |
5771511 | Kummer et al. | Jun 1998 | A |
5796340 | Miller | Aug 1998 | A |
5815864 | Sloop | Oct 1998 | A |
5844488 | Musick | Dec 1998 | A |
5848450 | Oexman et al. | Dec 1998 | A |
5903941 | Shafer et al. | May 1999 | A |
5904172 | Gifft et al. | May 1999 | A |
5948303 | Larson | Sep 1999 | A |
5964720 | Pelz | Oct 1999 | A |
5989193 | Sullivan | Nov 1999 | A |
6008598 | Luff et al. | Dec 1999 | A |
6024699 | Surwit et al. | Feb 2000 | A |
6037723 | Shafer et al. | Mar 2000 | A |
6058537 | Larson | May 2000 | A |
6062216 | Corn | May 2000 | A |
6108843 | Suzuki et al. | Aug 2000 | A |
6108844 | Kraft et al. | Aug 2000 | A |
6120441 | Griebel | Sep 2000 | A |
6146332 | Pinsonneault et al. | Nov 2000 | A |
6147592 | Ulrich et al. | Nov 2000 | A |
6161231 | Kraft et al. | Dec 2000 | A |
6202239 | Ward et al. | Mar 2001 | B1 |
6208250 | Dixon et al. | Mar 2001 | B1 |
6234642 | Bokaemper | May 2001 | B1 |
6272378 | Baumgart-Schmitt | Aug 2001 | B1 |
6396224 | Luff et al. | May 2002 | B1 |
6397419 | Mechache | Jun 2002 | B1 |
6438776 | Ferrand et al. | Aug 2002 | B2 |
6450957 | Yoshimi et al. | Sep 2002 | B1 |
6468234 | Ford et al. | Oct 2002 | B1 |
6483264 | Shafer | Nov 2002 | B1 |
6485441 | Woodward | Nov 2002 | B2 |
6546580 | Shimada | Apr 2003 | B2 |
6547743 | Brydon | Apr 2003 | B2 |
6561047 | Gladney | May 2003 | B1 |
6566833 | Bartlett | May 2003 | B2 |
6686711 | Rose | Feb 2004 | B2 |
6708357 | Gaboury et al. | Mar 2004 | B2 |
6719708 | Jansen | Apr 2004 | B1 |
6763541 | Mahoney et al. | Jul 2004 | B2 |
6778090 | Newham | Aug 2004 | B2 |
6804848 | Rose | Oct 2004 | B1 |
6832397 | Gaboury et al. | Dec 2004 | B2 |
6840117 | Hubbard, Jr. | Jan 2005 | B2 |
6840907 | Brydon | Jan 2005 | B1 |
6847301 | Olson | Jan 2005 | B1 |
D502929 | Copeland et al. | Mar 2005 | S |
6878121 | Krausman | Apr 2005 | B2 |
6883191 | Gaboury et al. | May 2005 | B2 |
6993380 | Modarres | Jan 2006 | B1 |
7041049 | Raniere | May 2006 | B1 |
7077810 | Lange et al. | Jul 2006 | B2 |
7150718 | Okada | Dec 2006 | B2 |
7237287 | Weismiller et al. | Jul 2007 | B2 |
7253366 | Bhai | Aug 2007 | B2 |
7304580 | Sullivan et al. | Dec 2007 | B2 |
7314451 | Halperin et al. | Jan 2008 | B2 |
7321811 | Rawls-Meehan | Jan 2008 | B1 |
7330127 | Price et al. | Feb 2008 | B2 |
7389554 | Rose | Jun 2008 | B1 |
7396331 | Mack | Jul 2008 | B2 |
7429247 | Okada et al. | Sep 2008 | B2 |
7437787 | Bhai | Oct 2008 | B2 |
7465280 | Rawls-Meehan | Dec 2008 | B2 |
7480951 | Weismiller | Jan 2009 | B2 |
7506390 | Dixon et al. | Mar 2009 | B2 |
7520006 | Menkedick et al. | Apr 2009 | B2 |
7524279 | Auphan | Apr 2009 | B2 |
7532934 | Lee et al. | May 2009 | B2 |
7538659 | Ulrich | May 2009 | B2 |
7568246 | Weismiller et al. | Aug 2009 | B2 |
