The present invention relates to an inflatable apparatus for helping to protect a vehicle occupant in the event of a side impact to the vehicle, a vehicle rollover, or both.
It is known to inflate an inflatable vehicle occupant protection device to help protect a vehicle occupant in the event of a vehicle collision. One particular type of inflatable vehicle occupant protection device is an inflatable curtain that inflates away from the roof of the vehicle downward inside the passenger compartment between a vehicle occupant and the side structure of the vehicle in the event of a side impact or rollover. A known inflatable curtain is inflated from a deflated condition by inflation fluid directed from an inflator to the inflatable curtain.
The present invention relates to an apparatus for helping to protect an occupant of a vehicle that has a side structure and a roof. The apparatus comprises an inflatable vehicle occupant protection device that is inflatable away from the vehicle roof to a position between the side structure of the vehicle and a vehicle occupant, and a fill tube for delivering inflation fluid to the protection device. The protection device comprises an opening through which the fill tube extends and a portion adjacent the opening that forms a friction fit around the fill tube. The friction fit forms an effective seal for preventing inflation fluid leakage through the opening.
The present invention also relates to an apparatus for helping to protect an occupant of a vehicle. The apparatus includes an inflatable vehicle occupant protection device inflatable to help protect a vehicle occupant. The apparatus also includes a fill tube for delivering inflation fluid to the protection device. The fill tube includes a crimped portion crimped flat to block inflation fluid flow through the crimped portion.
The present invention further relates to an apparatus for helping to protect an occupant of a vehicle. The apparatus includes an inflatable vehicle occupant protection device inflatable to help protect a vehicle occupant. The apparatus also includes a fill tube for delivering inflation fluid to the protection device. The protection device includes an opening through which the fill tube extends. The fill tube includes a tapered portion that forms an interference with a portion of the protection device defining the opening. The interference creates a friction fit between the fill tube and the portions defining the opening. The friction fit forms an effective seal for preventing inflation fluid leakage through the opening.
The foregoing and other features of the present invention will become apparent to one skilled in the art to which the present invention relates upon consideration of the following description of the invention with reference to the accompanying drawings, in which:
Representative of the present invention,
The vehicle 12 includes an A pillar 70, B pillar 72 and C pillar 74. The inflatable curtain 14 includes a front portion 93 (
The inflatable curtain 14 is inflatable from the stored position in a direction away from the roof 18 to a deployed position, shown in
The inflatable curtain 14 can be constructed of any suitable material, such as a woven fabric material. The inflatable curtain 14 may be uncoated, coated with a material, such as a gas impermeable urethane, or laminated with a material, such as a gas impermeable film. The inflatable curtain 14 thus may have a gas-tight or substantially gas-tight construction. Those skilled in the art will appreciate that alternative materials, such as silicone, may also be used to coat or laminate the inflatable curtain 14.
The apparatus 10 also includes an inflation fluid source in the form of an inflator 24. The inflator 24 is actuatable to provide inflation fluid for inflating the inflatable curtain 14. In the illustrated embodiment, the inflator 24 is mounted at the rear portion of the vehicle near the C-pillar 74.
The inflator 24 may be of any suitable construction or configuration. For example, the inflator 24 may contain a stored quantity of pressurized inflation fluid (not shown) in the form of a gas for inflating the inflatable curtain 14. As another example, the inflator 24 could contain a combination of pressurized inflation fluid and ignitable material for heating the inflation fluid, or could be a pyrotechnic inflator that uses the combustion of gas-generating material to generate inflation fluid. As a further example, the inflator 24 could be of any suitable type or construction for supplying a medium for providing inflation fluid for inflating the inflatable curtain 14.
In the illustrated embodiment, the inflator 24 is connected in fluid communication with the inflatable curtain 14 through a conduit or fill tube 22. The fill tube 22 may be constructed of any suitable material, such as metal or plastic. The fill tube 22 has a rear end portion 27 that is connected to the inflator 24, and a main portion 43 positioned in the inflatable curtain 14. The main portion 43 includes a plurality of openings 44 (see
Referring to
The front end portion 46 also includes a tapered portion 58 that extends between the main portion 43 and the crimped portion 50. As best shown in
The front end portion 46 of the fill tube may undergo one or more manufacturing steps that produce the crimped portion 50 and the tapered portion 58. For example, tooling (not shown), such as a stamp or die, may form the crimped portion 50 and tapered portion 58 from stock tube material (e.g., steel tubing) in a single manufacturing step. In this example, the tooling may be outfitted to punch or pierce the mounting opening 52 in the crimped portion 50 in the same manufacturing step.
Referring to
Referring to
The apparatus 10 is assembled by inserting the fill tube 22 into the inflatable curtain 14 and sliding the front end portion 46 of the fill tube 22 through the channel 104. As the front end portion 46 of the fill tube 22 passes through the outlet 112 of the channel 104, an interference fit is established with the stop portion 116. This occurs when the circumferential size or diameter of the front end portion 46 equals the diameter D2. As shown in
The main portion 43 of the fill tube 22 has an outside diameter D3 that is about equal to or slightly greater than the inner diameter D1 of the inlet 108 and the inner wall 106. This forms an interference that creates a friction fit between the inner wall 106 and the main portion 43 of the fill tube 22. In one particular example configuration, the inner diameter D2 of the inlet 108 and the inner wall 106 may be about 23 mm and the outside diameter D3 of the main portion 43 of the fill tube 22 may be about 24 mm.
