Inhibitors of histone deacetylase

Information

  • Patent Grant
  • 7868204
  • Patent Number
    7,868,204
  • Date Filed
    Friday, March 25, 2005
    19 years ago
  • Date Issued
    Tuesday, January 11, 2011
    13 years ago
Abstract
The invention relates to the inhibition of histone deacetylase. The invention provides compounds and methods for inhibiting histone deacetylase enzymatic activity. The invention also provides compositions and methods for treating cell proliferative diseases and conditions.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates to the inhibition of histone deacetylase. More particularly, the invention relates to compounds and methods for inhibiting histone deacetylase enzymatic activity.


2. Summary of the Related Art


In eukaryotic cells, nuclear DNA associates with histones to form a compact complex called chromatin. The histones constitute a family of basic proteins which are generally highly conserved across eukaryotic species. The core histones, termed H2A, H2B, H3, and H4, associate to form a protein core. DNA winds around this protein core, with the basic amino acids of the histones interacting with the negatively charged phosphate groups of the DNA. Approximately 146 base pairs of DNA wrap around a histone core to make up a nucleosome particle, the repeating structural motif of chromatin.


Csordas, Biochem. J., 286: 23-38 (1990) teaches that histones are subject to posttranslational acetylation of the α,ε-amino groups of N-terminal lysine residues, a reaction that is catalyzed by histone acetyl transferase (HAT1). Acetylation neutralizes the positive charge of the lysine side chain, and is thought to impact chromatin structure. Indeed, Taunton et al., Science, 272: 408-411 (1996), teaches that access of transcription factors to chromatin templates is enhanced by histone hyperacetylation. Taunton et al. further teaches that an enrichment in underacetylated histone H4 has been found in transcriptionally silent regions of the genome.


Histone acetylation is a reversible modification, with deacetylation being catalyzed by a family of enzymes termed histone deacetylases (HDACs). Grozinger et al., Proc. Natl. Acad. Sci. USA, 96: 4868-4873 (1999), teaches that HDACs is divided into two classes, the first represented by yeast Rpd3-like proteins, and the second represented by yeast Hda1-like proteins. Grozinger et al. also teaches that the human HDAC1, HDAC2, and HDAC3 proteins are members of the first class of HDACs, and discloses new proteins, named HDAC4, HDAC5, and HDAC6, which are members of the second class of HDACs. Kao et al., Genes & Dev., 14: 55-66 (2000), discloses HDAC7, a new member of the second class of HDACs. Van den Wyngaert, FEBS, 478: 77-83 (2000) discloses HDAC8, a new member of the first class of HDACs. Richon et al., Proc. Natl. Acad. Sci. USA, 95: 3003-3007 (1998), discloses that HDAC activity is inhibited by trichostatin A (TSA), a natural product isolated from Streptomyces hygroscopicus, and by a synthetic compound, suberoylanilide hydroxamic acid (SAHA). Yoshida and Beppu, Exper. Cell Res., 177: 122-131 (1988), teaches that TSA causes arrest of rat fibroblasts at the G1 and G2 phases of the cell cycle, implicating HDAC in cell cycle regulation. Indeed, Finnin et al., Nature, 401: 188-193 (1999), teaches that ISA and SAHA inhibit cell growth, induce terminal differentiation, and prevent the formation of tumors in mice. Suzuki et al., U.S. Pat. No. 6,174,905, EP 0847992, JP 258863/96, and Japanese Application No. 10138957, disclose benzamide derivatives that induce cell differentiation and inhibit HDAC. Delorme et al., WO 01/38322 and PCT IB01/00683, disclose additional compounds that serve as HDAC inhibitors. The molecular cloning of gene sequences encoding proteins with HDAC activity has established the existence of a set of discrete HDAC enzyme isoforms. Grozinger et al., Proc. Natl. Acad. Sci. USA, 96:4868-4873 (1999), teaches that HDACs may be divided into two classes, the first represented by yeast Rpd3-like proteins, and the second represented by yeast Hda1-like proteins. Grozinger et al. also teaches that the human HDAC-1, HDAC-2, and HDAC-3 proteins are members of the first class of HDACs, and discloses new proteins, named HDAC-4, HDAC-5, and HDAC-6, which are members of the second class of HDACs. Kao et al., Gene & Development 14:55-66 (2000), discloses an additional member of this second class, called HDAC-7. More recently, Hu, E. et al. J. Bio. Chem. 275:15254-13264 (2000) discloses the newest member of the first class of histone deacetylases, HDAC-8. It has been unclear what roles these individual HDAC enzymes play. These findings suggest that inhibition of HDAC activity represents a novel approach for intervening in cell cycle regulation and that HDAC inhibitors have great therapeutic potential in the treatment of cell proliferative diseases or conditions. To date, few inhibitors of histone deacetylase are known in the art. There is thus a need to identify additional HDAC inhibitors and to identify the structural features required for potent HDAC inhibitory activity.


BRIEF SUMMARY OF THE INVENTION

The invention provides compounds and methods for treating cell proliferative diseases. The invention provides new inhibitors of histone deacetylase enzymatic activity.


In a first aspect, the invention provides compounds that are useful as inhibitors of histone deacetylase.


In a second aspect, the invention provides a composition comprising art inhibitor of histone deacetylase according to the invention and a pharmaceutically acceptable carrier, excipient, or diluent.


In a third aspect, the invention provides a method of inhibiting histone deacetylase in a cell, comprising contacting a cell in which inhibition of histone deacetylase is desired with an inhibitor of histone deacetylase of the invention.


The foregoing merely summarizes certain aspects of the invention and is not intended to be limiting in nature. These aspects and other aspects and embodiments are described more fully below.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a graph showing the antitumor activity of compound 106 in an HCT 116 human colorectal tumor model.



FIGS. 2-11 show additional data for other compounds used in the in vivo experiment described in Assay Example 2.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The invention provides compounds and methods for inhibiting histone deacetylase enzymatic activity. The invention also provides compositions and methods for treating cell proliferative diseases and conditions. The patent and scientific literature referred to herein establishes knowledge that is available to those with skill in the art. The issued patents, applications, and references that are cited herein are hereby incorporated by reference to the same extent as if each was specifically and individually indicated to be incorporated by reference. In the case of inconsistencies, the present disclosure will prevail.


For purposes of the present invention, the following definitions will be used (unless expressly stated otherwise):


As used herein, the terms “histone deacetylase” and “HDAC” are intended to refer to any one of a family of enzymes that remove acetyl groups from the α,ε-amino groups of lysine residues at the N-terminus of a histone. Unless otherwise indicated by context, the term “histone” is meant to refer to any histone protein, including H1, H2A, H2B, H3, H4, and H5, from any species. Preferred histone deacetylases include class I and class II enzymes. Preferably the histone deacetylase is a human HDAC, including, but not limited to, HDAC-1, HDAC-2, HDAC-3, HDAC-4, HDAC-5, HDAC-6, HDAC-7, and HDAC-8. In some other preferred embodiments, the histone deacetylase is derived from a protozoal or fungal source.


The terms “histone deacetylase inhibitor” and “inhibitor of histone deacetylase” are used to identify a compound having a structure as defined herein, which is capable of interacting with a histone deacetylase and inhibiting its enzymatic activity. “Inhibiting histone deacetylase enzymatic activity” means reducing the ability of a histone deacetylase to remove an acetyl group from a histone. In some preferred embodiments, such reduction of histone deacetylase activity is at least about 50%, more preferably at least about 75%, and still more preferably at least about 90%. In other preferred embodiments, histone deacetylase activity is reduced by at least 95% and more preferably by at least 99%.


