Ingestible circuitry

Information

  • Patent Grant
  • 9415010
  • Patent Number
    9,415,010
  • Date Filed
    Wednesday, January 23, 2013
    11 years ago
  • Date Issued
    Tuesday, August 16, 2016
    8 years ago
Abstract
The present invention provides for safe and reliable electronic circuitry that can be employed in ingestible compositions. The ingestible circuitry of the invention includes a solid support; a conductive element; and an electronic component. Each of the support, conductive element and electronic component are fabricated from an ingestible material. The ingestible circuitry finds use in a variety of different applications, including as components of ingestible identifiers, such as may be found in ingestible event markers, e.g., pharma-informatics enabled pharmaceutical compositions.
Description
BACKGROUND

Ingestible devices that include electronic circuitry have been proposed for use in a variety of different medical applications, including both diagnostic and therapeutic applications.


Examples of such ingestible devices are ingestible electronic capsules which collect data as they pass through the body, and transmit the data to an external receiver system. An example of this type of electronic capsule is disclosed in U.S. Pat. No. 5,604,531 Iddan et al., which describes what is called an in vivo video camera. The swallowable capsule includes a camera system and an optical system for imaging an area of interest onto the camera system. The transmitter transmits the video output of the camera system and the reception system receives the transmitted video output. U.S. Pat. No. 7,009,634 also issued to Iddan et al discloses an ingestible imaging device that obtains images from within body lumens or cavities. The electronic circuit components of the device are enclosed by an inert indigestible housing (e.g. glass housing) that passes through the body internally. U.S. Pat. No. 6,800,060 issued to Marshall discloses an ingestible data recorder capsule medical device. The electronic circuits of the disclosed device (e.g. sensor, recorder, etc.) are housed in a capsule made of inert materials, and therefore ingestible and passable through the digestive tract without being consumed by the body.


In these devices, the electronic circuits are protected in a housing or capsule that prevents damage to the device's electronic circuits during the process of ingestion and elimination in the human body.


Recently, U.S. Patent Application Publication No. 2007/0008113 by Spoonhauer et al. disclosed fragile radio frequency identification (RFID) tags for use in drug ingestion monitoring applications. The RFID tags disclosed in this application are simple antenna structures that are configured to break down during transit through the body.


In certain instances, more complex circuitry suitable for use in ingestible devices is needed.


SUMMARY

The present invention provides for robust ingestible circuitry, where the components of the ingestible circuitry are ingestible, and in some instances digestible. As the ingestible circuitry is made up of ingestible, and even digestible, components, the ingestible circuitry results in little, if any, unwanted side effects, even when employed in chronic situations. The ingestible circuitry is particularly suited for use in signal identifiers, e.g., as may be found in ingestible event markers (IEMs), which include pharma-informatics enabled compositions.


Embodiments of ingestible circuitry of the invention include a solid support of an ingestible material, which support has on a surface thereof one or more electronic components. Components that may be present on the surface of the support may vary, and include but are not limited to: logic and/or memory elements, e.g., in the form of an integrated circuit; a power device, e.g., battery, fuel cell or capacitor; an effector, e.g., sensor, stimulator, etc.; a signal transmission element, e.g., in the form of an antenna, electrode, coil, etc.; a passive element, e.g., an inductor, resistor, etc. The one or more components on the surface of the support may be laid out in any convenient configuration. Where two or more components are present on the surface of the solid support, interconnects may be provided. All of the components and the support of the ingestible circuitry are ingestible, and in certain instances digestible.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 shows diagrammatically an ingestible identifier that includes ingestible circuitry in accordance with the invention.



FIGS. 2A to 2D provide views of assembly of an ingestible identifier that includes ingestible circuitry in accordance with the invention.



FIGS. 3A and 3B provide views of assembly of an ingestible identifier that includes ingestible circuitry in accordance with the invention.



FIG. 4 provides a view of assembly of an ingestible identifier that includes ingestible circuitry in accordance with the invention.



FIG. 5 provides a view of assembly of an ingestible identifier that includes ingestible circuitry in accordance with the invention.



FIGS. 6A and 6B provide views of assembly of an ingestible identifier that includes ingestible circuitry in accordance with the invention.



FIGS. 7A to 7B provide views of a bifurcated laminate process employed to fabricate devices according to one embodiment of the invention.





DETAILED DESCRIPTION

The present invention provides for ingestible circuitry, where the components of the circuitry are ingestible, and in some instances digestible. As the ingestible circuitry is made up of ingestible, and even digestible, components, the ingestible circuitry results in little, if any, unwanted side effects, even when employed in chronic situations.


Embodiments of ingestible circuitry of the invention include a solid support of an ingestible material, which support has on a surface thereof one or more electronic components. Components that may be present on the surface of the support may vary, and include but are not limited to: logic and/or memory elements, e.g., in the form of an integrated circuit; a power device, e.g., battery, fuel cell or capacitor; an effector, e.g., sensor, stimulator, etc.; a signal transmission element, e.g., in the form of an antenna, electrode, coil, etc.; a passive element, e.g., an inductor, resistor, etc. The one or more components on the surface of the support may be laid out in any convenient configuration. Where two or more components are present on the surface of the solid support, interconnects may be provided.


The ingestible circuitry is particularly suited for use in signal identifiers, e.g., as may be found in ingestible event markers and pharma-informatics enabled compositions. One example includes use of the ingestible circuitry in association with a specific pharmaceutical product, such as a pill, to determine when a patient takes the pharmaceutical product. As the pill is consumed, the ingestible circuit is activated and generates a signal that is detected thereby signifying that the pharmaceutical product has been taken by a patient.


Ingestible Circuitry and Fabrication Thereof


As summarized above, the present invention provides ingestible circuitry. Ingestible circuitry of the invention includes a solid support fabricated from an ingestible material, and one or more electronic components displayed on a surface thereof. Where two or more components are present on a given solid support, conductive interconnecting elements are also present that electrically couple the two or more components. A variety of different types of components may be present on the support, as reviewed in greater detail below. In addition, one or more optional elements, such as a protective layer, etc., may be provided.


Ingestible circuitry of the invention can be a standalone unit or it can be incorporated into another structure, e.g., an ingestible identifier, such as may be found in an ingestible event marker, including a pharma-informatics enabled pharmaceutical composition.


As summarized above, circuitry of the invention is ingestible, where the disparate components of the circuitry are fabricated from ingestible materials. In certain embodiments, one or more of the ingestible materials of the circuits are digestible materials. As such, the amounts of the materials are below chronic ingestion limits if the circuitry is present in a device that is going to be ingested chronically. If the circuitry is incorporated into a device that is going to be ingested less frequently, materials may be chosen based on the anticipated dosage schedule.


As reviewed above, elements of the ingestible circuitry of the invention include a solid support, one or more electronic components, and interconnects, among other elements.


The solid support is the structure on which all of the components are present. The solid support is fabricated from an ingestible material, where the material is a dielectric or insulating material. It can be fabricated from a variety of materials. Materials that provide mechanical strength and may be employed as an insoluble component of the solid support include, but are not limited to: Ethyl cellulose (e.g. Hercules Aqualon or Dow Ethocel), cellulose acetate, Agar, Gelatin. Insoluble materials of interest include ethylcellulose, a copolymer of acrylic acid and methacrylic acid esters, having from about 5 to 10% functional quaternary ammonium groups, polyethylene, polyamide, polyvinylchloride, polyvinyl acetate and any mixtures thereof. Fillers, such as, starch, glucose, lactose, inorganic salts such as sodium or potassium chloride, carbonates, bicarbonates, sulfates, nitrates, silicates (e.g., magnesium silicate) and alkali metals phosphates and oxides (e.g., titanium dioxide, magnesium oxide), may also be present. Soluble materials that may be employed, e.g., as disintegrating agents, in the solid support include, but are not limited to: Hydroxypropyl cellulose, hydroxyethylcellulose, carboxymethylcellulose, croscarmellose, hypromellose, hydroxypropyl methyl cellulose, methyl cellulose, Polysaccharides (starch, different sugars); Polyvinyl alcohol; Gums (guar, xanthan, acacia); Alginates (sodium or calcium alginate); povidone; etc. Also of interest are Plasticizing agents, e.g., Dibutyl sebacate, triacetin, triethyl citrate, polyethylene glycol, polyethylene oxide. Soluble materials of interest include proteins, polysaccharides, polyacrylates, hydrogels, polyvinyl alcohol, polyvinyl pyrrolidone, and derivatives of such polymers. In certain embodiments, plasticizers may be present, where plasticizers make it easier to process and modulate the strength so that it is not stiff and brittle. Also of interest are surfactants. Environmentally sensitive materials may also be present in the support, such as environmentally sensitive polymers, e.g., temperature sensitive polymers, ph sensitive polymers (e.g., Polymethacrylates (e.g. Degussa Eudragit®)), oxygen sensitive polymers, enzyme sensitive polymers (e.g., Starch, Chitosan, etc.), that will make it insoluble in certain physiological locations, such as the stomach, and soluble in other physiological locations, such as the intestine. Embodiments of such supports are supports that retain their shape in the stomach and then fall apart upon entry/transit through the intestine. Also present may be foaming agents, e.g., sodium carbonate, swelling agents, e.g., hydrogel polymers, or cross linking agents, e.g., glutaraldehyde. In certain embodiments, the support is fabricated from a foodstuff which has suitable properties. Foodstuffs of interest include, but are not limited to: soy, whey, wheat glutein, rice starch, tapioca starch, rice paper, nori, corn chips, potato, pasta, filo, fruit roll-ups, haw flakes, crackers, gelatin and gummy. The solid supports can be fabricated via any convenient protocol, such as through deposition via a number of methods such as solvent cast, or melt extrusion.


Also present in ingestible circuitry is one or more conductive elements which serve to interconnect two or more distinct components on a surface(s) of the support. In certain embodiments, this conductive element, e.g., interconnect or wire, is a thin layer or strip of a homogenous conductive and ingestible material, such as gold, silver, graphite, titanium, copper, etc. The material making up the conductive element may be any material whose total amount is below chronic ingestion limits (i.e., how often one is ingesting the ingestible device) where the conductivity is within a desired range. Table 1 below provides examples of ranges.











TABLE 1








Resistivity
Dimension













Metal
(Ωm)
Length
Width
Thickness






Cu
1.68 × 10−8
1 cm
100 μm
1 μm



Mg
4.39 × 10−8
1 cm
100 μm
10 μm 



Au
2.21 × 10−8
1 cm
100 μm
100 μm 



Ag
1.59 × 10−8
1 cm
 10 μm
1 μm



Fe
9.61 × 10−8
1 cm
100 μm
0.1 μm  









The conductive elements (i.e., interconnects) can be deposited on a surface of the support to provide interconnection between two or more components as a homogeneous layer, for example a layer of gold. Any convenient deposition protocol may be employed, such as but not limited to: evaporation, plating, electrolysis plating, galvanic deposition, screen or ink jet printing, or other thin layer deposition techniques. Alternatively, a lamination method may be employed, where various elements are positioned as sheets. In yet other embodiments, a decal transfer process may be employed, where each of the distinct elements is on a separate backing layer. The distinct elements are transferred to the solid support, and then the backing layer is removed. With each of the above protocols, a patterning technique may be employed. The choice of patterning technique will depend on the choice of deposition process and the dimensional control required of the final pattern, for example evaporation or plating is very compatible with photo lithography. For laminate protocols, laser patterning might be employed, e.g., where a layer is deposited and the unwanted portions are cut out. In certain embodiments, purely additive techniques, such as ink jet or screen printing, are employed.


Instead of having a conductive element fabricated from a homogenous material, the conductive element can be a heterogenous material that is a paste or an ink. For example, a suspension of a conductive filler of the conductive materials, e.g., gold, silver, graphite, etc., with an ingestible binder material, such as a polymer, a thermoset or thermoplastic polymer, may be employed. This heterogenous material can contain other polymeric components such as plasticizers, surfactants to make the ink and the paste flow better, be more processable etc. In yet other embodiments, the conductive element is an isotropic conductive film, e.g., a film of inert particles, such as of a material like glass, that have been coated with a conductive material, e.g., a metal.