7637859 | Lindback et al. | Dec 2009 | B2 |
7652581 | Gentry et al. | Jan 2010 | B2 |
7666151 | Sullivan et al. | Feb 2010 | B2 |
7669263 | Menkedick et al. | Mar 2010 | B2 |
7676872 | Block et al. | Mar 2010 | B2 |
7685663 | Rawls-Meehan | Mar 2010 | B2 |
7699784 | Wan Fong et al. | Apr 2010 | B2 |
7717848 | Hemth et al. | May 2010 | B2 |
7749154 | Cornel | Jul 2010 | B2 |
7784128 | Kramer | Aug 2010 | B2 |
7785257 | Mack et al. | Aug 2010 | B2 |
7805785 | Rawls-Meehan | Oct 2010 | B2 |
7841031 | Rawls-Meehan | Nov 2010 | B2 |
7849545 | Flocard et al. | Dec 2010 | B2 |
7854031 | Rawls-Meehan | Dec 2010 | B2 |
7860723 | Rawls-Meehan | Dec 2010 | B2 |
7862523 | Ruotoistenmaki | Jan 2011 | B2 |
7865988 | Koughan et al. | Jan 2011 | B2 |
7868757 | Radivojevic et al. | Jan 2011 | B2 |
7869903 | Turner et al. | Jan 2011 | B2 |
7886387 | Riley et al. | Feb 2011 | B2 |
7930783 | Rawls-Meehan | Apr 2011 | B2 |
7933669 | Rawls-Meehan | Apr 2011 | B2 |
7953613 | Gizewski | May 2011 | B2 |
7954189 | Rawls-Meehan | Jun 2011 | B2 |
7956755 | Lee et al. | Jun 2011 | B2 |
7967739 | Auphan | Jun 2011 | B2 |
7979169 | Rawls-Meehan | Jul 2011 | B2 |
8019486 | Rawls-Meehan | Sep 2011 | B2 |
8020230 | Rawls-Meehan | Sep 2011 | B2 |
8028363 | Rawls-Meehan | Oct 2011 | B2 |
8032263 | Rawls-Meehan | Oct 2011 | B2 |
8032960 | Rawls-Meehan | Oct 2011 | B2 |
8046114 | Rawls-Meehan | Oct 2011 | B2 |
8046115 | Rawls-Meehan | Oct 2011 | B2 |
8046116 | Rawls-Meehan | Oct 2011 | B2 |
8046117 | Rawls-Meehan | Oct 2011 | B2 |
8050805 | Rawls-Meehan | Nov 2011 | B2 |
8052612 | Tang | Nov 2011 | B2 |
8065764 | Kramer | Nov 2011 | B2 |
8069852 | Burton | Dec 2011 | B2 |
8073535 | Jung et al. | Dec 2011 | B2 |
8078269 | Suzuki et al. | Dec 2011 | B2 |
8078336 | Rawls-Meehan | Dec 2011 | B2 |
8078337 | Rawls-Meehan | Dec 2011 | B2 |
8083682 | Dalal et al. | Dec 2011 | B2 |
8090478 | Skinner et al. | Jan 2012 | B2 |
8092399 | Sasaki | Jan 2012 | B2 |
8094013 | Lee | Jan 2012 | B1 |
8096960 | Loree et al. | Jan 2012 | B2 |
8146191 | Bobey et al. | Apr 2012 | B2 |
8150562 | Rawls-Meehan | Apr 2012 | B2 |
8166589 | Hijlkema | May 2012 | B2 |
8181296 | Rawls-Meehan | May 2012 | B2 |
8266742 | Andrienko | Sep 2012 | B2 |
8272892 | McNeely et al. | Sep 2012 | B2 |
8276585 | Buckley | Oct 2012 | B2 |
8279057 | Hirose | Oct 2012 | B2 |
8280748 | Allen | Oct 2012 | B2 |
8281433 | Riley et al. | Oct 2012 | B2 |
8284047 | Collins, Jr. | Oct 2012 | B2 |
8287452 | Young et al. | Oct 2012 | B2 |
8336369 | Mahoney | Dec 2012 | B2 |
8341784 | Scott | Jan 2013 | B2 |
8341786 | Oexman et al. | Jan 2013 | B2 |
8348840 | Heit et al. | Jan 2013 | B2 |
8350709 | Receveur | Jan 2013 | B2 |
8375488 | Rawls-Meehan | Feb 2013 | B2 |
8376954 | Lange et al. | Feb 2013 | B2 |