Preferably, such inhibition is specific, i.e., the histone deacetylase inhibitor reduces the ability of a histone deacetylase to remove an acetyl group from a histone at a concentration that is lower than the concentration of the inhibitor that is required to produce another, unrelated biological effect. Preferably, the concentration of the inhibitor required for histone deacetylase inhibitory activity is at least 2-fold lower, more preferably at least 5-fold lower, even more preferably at least 10-fold lower, and most preferably at least 20-fold lower than the concentration required to produce an unrelated biological effect.


For simplicity, chemical moieties are defined and referred to throughout primarily as univalent chemical moieties (e.g., alkyl, aryl, etc.). Nevertheless, such terms are also used to convey corresponding multivalent moieties under the appropriate structural circumstances clear to those skilled in the art. For example, while an “alkyl” moiety generally refers to a monovalent radical (e.g. CH3—CH2—), in certain circumstances a bivalent linking moiety can be “alkyl,” in which case those skilled in the art will understand the alkyl to be a divalent radical (e.g., —CH2—CH2—), which is equivalent to the term “alkylene.” (Similarly, in circumstances in which a divalent moiety is required and is stated as being “aryl,” those skilled in the art will understand that the term “aryl” refers to the corresponding divalent moiety, arylene.) All atoms are understood to have their normal number of valences for bond formation (i.e., 4 for carbon, 3 for N, 2 for 0, and 2, 4, or 6 for S, depending on the oxidation state of the S). On occasion a moiety may be defined, for example, as (A)a-B—, wherein a is 0 or 1. In such instances, when a is 0 the moiety is B— and when a is 1 the moiety is A-B—. Also, a number of moieties disclosed herein exist in multiple tautomeric forms, all of which are intended to be encompassed by any given tautomeric structure.


The term “hydrocarbyl” refers to a straight, branched, or cyclic alkyl, alkenyl, or alkynyl, each as defined herein. A “C0” hydrocarbyl is used to refer to a covalent bond. Thus, “C0-C3-hydrocarbyl” includes a covalent bond, methyl, ethyl, propyl, and cyclopropyl.


The term “alkyl” as employed herein refers to straight and branched chain aliphatic groups having from 1 to 12 carbon atoms, preferably 1-8 carbon atoms, and more preferably 1-6 carbon atoms, which is optionally substituted with one, two or three substituents. Preferred alkyl groups include, without limitation, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, and hexyl. A “C0” alkyl (as in “C0-C3-alkyl”) is a covalent bond (like “C0” hydrocarbyl).


The term “alkenyl” as used herein means an unsaturated straight or branched chain aliphatic group with one or more carbon-carbon double bonds, having from 2 to 12 carbon atoms, preferably 2-8 carbon atoms, and more preferably 2-6 carbon atoms, which is optionally substituted with one, two or three substituents. Preferred alkenyl groups include, without limitation, ethenyl, propenyl, butenyl, pentenyl, and hexenyl.


The term “alkynyl” as used herein means an unsaturated straight or branched chain aliphatic group with one or more carbon-carbon triple bonds, having from 2 to 12 carbon atoms, preferably 2-8 carbon atoms, and more preferably 2-6 carbon atoms, which is optionally substituted with one, two or three substituents. Preferred alkynyl groups include, without limitation, ethynyl, propynyl, butynyl, pentynyl, and hexynyl.


An “alkylene,” “alkenylene,” or “alkynylene” group is an alkyl, alkenyl, or alkynyl group, as defined hereinabove, that is positioned between and serves to connect two other chemical groups. Preferred alkylene groups include, without limitation, methylene, ethylene, propylene, and butylene. Preferred alkenylene groups include, without limitation, ethenylene, propenylene, and butenylene. Preferred alkynylene groups include, without limitation, ethynylene, propynylene, and butynylene.


The term “cycloalkyl” as employed herein includes saturated and partially unsaturated cyclic hydrocarbon groups having 3 to 12 carbons, preferably 3 to 8 carbons, and more preferably 3 to 6 carbons, wherein the cycloalkyl group additionally is optionally substituted. Preferred cycloalkyl groups include, without limitation, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, and cyclooctyl.


The term “heteroalkyl” refers to an alkyl group, as defined hereinabove, wherein one or more carbon atoms in the chain are replaced by a heteratom selected from the group consisting of O, S, and N.


An “aryl” group is a C6-C14 aromatic moiety comprising one to three aromatic rings, which is optionally substituted. Preferably, the aryl group is a C6-C10 aryl group. Preferred aryl groups include, without limitation, phenyl, naphthyl, anthracenyl, and fluorenyl. An “aralkyl” or “arylalkyl” group comprises an aryl group covalently linked to an alkyl group, either of which may independently be optionally substituted or unsubstituted. Preferably, the aralkyl group is (C1-C6)alk(C6-C10)aryl, including, without limitation, benzyl, phenethyl, and naphthylmethyl.


A “heterocyclyl” or “heterocyclic” group is a ring structure having from about 3 to about 8 atoms, wherein one or more atoms are selected from the group consisting of N, O, and S. The heterocyclic group is optionally substituted on carbon at one or more positions. The heterocyclic group is also independently optionally substituted on nitrogen with alkyl, aryl, aralkyl, alkylcarbonyl, alkylsulfonyl, arylcarbonyl, arylsulfonyl, alkoxycarbonyl, aralkoxycarbonyl, or on sulfur with oxo or lower alkyl. Preferred heterocyclic groups include, without limitation, epoxy, aziridinyl, tetrahydrofuranyl, pyrrolidinyl, piperidinyl, piperazinyl, thiazolidinyl, oxazolidinyl, oxazolidinonyl, and morpholino. In certain preferred embodiments, the heterocyclic group is fused to an aryl, heteroaryl, or cycloalkyl group. Examples of such fused heterocyles include, without limitation, tetrahydroquinoline and dihydrobenzofuran. Specifically excluded from the scope of this term are compounds having adjacent annular O and/or S atoms.


As used herein, the term “heteroaryl” refers to groups having 5 to 14 ring atoms, preferably 5, 6, 9, or 10 ring atoms; having 6, 10, or 14π electrons shared in a cyclic array; and having, in addition to carbon atoms, from one to three heteroatoms per ring selected from the group consisting of N, O, and S. A “heteroaralkyl” or “heteroarylalkyl” group comprises a heteroaryl group covalently linked to an alkyl group, either of which is independently optionally substituted or unsubstituted. Preferred heteroalkyl groups comprise a C1-C6 alkyl group and a heteroaryl group having 5, 6, 9, or 10 ring atoms. Specifically excluded from the scope of this term are compounds having adjacent annular O and/or S atoms. Examples of preferred heteroaralkyl groups include pyridylmethyl, pyridylethyl, pyrrolylmethyl, pyrrolylethyl, imidazolylmethyl, imidazolylethyl, thiazolylmethyl, and thiazolylethyl. Specifically excluded from the scope of this term are compounds having adjacent annular O and/or S atoms.


An “arylene,” “heteroarylene,” or “heterocyclylene” group is an aryl, heteroaryl, or heterocyclyl group, as defined hereinabove, that is positioned between and serves to connect two other chemical groups.