Electrical connection between the conductive element and components on the support may be achieved in a number of different ways. For example, interconnects and various components may be positioned on a surface of the solid support, and a layer of conductive material that covers the disparate components and conductive elements can be deposited in a manner that provides the desired connection. Alternatively, ingestible conductive glues, pastes and adhesives may be employed. In certain embodiments, of interest is the use of a combination of two (or more) glues, where one of the glues provides for desired conductive properties and one of the glues provides mechanical strength. In addition, mechanical attachment protocols such as pressing different components together, e.g., where the components have suitable shape interfaces that make it easier for them to bond under mechanical force, pressure, and temperature, may be employed. Also of interest is laser welding, sonic welding, etc. The components can be immobilized relative to a surface of the solid support by mechanically holding the components on to the solid support, e.g., via deposition of a conductive overlay, as reviewed above, by way of a glue, such as a thermoplastic glue that physically holds items in place or thermosetting glue that is cross linked. Lasers may be employed with mixtures of some metals or conductive elements and locally sintered to make an electrical contact at the sintered point (e.g., where the laser removes or densifies an organic material in a binder, leaving a more thermally stable conductive material behind).


In addition to the above components, the ingestible circuitry of the invention also includes one or more electronic components. Electrical components of interest include, but are not limited to: logic and/or memory elements, e.g., in the form of an integrated circuit; a power device, e.g., battery, fuel cell or capacitor; an effector, e.g., sensor, stimulator, etc.; a signal transmission element, e.g., in the form of an antenna, electrode, coil, etc.; a passive element, e.g., an inductor, resistor, etc.


The various components may be produced on a surface of a solid support using a variety of different protocols. For example, where the components are electrode elements that make up a battery which is activated upon contact with stomach fluid, e.g., as described below, the battery components can be deposited directly onto the solid support. For example, a magnesium layer can be evaporated onto a surface of the solid support, where the solid support is fabricated from a material(s) that withstands the temperature and pressure that occurs during that deposition process. The different components of the electrodes can be deposited onto a conductor layer that is then attached to the solid support. For example, one can have a thin sheet of gold, and a layer of CuCl can be deposited onto the gold, with the resultant product being attached to the solid support. The different layers can also be deposited via an ink or a paste. For example, a structure of CuCl deposited on gold can be broken up into small particles, and an ink material can be fabricated from the particles. The resultant ink material can be used to either print or silk screen the desired electrode pattern onto the solid support. Also of interest are protocols that employ screen printing or ink jet printing techniques. In yet other embodiments, an unpatterned slurry is deposited. In yet other embodiments, “roll-to-roll” or “continuous web” protocols are employed.


In certain embodiments, the ingestible circuitry includes a coating layer. The purpose of this coating layer can vary, e.g., to protect the circuitry, the chip and/or the battery, or any components during processing, during storage, or even during ingestion. For example, one may not desire the circuitry to be exposed to the body fluids after it is ingested. In such instances, it may be desirable to only have the battery and transmit antennas be exposed to body fluids, with the rest of the circuitry being protected. In such instances, a coating on top of the circuitry that is ingestible but does not dissolve until the device is finished doing its transmission may be provided. Also of interest are coatings that are designed to protect the ingestible circuitry during storage, but dissolve immediately during use. For example, coatings that dissolve upon contact with an aqueous fluid, e.g., stomach fluid. Also of interest are protective processing coatings that are employed to allow the use of processing steps that would otherwise damage certain components of the device. For example, in embodiments where a chip with battery material deposited on the top and bottom is produced, the product needs to be diced. However, the dicing process can scratch off the battery material, and also there might be liquid involved which would cause the battery materials to discharge or dissolve. In such instances, a protective coating on the battery that prevents mechanical or liquid contact with the battery component during processing can be employed. Another purpose of the edible coatings would be to control the activation of the device. For example, an edible coating that sits on the battery electrodes and takes a certain period of time, e.g., five minutes, to dissolve upon contact with stomach fluid may be employed. The coating can also be an environmentally sensitive coating, e.g., a temperature or pH sensitive coating, or other chemically sensitive coating that provides for dissolution in a controlled fashion and allows one to activate the device when desired. Coatings that survive the stomach but dissolve in the intestine are also of interest, e.g., where one desires to delay activation until the device leaves the stomach. An example of such a coating is a polymer that is insoluble at low pH, but becomes soluble at a higher pH. Also of interest are pharmaceutical formulation protective coatings, e.g., a gel cap liquid protective coating that prevents the circuit from being activated by liquid of the gel cap.


Another component present in certain embodiments of the ingestible circuit is an activation mechanism, e.g., where the activation mechanism is distinct from the power source (e.g., battery). An example of such an alternative activation element is a patch of circuit that closes upon contact with fluid and activates the device. Another example is the reactive removal of a patch of the circuit that, before it is removed, keeps the circuit from operating.


As indicated above, ingestible circuitry devices in accordance with the invention may be fabricated in a variety of different ways. Any of a variety of different protocols may be employed in manufacturing the circuitry structures and components thereof. For example, molding, deposition and material removal, e.g., planar processing techniques, such as Micro-Electro-Mechanical Systems (MEMS) fabrication techniques, including surface micromachining and bulk micromachining techniques, may be employed. Deposition techniques that may be employed in certain embodiments of fabricating the structures include, but are not limited to: electroplating, cathodic arc deposition, plasma spray, screen or ink jet printing, sputtering, e-beam evaporation, physical vapor deposition, chemical vapor deposition, plasma enhanced chemical vapor deposition, etc. Material removal techniques included, but are not limited to: reactive ion etching, anisotropic chemical etching, isotropic chemical etching, sacrificial lift-off etching, planarization, e.g., via chemical mechanical polishing, laser ablation, electronic discharge machining (EDM), etc. Also of interest are lithographic protocols. Of interest in certain embodiments is the use of planar processing protocols, in which structures are built up and/or removed from a surface or surfaces of an initially planar substrate using a variety of different material removal and deposition protocols applied to the substrate in a sequential manner. Illustrative fabrication methods of interest are described in greater detail in PCT application serial nos. PCT/US2006/016370; PCT/US2007/022257; PCT/US2007/082563; PCT/US2008/052845; PCT/US2008/053999; and PCT/US2008/077753; the disclosures of which are herein incorporated by reference.


In certain embodiments, of interest is a bifurcated laminate process for preparing a device made up of ingestible circuitry. In this bifurcated laminate process, a laminate component is made separate from a circuitry component, allowing greater freedom in terms of processing protocols than may be employed to fabricate the disparate components together, since protocols may be employed to fabricate a first component that cannot be used to fabricate the other, and vice versa. In such bifurcated laminate protocols, the circuitry and laminate components are combined into a single device following separate fabrication of the two components. To combine the two components, any convenient protocol may be employed. In certain embodiments, the circuitry component is fixed into receiving feature of the laminate component, and fixed in place with a suitable adhesive, such as a conductive adhesive. An example of the use of this protocol for the fabrication of an ingestible event marker according to an embodiment of the invention is provided below in connection with a description of FIGS. 7A to 7B.


In FIG. 7A, an initial laminate sheet which includes battery elements and a virtual dipole element (e.g., skirt) of an ingestible event marker is shown being prepared using a “continuous web” or “roll-to-roll process”. The initial laminate sheet is characterized by having exposed battery layers, e.g., upper and lower exposed battery layers, and includes a first battery layer 708, e.g., CuCl layer (e.g., produced by evaporation, electrodeposition, slurry deposition, silkscreen, or inkjet, etc.), a second virtual dipole layer 710 positioned on top of the battery layer (i.e., skirt), a third current collector layer 712, e.g., Au, Cu, or graphite, etc., which may be a sheet or printed on the skirt, on top of the virtual dipole layer, and a fourth battery layer 714, e.g., Mg foil. Where desired, one or more of the layers can be made separately before lamination, so each process need not be compatible with all the layers e.g., current collector can be graphite-based, made with a high temperature process, which may be incompatible with processes and/or materials used to fabricate the other layers. Layers may be glued together with edible, cellulose adhesive or other safe pressure sensitive adhesives (including but not limited to, silicon materials, etc.).


Fabricated separate from the laminate component is the circuitry component. The circuitry component may be fabricated using any convenient protocol, e.g., as summarized above.


Next, a hole or passage 720 configured to receive the circuitry component (e.g., integrated circuit (IC)) is punched in the resultant laminate component 722 to receive the circuitry component 724, as shown in FIG. 7B. The circuitry component is then positioned in the passageway and fixed in place with a conductive adhesive 726, e.g., as shown in FIG. 7B. A variety of conductive adhesives may be employed, e.g., a polymer filled with conductive particles or a reactive (2-part) glue. The conductivity of the adhesive may be moderate. Where desired, the adhesive can be covered with a final layer of insulating adhesive.


In a variation of the above protocol, a pre-punched lower laminate is employed. In this embodiment, the IC is placed onto a pre-punch hole, where prior to placement, the sheet may be covered with a pressure sensitive adhesive material that is removed prior to chip placement during punching but is removed prior to chip placement. A second laminate is applied over the top of the chips and then opened, e.g., with a laser, over the chips and the top conductor (e.g., battery material) is additively applied, e.g., by screen printing. A final non-conductive layer, such as treated paper or plastic, is used in a roll-to-roll process after this step to isolate the two sides of the battery before the IEMs are finally punched out of the roll for assembly into tablets or capsules.


Finally, a disc shaped device 740, e.g., shown by dashed lines in FIG. 7B, is punched out to produce the desired IEM.


The above bifurcated laminate protocol finds use in, among other applications, fabricating IEMs that have a virtual dipole, e.g., as described in greater detail in pending U.S. Provisional Application Ser. No. 60/975,108 titled “Virtual Dipole Signal Amplification For Pharma-Informatics System” and filed on Sep. 25, 2007, the disclosure of which is herein incorporated by reference.


Devices Comprising Ingestible Circuitry


Ingestible circuitry of the invention finds use in a variety of different types of devices. One example of a device that can include ingestible circuitry of the invention is an ingestible identifier. Ingestible identifiers are described in PCT application serial no. PCT/US2006/016370 published as WO/2006/116718; PCT application serial no. PCT/US2007/082563 published as WO/2008/052136; PCT application serial no. PCT/US2007/024225 published as WO/2008/063626; PCT application serial no. PCT/US2007/022257 published as WO/2008/066617; PCT application serial no. PCT/US2008/052845 published as WO/2008/095183; PCT application serial no. PCT/US2008/053999 published as WO/2008/101107; PCT application serial no. PCT/US2008/056296 published as WO/2008/112577; PCT application serial no. PCT/US2008/056299 published as WO/2008/112578; PCT application serial no. PCT/US2008/077753 published as WO2009/042812; PCT application serial no. PCT/US2008/085048 published as WO 2009/070773; and PCT application serial no. PCT/US2009/36231; as well as pending U.S. application Ser. Nos. 12/126,792 and 12/126,798; the disclosures of which are incorporated herein by reference.


An example of such an ingestible identifier is an identifier that includes battery. The battery includes, when completed, a cathode, an anode, and an electrolyte, where the electrolyte component is provided by a physiological fluid, e.g., stomach acid. When the identifier is ingested and reaches the stomach, the cathode and anode are exposed to stomach fluid. The stomach fluid (either by itself or when combined with a dried conductive precursor medium component of the identifier, e.g., as described in pending PCT application serial no: PCT/US2007/082563 the disclosure of which is herein incorporated by reference) acts as the electrolyte component of the battery. Completion of the battery powers the circuitry of the identifier which, in turn broadcasts a detectable signal.


Identifiers of interest include two dissimilar electrochemical materials which constitute the two electrodes (e.g., anode and cathode) of the battery. When the electrode materials are exposed and come into contact with the body fluid, such as stomach acid or other types of fluid (either alone or in combination with a dried conductive medium precursor), a potential difference, that is, a voltage, is generated between the electrodes as a result of the respective oxidation and reduction reactions incurred to the two electrode materials. A voltaic cell, or battery, can thereby be produced. Accordingly, in embodiments of the invention, such batteries are configured such that when the two dissimilar materials are exposed to the target site, e.g., the stomach, the digestive tract, etc., during the physical and chemical erosion of the composition in which the signal generation element is present, a voltage is generated. The two dissimilar materials in an electrolyte are at different potentials. As an example, copper and zinc when put into a cell have different potentials. Similarly, gold and magnesium have different potentials. As a result, a potential difference between the two dissimilar materials is generated.


In certain of these embodiments, the battery power source may be viewed as a power source that exploits electrochemical reaction in an ionic solution such as gastric fluid, blood, or other bodily fluids and some tissues. FIG. 1 provides a diagrammatic representation of an ingestible identifier 10 having a battery that is completed by stomach fluid. First and second electrode materials (12 and 13) are present in an ionic solution 16 (which may be made up of target site fluid alone or target site fluid combined with a dried conductive medium precursor). This configuration creates a low voltage (V−) and a high voltage (V+) as applied to corresponding inputs of an electronic circuit 14. The polarity of the electrodes is determined by the connection needs of the electronic circuit 14 and the design as illustrated is just one embodiment. Thus, it will be apparent to one skilled in the art that the scope of the present invention includes reversal of the polarity of the electrodes, such that electrode 13 represents the low voltage and electrode 12 represents high voltage. The two outputs of that electronic circuit 14 are EU 11 and El 15, which are the signal-transmission electrodes on the top surface.