8382484 | Wetmore et al. | Feb 2013 | B2 |
8386008 | Yuen et al. | Feb 2013 | B2 |
8398538 | Dothie | Mar 2013 | B2 |
8403865 | Halperin et al. | Mar 2013 | B2 |
8413274 | Weismiller et al. | Apr 2013 | B2 |
8421606 | Collins, Jr. et al. | Apr 2013 | B2 |
8428696 | Foo | Apr 2013 | B2 |
8444558 | Young et al. | May 2013 | B2 |
D691118 | Ingham et al. | Oct 2013 | S |
8620615 | Oexman | Dec 2013 | B2 |
D697874 | Stusynski et al. | Jan 2014 | S |
D698338 | Ingham | Jan 2014 | S |
D701536 | Shakal | Mar 2014 | S |
8672853 | Young | Mar 2014 | B2 |
8682457 | Rawls-Meehan | Mar 2014 | B2 |
8769747 | Mahoney et al. | Jul 2014 | B2 |
8893339 | Fleury | Nov 2014 | B2 |
8931329 | Mahoney et al. | Jan 2015 | B2 |
8966689 | McGuire et al. | Mar 2015 | B2 |
8973183 | Palashewski et al. | Mar 2015 | B1 |
8984687 | Stusynski et al. | Mar 2015 | B2 |
D737250 | Ingham et al. | Aug 2015 | S |
9131781 | Zaiss et al. | Sep 2015 | B2 |
9370457 | Nunn et al. | Jun 2016 | B2 |
9392879 | Nunn et al. | Jul 2016 | B2 |
9510688 | Nunn et al. | Dec 2016 | B2 |
9542837 | Jeong | Jan 2017 | B2 |
9730524 | Chen et al. | Aug 2017 | B2 |
9737154 | Mahoney et al. | Aug 2017 | B2 |
9770114 | Brosnan et al. | Sep 2017 | B2 |
D809843 | Keeley et al. | Feb 2018 | S |
D812393 | Karschnik et al. | Mar 2018 | S |
9913547 | Driscoll, Jr. | Mar 2018 | B2 |
10342358 | Palashewski et al. | Jul 2019 | B1 |
10448749 | Palashewski | Oct 2019 | B2 |
10674832 | Brosnan | Jun 2020 | B2 |
10729253 | Gaunt | Aug 2020 | B1 |
20020124311 | Peftoulidis | Sep 2002 | A1 |
20030045806 | Brydon | Mar 2003 | A1 |
20030166995 | Jansen | Sep 2003 | A1 |
20030182728 | Chapman et al. | Oct 2003 | A1 |
20030221261 | Tarbet et al. | Dec 2003 | A1 |
20040049132 | Barron et al. | Mar 2004 | A1 |
20040177449 | Wong et al. | Sep 2004 | A1 |
20050022606 | Partin et al. | Feb 2005 | A1 |
20050038326 | Mathur | Feb 2005 | A1 |
20050190068 | Gentry et al. | Sep 2005 | A1 |
20050283039 | Cornel | Dec 2005 | A1 |
20060020178 | Sotos et al. | Jan 2006 | A1 |
20060031996 | Rawls-Meehan | Feb 2006 | A1 |
20060047217 | Mirtalebi | Mar 2006 | A1 |
20060152378 | Lokhorst | Jul 2006 | A1 |
20060162074 | Bader | Jul 2006 | A1 |
20070118054 | Pinhas et al. | May 2007 | A1 |
20070149883 | Yesha | Jun 2007 | A1 |
20070179334 | Groves et al. | Aug 2007 | A1 |
20070180047 | Dong et al. | Aug 2007 | A1 |
20070180618 | Weismiller et al. | Aug 2007 | A1 |
20070276202 | Raisanen et al. | Nov 2007 | A1 |
20080052837 | Blumberg | Mar 2008 | A1 |
20080071200 | Rawls-Meehan | Mar 2008 | A1 |
20080077020 | Young et al. | Mar 2008 | A1 |
20080092291 | Rawls-Meehan | Apr 2008 | A1 |
20080092292 | Rawls-Meehan | Apr 2008 | A1 |
20080092293 | Rawls-Meehan | Apr 2008 | A1 |
20080092294 | Rawls-Meehan | Apr 2008 | A1 |