Preferred heterocyclyls and heteroaryls include, but are not limited to, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl, 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H,6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolenyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, methylenedioxyphenyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, piperidonyl, 4-piperidonyl, piperonyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, tetrazolyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, thiazolyl, thienyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl, triazinyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl, and xanthenyl.


As employed herein, when a moiety (e.g., cycloalkyl, hydrocarbyl, aryl, heteroaryl, heterocyclic, urea, etc.) is described as “optionally substituted” it is meant that the group optionally has from one to four, preferably from one to three, more preferably one or two, non-hydrogen substituents. Suitable substituents include, without limitation, halo, hydroxy, oxo (e.g., an annular —CH— substituted with oxo is —C(O)—) nitro, halohydrocarbyl, hydrocarbyl, aryl, aralkyl, alkoxy, aryloxy, amino, acylamino, alkylcarbamoyl, arylcarbamoyl, aminoalkyl, acyl, carboxy, hydroxyalkyl, alkanesulfonyl, arenesulfonyl, alkanesulfonamido, arenesulfonamido, aralkylsulfonamido, alkylcarbonyl, acyloxy, cyano, and ureido groups. Preferred substituents, which are themselves not further substituted (unless expressly stated otherwise) are:

    • (a) halo, cyano, oxo, carboxy, formyl, nitro, amino, amidino, guanicino,
    • (b) C1-C5 alkyl or alkenyl or arylalkyl imino, carbamoyl, azido, carboxamido, mercapto, hydroxy, hydroxyalkyl, alkylaryl, arylalkyl, C1-C8 alkyl, C1-C8 alkenyl, C1-C8 alkoxy, C1-C8 alkoxycarbonyl, aryloxycarbonyl, C2-C8 acyl, C2-C8 acylamino, C1-C8 alkylthio, arylalkylthio, arylthio, C1-C8 alkylsulfinyl, arylalkylsulfinyl, arylsulfinyl, C1-C8 alkylsulfonyl, arylalkylsulfonyl, arylsulfonyl, C0-C6 N-alkyl carbamoyl, C2-C15 N,N-dialkylcarbamoyl, C3-C7 cycloalkyl, aroyl, aryloxy, arylalkyl ether, aryl, aryl fused to a cycloalkyl or heterocycle or another aryl ring, C3-C1 heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclyl, or aryl, wherein each of the foregoing is further optionally substituted with one more moieties listed in (a), above; and
    • (c) —(CH2)sNR3OR31, wherein s is from 0 (in which case the nitrogen is directly bonded to the moiety that is substituted) to 6, and R30 and R31 are each independently hydrogen, cyano, oxo, carboxamido, amidino, C1-C8 hydroxyalkyl, C1-C3 alkylaryl, aryl-C1-C3 alkyl, C1-C8 alkyl, C1-C8 alkenyl, C1-C8 alkoxy, C1-C8 alkoxycarbonyl, aryloxycarbonyl, aryl-C1-C3 alkoxycarbonyl, C2-C8 acyl, C1-C8 alkylsulfonyl, arylalkylsulfonyl, arylsulfonyl, aroyl, aryl, cycloalkyl, heterocyclyl, or heteroaryl, wherein each of the foregoing is further optionally substituted with one more moieties listed in (a), above; or
    • R30 and R31 taken together with the N to which they are attached form a heterocyclyl or heteroaryl, each of which is optionally substituted with from 1 to 3 substituents from (a), above.


In addition, substituents on cyclic moieties (i.e., cycloalkyl, heterocyclyl, aryl, heteroaryl) include 5-6 membered mono- and 10-12 membered bi-cyclic moieties fused to the parent cyclic moiety to form a bi- or tri-cyclic fused ring system. For example, an optionally substituted phenyl includes the following:




embedded image


A “halohydrocarbyl” is a hydrocarbyl moiety in which from one to all hydrogens have been replaced with one or more halo.


The term “halogen” or “halo” as employed herein refers to chlorine, bromine, fluorine, or iodine. As herein employed, the term “acyl” refers to an alkylcarbonyl or arylcarbonyl substituent.


The term “acylamino” refers to an amide group attached at the nitrogen atom (i.e., R—CO—NH—). The term “carbamoyl” refers to an amide group attached at the carbonyl carbon atom (i.e., NH2—CO—). The nitrogen atom of an acylamino or carbamoyl substituent is additionally substituted. The term “sulfonamido” refers to a sulfonamide substituent attached by either the sulfur or the nitrogen atom.


The term “amino” is meant to include NH2, alkylamino, arylamino, and cyclic amino groups. The term “ureido” as employed herein refers to a substituted or unsubstituted urea moiety.


The term “radical” as used herein means a chemical moiety comprising one or more unpaired electrons.


A moiety that is substituted is one in which one or more hydrogens have been independently replaced with another chemical substituent. As a non-limiting example, substituted phenyls include 2-fluorophenyl, 3,4-dichlorophenyl, 3-chloro-4-fluoro-phenyl, 2-fluor-3-propylphenyl. As another non-limiting example, substituted n-octyls include 2,4 dimethyl-5-ethyl-octyl and 3-cyclopentyl-octyl. Included within this definition are methylenes (—CH2—) substituted with oxygen to form carbonyl —CO—).


An “unsubstituted” moiety as defined above (e.g., unsubstituted cycloalkyl, unsubstituted heteroaryl, etc.) means that moiety as defined above that does not have any of the optional substituents for which the definition of the moiety (above) otherwise provides. Thus, for example, while an “aryl” includes phenyl and phenyl substituted with a halo, “unsubstituted aryl” does not include phenyl substituted with a halo.


Preferred embodiments of a particular genus of compounds of the invention include combinations of preferred embodiments. For example, embodiment [0043] identifies a preferred Ay1 and embodiment [0047] identifies preferred Ar1 (both for compound (1) of embodiment [0042]). Thus, another preferred embodiment includes those compounds of formula (1) in embodiment [0042] in which Ay1 is as defined in embodiment [0043] and Ar1 is as defined in embodiment [0047].


Compounds


In a first aspect, the invention provides novel inhibitors of histone deacetylase. In a first embodiment, the novel inhibitors of histone deacetylase are represented by formula (1) (hereinafter embodiment [0042]):




embedded image



and pharmaceutically acceptable salts thereof, wherein


R3 and R4 are independently selected from the group consisting of hydrogen, L1, Cy1, and -L1-Cy1, wherein

    • L1 is C1-C6 alkyl, C2-C6 heteroalkyl, or C3-C6 alkenyl; and
    • Cy1 is cycloalkyl, aryl, heteroaryl, or heterocyclyl, each of which optionally is substituted, and each of which optionally is fused to one or more aryl or heteroaryl rings, or to one or more saturated or partially unsaturated cycloalkyl or heterocyclic rings, each of which rings optionally is substituted; or


R3 and R4 are taken together with the adjacent nitrogen atom to form a 5-, 6-, or 7-membered ring, wherein the ring atoms are independently selected from the group consisting of C, O, S, and N, and wherein the ring optionally is substituted, and optionally forms part of a bicyclic ring system, or optionally is fused to one or more aryl or heteroaryl rings, or to one or more saturated or partially unsaturated cycloalkyl or heterocyclic rings, each of which rings and ring systems optionally is substituted;


Y1 is selected from the group consisting of —N(R1)(R2), —CH2—C(O)—N(R1)(R2), halogen, and hydrogen, wherein