Electrodes 12 and 13 can be made of any two materials appropriate to the environment in which the identifier 10 will be operating. The active materials are any pair of materials with different electrochemical potentials, as long as they are ingestible, e.g., as described above. For instance, in some embodiments where ionic solution 16 comprises stomach acids, electrodes 12 and 13 may be made of a noble metal (e.g., gold, silver, platinum, palladium or the like) so that they do not corrode prematurely. Suitable materials are not restricted to metals, and in certain embodiments the paired materials are chosen from metals and non-metals, e.g., a pair made up of a metal (such as Mg) and a salt (such as CuCl or CuI). With respect to the active electrode materials, any pairing of substances—metals, salts, or intercalation compounds—with suitably different electrochemical potentials (voltage) and low interfacial resistance are suitable.


Materials and pairings of interest include, but are not limited to those reported in Table 2 below.











TABLE 2






Anode
Cathode







Metals
Magnesium, Zinc




Sodium (†),




Lithium (†)




Iron and




alloys thereof



Salts

Copper salts: iodide, chloride, bromide,




sulfate, formate, (other anions possible)




Fe3+ salts: e.g. orthophosphate,




pyrophosphate, (other anions possible)




Oxygen or hydrogen (††) on platinum,




gold or other catalytic surfaces


Intercalation
Graphite with
Vanadium oxide


compounds
Li, K, Ca,
Manganese oxide



Na, Mg





(†) Protected anodes: certain high energy anode material such as Li, Na, and other alkali metals are unstable in their pure form in the presence of water or oxygen. These may however be used in an aqueous environment if stabilized. One example of this stabilization is the so-called “protected lithium anode” developed by Polyplus Corporation (Berkeley, CA), where a polymer film is deposited on the surface of lithium metal to protect it from rapid oxidation and allow its use in aqueous environment or air ambient. (Polyplus has IP pending on this).


(††) Dissolved oxygen can also serve as a cathode. In this case, the dissolved oxygen in the bodily fluids would be reduced to OH— at a suitable catalytic surface such at Pt or gold. Also of interest dissolved hydrogen in a hydrogen reduction reaction.






In certain embodiments, one or both of the metals may be doped with a non-metal, e.g., to enhance the voltage output of the battery. Non-metals that may be used as doping agents in certain embodiments include, but are not limited to: sulfur, iodine and the like.


In certain embodiments, the electrode materials are cuprous iodine (CuI) or cuprous chloride as the cathode and magnesium (Mg) metal or magnesium alloy as the anode. Embodiments of the present invention use electrode materials that are not harmful to the human body.


In certain embodiments, the batteries have a small form factor. Batteries may be about 20 mm3 or smaller, e.g., about 10 mm3 or smaller, such as 1.0 mm3 or smaller, including 0.1 mm3 or smaller, including 0.02 mm3 or smaller. In certain embodiments, the battery element is dimensioned to have a width ranging from about 0.01 mm to about 100 mm, e.g., from about 0.1 mm to about 20 mm, including from about 0.5 mm to about 2 mm; a length ranging from about 0.01 mm to about 100 mm, e.g., from about 0.1 mm to about 20 mm, including from about 0.5 mm to about 2 mm, and a height ranging from about 0.01 mm to about 10 mm, e.g., from about 0.05 mm to about 2 mm, including from about 0.1 mm to about 0.5 mm.


The ingestible identifier 10 uses the voltage potential difference to power up electronic circuit 14. In one embodiment, the electronic circuit 14 modulates conductance to create a unique and identifiable current signature.


In certain embodiments, the battery has a laminate structure. As indicated above, a laminate process may be employed to fabricate ingestible circuitry in accordance with the invention. An example of such a laminate process is illustrated in FIGS. 2A to 2D. In FIG. 2A, structure 21 is made up of circular metallic foil 22, e.g., gold, and has patterned areas of an electrode material, such as CuCl, patterned on its surface in the form of four distinct quadrants 24. The CuCl regions 24 may be produced on the surface of the foil via any convenient protocol, such as evaporation. Also shown is area 26 which lacks electrode material and is configured to receive an integrated circuit. In FIG. 2B, structure 21 placed onto solid support 23, which support is made of an ingestible material, e.g., as described above. Structure 21 may be placed onto support 23 in a manner such that the two components are stably associated with each other, e.g., by press-fitting the structure 21 onto support 23 or gluing structure 21 onto support 23, among other ways to immobilize structure 21 onto support 23. While the sequence shown in FIGS. 2A and 2B illustrate a protocol in which structure 21 is produced before placement on support 23, in another embodiment the metallic foil 22 is first placed on support 23. Following placement of metallic foil 22 on support 23, the patterned areas of electrode material 24 are produced on the surface of metallic foil 22. In FIG. 2C, integrated circuit 25 is positioned in area 26 and connected to metallic foil 22. Finally, in FIG. 2D, a cover layer 27 (e.g., fabricated from the same material as the support) having electrode cutout areas 28 is stably positioned (e.g., with an ingestible adhesive) over structure 21 to produce a final ingestible circuit device that includes a solid support, an integrated circuit and four distinct surface electrodes. In this structure, the metallic foil layer 22 serves as the conductive interconnect between the different electronic components, i.e., the integrated circuit and electrodes, that are positioned on the surface of the support.



FIG. 3A illustrates another embodiment of a laminate process that may be employed to construct an ingestible circuit device of the invention. In FIG. 3A, structure 30 has been produced by first providing a release layer 31 on a backing layer 32. Metallic layer (e.g., gold) 33 has been deposited on the surface of release layer 31. Next, electrode material 34, e.g., CuCl, is deposited on surface of metallic layer 33. Finally, insulating layer 35 is positioned over electrode layer 34, which insulating layer may have cutout regions (not shown), e.g., as described in connection with the description of FIGS. 2A to 2D.


In FIG. 3B, an integrated circuit 36 having a layer of a second electrode material 37, e.g., Mg, on a surface thereof, is positioned in ingestible support 38. To assemble the final device, the release layer 31 and backing layer 32 are removed from structure 30, providing exposed metallic layer 33. This exposed metallic layer 33 is then positioned over circuit 36 and support 38 to yield the final desired device.



FIG. 4 illustrates a transfer protocol that may be employed to fabricate ingestible circuits in accordance with the invention. In FIG. 4, a circuit structure 40 that includes integrated circuit 41 connected to five different electrodes 42 via interconnecting conductive lines 43 is first produced on a removable backing 44. After production of circuit structure 40, backing 44 is removed and the circuit structure 44 is positioned on the surface of ingestible support 45. The protocol illustrated in FIG. 4 may be employed in processes where parameters of circuit structure production (e.g., chemicals, temperatures, pressures) are incompatible with the solid support material.



FIG. 5 illustrates a variation in which a conductive ink is employed to provide conductive interconnects between different components of an ingestible circuit device. In the device shown in FIG. 5, ingestible support 51 has displayed on its surface four different electrodes (made up of electrode material) 52. Positioned at a center region of support 51 are four contact pads 53. Interconnecting each electrode to a contact pad is a line of conductive ink material 54. To complete the structure, an integrated circuit is bonded to pads 53 and then a layer of protection material is positioned over the surface leaving exposed electrode elements, analogous to that shown in FIG. 2D.


In certain instances, laser patterning may be employed during fabrication of ingestible circuits of the invention, e.g., as illustrated in FIGS. 6A and 6B. In FIG. 6A, a blanket (i.e., non-patterned) layer of metal 61 is deposited on a surface of an ingestible support 62. Positioned on a portion of metal layer 61 is integrated circuit 63. Next, laser patterning is employed to remove portions of metal layer 61 to produce antenna structure 64 and 65 on surface of support 62.


Ingestible identifiers that include ingestible circuitry of the invention find use in a variety of different applications. One application of interest is the use of the ingestible identifiers as ingestible event markers (IEMs). Ingestible event markers can be used in both therapeutic and non-therapeutic applications, and are described in PCT application serial no. PCT/US2006/016370 published as WO/2006/116718; PCT application serial no. PCT/US2007/082563 published as WO/2008/052136; PCT application serial no. PCT/US2007/024225 published as WO/2008/063626; PCT application serial no. PCT/US2007/022257 published as WO/2008/066617; PCT application serial no. PCT/US2008/052845 published as WO/2008/095183; PCT application serial no. PCT/US2008/053999 published as WO/2008/101107; PCT application serial no. PCT/US2008/056296 published as WO/2008/112577; PCT application serial no. PCT/US2008/056299 published as WO/2008/112578; PCT application serial no. PCT/US2008/077753 published as WO2009/042812; PCT application serial no. PCT/US2008/085048 published as WO 2009/070773; and PCT application serial no. PCT/US2009/36231; as well as pending U.S. application Ser. Nos. 12/126,792 and 12/126,798; the disclosures of which are incorporated herein by reference.


The disclosure of these ingestible event markers and applications for the same therein is specifically incorporated herein by reference. Therapeutic applications of ingestible identifiers are embodiments where, at least in some instances, the identifier is associated with a pharmaceutical composition. Medical embodiments of the present invention provide the clinician an important new tool in their therapeutic armamentarium: automatic detection and identification of pharmaceutical agents actually delivered into the body. The applications of this new information device and system are multi-fold. Applications include, but are not limited to: (1) monitoring patient compliance with prescribed therapeutic regimens; (2) tailoring therapeutic regimens based on patient compliance; (3) monitoring patient compliance in clinical trials; (4) monitoring usage of controlled substances; and the like. Each of these different illustrative applications is reviewed in greater detail in PCT application serial no. PCT/US2006/016370 published as WO/2006/116718; PCT application serial no. PCT/US2007/082563 published as WO/2008/052136; PCT application serial no. PCT/US2007/024225 published as WO/2008/063626; PCT application serial no. PCT/US2007/022257 published as WO/2008/066617; PCT application serial no. PCT/US2008/052845 published as WO/2008/095183; PCT application serial no. PCT/US2008/053999 published as WO/2008/101107; PCT application serial no. PCT/US2008/056296 published as WO/2008/112577; PCT application serial no. PCT/US2008/056299 published as WO/2008/112578; PCT application serial no. PCT/US2008/077753 published as WO2009/042812; PCT application serial no. PCT/US2008/085048 published as WO 2009/070773; and PCT application serial no. PCT/US2009/36231; as well as pending U.S. application Ser. Nos. 12/126,792 and 12/126,798; the disclosures of which are incorporated herein by reference.


It is to be understood that this invention is not limited to particular embodiments described, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.


Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, representative illustrative methods and materials are now described.


All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference and are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.


It is noted that, as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.


As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present invention. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.


Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.


Accordingly, the preceding merely illustrates the principles of the invention. It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are principally intended to aid the reader in understanding the principles of the invention and the concepts contributed by the inventors to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present invention, therefore, is not intended to be limited to the exemplary embodiments shown and described herein. Rather, the scope and spirit of present invention is embodied by the appended claims.