Referring to
The rear end portion 27 of the fill tube 22 tapers at the junction between the rear end portion 27 and the main portion 43. Thus, the rear end portion 27 has a larger diameter D4 than the diameter D3 of the main portion 43. The diameter D6 of the opening 130 is larger than the diameter D3 of the main portion 43 but slightly smaller than the diameter D4 of the rear end portion 27. The fill tube 22 is inserted into the channel 122 and positioned in the channel so that the seal portion 124 engages the rear end portion 27 of the fill tube 22 to create a friction fit around the rear end portion 27 of the fill tube 22. This configuration of the fill tube 22 and rear portion 94 of the inflatable curtain 14 allows the seal portion 124 to move over the main portion 43 but engage the rear end portion 27 to create a friction fit around the rear end portion 27 of the fill tube 22 during installation of the inflatable curtain 14.
Alternatively, the channel may not have a seal portion and instead have its diameter D5 be larger than the diameter D3 of the main portion 43 but slightly smaller than the diameter D4 of the rear end portion 27. In this embodiment, the inner wall 123 of the rear portion 94 of the inflatable curtain 14 would engage the rear end portion 27 to create the friction fit around the rear end portion 27.
In the stored condition, the apparatus 10 is supported in the vehicle 12 by known means, such as hooks, brackets, or fasteners, that connect the inflatable curtain 14, inflator 24, fill tube 22, or any combination thereof to the vehicle. For example, as shown in
Referring to
Also, in the stored condition, the seal portion 124 engages the outer surface 126 of the rear end portion 27 of the fill tube 22. The inflatable curtain 14 is made of a fabric material with sufficient elasticity so that the seal portion 124 stretches around the rear end portion 27 of the fill tube 22 and then constricts to create a friction fit with the rear end portion 27 of the fill tube 22. The friction fit forms an effective seal between the rear end portion 27 of the fill tube 22 and seal portion 124 to substantially prevent inflation fluid leakage through the channel 122.
Upon sensing the occurrence of an event for which inflation of the inflatable curtain 14 is desired, such as a side impact, a vehicle rollover, or both, a sensor 60 (
In the deployed position, the inflatable curtain 14 is positioned between the side structure 16 and any occupants 28 of the vehicle 12. The inflatable curtain 14, when inflated, extends fore and aft in the vehicle 12 along the side structure 16 and may cover or at least partially cover the side windows 20. The inflatable curtain 14 may also cover portions of the A pillar 70, B pillar 72 and C pillar 74 of the vehicle 12. The inflatable curtain may include several non-inflatable connections 132 that help define inflatable chambers 134 of the curtain 14.
During inflation of the inflatable curtain, the inflatable curtain 14 contracts lengthwise such that the front portion 93 of the inflatable curtain moves rearwardly along the fill tube 22 and the rear portion 94 of the inflatable curtain moves forwardly along the fill tube 22. This lengthwise contraction further pulls the inner wall 106 of the curtain 14 around the main portion 43 of the fill tube 22 to further the friction fit to better form an effective seal.
Also, during the inflation of the inflatable curtain 14, the terminal end portion 113 moves rearwardly along the fill tube 22 until the entire stop portion 116 tightly engages the front end 120 of the tapered portion 58 to stop further rearward movement of the curtain 14 as depicted in
The main portion 43 could also have a raised annular portion with a larger diameter than the diameter D3. Upon inflation of the inflatable curtain 14, the inner wall 106 that defines the inlet 108 would engage the raised portion to increase the friction fit around the main portion 43. Likewise, the rear end portion 27 could have a raised annular portion that would engage the seal portion 124 to increase the friction fit around the rear end portion 27.
From the above description of the invention, those skilled in the art will perceive improvements, changes and modifications. Such improvements, changes and modifications within the skill of the art are intended to be covered by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5487556 | Jenkins et al. | Jan 1996 | A |
5667241 | Bunker et al. | Sep 1997 | A |
5690354 | Logan et al. | Nov 1997 | A |
5700028 | Logan et al. | Dec 1997 | A |
5803488 | Bailey et al. | Sep 1998 | A |
5806882 | Stein et al. | Sep 1998 | A |
5833266 | Bartoldus et al. | Nov 1998 | A |
6010149 | Riedel et al. | Jan 2000 | A |
6082761 | Kato et al. | Jul 2000 | A |
6103984 | Bowers et al. | Aug 2000 | A |
6106007 | Kretschmer et al. | Aug 2000 | A |
6135492 | Zimmerbeutel et al. | Oct 2000 | A |
6164688 | Einsiedel et al. | Dec 2000 | A |
6224089 | Uchiyama et al. | May 2001 | B1 |
6237937 | Kokeguchi et al. | May 2001 | B1 |
6412810 | Wipasuramonton et al. | Jul 2002 | B1 |
6431586 | Eyrainer et al. | Aug 2002 | B1 |
6851707 | Bakhsh et al. | Feb 2005 | B2 |
6860507 | Uchiyama et al. | Mar 2005 | B2 |
6945554 | Henderson et al. | Sep 2005 | B2 |
7125038 | Gammill | Oct 2006 | B2 |
7357414 | Huperz | Apr 2008 | B2 |
7404571 | Stevens | Jul 2008 | B2 |
20030015862 | Jost | Jan 2003 | A1 |
20050017489 | Huperz | Jan 2005 | A1 |
20050077709 | Hofmann et al. | Apr 2005 | A1 |
20070035112 | Takahara | Feb 2007 | A1 |
20070284859 | Kashiwagi | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
10133086 | Jan 2003 | DE |
Number | Date | Country | |
---|---|---|---|
20080211211 A1 | Sep 2008 | US |