    • R1 and R2 are independently selected from the group consisting of hydrogen, L1, Cy1, and -L1-Cy1, wherein
    • L1 is C1-C6 alkyl, C2-C6 heteroalkyl, or C3-C6 alkenyl; and
    • Cy1 is cycloalkyl, aryl, heteroaryl, or heterocyclyl, each of which optionally is substituted, and each of which optionally is fused to one or more aryl or heteroaryl rings, or to one or more saturated or partially unsaturated cycloalkyl or heterocyclic rings, each of which rings optionally is substituted; or
    • R1 and R2 are taken together with the adjacent nitrogen atom to form a 5-, 6-, or 7-membered ring, wherein the ring atoms are independently selected from the group consisting of C, O, S, and N, and wherein the ring optionally is substituted, and optionally may form part of a bicyclic ring system, or optionally is fused to one or more aryl or heteroaryl rings, or to one or more saturated or partially unsaturated cycloalkyl or heterocyclic rings, each of which rings and ring systems optionally is substituted;


Y2 is a chemical bond or N(R0), where R0 is selected from the group consisting of hydrogen, alkyl, aryl, aralkyl, and acyl;


Ak1 is C1-C6 alkylene, C1-C6-heteroalkylene (preferably, in which one —CH2— is replaced with —NH—, and more preferably —NH—CH2—), C2-C6 alkenylene or C2-C6 alkynylene;


Ar1 is arylene or heteroarylene, either of which optionally is substituted; and


Z1 is selected from the group consisting of




embedded image


wherein Ay1 is aryl or heteroaryl, which optionally is substituted. Preferably in the compounds according to embodiment [0042] (hereinafter embodiment [0043]), Ay1 is phenyl or thienyl, each substituted with —OH or —NH2.


More preferably in the compounds according to embodiment [0042] (hereinafter embodiment [0044]), Ay1 is optionally amino- or hydroxy-substituted phenyl or thienyl, wherein the amino or hydroxy substituent is preferably ortho to the nitrogen to which Ay2 is attached.


More preferably in the compounds according to embodiment [0042] (hereinafter embodiment [0045]), Ay1 is ortho aniline, ortho phenol, 3-amino-2-thienyl, or 3-hydroxy-2-thienyl, and tautomers thereof.


In some preferred embodiments of the compounds according to embodiment [0042] (hereinafter embodiment [0046]), Z1 is




embedded image


In some preferred embodiments of the compounds according to embodiment [0042], Ar1 is phenylene. In some embodiments, Ak1 is alkylene, preferably methylene. In some preferred embodiments, Y2 is —NH—. In some preferred embodiments, Y1 is —N(R1)(R2) or CH2—C(O)—N(R1)(R2). Such preferred embodiments are hereinafter collectively referred to as embodiment [0047].


In some embodiments of the compounds according to embodiment [0042], R1 and R2 are each independently selected from the group consisting of hydrogen, L1, Cy1, and -L1-Cy1. In some embodiments, R1 and/or R2 is hydrogen. In other embodiments, R1 and/or R2 is alkyl or alkenyl, preferably allyl. In still other embodiments, re and/or R2 is aryl, heteroaryl, aralkyl, or heteroaralkyl, the rings of each of which optionally is substituted and optionally is fused to one or more aryl rings. Some preferred aryl, heteroaryl, aralkyl, and heteroaralkyl groups comprise a prenyl, pyridyl, or pyrrolyl ring. In still other embodiments, R1 and/or R2 is cycloalkyl, e.g., cyclopropyl, cyclopentyl, or cyclohexyl, which optionally is substituted and optionally is fused to one or more aryl rings. Such embodiments and preferred embodiments are hereinafter collectively referred to as embodiment [0048]. In some embodiments of the compounds according to embodiment [0042], R3 and R4 are each independently selected from the group consisting of hydrogen, L1, Cy1, and -L1-Cy1. In some embodiments, R3 and/or R4 is hydrogen. In other embodiments, R3 and/or R4 is alkyl or alkenyl, preferably allyl. In still other embodiments, R3 and/or R4 is aryl, heteroaryl, aralkyl, or heteroaralkyl, the rings of each of which optionally is substituted and optionally is fused to one or more aryl rings. Some preferred aryl, heteroaryl, aralkyl, and heteroaralkyl groups comprise a phenyl, pyridyl, or pyrrolyl ring. In still other embodiments, R3 and/or R4 is cycloalkyl, e.g., cyclopropyl, cyclopentyl, or cyclohexyl, which optionally is substituted and optionally is fused to one or more aryl rings. Such embodiments and preferred embodiments are hereinafter collectively referred to as embodiment [0049].


As set forth above, L1 is C1-C6 alkyl, C2-C6 heteroalkyl, or C3-C6 alkenyl. However, one skilled in the art will understand that when L1 is not a terminal group, then L1 is C1-C6 alkylene, C2-C6 heteroalkylene, or C3-C6 alkenylene. In some embodiments, L1 is alkylene, preferably methylene or ethylene. In other embodiments, L1 is alkenyl, preferably allyl. In some embodiments, Cy1 is the radical of a heterocyclic group including, without limitation, piperidine, pyrrolidine, piperazine, and morpholine, each of which optionally is substituted and optionally is fused to one or more aryl rings. In other embodiments Cy1 is cycloalkyl, e.g., cyclopropyl, cyclopentyl, or cyclohexyl. In still other embodiments, Cy1 is aryl or heteroaryl, e.g., phenyl, pyridyl, or pyrrolyl, each of which optionally is substituted and optionally is fused to one or more aryl rings. In some embodiments, Cy1 is fused to one or two benzene rings. In some embodiments, Cy1 has between one and about five substituents selected from the group consisting of C1-C4 alkyl, C1-C4 alkoxy, and halo. Examples of preferred substituents include methyl, methoxy, and fluoro. Such embodiments and preferred embodiments are hereinafter collectively referred to as embodiment [0050].


In some embodiments of the compounds according to embodiment [0042], R1 and R2 and/or R3 and R4 are taken together with the adjacent nitrogen atom to form a 5- or 6-membered ring, wherein the ring atoms are independently selected from the group consisting of C, O, and N, and wherein the ring optionally is substituted, and optionally is fused to one or more aryl rings. In some preferred embodiments, R1 and R2 and/or R3 and R4 are taken together with the adjacent nitrogen atom to form a ring such as, for example, pyrrolidine, piperidine, piperazine, and morpholine, wherein the ring optionally is substituted, and optionally is fused to an aryl ring. In some embodiments, the ring comprising R1 and R2 or R3 and R4 is fused to a benzene ring. In some embodiments, the ring comprising R1 and R2 or R3 and R4 has a substituent comprising an aryl or cycloalkyl ring, either of which optionally is substituted and optionally is fused to a cycloalkyl, aryl, heteroaryl, or heterocyclic ring. Preferred substituents include, without limitation, phenyl, phenylmethyl, and phenylethyl, the phenyl ring of which optionally is fused to a cycloalkyl, aryl, or heterocyclic ring. Such embodiments and preferred embodiments are hereinafter collectively referred to as embodiment [0051].


In a preferred embodiment, the HDAC inhibitors of the invention comprise compounds of formula 1(a) (herein after embodiment [0052]):




embedded image



and pharmaceutically acceptable salts thereof, wherein


J is C1-C3-hydrocarbyl, —N(R20)—, —N(R20)—CH2—, —O—, or —O—CH2—;


R20 is —H or -Me;


X and Y are independently selected from —NH2, cycloalkyl, heterocyclyl, aryl, heteroaryl, and A-(C1-C6-alkyl)n-B—;

    • A is H, C1-C6-alkyloxy, cycloalkyl, heterocyclyl, aryl, or heteroaryl;
    • B is —NH—, —O—, or a direct bond; and
    • n is 0 (in which case A is directly bonded to B) or 1.