Claims
  • 1. A device comprising: a support;a first electrode connected to the support;a second electrode connected to the support; anda control circuit for controlling current flow, wherein the control circuit is secured to the support and wherein the first electrode is electrically coupled to the control circuit at a first input and the second electrode is electrically coupled to the control circuit at a second input;a backing layer having a first side;a release layer having a first side and a second side, wherein the release layer is laminated on the backing layer, and wherein the second side of the release layer contacts the first side of the backing layer;a metallic layer having a first side and a second side, wherein the metallic layer is positioned on the first side of the release layer, and wherein the first electrode contacts the second side of the metallic layer;wherein the backing layer and the release layer are configured to be removed to provide an exposed surface of the metallic layer;wherein the exposed surface of the metallic layer is configured to be positioned over the control circuit and the support such that the metallic layer is electrically coupled to the control circuit at the first input and the first electrode is electrically coupled to the control circuit at a first input.
  • 2. The device of claim 1 wherein the support and control circuit are ingestible and at least one of the first and second electrodes is digestible.
  • 3. The device of claim 1, wherein the first and second electrodes are created through deposition of a digestible material onto the support.
  • 4. The device of claim 1, wherein the support defines an aperture for receiving the control circuit that is electrically coupled to the second electrode.
  • 5. The device of claim 1, wherein the control circuit and the electrodes are electrically coupled by depositing a line of conductive material between each input of the control circuit and each of the electrodes on the surface of the support.
  • 6. The device of claim 1, wherein at least a portion of the control circuit is covered by a protective layer.
  • 7. The device of claim 1, wherein the first and second electrodes are made of dissimilar materials that are capable of providing a voltage potential when in contact with a conducting fluid.
  • 8. The device of claim 7, wherein the control circuit is configured to be activated when the device contacts the conducting fluid, which causes a voltage potential between the first and second electrodes that powers the control circuit.
  • 9. The device of claim 1, wherein the first electrode comprises CuCl and the second electrode comprises Mg.
  • 10. A device comprising: a support;a first electrode connected to the support;a second electrode connected to the support;a control circuit for controlling current flow, wherein the control circuit is secured to the support and wherein the first electrode is electrically coupled to the control circuit at a first input and the second electrode is electrically coupled to the control circuit at a second input, wherein the first and second electrodes are made of dissimilar materials that are capable of providing a voltage potential when in contact with a conducting fluid;a backing layer having a first side;a release layer having a first side and a second side, wherein the release layer is laminated on the backing layer, and wherein the second side of the release layer contacts the first side of the backing layer;a metallic layer having a first side and a second side, wherein the metallic layer is positioned on the first side of the release layer, and wherein the first electrode contacts the second side of the metallic layer;wherein the support defines an aperture for receiving the control circuit that is electrically coupled to the second electrode; andwherein electrically coupling of the first electrode to the control circuit is achieved by removing the backing layer and the release layer to expose the metallic layer and wherein the metallic layer is electrically coupled to the control circuit at the first input thereby coupling the first electrode to the control circuit at the first input.
  • 11. The device of claim 10, wherein the support and control circuit are ingestible and at least one of the first and second electrodes is digestible.
  • 12. The device of claim 10, wherein the first and second electrodes are created through deposition of a digestible material onto the support.
  • 13. The device of claim 10, wherein the support defines an aperture for receiving the control circuit that is electrically coupled to the second electrode.
  • 14. The device of claim 10, wherein the control circuit and the electrodes are electrically coupled by depositing a line of conductive material between each input of the control circuit and each of the electrodes on the surface of the support.
  • 15. The device of claim 10, wherein at least a portion of the control circuit is covered by a protective layer.
  • 16. The device of claim 10, wherein the first electrode comprises CuCl and the second electrode comprises Mg.
  • 17. A method of producing an identifiable ingestible device that is operational upon contact with a conducting fluid, the method comprising the steps of: providing a release layer on a first surface of a backing layer;depositing a metallic layer on a first surface of the release layer;depositing a first electrode on a first surface of the metallic layer;providing a support on a first surface of a second electrode;positioning a control circuit in an aperture of the support;removing the release layer and the backing layer from the metallic layer to produce an exposed surface of the metallic layer; andpositioning the exposed surface of the metallic layer over the control circuit and the support; andwherein the first electrode is electrically coupled to the control circuit at a first input and the second electrode is electrically coupled to the control circuit at a second input; andwherein the first electrode is electrically coupled to the control circuit when the backing layer and the release layer are removed to expose the metallic layer and the exposed surface of the metallic layer is positioned over the control circuit and the support and wherein the metallic layer is electrically coupled to the control circuit at the first input and the first electrode is coupled to the control circuit at the first input.
  • 18. The method of claim 17, wherein the support and control circuit are ingestible and at least one of the first and second electrodes is digestible.
  • 19. The method of claim 17, further comprising depositing a line of conductive material between each of the first input and the second input of the control circuit and each of the first electrode and the second electrode, respectively, on a surface of the support.
  • 20. The method of claim 17, further comprising covering at least a portion of the control circuit with a protective layer.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/527,403, entitled IDENTIFIER CIRCUITS FOR GENERATING UNIQUE IDENTIFIABLE INDICATORS AND TECHNIQUES FOR PRODUCING SAME, filed on Jul. 27, 2010, now U.S. Pat. No. 8,540,633, which application is a 371 National Stage Entry of International Patent Application No. PCT/US2009/053721, entitled INGESTIBLE CIRCUITRY, filed on Aug. 13, 2009, which application, pursuant to 35 U.S.C. §119 (e), claims priority to the filing date of U.S. Provisional Application Ser. No. 61/088,355 entitled INGESTIBLE CIRCUITRY, filed on Aug. 13, 2008, the disclosures of which are herein incorporated by reference.