20080093784 | Rawls-Meehan | Apr 2008 | A1 |
20080097774 | Rawls-Meehan | Apr 2008 | A1 |
20080097778 | Rawls-Meehan | Apr 2008 | A1 |
20080097779 | Rawls-Meehan | Apr 2008 | A1 |
20080104750 | Rawls-Meehan | May 2008 | A1 |
20080104754 | Rawls-Meehan | May 2008 | A1 |
20080104755 | Rawls-Meehan | May 2008 | A1 |
20080104756 | Rawls-Meehan | May 2008 | A1 |
20080104757 | Rawls-Meehan | May 2008 | A1 |
20080104758 | Rawls-Meehan | May 2008 | A1 |
20080104759 | Rawls-Meehan | May 2008 | A1 |
20080104760 | Rawls-Meehan | May 2008 | A1 |
20080104761 | Rawls-Meehan | May 2008 | A1 |
20080109959 | Rawls-Meehan | May 2008 | A1 |
20080109965 | Mossbeck | May 2008 | A1 |
20080115272 | Rawls-Meehan | May 2008 | A1 |
20080115273 | Rawls-Meehan | May 2008 | A1 |
20080115274 | Rawls-Meehan | May 2008 | A1 |
20080115275 | Rawls-Meehan | May 2008 | A1 |
20080115276 | Rawls-Meehan | May 2008 | A1 |
20080115277 | Rawls-Meehan | May 2008 | A1 |
20080115278 | Rawls-Meehan | May 2008 | A1 |
20080115279 | Rawls-Meehan | May 2008 | A1 |
20080115280 | Rawls-Meehan | May 2008 | A1 |
20080115281 | Rawls-Meehan | May 2008 | A1 |
20080115282 | Rawls-Meehan | May 2008 | A1 |
20080120775 | Rawls-Meehan | May 2008 | A1 |
20080120776 | Rawls-Meehan | May 2008 | A1 |
20080120777 | Rawls-Meehan | May 2008 | A1 |
20080120778 | Rawls-Meehan | May 2008 | A1 |
20080120779 | Rawls-Meehan | May 2008 | A1 |
20080120784 | Warner et al. | May 2008 | A1 |
20080122616 | Warner | May 2008 | A1 |
20080126122 | Warner et al. | May 2008 | A1 |
20080126132 | Warner | May 2008 | A1 |
20080127418 | Rawls-Meehan | Jun 2008 | A1 |
20080127424 | Rawls-Meehan | Jun 2008 | A1 |
20080147442 | Warner | Jun 2008 | A1 |
20080162171 | Rawls-Meehan | Jul 2008 | A1 |
20080262654 | Omori | Oct 2008 | A1 |
20080262657 | Howell | Oct 2008 | A1 |
20080275314 | Mack et al. | Nov 2008 | A1 |
20080281611 | Rawls-Meehan | Nov 2008 | A1 |
20080281612 | Rawls-Meehan | Nov 2008 | A1 |
20080281613 | Rawls-Meehan | Nov 2008 | A1 |
20080288272 | Rawls-Meehan | Nov 2008 | A1 |
20080288273 | Rawls-Meehan | Nov 2008 | A1 |
20080306351 | Izumi | Dec 2008 | A1 |
20080307582 | Flocard et al. | Dec 2008 | A1 |
20090018853 | Rawls-Meehan | Jan 2009 | A1 |
20090018854 | Rawls-Meehan | Jan 2009 | A1 |
20090018855 | Rawls-Meehan | Jan 2009 | A1 |
20090018856 | Rawls-Meehan | Jan 2009 | A1 |
20090018857 | Rawls-Meehan | Jan 2009 | A1 |
20090018858 | Rawls-Meehan | Jan 2009 | A1 |
20090024406 | Rawls-Meehan | Jan 2009 | A1 |
20090037205 | Rawls-Meehan | Feb 2009 | A1 |
20090043595 | Rawls-Meehan | Feb 2009 | A1 |
20090064420 | Rawls-Meehan | Mar 2009 | A1 |
20090100599 | Rawls-Meehan | Apr 2009 | A1 |
20090121660 | Rawls-Meehan | May 2009 | A1 |
20090139029 | Rawls-Meehan | Jun 2009 | A1 |