Preferably in the compounds according to embodiment [0052], A is phenyl optionally substituted with one or more moieties selected from halo (preferably chloro) and methoxy, and B is —NH—. In another preferred embodiment, A is selected from cyclopropyl, pyridinyl, and indanyl. Such preferred embodiments are hereinafter collectively referred to as embodiment [0053].


Preferably in the compounds according to embodiment [0052] (hereinafter embodiment [0054], J is —NH—CH2—, —O—CH2—, —N(CH3)—CH2—, —CH═CH—, or —CH2—CH2—.


Preferably in the compounds according to embodiment [0052] (hereinafter embodiment [0055], R20 is —H.


In the compounds according to embodiment [0052] X is preferably selected from




embedded image


embedded image


and Y is preferably selected from




embedded image



Such preferred embodiments are hereinafter collectively referred to as embodiment [0056].


In a more preferred embodiment of the compounds according to embodiment [0052] (hereinafter embodiment [0057]), the HDAC inhibitors of the invention comprise the following compounds of formula Ia:















Cpd
J
X
Y







204
—NH—


embedded image


—NH2





207
—OCH2


embedded image


—NH2





210
—NHCH2


embedded image


—H





212
—NHCH2
—OMe
—OMe





214
—NHCH2


embedded image


—OMe





216


embedded image




embedded image


—Me





218
—NHCH2


embedded image


—Me





220
—CH═CH—
—NH2
—NH2





223
—CH═CH—


embedded image


—NH2





224
—CH2CH2
—NH2
—NH2





470
—NHCH2


embedded image


NH2





471
—NHCH2


embedded image




embedded image







472
—NHCH2


embedded image




embedded image







473
—NHCH2


embedded image


n-BuNH





474
—NHCH2


embedded image


MeO(CH2)2NH





475
—NHCH2


embedded image




embedded image







476
—NHCH2


embedded image




embedded image







477
—NHCH2


embedded image




embedded image







478
—NHCH2


embedded image




embedded image







479
—NHCH2


embedded image




embedded image







480
—NHCH2


embedded image




embedded image







481
—NHCH2


embedded image




embedded image







482
—NHCH2


embedded image




embedded image







483
—NHCH2


embedded image


Me





484
—NHCH2


embedded image


NH2










and













485
—NHCH2


embedded image




embedded image











In a second aspect, the novel histone deacetylase inhibitors of the invention are represented by formula (2) (hereinafter embodiment [0058]):




embedded image



and pharmaceutically acceptable salts thereof, wherein


Cy2 is cycloalkyl, aryl, heteroaryl, or heterocyclyl, each of which is optionally substituted and each of which is optionally fused to one or more aryl or heteroaryl rings, or to one or more saturated or partially unsaturated cycloalkyl or heterocyclic rings, each of which rings is optionally substituted;


X1 is selected from the group consisting of a covalent bond, M1-L2-M1, and L2-M2-L2 wherein

    • L2, at each occurrence, is independently selected from the group consisting of a chemical bond, C0-C4 hydrocarbyl, C0-C4-hydrocarbyl-(NH)—C0-C4-hydrocarbyl, C0-C4-hydrocarbyl-(S)—C0-C4-hydrocarbyl, C0-C4-hydrocarbyl-(O)—C0-C4-hydrocarbyl, C0-C4-hydrocarbyl-SO—C0-C4-hydrocarbyl, C0-C4-hydrocarbyl-SO2—C0-C4-hydrocarbyl, C0-C4-hydrocarbyl-NH—CO—C0-C4-hydrocarbyl, and C0-C4-hydrocarbyl-CO—NH—C0-C4-hydrocarbyl, provided that L2 is not a chemical bond when X1 is M1-L2-M1;
    • M1, at each occurrence, is independently selected from the group consisting of —O—, —N(R7)—, —S—, —S(O)—, S(O)2—, —S(O)2N(R7)—, —N(R7)—S(O)2—, —C(O)—, —C(O)—NH—, —NH—C(O)—, —NH—C(O)—O— and —O—C(O)—NH—, wherein R′ is selected from the group consisting of hydrogen, alkyl, aryl, aralkyl, acyl, heterocyclyl, and heteroaryl; and
    • M2 is selected from the group consisting of M1, heteroarylene, and heterocyclylene, either of which rings optionally is substituted;


Ar2 is arylene or heteroarylene, each of which is optionally substituted;


R5 and R6 are independently selected from the group consisting of hydrogen, alkyl, aryl, and aralkyl;


q is 0 or 1; and


Ay2 is a 5-6 membered cycloalkyl, heterocyclyl, or heteroaryl substituted with an amino or hydroxy moiety (preferably these groups are ortho to the amide nitrogen to which Ay2 is attached) and further optionally substituted;


provided that when Cy2 is naphthyl, X1 is —CH2—, Ar2 is phenyl, R5 and R6 are H, and q is 0 or 1, Ay2 is not phenyl or o-hydroxyphenyl.


In a preferred embodiment of the compounds according to embodiment [0058] (hereinafter embodiment [0059]), when Ay2 is o-phenol optionally substituted by halo, nitro, or methyl, Ar2 is optionally substituted phenyl, X1 is —O—, —CH2—, —S—, —S—CH2—, —S(O)—, —S(O)2—, —C(O)—, or —OCH2—, then Cy2 is not optionally substituted phenyl or naphthyl.


In another preferred embodiment of the compounds according to embodiment [0058] (hereinafter embodiment [0060]), when Ay2 is o-anilinyl optionally substituted by halo, C1-C6-alkyl, C1-C8-alkoxy or —NO2, q is 0, Ar2 is phenyl, and X1 is —CH2—, then Cy2 is not substituted pyridone (which substituents of the pyridone are not limited to substituents described herein).


In another preferred embodiment of the compounds according to embodiment [0058] (hereinafter embodiment [0061]), when X1 is —CH2—, Ar2 is optionally substituted phenyl, q is 1, and R6 is H, then Cy2 is not optionally substituted imidazole.


In another preferred embodiment of the compounds according to embodiment [0058] (hereinafter embodiment [0062]), when Ar2 is amino or hydroxy substituted phenyl, X1 is C0-C8-alkyl-X1a—C0-C8-alkyl, wherein X1a is —CH2—, —O—, —S—, —NH—, —C(O)—, then Cy2 is not optionally substituted naphthyl or di- or -tetrahydronaphthalene.


In another preferred embodiment of the compounds according to embodiment [0058] (hereinafter embodiment [0063]), when Ay2 is o-phenol, Ar2 is substituted phenyl, X1 is —O—, —S—, —CH2—, —O—CH2—, —S—CH2—, or —C(O)—, and R5 and R6 are H, then Cy2 is not optionally substituted naphthyl.


In another preferred embodiment of the compounds according to embodiment [0058] (hereinafter embodiment [0064]), when Ay2 is o-anilinyl, q is 0, Ar2 is unsubstituted phenyl, X1 is —CH2—, then Cy2 is not substituted 6-hydroimidazolo[5,4-d]pyridazin-7-one-1-yl or substituted 6-hydroimidazolo[5,4-d]pyridazine-7-thione-1-yl.