US Referenced Citations (838)
Number Name Date Kind
1548459 Hammer Aug 1925 A
3589943 Grubb et al. Jun 1971 A
3607788 Adolph Sep 1971 A
3642008 Bolduc Feb 1972 A
3679480 Brown et al. Jul 1972 A
3682160 Murata Aug 1972 A
3719183 Schwartz Mar 1973 A
3799802 Schneble, Jr. et al. Mar 1974 A
3828766 Krasnow Aug 1974 A
3837339 Aisenberg et al. Sep 1974 A
3849041 Knapp Nov 1974 A
3893111 Cotter Jul 1975 A
3944064 Bashaw et al. Mar 1976 A
3967202 Batz Jun 1976 A
3989050 Buchalter Nov 1976 A
4017856 Wiegand Apr 1977 A
4055178 Harrigan Oct 1977 A
4062750 Butler Dec 1977 A
4077397 Ellis Mar 1978 A
4077398 Ellis Mar 1978 A
4082087 Howson Apr 1978 A
4090752 Long May 1978 A
4106348 Auphan Aug 1978 A
4129125 Lester Dec 1978 A
4166453 McClelland Sep 1979 A
4239046 Ong Dec 1980 A
4251795 Shibasaki et al. Feb 1981 A
4269189 Abraham May 1981 A
4331654 Morris May 1982 A
4345588 Widder et al. Aug 1982 A
4418697 Tama Dec 1983 A
4425117 Hugemann Jan 1984 A
4439196 Higuchi Mar 1984 A
4494950 Fischell Jan 1985 A
4559950 Vaughan Dec 1985 A
4564363 Bagnall et al. Jan 1986 A
4635641 Hoffman Jan 1987 A
4654165 Eisenber Mar 1987 A
4663250 Ong et al. May 1987 A
4669479 Dunseath Jun 1987 A
4687660 Baker et al. Aug 1987 A
4725997 Urquhart et al. Feb 1988 A
4749575 Rotman et al. Jun 1988 A
4763659 Dunseath Aug 1988 A
4767627 Caldwell et al. Aug 1988 A
4784162 Ricks Nov 1988 A
4793825 Benjamin et al. Dec 1988 A
4844076 Lesho Jul 1989 A
4876093 Theeuwes et al. Oct 1989 A
4896261 Nolan Jan 1990 A
4975230 Pinkhasov Dec 1990 A
4987897 Funke Jan 1991 A
5000957 Eckenhoff et al. Mar 1991 A
5016634 Vock et al. May 1991 A
5018335 Yamamoto et al. May 1991 A
5079006 Urquhart Jan 1992 A
5110441 Kinlen et al. May 1992 A
5160885 Hannam et al. Nov 1992 A
5167626 Casper Dec 1992 A
5176626 Soehendra Jan 1993 A
5261402 DiSabito Nov 1993 A
5263481 Axelgaard et al. Nov 1993 A
5279607 Schentag et al. Jan 1994 A
5281287 Lloyd Jan 1994 A
5283136 Peled et al. Feb 1994 A
5305745 Zacouto Apr 1994 A
5318557 Gross Jun 1994 A
5331953 Andersson et al. Jul 1994 A
5394882 Mawhinney Mar 1995 A
5395366 D'Andrea et al. Mar 1995 A
5436091 Shackle et al. Jul 1995 A
5443461 Atkinson et al. Aug 1995 A
5443843 Curatolo et al. Aug 1995 A
5458141 Neil et al. Oct 1995 A
5458994 Nesselbeck et al. Oct 1995 A
5485841 Watkin et al. Jan 1996 A
5506248 Nikfar et al. Apr 1996 A
5551020 Flax et al. Aug 1996 A
5567210 Bates et al. Oct 1996 A
5596302 Mastrocola et al. Jan 1997 A
5600548 Nguyen et al. Feb 1997 A
5634468 Platt Jun 1997 A
5645063 Straka et al. Jul 1997 A
5659247 Clements Aug 1997 A
5705189 Lehmann et al. Jan 1998 A
5724432 Bouvet et al. Mar 1998 A
5738708 Peachey et al. Apr 1998 A
5740811 Hedberg Apr 1998 A
5757326 Koyama et al. May 1998 A
5772575 Lesinski et al. Jun 1998 A
5792048 Schaefer Aug 1998 A
5802467 Salazar Sep 1998 A
5833716 Bar-Or Nov 1998 A
5842324 Grosskopf et al. Dec 1998 A
5845265 Woolston Dec 1998 A
5862803 Besson Jan 1999 A
5868136 Fox Feb 1999 A
5925030 Gross et al. Jul 1999 A
5957854 Besson et al. Sep 1999 A
5963132 Yoakum et al. Oct 1999 A
5974124 Schlueter, Jr. et al. Oct 1999 A
5981166 Mandecki Nov 1999 A
5999846 Pardey et al. Dec 1999 A
6038464 Axelgaard et al. Mar 2000 A
6042710 Dubrow Mar 2000 A
6047203 Sackner Apr 2000 A
6068589 Neukermans May 2000 A
6076016 Feierbach et al. Jun 2000 A
6081734 Batz Jun 2000 A
6091975 Daddona et al. Jul 2000 A
6095985 Raymond et al. Aug 2000 A
6115636 Ryan Sep 2000 A
6122351 Schlueter, Jr. et al. Sep 2000 A
6141592 Pauly Oct 2000 A
6149940 Maggi et al. Nov 2000 A
6200265 Walsh et al. Mar 2001 B1
6206702 Hayden et al. Mar 2001 B1
6217744 Crosby Apr 2001 B1
6231593 Meserol May 2001 B1
6245057 Sieben et al. Jun 2001 B1
6269058 Yamanoi et al. Jul 2001 B1
6285897 Kilcoyne et al. Sep 2001 B1
6287252 Lugo Sep 2001 B1
6288629 Cofino et al. Sep 2001 B1
6289238 Besson et al. Sep 2001 B1
6315719 Rode et al. Nov 2001 B1
6317714 Del Castillo Nov 2001 B1
6342774 Kreisinger et al. Jan 2002 B1
6344824 Takasugi et al. Feb 2002 B1
6358202 Arent Mar 2002 B1
6364834 Reuss Apr 2002 B1
6366206 Ishikawa et al. Apr 2002 B1
6371927 Brune Apr 2002 B1
6374670 Spelman Apr 2002 B1
6380858 Yarin et al. Apr 2002 B1
6390088 Noehl et al. May 2002 B1
6394997 Lemelson May 2002 B1
6426863 Munshi Jul 2002 B1
6432292 Pinto et al. Aug 2002 B1
6440069 Raymond et al. Aug 2002 B1
6441747 Khair Aug 2002 B1
6453199 Kobozev Sep 2002 B1
6477424 Thompson et al. Nov 2002 B1
6496705 Ng et al. Dec 2002 B1
6526315 Inagawa Feb 2003 B1
6531026 Takeichi et al. Mar 2003 B1
6544174 West Apr 2003 B2
6564079 Cory May 2003 B1
6567685 Takamori et al. May 2003 B2
6572636 Hagen et al. Jun 2003 B1
6577893 Besson et al. Jun 2003 B1
6579231 Phipps Jun 2003 B1
6595929 Stivoric Jul 2003 B2
6599284 Faour et al. Jul 2003 B2
6605038 Teller Aug 2003 B1
6609018 Cory Aug 2003 B2
6612984 Kerr Sep 2003 B1
6632175 Marshall Oct 2003 B1
6632216 Houzego et al. Oct 2003 B2
6635279 Kolter et al. Oct 2003 B2
6643541 Mok et al. Nov 2003 B2
6654638 Sweeney Nov 2003 B1
6663846 McCombs Dec 2003 B1
6673474 Yamamoto Jan 2004 B2
6680923 Leon Jan 2004 B1
6689117 Sweeney et al. Feb 2004 B2
6694161 Mehrotra Feb 2004 B2
6704602 Berg et al. Mar 2004 B2
6720923 Hayward et al. Apr 2004 B1
6738671 Christophersom et al. May 2004 B2
6740033 Olejniczak et al. May 2004 B1
6745082 Axelgaard et al. Jun 2004 B2
6755783 Cosentino Jun 2004 B2
6757523 Fry Jun 2004 B2
6759968 Zierolf Jul 2004 B2
6773429 Sheppard et al. Aug 2004 B2
6800060 Marshall Oct 2004 B2
6801137 Eggers et al. Oct 2004 B2
6816794 Alvi Nov 2004 B2
6822554 Vrijens et al. Nov 2004 B2
6824512 Warkentin et al. Nov 2004 B2
6836862 Erekson et al. Dec 2004 B1
6839659 Tarassenko et al. Jan 2005 B2
6840904 Goldberg Jan 2005 B2
6842636 Perrault Jan 2005 B2
6845272 Thomsen Jan 2005 B1
6864780 Doi Mar 2005 B2
6879810 Bouet Apr 2005 B2
6889165 Lind et al. May 2005 B2
6909878 Haller Jun 2005 B2
6922592 Thompson et al. Jul 2005 B2
6928370 Anuzis et al. Aug 2005 B2
6929636 Von Alten Aug 2005 B1
6937150 Medema Aug 2005 B2
6942616 Kerr Sep 2005 B2
6951536 Yokoi Oct 2005 B2
6957107 Rogers et al. Oct 2005 B2
6960617 Omidian et al. Nov 2005 B2
6968153 Heinonen Nov 2005 B1
6977511 Patel et al. Dec 2005 B2
6987965 Ng et al. Jan 2006 B2
6990082 Zehavi et al. Jan 2006 B1
7002476 Rapchak Feb 2006 B2
7004395 Koenck Feb 2006 B2
7009634 Iddan et al. Mar 2006 B2
7009946 Kardach Mar 2006 B1
7013162 Gorsuch Mar 2006 B2
7016648 Haller Mar 2006 B2
7020508 Stivoric Mar 2006 B2
7024248 Penner et al. Apr 2006 B2
7031745 Shen Apr 2006 B2
7031857 Tarassenko et al. Apr 2006 B2
7039453 Mullick May 2006 B2
7044911 Drinan et al. May 2006 B2
7046649 Awater et al. May 2006 B2
7083578 Lewkowicz Aug 2006 B2
7116252 Teraguchi Oct 2006 B2
7118531 Krill Oct 2006 B2
7127300 Mazar et al. Oct 2006 B2
7146228 Nielsen Dec 2006 B2
7146449 Do et al. Dec 2006 B2
7149581 Goedeke et al. Dec 2006 B2
7154071 Sattler et al. Dec 2006 B2
7155232 Godfrey et al. Dec 2006 B2
7160258 Imran Jan 2007 B2
7164942 Avrahami Jan 2007 B2
7171166 Ng et al. Jan 2007 B2
7171177 Park et al. Jan 2007 B2
7171259 Rytky Jan 2007 B2
7176784 Gilbert et al. Feb 2007 B2
7187960 Abreu Mar 2007 B2
7188199 Leung et al. Mar 2007 B2
7188767 Penuela Mar 2007 B2
7194038 Inkinen Mar 2007 B1
7206630 Tarler Apr 2007 B1
7209790 Thompson et al. Apr 2007 B2
7215660 Perlman May 2007 B2
7215991 Besson May 2007 B2
7218967 Bergelson May 2007 B2
7231451 Law Jun 2007 B2
7243118 Lou Jul 2007 B2
7246521 Kim Jul 2007 B2
7249212 Do Jul 2007 B2
7252792 Perrault Aug 2007 B2
7253716 Lovoi et al. Aug 2007 B2
7261690 Teller Aug 2007 B2
7270633 Goscha Sep 2007 B1
7273454 Raymond et al. Sep 2007 B2
7289855 Nghiem Oct 2007 B2
7291497 Holmes Nov 2007 B2
7292139 Mazar et al. Nov 2007 B2
7294105 Islam Nov 2007 B1
7313163 Liu Dec 2007 B2
7317378 Jarvis et al. Jan 2008 B2
7318808 Tarassenko et al. Jan 2008 B2
7336929 Yasuda Feb 2008 B2
7342895 Serpa Mar 2008 B2
7346380 Axelgaard et al. Mar 2008 B2
7349722 Witkowski et al. Mar 2008 B2
7352998 Palin Apr 2008 B2
7353258 Washburn Apr 2008 B2
7357891 Yang et al. Apr 2008 B2
7359674 Markki Apr 2008 B2
7366558 Virtanen et al. Apr 2008 B2
7368190 Heller et al. May 2008 B2
7368191 Andelman et al. May 2008 B2
7373196 Ryu et al. May 2008 B2
7375739 Robbins May 2008 B2
7376435 McGowan May 2008 B2
7382263 Danowski et al. Jun 2008 B2
7387607 Holt Jun 2008 B2
7388903 Godfrey et al. Jun 2008 B2
7389088 Kim Jun 2008 B2
7392015 Farlow Jun 2008 B1
7395106 Ryu et al. Jul 2008 B2
7396330 Banet Jul 2008 B2
7404968 Abrams et al. Jul 2008 B2
7413544 Kerr Aug 2008 B2
7414534 Kroll et al. Aug 2008 B1
7414543 Rye et al. Aug 2008 B2
7415242 Ngan Aug 2008 B1
7424268 Diener Sep 2008 B2
7424319 Muehlsteff Sep 2008 B2
7427266 Ayer et al. Sep 2008 B2
7442164 Berrang et al. Oct 2008 B2
7471665 Perlman Dec 2008 B2
7499674 Salokannel Mar 2009 B2
7510121 Koenck Mar 2009 B2
7512448 Malick Mar 2009 B2
7515043 Welch Apr 2009 B2
7519416 Sula et al. Apr 2009 B2
7523756 Minai Apr 2009 B2
7525426 Edelstein Apr 2009 B2
7537590 Santini, Jr. et al. May 2009 B2
7539533 Tran May 2009 B2
7542878 Nanikashvili Jun 2009 B2
7551590 Haller Jun 2009 B2
7554452 Cole Jun 2009 B2
7558620 Ishibashi Jul 2009 B2
7575005 Mumford Aug 2009 B2
7616111 Covannon Nov 2009 B2
7617001 Penner et al. Nov 2009 B2
7626387 Adachi Dec 2009 B2
7639473 Hsu et al. Dec 2009 B2
7640802 King et al. Jan 2010 B2
7645262 Greenberg et al. Jan 2010 B2
7647112 Tracey Jan 2010 B2
7647185 Tarassenko et al. Jan 2010 B2
7653031 Godfrey et al. Jan 2010 B2
7672714 Kuo Mar 2010 B2
7673679 Harrison et al. Mar 2010 B2
7678043 Gilad Mar 2010 B2
7686839 Parker Mar 2010 B2
7697994 VanDanacker et al. Apr 2010 B2
7720036 Sadri May 2010 B2
7729776 Von Arx et al. Jun 2010 B2
7733224 Tran Jun 2010 B2
7736318 Cosentino Jun 2010 B2
7756587 Penner et al. Jul 2010 B2
7782991 Sobchak et al. Aug 2010 B2
7796043 Euliano et al. Sep 2010 B2
7797033 D'Andrea et al. Sep 2010 B2
7809399 Lu Oct 2010 B2
7844341 Von Arx et al. Nov 2010 B2
7881799 Greenberg et al. Feb 2011 B2
7983189 Bugenhagen Jul 2011 B2
8036731 Kimchy et al. Oct 2011 B2
8036748 Zdeblick et al. Oct 2011 B2
8055334 Savage et al. Nov 2011 B2
8082919 Brunnberg et al. Dec 2011 B2
8131376 Faraji et al. Mar 2012 B1
8207731 Moskalenko Jun 2012 B2
8224596 Agrawal et al. Jul 2012 B2
8271146 Heber et al. Sep 2012 B2
8374698 Ok et al. Feb 2013 B2
8389003 Mintchev et al. Mar 2013 B2
8404275 Habboushe Mar 2013 B2
8425492 Herbert et al. Apr 2013 B2
8443214 Lee et al. May 2013 B2
8532776 Greenberg et al. Sep 2013 B2