20090203972 | Henehgan et al. | Aug 2009 | A1 |
20090275808 | DiMaio et al. | Nov 2009 | A1 |
20090314354 | Chaffee | Dec 2009 | A1 |
20100025900 | Rawls-Meehan | Feb 2010 | A1 |
20100090383 | Rawls-Meehan | Apr 2010 | A1 |
20100094139 | Brauers et al. | Apr 2010 | A1 |
20100099954 | Dickinson et al. | Apr 2010 | A1 |
20100152546 | Behan et al. | Jun 2010 | A1 |
20100170043 | Young et al. | Jul 2010 | A1 |
20100174198 | Young et al. | Jul 2010 | A1 |
20100174199 | Young et al. | Jul 2010 | A1 |
20100191136 | Wolford | Jul 2010 | A1 |
20100199432 | Rawls-Meehan | Aug 2010 | A1 |
20100231421 | Rawls-Meehan | Sep 2010 | A1 |
20100302044 | Chacon et al. | Dec 2010 | A1 |
20100317930 | Oexman et al. | Dec 2010 | A1 |
20110001622 | Gentry | Jan 2011 | A1 |
20110010014 | Oexman et al. | Jan 2011 | A1 |
20110015495 | Dothie et al. | Jan 2011 | A1 |
20110041592 | Schmoeller et al. | Feb 2011 | A1 |
20110068935 | Riley et al. | Mar 2011 | A1 |
20110087113 | Mack et al. | Apr 2011 | A1 |
20110094041 | Rawls-Meehan | Apr 2011 | A1 |
20110144455 | Young et al. | Jun 2011 | A1 |
20110156915 | Brauers et al. | Jun 2011 | A1 |
20110224510 | Oakhill | Sep 2011 | A1 |
20110239374 | Rawls-Meehan | Oct 2011 | A1 |
20110252569 | Rawls-Meehan | Oct 2011 | A1 |
20110258784 | Rawls-Meehan | Oct 2011 | A1 |
20110282216 | Shinar et al. | Nov 2011 | A1 |
20110283462 | Rawls-Meehan | Nov 2011 | A1 |
20110291795 | Rawls-Meehan | Dec 2011 | A1 |
20110291842 | Oexman | Dec 2011 | A1 |
20110295083 | Doelling et al. | Dec 2011 | A1 |
20110306844 | Young | Dec 2011 | A1 |
20120053423 | Kenalty et al. | Mar 2012 | A1 |
20120053424 | Kenalty et al. | Mar 2012 | A1 |
20120056729 | Rawls-Meehan | Mar 2012 | A1 |
20120057685 | Rawls-Meehan | Mar 2012 | A1 |
20120090698 | Giori | Apr 2012 | A1 |
20120110738 | Rawls-Meehan | May 2012 | A1 |
20120110739 | Rawls-Meehan | May 2012 | A1 |
20120110740 | Rawls-Meehan | May 2012 | A1 |
20120112890 | Rawls-Meehan | May 2012 | A1 |
20120112891 | Rawls-Meehan | May 2012 | A1 |
20120112892 | Rawls-Meehan | May 2012 | A1 |
20120116591 | Rawls-Meehan | May 2012 | A1 |
20120119886 | Rawls-Meehan | May 2012 | A1 |
20120119887 | Rawls-Meehan | May 2012 | A1 |
20120138067 | Rawls-Meehan | Jun 2012 | A1 |
20120154155 | Brasch | Jun 2012 | A1 |
20120186019 | Rawls-Meehan | Jul 2012 | A1 |
20120198632 | Rawls-Meehan | Aug 2012 | A1 |
20120311790 | Nomura et al. | Dec 2012 | A1 |
20130031725 | Riley et al. | Feb 2013 | A1 |
20130160212 | Oexman et al. | Jun 2013 | A1 |
20130174347 | Oexman et al. | Jul 2013 | A1 |
20140007656 | Mahoney | Jan 2014 | A1 |
20140137332 | McGuire et al. | May 2014 | A1 |
20140182061 | Zaiss | Jul 2014 | A1 |
20140250597 | Chen et al. | Sep 2014 | A1 |
20140257571 | Chen et al. | Sep 2014 | A1 |