Preferably in the compounds according to embodiment [0058] (hereinafter embodiment [0065]), Ay2 is phenyl or thienyl, each substituted with —OH or —NH2.


More preferably in the compounds according to embodiment [0058] (hereinafter embodiment [0066]), Ay2 is optionally amino- or hydroxy-substituted phenyl or thienyl, wherein the amino or hydroxy substituent is preferably ortho to the nitrogen to which Ay2 is attached.


More preferably in the compounds according to embodiment [0058] (hereinafter embodiment [0067]), Ay2 is ortho aniline, ortho phenol, 3-amino-2-thienyl, or 3-hydroxy-2-thienyl, and tautomers thereof.


In a another embodiment (hereinafter embodiment [0068]), the novel histone deacetylase inhibitors of the invention are those according to embodiment [0058] wherein


q is 1;


M1, at each occurrence, is selected from the group consisting of —N(R7)—, —S—, —C(O)—NH—, and —O—C(O)—NH—, where R7 is selected from the group consisting of hydrogen, alkyl, aryl, aralkyl, and acyl; and


Ay2 is anilinyl, which optionally is substituted.


In some preferred embodiments of the compounds according to embodiment [0068], the —NH2 group of Ay2 is in an ortho position with respect to the nitrogen atom to which Ay2 is attached. In some embodiments, R5 and R6 are independently selected from the group consisting of hydrogen and C1-C4 alkyl. In some preferred embodiments, R5 and R6 are hydrogen. Such embodiments and preferred embodiments are hereinafter collectively referred to as embodiment [0069].


In some embodiments of the compounds according to embodiment [0068], Ar2 has the formula




embedded image



wherein G, at each occurrence, is independently N or C, and C optionally is substituted. In some preferred embodiments, Ar2 has the formula




embedded image



Such embodiments and preferred embodiments are hereinafter collectively referred to as embodiment [0070].


In some preferred embodiments of the compounds according to embodiment [0070] (hereinafter embodiment [0071]), Ar2 is selected from the group consisting of phenylene, pyridylene, pyrimidylene, and quinolylene.


In some embodiments of the compounds according to embodiment [0068], X1 is a chemical bond. In some embodiments, X1 is L2-M2-L2, and M2 is selected from the group consisting of —NH—, —N(CH3)—, —S—, —C(O)—N(H)—, and —O—C(O)—N(H)—. In some embodiments, X1 is L2-M2-L2, where at least one occurrence of L2 is a chemical bond. In other embodiments, X1 is L2-M2-L2, where at least one occurrence of L2 is alkylene, preferably methylene. In still other embodiments, X1 is L2-M2-L2, where at least one occurrence of L2 is alkenylene. In some embodiments, X1 is M1-L2-M1 and M1 is selected from the group consisting of —NH—, —N(CH3)—, —S—, and —C(O)—N(H)—. Such embodiments and preferred embodiments are hereinafter collectively referred to as embodiment [0072].


In some embodiments of the compounds according to embodiment [0068], Cy2 is aryl or heteroaryl, e.g., phenyl, pyridyl, imidazolyl, or quinolyl, each of which optionally is substituted. In some embodiments, Cy2 is heterocyclyl, e.g.,




embedded image



each of which optionally is substituted and optionally is fused to one or more aryl rings. In some embodiments, Cy2 has from one and three substituents independently selected from the group consisting of alkyl, alkoxy, amino, nitro, halo, haloalkyl, and haloalkoxy. Examples of preferred substituents include methyl, methoxy, fluoro, trifluoromethyl, trifluoromethoxy, nitro, amino, aminomethyl, and hydroxymethyl. Such embodiments and preferred embodiments are hereinafter collectively referred to as embodiment [0073].


In a preferred embodiment of the compounds of embodiment [0058], the invention comprises compounds of structural formula (2a) (hereinafter embodiment [0074]):




embedded image



and pharmaceutically acceptable salts thereof, wherein


Ara is phenyl or thienyl;


R6 is H, or C1-C6-alkyl (preferably —CH3);


Y and Z are independently —CH═ or —N═;


W is halo, (V′L4)t-V-L3-;

    • L3 is a direct bond, —C1-C6-hydrocarbyl, —(C1-C3-hydrocarbyl)m1-X′—(C1-C3-hydrocarbyl)m2, —NH—(C0-C3-hydrocarbyl), (C1-C3-hydrocarbyl)-NH—, or —NH—(C1-C3-hydrocarbyl)-NH—;
      • m1 and m2 are independently 0 or 1;
      • X′ is —N(R21)—, —C(O)N(R21)—, N(R21)C(O)—, —O—, or —S—;
        • R21 is —H, V″-(C1-C6-hydrocarbyl)c;
    • L4 is (C1-C6-hydrocarbyl)a-M-(C1-C6-hydrocarbyl)b;
      • a and b are independently 0 or 1;
      • M is —NH—, —NHC(O)—, —C(O)NH—, —C(O)—, —SO2—, —NHSO2—, or —SO2NH—
    • V, V′, and V″ are independently selected from cycloalkyl, heterocyclyl, aryl, and heteroaryl;
    • t is 0 or 1;


or W, the annular C to which it is bound, and Y together form a monocyclic cycloalkyl, heterocyclyl, aryl, or heteroaryl; and


wherein the custom characterand Ara rings are optionally further substituted with from 1 to 3 substituents independently selected from methyl, hydroxy, methoxy, halo, and amino.


In a preferred embodiment of the compound according to embodiment [0074] (hereinafter embodiment [0075]):


Y and Z are —CH═ and R6 is H;


W is V-L3;

    • L3 is —NH—CH— or —CH—NH—;
    • V is phenyl optionally substituted with from 1 to 3 moieties independently selected from halo, hydroxy, C1-C6-hydrocarbyl, C1-C6-hydrocarbyl-oxy or -thio (particularly methoxy or methylthio), wherein each of the hydrocarbyl moieties are optionally substituted with one or more moieties independently selected from halo, nitroso, amino, sulfonamido, and cyano; and


Ara is phenyl and the amino moieties to which it is bound are ortho to each other.


In some preferred embodiments of the compound according to embodiment [0074] (hereinafter embodiment [0076]), V is an optionally substituted ring moiety selected from:




embedded image


In another preferred embodiment of the compounds according to embodiment [0074] (hereinafter embodiment [0077]), W is selected from:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In another preferred embodiment of the compounds according to embodiment [0074] (hereinafter embodiment [0078), the custom characterand Ara rings are not further substituted.