8564432 Covannon et al. Oct 2013 B2
8597186 Hafezi et al. Dec 2013 B2
8698006 Bealka et al. Apr 2014 B2
8758237 Sherman et al. Jun 2014 B2
8784308 Duck et al. Jul 2014 B2
8816847 Zdeblick et al. Aug 2014 B2
8836513 Hafezi et al. Sep 2014 B2
8932221 Colliou et al. Jan 2015 B2
9107806 Hafezi et al. Aug 2015 B2
9119918 Robertson et al. Sep 2015 B2
9149423 Duck et al. Oct 2015 B2
9158890 Meredith et al. Oct 2015 B2
9161707 Hafezi et al. Oct 2015 B2
9270025 Robertson et al. Feb 2016 B2
9271897 Costello et al. Mar 2016 B2
20010027331 Thompson Oct 2001 A1
20010044588 Mault Nov 2001 A1
20010051766 Gazdzinski Dec 2001 A1
20020002326 Causey et al. Jan 2002 A1
20020026111 Ackerman Feb 2002 A1
20020032384 Raymond et al. Mar 2002 A1
20020032385 Raymond et al. Mar 2002 A1
20020040278 Anuzis et al. Apr 2002 A1
20020077620 Sweeney et al. Jun 2002 A1
20020132226 Nair Sep 2002 A1
20020179921 Cohn Dec 2002 A1
20020192159 Reitberg Dec 2002 A1
20020193669 Glukhovsky Dec 2002 A1
20020198470 Imran et al. Dec 2002 A1
20030017826 Fishman Jan 2003 A1
20030023150 Yokoi et al. Jan 2003 A1
20030028226 Thompson Feb 2003 A1
20030062551 Chen et al. Apr 2003 A1
20030065536 Hansen Apr 2003 A1
20030076179 Branch et al. Apr 2003 A1
20030083559 Thompson May 2003 A1
20030126593 Mault Jul 2003 A1
20030130714 Nielsen et al. Jul 2003 A1
20030135128 Suffin et al. Jul 2003 A1
20030135392 Vrijens et al. Jul 2003 A1
20030152622 Louie-Helm et al. Aug 2003 A1
20030158466 Lynn et al. Aug 2003 A1
20030158756 Abramson Aug 2003 A1
20030162556 Libes Aug 2003 A1
20030164401 Andreasson et al. Sep 2003 A1
20030167000 Mullick et al. Sep 2003 A1
20030171791 KenKnight Sep 2003 A1
20030171898 Tarassenko et al. Sep 2003 A1
20030181788 Yokoi et al. Sep 2003 A1
20030185286 Yuen Oct 2003 A1
20030187337 Tarassenko et al. Oct 2003 A1
20030187338 Say et al. Oct 2003 A1
20030195403 Berner et al. Oct 2003 A1
20030213495 Fujita et al. Nov 2003 A1
20030214579 Iddan Nov 2003 A1
20030216622 Meron et al. Nov 2003 A1
20030216625 Phipps Nov 2003 A1
20030216666 Ericson et al. Nov 2003 A1
20030216729 Marchitto Nov 2003 A1
20030232895 Omidian et al. Dec 2003 A1
20040008123 Carrender et al. Jan 2004 A1
20040018476 LaDue Jan 2004 A1
20040034295 Salganicoff Feb 2004 A1
20040049245 Gass Mar 2004 A1
20040073095 Causey et al. Apr 2004 A1
20040073454 Urquhart et al. Apr 2004 A1
20040077995 Ferek-Petric Apr 2004 A1
20040082982 Gord et al. Apr 2004 A1
20040087839 Raymond et al. May 2004 A1
20040092801 Drakulic May 2004 A1
20040106859 Say et al. Jun 2004 A1
20040115507 Potter et al. Jun 2004 A1
20040115517 Fukuda et al. Jun 2004 A1
20040121015 Chidlaw et al. Jun 2004 A1
20040148140 Tarassenko et al. Jul 2004 A1
20040153007 Harris Aug 2004 A1
20040167226 Serafini Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040193020 Chiba Sep 2004 A1
20040193029 Gluhovsky Sep 2004 A1
20040193446 Mayer et al. Sep 2004 A1
20040199222 Sun et al. Oct 2004 A1
20040215084 Shimizu et al. Oct 2004 A1
20040218683 Batra Nov 2004 A1
20040220643 Schmidt Nov 2004 A1
20040224644 Wu Nov 2004 A1
20040225199 Evanyk Nov 2004 A1
20040253304 Gross et al. Dec 2004 A1
20040258571 Lee et al. Dec 2004 A1
20040260154 Sidelnik Dec 2004 A1
20050003074 Brown et al. Jan 2005 A1
20050017841 Doi Jan 2005 A1
20050020887 Goldberg Jan 2005 A1
20050021370 Riff Jan 2005 A1
20050024198 Ward Feb 2005 A1
20050027205 Tarassenko et al. Feb 2005 A1
20050038321 Fujita et al. Feb 2005 A1
20050043634 Yokoi et al. Feb 2005 A1
20050043894 Fernandez Feb 2005 A1
20050054897 Hashimoto et al. Mar 2005 A1
20050055014 Coppeta et al. Mar 2005 A1
20050062644 Leci Mar 2005 A1
20050065407 Nakamura et al. Mar 2005 A1
20050070778 Lackey Mar 2005 A1
20050075145 Dvorak et al. Apr 2005 A1
20050090753 Goor et al. Apr 2005 A1
20050092108 Andermo May 2005 A1
20050096514 Starkebaum May 2005 A1
20050096562 Delalic et al. May 2005 A1
20050101843 Quinn May 2005 A1
20050101872 Sattler May 2005 A1
20050115561 Stahmann et al. Jun 2005 A1
20050116820 Goldreich Jun 2005 A1
20050117389 Worledge Jun 2005 A1
20050121322 Say et al. Jun 2005 A1
20050131281 Ayer et al. Jun 2005 A1
20050143623 Kojima Jun 2005 A1
20050146594 Nakatani et al. Jul 2005 A1
20050148883 Boesen Jul 2005 A1
20050154428 Bruinsma Jul 2005 A1
20050156709 Gilbert et al. Jul 2005 A1
20050165323 Montgomery Jul 2005 A1
20050177069 Takizawa Aug 2005 A1
20050182389 LaPorte Aug 2005 A1
20050187789 Hatlestad et al. Aug 2005 A1
20050192489 Marshall Sep 2005 A1
20050197680 DelMain et al. Sep 2005 A1
20050208251 Aisenbrey Sep 2005 A1
20050228268 Cole Oct 2005 A1
20050234307 Heinonen Oct 2005 A1
20050240305 Bogash et al. Oct 2005 A1
20050245794 Dinsmoor Nov 2005 A1
20050259768 Yang et al. Nov 2005 A1
20050261559 Mumford Nov 2005 A1
20050267556 Shuros et al. Dec 2005 A1
20050267756 Schultz et al. Dec 2005 A1
20050277912 John Dec 2005 A1
20050277999 Strother et al. Dec 2005 A1
20050279054 Mauze et al. Dec 2005 A1
20050280539 Pettus Dec 2005 A1
20050285746 Sengupta Dec 2005 A1
20050288594 Lewkowicz et al. Dec 2005 A1
20060001496 Abrosimov et al. Jan 2006 A1
20060028727 Moon et al. Feb 2006 A1
20060036134 Tarassenko et al. Feb 2006 A1
20060058602 Kwiatkowski et al. Mar 2006 A1
20060061472 Lovoi et al. Mar 2006 A1
20060065713 Kingery Mar 2006 A1
20060068006 Begleiter Mar 2006 A1
20060074283 Henderson Apr 2006 A1
20060074319 Barnes et al. Apr 2006 A1
20060078765 Yang et al. Apr 2006 A1
20060095091 Drew May 2006 A1
20060095093 Bettesh et al. May 2006 A1
20060100533 Han May 2006 A1
20060109058 Keating May 2006 A1
20060110962 Powell May 2006 A1
20060122474 Teller et al. Jun 2006 A1
20060122667 Chavan et al. Jun 2006 A1
20060136266 Tarassenko et al. Jun 2006 A1
20060142648 Banet Jun 2006 A1
20060145876 Kimura Jul 2006 A1
20060148254 McLean Jul 2006 A1
20060149339 Burnes Jul 2006 A1
20060155174 Glukhovsky et al. Jul 2006 A1
20060155183 Kroecker Jul 2006 A1
20060161225 Sormann et al. Jul 2006 A1
20060179949 Kim Aug 2006 A1
20060183993 Horn Aug 2006 A1
20060184092 Atanasoska et al. Aug 2006 A1
20060204738 Dubrow et al. Sep 2006 A1
20060210626 Spaeder Sep 2006 A1
20060216603 Choi Sep 2006 A1
20060218011 Walker Sep 2006 A1
20060235489 Drew Oct 2006 A1
20060243288 Kim et al. Nov 2006 A1
20060247505 Siddiqui Nov 2006 A1
20060253005 Drinan Nov 2006 A1
20060270346 Ibrahim Nov 2006 A1
20060273882 Posamentier Dec 2006 A1
20060276702 McGinnis Dec 2006 A1
20060280227 Pinkney Dec 2006 A1
20060282001 Noel Dec 2006 A1
20060289640 Mercure Dec 2006 A1
20060293607 Alt Dec 2006 A1
20070000776 Karube et al. Jan 2007 A1
20070002038 Suzuki Jan 2007 A1
20070006636 King et al. Jan 2007 A1
20070008113 Spoonhower et al. Jan 2007 A1
20070016089 Fischell et al. Jan 2007 A1
20070027386 Such Feb 2007 A1
20070027388 Chou Feb 2007 A1
20070038054 Zhou Feb 2007 A1
20070049339 Barak et al. Mar 2007 A1
20070055098 Shimizu et al. Mar 2007 A1
20070060797 Ball Mar 2007 A1
20070060800 Drinan et al. Mar 2007 A1
20070066929 Ferren et al. Mar 2007 A1
20070073353 Rooney et al. Mar 2007 A1
20070096765 Kagan May 2007 A1
20070106346 Bergelson May 2007 A1
20070123772 Euliano May 2007 A1
20070129622 Bourget Jun 2007 A1
20070130287 Kumar Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070142721 Berner et al. Jun 2007 A1
20070156016 Betesh Jul 2007 A1
20070160789 Merical Jul 2007 A1
20070162089 Mosesov Jul 2007 A1
20070162090 Penner Jul 2007 A1
20070167495 Brown et al. Jul 2007 A1
20070167848 Kuo et al. Jul 2007 A1
20070173701 Al-Ali Jul 2007 A1
20070179347 Tarassenko et al. Aug 2007 A1
20070179371 Peyser et al. Aug 2007 A1
20070185393 Zhou Aug 2007 A1
20070191002 Ge Aug 2007 A1
20070196456 Stevens Aug 2007 A1
20070207793 Myer Sep 2007 A1
20070208233 Kovacs Sep 2007 A1
20070213659 Trovato et al. Sep 2007 A1
20070237719 Jones Oct 2007 A1
20070244370 Kuo et al. Oct 2007 A1
20070255198 Leong et al. Nov 2007 A1
20070255330 Lee Nov 2007 A1
20070270672 Hayter Nov 2007 A1
20070279217 Venkatraman Dec 2007 A1
20070282174 Sabatino Dec 2007 A1
20070282177 Pilz Dec 2007 A1
20070299480 Hill Dec 2007 A1
20080000804 Carey et al. Jan 2008 A1
20080014866 Lipowshi Jan 2008 A1
20080020037 Robertson et al. Jan 2008 A1
20080021519 DeGeest Jan 2008 A1
20080021521 Shah Jan 2008 A1
20080027679 Shklarski Jan 2008 A1
20080033273 Zhou Feb 2008 A1
20080038588 Lee Feb 2008 A1
20080039700 Drinan et al. Feb 2008 A1
20080045843 Tsuji et al. Feb 2008 A1
20080046038 Hill Feb 2008 A1
20080051647 Wu et al. Feb 2008 A1
20080051667 Goldreich Feb 2008 A1
20080058614 Banet Mar 2008 A1
20080062856 Feher Mar 2008 A1
20080065168 Bitton et al. Mar 2008 A1
20080074307 Boric-Lubecke Mar 2008 A1
20080077015 Boric-Lubecke Mar 2008 A1
20080077028 Schaldach et al. Mar 2008 A1
20080077188 Denker et al. Mar 2008 A1
20080091089 Guillory et al. Apr 2008 A1
20080091114 Min Apr 2008 A1
20080097549 Colbaugh Apr 2008 A1
20080097917 Dicks Apr 2008 A1
20080103440 Ferren et al. May 2008 A1
20080112885 Okunev et al. May 2008 A1
20080114224 Bandy et al. May 2008 A1
20080119705 Patel May 2008 A1
20080119716 Boric-Lubecke May 2008 A1
20080121825 Trovato et al. May 2008 A1
20080137566 Marholev Jun 2008 A1
20080139907 Rao et al. Jun 2008 A1
20080140403 Hughes et al. Jun 2008 A1
20080146871 Arneson et al. Jun 2008 A1
20080146889 Young Jun 2008 A1
20080146892 LeBoeuf Jun 2008 A1
20080154104 Lamego Jun 2008 A1
20080166992 Ricordi Jul 2008 A1
20080175898 Jones et al. Jul 2008 A1
20080183245 Van Oort Jul 2008 A1
20080188837 Belsky et al. Aug 2008 A1
20080194912 Trovato et al. Aug 2008 A1
20080208009 Shklarski Aug 2008 A1
20080214901 Gehman Sep 2008 A1
20080214985 Yanaki Sep 2008 A1
20080243020 Chou Oct 2008 A1
20080249360 Li Oct 2008 A1
20080262320 Schaefer et al. Oct 2008 A1
20080262336 Ryu Oct 2008 A1
20080269664 Trovato et al. Oct 2008 A1
20080275312 Mosesov Nov 2008 A1
20080284599 Zdeblick et al. Nov 2008 A1
20080288027 Kroll Nov 2008 A1
20080294020 Sapounas Nov 2008 A1
20080299197 Toneguzzo et al. Dec 2008 A1
20080300572 Rankers Dec 2008 A1
20080303638 Nguyen Dec 2008 A1
20080306357 Korman Dec 2008 A1
20080306359 Zdeblick et al. Dec 2008 A1
20080306360 Robertson et al. Dec 2008 A1
20080311852 Hansen Dec 2008 A1
20080312522 Rowlandson Dec 2008 A1
20080316020 Robertson Dec 2008 A1
20090009330 Sakama et al. Jan 2009 A1
20090009332 Nunez et al. Jan 2009 A1
20090024045 Prakash Jan 2009 A1
20090024112 Edwards et al. Jan 2009 A1
20090030293 Cooper et al. Jan 2009 A1
20090030297 Miller Jan 2009 A1
20090034209 Joo Feb 2009 A1
20090043171 Rule Feb 2009 A1