20140259417 | Nunn et al. | Sep 2014 | A1 |
20140259418 | Nunn | Sep 2014 | A1 |
20140259419 | Stusynski | Sep 2014 | A1 |
20140259431 | Fleury | Sep 2014 | A1 |
20140259433 | Nunn et al. | Sep 2014 | A1 |
20140259434 | Nunn et al. | Sep 2014 | A1 |
20140277611 | Nunn et al. | Sep 2014 | A1 |
20140277778 | Nunn et al. | Sep 2014 | A1 |
20140277822 | Nunn et al. | Sep 2014 | A1 |
20150007393 | Palashewski et al. | Jan 2015 | A1 |
20150025327 | Young et al. | Jan 2015 | A1 |
20150026896 | Fleury et al. | Jan 2015 | A1 |
20150157519 | Stusynski et al. | Jun 2015 | A1 |
20150182397 | Palashewski et al. | Jul 2015 | A1 |
20150182399 | Palashewski et al. | Jul 2015 | A1 |
20150182418 | Zaiss | Jul 2015 | A1 |
20150290059 | Brosnan et al. | Oct 2015 | A1 |
20150366366 | Zaiss et al. | Dec 2015 | A1 |
20160015184 | Nunn et al. | Jan 2016 | A1 |
20160100696 | Palashewski et al. | Apr 2016 | A1 |
20160192886 | Nunn et al. | Jul 2016 | A1 |
20160242561 | Riley et al. | Aug 2016 | A1 |
20160242562 | Karschnik et al. | Aug 2016 | A1 |
20160338871 | Nunn et al. | Nov 2016 | A1 |
20160367039 | Young et al. | Dec 2016 | A1 |
20170003666 | Nunn et al. | Jan 2017 | A1 |
20170035212 | Nunn et al. | Feb 2017 | A1 |
20170049243 | Nunn et al. | Feb 2017 | A1 |
20170196369 | Nunn et al. | Jul 2017 | A1 |
20170303697 | Chen et al. | Oct 2017 | A1 |
20170318980 | Mahoney et al. | Nov 2017 | A1 |
20170354268 | Brosnan et al. | Dec 2017 | A1 |
20180116415 | Karschnik et al. | May 2018 | A1 |
20180116418 | Shakal et al. | May 2018 | A1 |
20180116419 | Shakal | May 2018 | A1 |
20180119686 | Shakal et al. | May 2018 | A1 |
20180125259 | Peterson et al. | May 2018 | A1 |
20180125260 | Peterson et al. | May 2018 | A1 |
20190059603 | Griffith et al. | Feb 2019 | A1 |
Number | Date | Country |
---|---|---|
2004-229875 | Aug 2004 | JP |
WO 2004082549 | Sep 2004 | WO |
WO 2008128250 | Oct 2008 | WO |
WO 2009108228 | Sep 2009 | WO |
WO 2009123641 | Oct 2009 | WO |
WO 2014151854 | Sep 2014 | WO |
Entry |
---|
U.S. Appl. No. 29/583,852, filed Nov. 9, 2016, Keeley. |
PCT International Search Report and Written Opinion in International Appln. No. PCT/US2014/072814, dated Apr. 10, 2015, 4 pages. |
PCT International Preliminary Report on Patentability in International Appln. No. PCT/US2014/072814, dated Jul. 5, 2016, 10 pages. |
Supplementary European Search Report in Patent Application No. 14877378.1, dated Aug. 16, 2017, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20200359807 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
61921615 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15687796 | Aug 2017 | US |
Child | 16891773 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14586694 | Dec 2014 | US |
Child | 15687796 | US |