In a particularly preferred embodiment of the compounds according to embodiment [0074] (hereinafter embodiment [0079]), the compounds of the invention are selected from the following, in which, unless expressly displayed otherwise, Ara is phenyl (and, preferably, the amide nitrogen and the amino nitrogen bound to Ara are ortho to each other):
















Cpd
W
Y
Z
R6







481


embedded image


CH
CH
H











484


embedded image
















492


embedded image


CH
CH
H





493


embedded image


CH
CH
H





494


embedded image


CH
CH
H





495


embedded image


CH
CH
H





496


embedded image


CH
CH
H





497


embedded image


CH
CH
H





498


embedded image


CH
CH
H





499


embedded image


CH
CH
H





500


embedded image


CH
CH
H





501


embedded image


CH
CH
H





502


embedded image


CH
CH
H





503


embedded image


CH
CH
H





504


embedded image


CH
CH
H





505


embedded image


CH
CH
H





506


embedded image


CH
CH
H





507


embedded image


CH
CH
H





508


embedded image


CH
CH
H





509


embedded image


CH
CH
H





510


embedded image


CH
CH
H





511


embedded image


CH
CH
H





512


embedded image


CH
N
H





516
Br—
CH
CH
CH3





517


embedded image


CH
CH
CH3





518


embedded image


CH
CH
CH3





519


embedded image


CH
CH
H





520


embedded image


CH
CH
H





521


embedded image


N
CH
H





522


embedded image


N
CH
H





523


embedded image


CH
CH
H





524


embedded image


N
CH
H





525


embedded image


N
CH
H





526


embedded image


CH
CH
H





527


embedded image


CH
CH
H





528


embedded image


CH
CH
H





529


embedded image


CH
CH
H





530


embedded image


CH
CH
H





531


embedded image


CH
CH
H





532


embedded image


CH
CH
H





533


embedded image


CH
CH
H





534


embedded image


CH
CH
H





535


embedded image


CH
CH
H





536


embedded image


CH
CH
H





537


embedded image


CH
CH
H





538


embedded image


CH
CH
H





539


embedded image


CH
CH
H





540


embedded image


CH
CH
H





541


embedded image


CH
CH
H





542


embedded image


CH
CH
H





543


embedded image


CH
CH
H





544


embedded image


CH
CH
H





545


embedded image


CH
CH
H





546


embedded image


CH
CH
H





547


embedded image


CH
CH
H





548


embedded image


CH
CH
H





549


embedded image


CH
CH
H





550


embedded image


CH
CH
H





551


embedded image


CH
CH
H





552


embedded image


CH
CH
H





553


embedded image


CH
CH
H





554


embedded image


CH
CH
H





555


embedded image


CH
CH
H





556


embedded image


CH
CH
H





557


embedded image


CH
CH
H





558


embedded image


CH
CH
H





559


embedded image


CH
CH
H











560


embedded image







561


embedded image
















562


embedded image


CH
CH
H





563


embedded image


CH
CH
H











564


embedded image
















565


embedded image


CH
CH
H





566


embedded image


CH
CH
H











567


embedded image







568


embedded image
















569


embedded image


CH
N
H











570


embedded image











In a preferred embodiment, the compounds of the invention comprise compounds of the formula (2b) (hereinafter embodiment [0080]):




embedded image



and pharmaceutically acceptable salts thereof, wherein


Ay2 is phenyl or thienyl, each substituted at the ortho position with —NH2 or —OH and each further optionally substituted with one to three substituents independently selected from —NH2, —OH, and halo;


q is 0 or 1;


X1 is selected from —CH2—, —NH—CH2—, and —S—CH2—;


Cy2 is monocyclic or fused bicyclic aryl or heteroaryl optionally substituted with one to three substituents selected from CH3—, CH3O—, phenyl optionally substituted with one to three CH3O—, morphylinyl, morphylinyl-C1-C3-alkoxy, cyano, and CH3C(O)NH—;


provided that when Cy2 is naphthyl, X1 is —CH2—, and q is 0 or 1, Ay2 is not o-hydroxyphenyl.


Preferably in the compounds according to embodiment [0080] (hereinafter embodiment [0081]), Ay2 is selected from:




embedded image


Preferably in the compounds according to embodiment [0080], Cy2 is phenyl, pyridinyl, pyrimidinyl, benzimidazolyl, benzothiazolyl, thienyl, tetrahydroquinozolinyl, or 1,3-dihydroquinazoline-2,4-dione, each optionally substituted with one to three CH3O—. More preferably. Cy2 is phenyl substituted with one to three CH3O—. Such preferred embodiments are hereinafter collectively referred to as embodiment [0082].


In a third embodiment, the novel inhibitors of histone deacetylase are represented by formula (3) (hereinafter embodiment [0083]):




embedded image



and pharmaceutical salts thereof, wherein


Ar3 is arylene or heteroarylene, either of which optionally is substituted; Cy3 is cycloalkyl, aryl, heteroaryl, or heterocyclyl, each of which optionally is substituted, and each of which optionally is fused to one or more aryl or heteroaryl rings, or to one or more saturated or partially unsaturated cycloalkyl or heterocyclic rings, each of which rings optionally is substituted;


provided that when Cy3 is a cyclic moiety having —O(O)—, —C(S)—, —S(O)—, or —S(O)2— in the ring, then Cy3 is not additionally substituted with a group comprising an aryl or heteroaryl ring; and


X2 is selected from the group consisting of a chemical bond, L3, W1-L3, L3-W1, W1-L3-W1, and L3-W1-L3, wherein

    • W1, at each occurrence, is S, O, or N(R9), where R9 is selected from the group consisting of hydrogen, alkyl, aryl, and aralkyl; and
    • L3 is C1-C4 alkylene, C2-C4 alkenylene, or C2-C4 alkynylene;


provided that X2 does not comprise a —C(O)—, —C(S)—, —S(O)—, or —S(O)2— group;


and further provided that when Cy3 is pyridine, then X2 is L3, W1-L3, or L3-W1.


Preferably, Ar3 has the structure:




embedded image



wherein Q, at each occurrence, is independently N or C, and C optionally is substituted. Such embodiments are hereinafter referred to as embodiment [0084].


Preferably in the compounds according to embodiment [0083] (hereinafter embodiment [0085]), X2 is selected from the group consisting of L3, W1-L3, L3-W1, W1-L3-W1, and L3-W1-L3.


Preferably in the compounds according to embodiment [0083] (hereinafter embodiment [0086]), when X2 is a chemical bond, then Ar3 is not




embedded image



and Cy3 is not the radical of a substituted or unsubstituted diazepine or benzofuran.


In some embodiments of the compounds according to embodiment [0083], Q at each occurrence is C(R8), where R8 is selected from the group consisting of hydrogen, alkyl, aryl, aralkyl, alkoxy, amino, nitro, halo, haloalkyl, and haloalkoxy. In some other embodiments, from one to about three variables Q are nitrogen. In some preferred embodiments, Ara is selected from the group consisting of phenylene, pyridylene, thiazolylene, and quinolylene. Such embodiments and preferred embodiments are hereinafter collectively referred to as embodiment [0084].


In some embodiments of the compounds according to embodiment [0083], X2 is a chemical bond. In other embodiments, X2 is a non-cyclic hydrocarbyl. In some such embodiments, X2 is alkylene, preferably methylene or ethylene. In other such embodiments, X2 is alkenylene or alkynylene. In still other such embodiments, one carbon in the hydrocarbyl chain is replaced with —NH— or —S—. In some preferred embodiments, X2 is W1-L3-W′ and W′ is —NH— or —N(CH3)—. Such embodiments and preferred embodiments are hereinafter collectively referred to as embodiment [0088].


