Infrared (IR)-to-visible light up-conversion devices have attracted a great deal of interest due to the potential application in night vision, range finding, and security as well as semiconductor wafer inspections. IR-to-visible light up-conversion devices have been constructed by integrating a photodetector with a light-emitting diode (LED) or an organic light-emitting diode (OLED). However, for some applications, such as a night vision device, the up-conversion device can be unsuitable if the visible light can pass through the IR transparent electrode through which IR radiation enters. Hence, there is a need for an up-conversion device for many applications, such as night vision applications, where stacked active layers of the device are perpendicular to the IR light input and includes a layer that has a means to restrict the visible light output to exclusively the desired observation site.
Embodiments of the invention are directed to an up-conversion device having a stacked layer structure. The device comprises an IR pass visible blocking layer, an IR entry transparent electrode, an IR sensitizing layer, a light emitting diode (LED) layer, and a visible exit transparent electrode. The IR pass visible blocking layer is situated between an IR radiation source and the LED layer, for example, between the IR radiation source and the IR entry transparent electrode. The IR pass visible blocking layer blocks the passage of visible light, at the wavelength or wavelengths emitted by the LED layer, but allows the passage of NIR radiation to the IR sensitizing layer. The IR pass visible blocking layer can be a composite structure having a multiplicity of two alternating films of materials with different refractive indexes, such as a stack of alternating Ta2O5 and SiO2 films or LiF and TeO2 films. Alternatively, the IR pass visible blocking layer can comprise one or more films of Si, CdS, InP, and/or CdTe. The IR entry transparent electrode can be Indium tin Oxide (ITO), Indium Zinc Oxide (IZO), Aluminum Tin Oxide (ATO), Aluminum Zinc Oxide (AZO), carbon nanotubes, or silver nanowires and the visible exit transparent electrode can be Indium tin Oxide (ITO), Indium Zinc Oxide (IZO), Aluminum Tin Oxide (ATO), Aluminum Zinc Oxide (AZO), carbon nanotubes, silver nanowires, Mg:Ag, or a Mg:Ag and Alg3 stack layer.
The LED layer comprises an electron transport layer (ETL), a light emitting layer, and a hole transport layer (HTL). The ETL can comprise tris[3-(3-pyridyl)-mesityl]borane (3TPYMB), 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (BPhen), and tris-(8-hydroxy quinoline) aluminum (Alq3). The light emitting layer can comprise tris-(2-phenylpyidine) iridium, Ir(ppy)3, poly-[2-methoxy, 5-(2′-ethyl-hexyloxy)phenylene vinylene] (MEH-PPV), tris-(8-hydroxy quinoline) aluminum (Alq3), or iridium (III) bis-[(4,6-di-fluorophenyl)-pyridinate-N,C2′]picolinate (FIrpic). The HTL can comprise 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC), N,N′-diphenyl-N,N′(2-naphthyl)-(1,1′-phenyl)-4,4′-diamine (NPB), and N,N′-diphenyl-N,N′-di(m-tolyl)benzidine (TPD).
Embodiments of the invention are directed to IR-to-Visible up-conversion devices, where the output of the visible light generated is restricted from radiating out of the surface from which the IR light enters. In a typical up-conversion device, as shown in
The up-conversion device, according to an embodiment of the invention, is shown in
The IR pass visible blocking layer used in the up-conversion device, according to an embodiment of the invention, can employ a multi dielectric stack layer as shown in
In embodiments of the invention, the IR sensitizing layer can be a broad absorption IR sensitizing layer comprising mixed PbSe QDs or mixed PbS QDs. In other embodiments of the invention, the IR sensitizing layer comprises continuous thin films of: PbSe, PbS, InAs, InGaAs, Si, Ge, or GaAs. In embodiments of the invention, the IR sensitizing layer is an organic or organometallic comprising material including, but not limited to: perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride (PTCDA); tin (II) phthalocyanine (SnPc); SnPc:C60, aluminum phthalocyanine chloride (AlPcCl); AlPcCl:C60; titanyl phthalocyanine (TiOPc); and TiOPc:C60.
In an embodiment of the invention, the LED layer can be an OLED comprising fac-tris(2-phenylpyridine)iridium (Ir(ppy)3) that emits green light at 515 nm. Other LED materials that can be employed in embodiments of the invention include: poly-[2-methoxy, 5-(2′-ethyl-hexyloxy)phenylene vinylene] (MEH-PPV), tris-(8-hydroxy quinoline) aluminum (Alq3), and iridium (III) bis-[(4,6-di-fluorophenyl)-pyridinate-N,C2′]picolinate (Flrpic). The LED layer can emit any individual wavelength of light, a mixture of wavelengths, or a narrow or broad spectrum of light. Multiple LED materials can be included in the LED layer and the LED layer can be a plurality of different LED layers.
Transparent electrodes that can be employed at the IR entry transparent electrode, which is shown as the anode in
An IR pass visible blocking was constructed of multiple alternating films of Ta2O5 RI=2.1) and SiO2 (RI=1.45) as indicated in Table 1, below. The IR pass visible blocking had a thickness of about 1 μm and was suitable for use with an up-conversion device using an OLED that emits 515 nm light as it displays a sharp cutoff with almost no transmittance at wavelengths smaller than 575 nm and larger than 450 nm.
All patents, patent applications, provisional applications, and publications referred to or cited herein are incorporated by reference in their entirety, including all figures and tables, to the extent they are not inconsistent with the explicit teachings of this specification.
It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application.
The present application claims the benefit of U.S. Provisional Application Ser. No. 61/447,415, filed Feb. 28, 2011, which is hereby incorporated by reference herein in its entirety, including any figures, tables, or drawings.
Number | Name | Date | Kind |
---|---|---|---|
3800156 | Kohashi et al. | Mar 1974 | A |
5339198 | Wheatly et al. | Aug 1994 | A |
5438198 | Ebitani et al. | Aug 1995 | A |
6281151 | Tick | Aug 2001 | B1 |
20030230980 | Forrest et al. | Dec 2003 | A1 |
20040031965 | Forrest et al. | Feb 2004 | A1 |
20050236556 | Sargent et al. | Oct 2005 | A1 |
20060198025 | Chen | Sep 2006 | A1 |
20060290270 | Kim et al. | Dec 2006 | A1 |
20100181552 | So | Jul 2010 | A1 |
20100237247 | Chen | Sep 2010 | A1 |
20110032461 | Cho et al. | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
0632507 | Jan 1995 | EP |
2001-339099 | Dec 2001 | JP |
2010-0018851 | Feb 2010 | KR |
WO 2010-085412 | Jul 2010 | WO |
Number | Date | Country | |
---|---|---|---|
61447415 | Feb 2011 | US |