20090048498 Riskey Feb 2009 A1
20090062634 Say et al. Mar 2009 A1
20090062670 Sterling Mar 2009 A1
20090069642 Gao Mar 2009 A1
20090069655 Say et al. Mar 2009 A1
20090069656 Say et al. Mar 2009 A1
20090069657 Say et al. Mar 2009 A1
20090069658 Say et al. Mar 2009 A1
20090069724 Otto et al. Mar 2009 A1
20090076343 James Mar 2009 A1
20090082645 Hafezi et al. Mar 2009 A1
20090087483 Sison Apr 2009 A1
20090088618 Ameson Apr 2009 A1
20090099435 Say et al. Apr 2009 A1
20090105561 Boyden et al. Apr 2009 A1
20090110148 Zhang Apr 2009 A1
20090112626 Talbot Apr 2009 A1
20090124871 Arshak May 2009 A1
20090124965 Greenberg et al. May 2009 A1
20090131774 Sweitzer May 2009 A1
20090135886 Robertson et al. May 2009 A1
20090142853 Warrington et al. Jun 2009 A1
20090149839 Hyde et al. Jun 2009 A1
20090157113 Marcotte Jun 2009 A1
20090157358 Kim Jun 2009 A1
20090161602 Matsumoto Jun 2009 A1
20090163789 Say et al. Jun 2009 A1
20090171180 Pering Jul 2009 A1
20090171420 Brown et al. Jul 2009 A1
20090173628 Say et al. Jul 2009 A1
20090177055 Say et al. Jul 2009 A1
20090177056 Say et al. Jul 2009 A1
20090177057 Say et al. Jul 2009 A1
20090177058 Say et al. Jul 2009 A1
20090177059 Say et al. Jul 2009 A1
20090177060 Say et al. Jul 2009 A1
20090177061 Say et al. Jul 2009 A1
20090177062 Say et al. Jul 2009 A1
20090177063 Say et al. Jul 2009 A1
20090177064 Say et al. Jul 2009 A1
20090177065 Say et al. Jul 2009 A1
20090177066 Say et al. Jul 2009 A1
20090182206 Najafi Jul 2009 A1
20090182207 Riskey et al. Jul 2009 A1
20090182212 Say et al. Jul 2009 A1
20090182213 Say et al. Jul 2009 A1
20090182214 Say et al. Jul 2009 A1
20090182215 Say et al. Jul 2009 A1
20090182388 Von Arx Jul 2009 A1
20090187088 Say et al. Jul 2009 A1
20090187089 Say et al. Jul 2009 A1
20090187090 Say et al. Jul 2009 A1
20090187091 Say et al. Jul 2009 A1
20090187092 Say et al. Jul 2009 A1
20090187093 Say et al. Jul 2009 A1
20090187094 Say et al. Jul 2009 A1
20090187095 Say et al. Jul 2009 A1
20090187381 King et al. Jul 2009 A1
20090192351 Nishino Jul 2009 A1
20090192368 Say et al. Jul 2009 A1
20090192369 Say et al. Jul 2009 A1
20090192370 Say et al. Jul 2009 A1
20090192371 Say et al. Jul 2009 A1
20090192372 Say et al. Jul 2009 A1
20090192373 Say et al. Jul 2009 A1
20090192374 Say et al. Jul 2009 A1
20090192375 Say et al. Jul 2009 A1
20090192376 Say et al. Jul 2009 A1
20090192377 Say et al. Jul 2009 A1
20090192378 Say et al. Jul 2009 A1
20090192379 Say et al. Jul 2009 A1
20090198115 Say et al. Aug 2009 A1
20090198116 Say et al. Aug 2009 A1
20090198175 Say et al. Aug 2009 A1
20090203964 Shimizu et al. Aug 2009 A1
20090203971 Sciarappa Aug 2009 A1
20090203972 Heneghan Aug 2009 A1
20090203978 Say et al. Aug 2009 A1
20090204265 Hackett Aug 2009 A1
20090210164 Say et al. Aug 2009 A1
20090216101 Say et al. Aug 2009 A1
20090216102 Say et al. Aug 2009 A1
20090227204 Robertson et al. Sep 2009 A1
20090227876 Tran Sep 2009 A1
20090227940 Say et al. Sep 2009 A1
20090227941 Say et al. Sep 2009 A1
20090227988 Wood et al. Sep 2009 A1
20090228214 Say et al. Sep 2009 A1
20090231125 Baldus Sep 2009 A1
20090234200 Husheer Sep 2009 A1
20090243833 Huang Oct 2009 A1
20090253960 Takenaka et al. Oct 2009 A1
20090256702 Robertson Oct 2009 A1
20090260212 Schmett et al. Oct 2009 A1
20090264714 Chou Oct 2009 A1
20090264964 Abrahamson Oct 2009 A1
20090265186 Tarassenko et al. Oct 2009 A1
20090273467 Elixmann Nov 2009 A1
20090281539 Selig Nov 2009 A1
20090295548 Ronkka Dec 2009 A1
20090296677 Mahany Dec 2009 A1
20090303920 Mahany Dec 2009 A1
20090306633 Trovato et al. Dec 2009 A1
20090312619 Say et al. Dec 2009 A1
20090318303 Delamarche et al. Dec 2009 A1
20090318761 Rabinovitz Dec 2009 A1
20090318779 Tran Dec 2009 A1
20090318783 Rohde Dec 2009 A1
20090318793 Datta Dec 2009 A1
20100001841 Cardullo Jan 2010 A1
20100010330 Rankers Jan 2010 A1
20100033324 Shimizu et al. Feb 2010 A1
20100049004 Edman et al. Feb 2010 A1
20100049006 Magar Feb 2010 A1
20100049012 Dijksman et al. Feb 2010 A1
20100049069 Tarassenko et al. Feb 2010 A1
20100056878 Partin Mar 2010 A1
20100056891 Say et al. Mar 2010 A1
20100056939 Tarassenko et al. Mar 2010 A1
20100057041 Hayter Mar 2010 A1
20100062709 Kato Mar 2010 A1
20100063438 Bengtsson Mar 2010 A1
20100063841 D'Ambrosia et al. Mar 2010 A1
20100069002 Rong Mar 2010 A1
20100069717 Hafezi et al. Mar 2010 A1
20100081894 Zdeblick et al. Apr 2010 A1
20100099967 Say et al. Apr 2010 A1
20100099968 Say et al. Apr 2010 A1
20100099969 Say et al. Apr 2010 A1
20100100077 Rush Apr 2010 A1
20100100078 Say et al. Apr 2010 A1
20100106001 Say et al. Apr 2010 A1
20100118853 Godfrey May 2010 A1
20100139672 Kroll et al. Jun 2010 A1
20100168659 Say et al. Jul 2010 A1
20100179398 Say et al. Jul 2010 A1
20100185055 Robertson Jul 2010 A1
20100191073 Tarassenko et al. Jul 2010 A1
20100210299 Gorbachov Aug 2010 A1
20100222652 Cho Sep 2010 A1
20100228113 Solosko Sep 2010 A1
20100233026 Ismagliov et al. Sep 2010 A1
20100234706 Gilland Sep 2010 A1
20100234715 Shin Sep 2010 A1
20100234914 Shen Sep 2010 A1
20100239616 Hafezi et al. Sep 2010 A1
20100245091 Singh Sep 2010 A1
20100249881 Corndorf Sep 2010 A1
20100256461 Mohamedali Oct 2010 A1
20100259543 Tarassenko et al. Oct 2010 A1
20100268048 Say et al. Oct 2010 A1
20100268049 Say et al. Oct 2010 A1
20100268050 Say et al. Oct 2010 A1
20100274111 Say et al. Oct 2010 A1
20100280345 Say et al. Nov 2010 A1
20100280346 Say et al. Nov 2010 A1
20100295694 Kauffman et al. Nov 2010 A1
20100297640 Kumar et al. Nov 2010 A1
20100298650 Moon et al. Nov 2010 A1
20100298668 Hafezi et al. Nov 2010 A1
20100298730 Tarassenko et al. Nov 2010 A1
20100312188 Robertson et al. Dec 2010 A1
20100312580 Tarassenko et al. Dec 2010 A1
20110009715 O'Reilly et al. Jan 2011 A1
20110054265 Hafezi et al. Mar 2011 A1
20110065983 Hafezi et al. Mar 2011 A1
20110077660 Janik et al. Mar 2011 A1
20110105864 Robertson et al. May 2011 A1
20110124983 Kroll et al. May 2011 A1
20110134906 Garudadri et al. Jun 2011 A1
20110224912 Bhavaraju et al. Sep 2011 A1
20110230732 Edman et al. Sep 2011 A1
20120016231 Westmoreland Jan 2012 A1
20120062371 Radivojevic et al. Mar 2012 A1
20120245043 England Sep 2012 A1
20120299723 Hafezi et al. Nov 2012 A1
20130030366 Robertson et al. Jan 2013 A1
20130129869 Hafezi et al. May 2013 A1
20130144132 Hafezi et al. Jun 2013 A1
20150059922 Thompson et al. Mar 2015 A1
20150080677 Thompson et al. Mar 2015 A1
20150080678 Frank et al. Mar 2015 A1
20150080679 Frank et al. Mar 2015 A1
20150080680 Zdeblick et al. Mar 2015 A1
20150112243 Hafezi et al. Apr 2015 A1
20150127737 Thompson et al. May 2015 A1
20150127738 Thompson et al. May 2015 A1
20150150480 Zdeblick et al. Jun 2015 A1
20150164746 Costello et al. Jun 2015 A1
20150173646 Berkman et al. Jun 2015 A1
20150223751 Zdeblick et al. Aug 2015 A1
20150230729 Zdeblick et al. Aug 2015 A1
20150248833 Arne et al. Sep 2015 A1
20150294077 Jani et al. Oct 2015 A1
20150352343 Hafezi et al. Dec 2015 A1
20150361234 Hafezi et al. Dec 2015 A1
20160033667 Schmidt et al. Feb 2016 A1
Foreign Referenced Citations (156)
Number Date Country
1588649 Mar 2005 CN
101795202 Aug 2010 CN
10313005 Oct 2004 DE
0344939 Dec 1989 EP
0981152 Feb 2000 EP
1246356 Oct 2002 EP
1534054 May 2005 EP
1702553 Sep 2006 EP
1244308 Dec 2007 EP
2143369 Jan 2010 EP
827762 Feb 1960 GB
61072712 Apr 1986 JP
05-228128 Sep 1993 JP
2000-506410 May 2000 JP
2002263185 Sep 2002 JP
2002282219 Oct 2002 JP
2003050867 Feb 2003 JP
2004313242 Nov 2004 JP
2005-073886 Mar 2005 JP
2005-087552 Apr 2005 JP
2005-304880 Apr 2005 JP
2005102959 Apr 2005 JP
2005124708 May 2005 JP
2005514966 May 2005 JP
2005343515 Dec 2005 JP
2006006377 Jan 2006 JP
2006509574 Mar 2006 JP
2007-313340 Dec 2007 JP
2009514870 Apr 2009 JP
2009528909 Aug 2009 JP
2006077523 Jul 2006 KR
200406192 May 2004 TW
200916136 Apr 2009 TW
WO8802237 Apr 1988 WO
WO9221307 Dec 1992 WO
WO9308734 May 1993 WO
WO9319667 Oct 1993 WO
WO9401165 Jan 1994 WO
WO9739963 Oct 1997 WO
WO9843537 Oct 1998 WO
WO9937290 Jul 1999 WO
WO9959465 Nov 1999 WO
WO0033246 Jun 2000 WO
WO0147466 Jul 2001 WO
WO0174011 Oct 2001 WO
WO0180731 Nov 2001 WO
WO0245489 Jun 2002 WO
WO02058330 Jul 2002 WO
WO02062276 Aug 2002 WO
WO02087681 Nov 2002 WO
WO02095351 Nov 2002 WO
WO03005877 Jan 2003 WO
WO03050643 Jun 2003 WO
WO03068061 Aug 2003 WO
WO2004014225 Feb 2004 WO
WO2004019172 Mar 2004 WO
WO2004039256 May 2004 WO
WO2004066833 Aug 2004 WO
WO2004066834 Aug 2004 WO
WO2004066903 Aug 2004 WO
WO2004068881 Aug 2004 WO
WO2004075032 Sep 2004 WO
WO2004109316 Dec 2004 WO
WO2005011237 Feb 2005 WO
WO2005020023 Mar 2005 WO
WO2005024687 Mar 2005 WO
WO2005041438 May 2005 WO
WO2005047837 May 2005 WO
WO2005051166 Jun 2005 WO
WO2005053517 Jun 2005 WO
WO2005083621 Sep 2005 WO
WO2005110238 Nov 2005 WO
WO2006021932 Mar 2006 WO
WO2006027586 Mar 2006 WO
WO2006028347 Mar 2006 WO
WO2006055892 May 2006 WO
WO2006055956 May 2006 WO
WO2006075016 Jul 2006 WO
WO2006100620 Sep 2006 WO
WO2006116718 Nov 2006 WO
WO2006127355 Nov 2006 WO
WO2007001724 Jan 2007 WO
WO2007001742 Jan 2007 WO
WO2007013952 Feb 2007 WO
WO2007014084 Feb 2007 WO
WO2007014527 Feb 2007 WO
WO2007021496 Feb 2007 WO
WO2007027660 Mar 2007 WO
WO2007028035 Mar 2007 WO
WO2007036687 Apr 2007 WO
WO2007036741 Apr 2007 WO
WO2007036746 Apr 2007 WO
WO2007040878 Apr 2007 WO
WO2007067054 Jun 2007 WO
WO2007071180 Jun 2007 WO
WO2007096810 Aug 2007 WO
WO2007101141 Sep 2007 WO
WO2007115087 Oct 2007 WO
WO2007120946 Oct 2007 WO
WO2007127316 Nov 2007 WO
WO2007127879 Nov 2007 WO
WO2007128165 Nov 2007 WO
WO2007130491 Nov 2007 WO
WO2007143535 Dec 2007 WO
WO2007149546 Dec 2007 WO
WO2006104843 Jan 2008 WO
WO2008008281 Jan 2008 WO
WO2008012700 Jan 2008 WO
WO2008030482 Mar 2008 WO
WO2008052136 May 2008 WO
WO2008063626 May 2008 WO
WO2008066617 Jun 2008 WO
WO2008076464 Jun 2008 WO
WO2008089232 Jul 2008 WO
WO2008091683 Jul 2008 WO
WO2008095183 Aug 2008 WO
WO2008097652 Aug 2008 WO
WO2008101107 Aug 2008 WO
WO2008112577 Sep 2008 WO
WO2008112578 Sep 2008 WO
WO2008120156 Oct 2008 WO
WO2008133394 Nov 2008 WO
WO2008134185 Nov 2008 WO
WO2008150633 Dec 2008 WO
WO2009000447 Dec 2008 WO
WO2009001108 Dec 2008 WO
WO2009006615 Jan 2009 WO
WO2009029453 Mar 2009 WO
WO2009031149 Mar 2009 WO
WO2009036334 Mar 2009 WO
WO2009051829 Apr 2009 WO
WO2009051830 Apr 2009 WO
WO2009063377 May 2009 WO
WO2009081348 Jul 2009 WO
WO2009111664 Sep 2009 WO
WO2009146082 Dec 2009 WO
WO2010000085 Jan 2010 WO
WO2010009100 Jan 2010 WO
WO2010011833 Jan 2010 WO
WO2010019778 Feb 2010 WO
WO2010057049 May 2010 WO
WO2010080765 Jul 2010 WO
WO2010080843 Jul 2010 WO
WO2010107563 Sep 2010 WO
WO2010129288 Nov 2010 WO
WO2010132331 Nov 2010 WO
WO2010135516 Nov 2010 WO
WO2011068963 Jun 2011 WO
WO2011133799 Oct 2011 WO
WO2011159336 Dec 2011 WO
WO2011159337 Dec 2011 WO
WO2011159338 Dec 2011 WO
WO2011159339 Dec 2011 WO
WO2015112603 Jul 2015 WO
WO2015112604 Jul 2015 WO
WO2015119911 Aug 2015 WO
Non-Patent Literature Citations (67)
Entry
AADE, “AADE 37th Annual Meeting San Antonio Aug. 4-7, 2010” American Association of Diabetes Educators (2010); http://www.diabeteseducator.org/annualmeeting/2010/index.html; 2 pp.
Arshak et al., A Review and Adaptation of Methods of Object Tracking to Telemetry Capsules IC-Med (2007) vol. 1, No. 1, Issue 1, 12pp.
“ASGE Technology Status Evaluation Report: wireless capsule endoscopy” American Soc. For Gastrointestinal Endoscopy (2006) vol. 63, No. 4; 7 pp.
Bohidar et al., “Dielectric Behavior of Gelatin Solutions and Gels” Colloid Polym Sci (1998) 276:81-86.
Carlson et al., “Evaluation of a non-invasive respiratory monitoring system for sleeping subjects” Physiological Measurement (1999) 20(1): 53.
Coury, L. “Conductance Measurement Part 1: Theory”; Current Separations, 18:3 (1999) p. 91-96.
Delvaux et al., “Capsule endoscopy: Technique and indications” Clinical Gastoenterology (2008) vol. 22, Issue 5, pp. 813-837.
Dhar et al., “Electroless nickel plated contacts on porous silicon” Appl. Phys. Lett. 68 (10) pp. 1392-1393 (1996).
Eldek A., “Design of double dipole antenna with enhanced usable bandwidth for wideband phased array applications” Progress in Electromagnetics Research PIER 59, 1-15 (2006).
Ferguson et al., “Dialectric Constant Studies III Aqueous Gelatin Solutions” J. Chem. Phys. 2, 94 (1934) p. 94-98.
Furse C. M., “Dipole Antennas” J. Webster (ed). Wiley Encyclopedia of Electrical and Electronics Engineering (1999) p. 575-581.
Gaglani S. “Put Your Phone, or Skin, on Vibrate” MedGadget (2012) http://medgadget.com/2012/03/put-your-phone-or-skin-on-vibrate.html 8pp.
Gilson, D.R. “Molecular dynamics simulation of dipole interactions”, Department of Physics, Hull University, Dec. 2002, p. 1-43.
Given Imaging, “Agile Patency Brochure” (2006) http://www.inclino.no/documents/AgilePatencyBrochure—Global—GMB-0118-01.pdf; 4pp.
Gonzalez-Guillaumin et al., “Ingestible capsule for impedance and pH monitoring in the esophagus” IEEE Trans Biomed Eng. (2007) 54(12): 2231-6; abstract.
Greene, “Edible RFID microchip monitor can tell if you take your medicine” Bloomberg Businessweek (2010) 2 pp.; http://www.businessweek.com/idg/2010-03-31/edible-rfid-microchip-monitor-can-tell-if-you-take-your-medicine.html.
Heydari et al., “Analysis of the PLL jitter due to power/ground and substrate noise”; IEEE Transactions on Circuits and Systems (2004) 51(12): 2404-16.
Hoover et al., “Rx for health: Engineers design pill that signals it has been swallowed” University of Florida News (2010) 2pp.; http://news.ufl.edu/2010/03/31/antenna-pill-2/.
ISFET—Ion Sensitive Field-Effect Transistor; MICROSENS S.A. pdf document. First cited by Examiner in Office Action dated Jun. 13, 2011 for U.S. Appl. No. 12/238,345; 4pp.
Intromedic, MicroCam Innovative Capsule Endoscope Pamphlet. (2006) 8 pp (http://www.intromedic.com/en/product/productinfo.asp).
Jung, S. “Dissolvable ‘Transient Electronics’ Will Be Good for Your Body and the Environment” MedGadget; Oct. 1, 2012; Onlne website: http://medgadget.com/2012/10/dissolvable-transient-electronics-will-be-good-for-your-body-and-the-environment.html; downloaded Oct. 24, 2012; 4 pp.
Juvenile Diabetes Research Foundation International (JDRF), “Artificial Pancreas Project” (2010); http://www.artificialpancreasproject.com/; 3 pp.
Kamada K., “Electrophoretic deposition assisted by soluble anode” Materials Letters 57 (2003) 2348-2351.
Li, P-Y, et al. “An electrochemical intraocular drug delivery device”, Sensors and Actuators A 143 (2008) p. 41-48.
Lifescan, “OneTouch UltraLink™” http://www.lifescan.com/products/meters/ultralink (2010) 2 pp.
Mackay et al., “Radio Telemetering from within the Body” Inside Information is Revealed by Tiny Transmitters that can be Swallowed or Implanted in Man or Animal Science (1991) 1196-1202; 134; American Association for the Advancement of Science, Washington D.C.
Mackay et al., “Endoradiosonde” Nature, (1957) 1239-1240, 179 Nature Publishing Group.
McKenzie et al., “Validation of a new telemetric core temperature monitor” J. Therm. Biol. (2004) 29(7-8):605-11.
Medtronic, “CareLink Therapy Management Software for Diabetes” (2010); https://carelink.minimed.com/patient/entry.jsp?bhcp=1; 1 pp.
Medtronic, “Carelink™ USB” (2008) http://www.medtronicdiabetes.com/pdf/carelink—usb—factsheet.pdf 2pp.
Medtronic “The New MiniMed Paradigm® REAL-Time Revel™ System” (2010) http://www.medtronicdiabetes.com/products/index.html; 2 pp.
Medtronic, “Mini Med Paradigm® Revel™ Insulin Pump” (2010) http://www.medtronicdiabetes.com/products/insulinpumps/index.html; 2 pp.
Medtronic, Mini Med Paradigm™ Veo™ System: Factsheet (2010). http://www.medtronic-diabetes.com.au/downloads/Paradigm%20Veo%20Factsheet.pdf ; 4 pp.
Mojaverian et al., “Estimation of gastric residence time of the Heidelberg capsule in humans: effect of varying food composition” Gastroenterology (1985) 89:(2): 392-7.
NPL—AntennaBasics.pdf, Radio Antennae, http://www.erikdeman.de/html/sail018h.htm; (2008) 3pp.
O'Brien et al., “The Production and Characterization of Chemically Reactive Porous Coatings of Zirconium Via Unbalanced Magnetron Sputtering” Surface and Coatings Technology (1996) 86-87; 200-206.
Park, “Medtronic to Buy MiniMed for $3.7 Billion” (2001) HomeCare; http://homecaremag.com/mag/medical—medtronic—buy—minimed/; 2 pp.
Rolison et al., “Electrically conductive oxide aerogels: new materials in electrochemistry” J. Mater. Chem. (2001) 1, 963-980.
Roulstone, et al., “Studies on Polymer Latex Films: I. A study of latex film morphology” Polymer International 24 (1991) pp. 87-94.
Sanduleanu et al., “Octave tunable, highly linear, RC-ring oscillator with differential fine-coarse tuning, quadrature outputs and amplitude control for fiber optic transceivers” (2002) IEEE MTT-S International Microwave Symposium Digest 545-8.
Santini, J.T. et al, “Microchips as controlled drug delivery-devices”, Agnew. Chem. Int. Ed. (2000), vol. 39, p. 2396-2407.
“SensiVida minimally invasive clinical systems” Investor Presentation Oct. 2009 28pp; http://www.sensividamedtech.com/SensiVidaGeneralOctober09.pdf.
Shawgo, R.S. et al. “BioMEMS from drug delivery”, Current Opinion in Solid State and Material Science 6 (2002), p. 329-334.
Shin et al., “A Simple Route to Metal Nanodots and Nanoporous Metal Films”; Nano Letters, vol. 2, No. 9 (2002) pp. 933-936.
“Smartlife awarded patent for knitted transducer” Innovation in Textiles News: http://www.innovationintextiles.com/articles/208.php; 2pp. (2009).
Solanas et al., “RFID Technology for the Health Care Sector” Recent Patents on Electrical Engineering (2008) 1, 22-31.
Soper, S.A. et al. “Bio-Mems Technologies and Applications”, Chapter 12, “MEMS for Drug Delivery”, p. 325-346 (2007).
Swedberg, “University Team Sees Ingestible RFID Tag as a Boon to Clinical Trials” RFID Journal Apr. 27th, 2010; http://www.rfidjournal.com/article/view/7560/1 3pp.
Tajalli et al., “Improving the power-delay performance in subthreshold source-coupled logic circuits” Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation, Springer Berlin Heidelberg (2008) 21-30.
Tatbul et al., “Confidence-based data management for personal area sensor networks” ACM International Conference Proceeding Series (2004) 72.
Tierney, M.J. et al “Electroreleasing Composite Membranes for Delivery of Insulin and other Biomacromolecules”, J. Electrochem. Soc., vol. 137, No. 6, Jun. 1990, p. 2005-2006.
Trutag, Technologies, Inc., Spectral Microtags for Authentication and Anti-Counterfeiting; “Product Authentication and Brand Protection Solutions”; http://www.trutags.com/; downloaded Feb. 12, 2013; 1 pp.
U.S. Appl. No. 12/238,345, filed Sep. 25, 2008, Hooman et al., Non-Final Office Action mailed Jun. 13, 2011 22pp.
Walkey, “MOSFET Structure and Processing”; 97.398* Physical Electronics Lecture 20; First cited by Examiner in Office Action dated Jun. 13, 2011 for U.S. Appl. No. 12/238,345; 24 pp.
Watson, et al., “Determination of the relationship between the pH and conductivity of gastric juice” Physiol Meas. 17 (1996) pp. 21-27.
Wongmanerod et al., “Determination of pore size distribution and surface area of thin porous silicon layers by spectroscopic ellipsometry” Applied Surface Science 172 (2001) 117-125.
Xiaoming et al., “A telemedicine system for wireless home healthcare based on bluetooth and the internet” Telemedicine Journal and e-health (2004) 10(S2): S110-6.
Yang et al., “Fast-switching frequency synthesizer with a discriminator-aided phase detector” IEEE Journal of Solid-State Circuits (2000) 35(10): 1445-52.
Yao et al., “Low Power Digital Communication in Implantable Devices Using Volume Conduction of Biological Tissues” Proceedings of the 28th IEEE, EMBS Annual International Conference, Aug. 30-Sep. 3, 2006.
Zimmerman, “Personal Area Networks: Near-field intrabody communication” IBM Systems Journal (1996) 35 (3-4):609-17.
Zworkin, “A Radio Pill” Nature, (1957) 898, 179 Nature Publishing Group.
Kendle, Earl R. and Morris, Larry A., “Preliminary Studies in the Development of a Gastric Battery for Fish” (1964). Nebraska Game and Parks Commission White Papers, Conference Presentations, & Manuscripts. Paper 22. p. 1-6.
Kim et al., “A Semi-Interpenetrating Network System for a Polymer Membrane”; Eur. Polym. J. vol. 33 No. 7; pp. 1009-1014 (1997).
Whipple, Fred L.; “Endoradiosonde,” Nature, Jun. 1957, 1239-1240.
Winter, J. et al. “The material properties of gelatin gels”; USA Ballistic Research Laboratories, Mar. 1975, p. 1-157.
Wang, X. et al “Resistance to Tracking and Erosion of Silicone Rubber Material under Various Types of Precipitation”, Jpn. J. Appl. Phys. vol. 38 (1999) pp. 5170-5175.
Au-Yeung, K., et al., “A Networked System for Self-Management of Drug Therapy and Wellness”, Wireless Health '10, Oct. 5-7, 2010, San Diego, 9 pages.
Related Publications (1)
Number Date Country
20130193950 A1 Aug 2013 US
Provisional Applications (1)
Number Date Country
61088355 Aug 2008 US
Continuations (1)
Number Date Country
Parent 12527403 US
Child 13748476 US