In some embodiments of the compounds according to embodiment [0083], Cy3 is cycloalkyl, preferably cyclohexyl. In other embodiments, Cy3 is aryl or heteroaryl, e.g., phenyl, pyridyl, pyrimidyl, imidazolyl, thiazolyl, oxadiazolyl, quinolyl, or fluorenyl, each of which optionally is substituted and optionally is fused to one or more aryl rings. In some embodiments, the cyclic moiety of Cy3 is fused to a benzene ring. In some embodiments, Cy3 has from one to three substituents independently selected from the group consisting of alkyl, alkoxy, aryl, aralkyl, amino, halo, haloalkyl, and hydroxyalkyl. Examples of preferred substituents include methyl, methoxy, fluoro, trifluoromethyl, amino, nitro, aminomethyl, hydroxymethyl, and phenyl. Some other preferred substituents have the formula) —K1—N(H)(R10), wherein


K1 is a chemical bond or C1-C4 alkylene;


R10 is selected from the group consisting of Z′ and -Ak2-Z′, wherein

    • Ak2 is C1-C4 alkylene; and
    • Z′ is cycloalkyl, aryl, heteroaryl, or heterocyclyl, each of which optionally is substituted, and each of which optionally is fused to one or more aryl or heteroaryl rings, or to one or more saturated or partially unsaturated cycloalkyl or heterocyclic rings. Such embodiments and preferred embodiments are hereinafter collectively referred to as embodiment [0089].


Examples of such preferred substituents according to embodiment [0089] (hereinafter embodiment [0090]) include




embedded image


In some embodiments of the compounds according to embodiment [0083], Cy3 is heterocyclyl, e.g.,




embedded image



each of which optionally is substituted and optionally is fused to one or more aryl rings. In some embodiments, the heterocycle of Cy3 is fused to a benzene ring. Such embodiments are hereinafter collectively referred to as embodiment [0091].


Preferably in the compounds of embodiment [0083] (hereinafter embodiment [0092]), when Ar4 is quinoxalinylene, then X3 is not —CH(OH)—.


In another preferred embodiment, Ar3 is




embedded image



wherein X is —CH2—, —NH—, O, or S. Preferably Ar3 is




embedded image



and X is S or O, Such preferred embodiment is hereinafter collectively referred to as embodiment [0093].


In a preferred embodiment (hereinafter embodiment [0094]), the novel histone deacetylase inhibitors of the invention are those according to embodiment [0058] wherein


Ay2 is ortho-anilinyl;


q is 0; and


X1 is M1-L2-M1 or L2-M2-L2.


In a preferred embodiment of the compounds according to embodiment [0094] (hereinafter embodiment [0095]), Ar2 is aryl or heteroaryl; and Cy2-X1— is collectively selected from the group consisting of

    • a) A1-L1-B1—, wherein A1 is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein Li is —(CH2)0-1NH(CH2)0-1—, —NHC(O)—, or —NHCH2—; and wherein B1 is phenyl or a covalent bond;
    • b) A2-L2-B2—, wherein A2 is CH3(C═CH2)—, optionally substituted cycloalkyl, optionally substituted alkyl, or optionally substituted aryl; wherein L2 is —C≡C—; and wherein B2 is a covalent bond;
    • c) A3-L3-B3—, wherein A3 is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein L3 is a covalent bond; and wherein B3 is —CH2NH—;
    • d) A4-L4-B4—, wherein A4 is an optionally substituted aryl; wherein L4 is —NHCH2—; and wherein B4 is a thienyl group;
    • e) A5-L5-B5—, wherein A5 is an optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein L5 is a covalent bond; and wherein B5 is —SCH2—;
    • f) morpholinyl-CH2
    • g) optionally substituted aryl;
    • h) A6-L6-B6—, wherein A6 is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein L6 is a covalent bond; and wherein B6 is —NHCH2—;
    • i) A7-L7-B7—, wherein A7 is an optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein L7 is a covalent bond; and wherein B7 is —CH2—;
    • j) optionally substituted heteroaryl or optionally substituted heterocyclyl;
    • k) A8-L8-B8—, wherein A8 is optionally substituted phenyl; wherein L8 is a covalent bond; and wherein B8 is —O—;
    • l) A9-L9-B9—, wherein A9 is an optionally substituted aryl; wherein L9 is a covalent bond; and wherein B9 is a furan group;
    • m) A10-L10-B10—, wherein A10 is an optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein L10 is —CH(CH2CH3)—; and wherein B10 is —NHCH2—;
    • n) A11-L11-B11—, wherein A11 is an optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein L11 is a covalent bond; and wherein B11 is —OCH2—;
    • o) A12-L12-B12—, wherein A12 is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein L12 is —NHC(O)—; and wherein B12 is —N(optionally substituted aryl)CH2—;
    • p) A13-L13-B13—, wherein A12 is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein L13 is a covalent bond; and wherein B13 is —NHC(O)—;
    • q) A14-L14-B14—, wherein A14 is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein L14 is —NHC(O)(optionally substituted heteroaryl); and wherein B14 is —S—S—;
    • r) F3CC(O)NH—;
    • s) A15-L15-B15—, wherein A15 is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein L15 is —(CH2)0-1NH(optionally substituted heteroaryl)-; and wherein B15 is —NHCH2—;
    • t) A16-L16-B16—, wherein A16 is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein L16 is a covalent bond; and wherein B16 is —N(optionally substituted alkyl)CH2—; and
    • u) A16-L16-B16—, wherein A16 is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein L16 is a covalent bond; and wherein B16 is —(optionally substituted aryl-CH2)2—N—.


In another preferred embodiment of the compounds according to embodiment [0094] (hereinafter embodiment [0096], Cy2-X1— is collectively selected from the group consisting of

    • a) D1-E1-F1—, wherein D1 is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein E1 is —CH2— or a covalent bond; and wherein B1 is a covalent bond;
    • b) D2-E2-F2—, wherein D2 is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein E2 is —NH(CH2)0-2—; and wherein F2 is a covalent bond;
    • c) D3-E3-F3—, wherein D3 is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein E3 is —(CH2)0-2NH—; and wherein F3 is a covalent bond;
    • d) D4-E4-F4—, wherein D4 is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein E4 is —S(CH2)0-2—; and wherein F4 is a covalent bond;
    • e) D5-E5-F5—, wherein D5 is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein E5 is —(CH2)0-2S—; and wherein F5 is a covalent bond; and
    • f) D6-E6-F5—, wherein D6 is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein E6 is —NH(CH2)0-2NH—; and wherein F6 is a covalent bond.


In a preferred embodiment, the HDAC inhibitors of the invention comprise compounds of embodiment [0058] having formula (3b) (hereinafter embodiment [0097]):




embedded image



and pharmaceutically acceptable salts thereof, wherein Y and Z are independently N or CH and W is selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In a preferred embodiment of the compounds according to embodiment [0097] (hereinafter embodiment [0098]), the compounds comprise those wherein Y, Z and W are as define below:

















Cpd
W
Y
Z








164


embedded image


CH
CH






165


embedded image


N
CH






166


embedded image


CH
CH






167


embedded image


CH
N






168


embedded image


CH
N






169


embedded image


CH
CH






170


embedded image


CH
CH






171


embedded image


N
CH






172


embedded image


CH
CH






174


embedded image


CH
N






175


embedded image


CH
N






176


embedded image


CH
N






177


embedded image


CH
CH






178


embedded image


N
CH






179


embedded image


CH
CH






180


embedded image


CH
CH






181


embedded image


CH
CH






182


embedded image


CH
CH







and








183


embedded image


CH
CH









In another preferred embodiment of the compounds according to embodiment [0097] (hereinafter embodiment [0099]), the compounds comprise those wherein Y, Z and W are as defined below:















Cpd
W
Y
Z







187


embedded image


CH
CH





188


embedded image


CH
CH





189


embedded image


CH
CH





190


embedded image


CH
CH





193


embedded image


CH
CH





194


embedded image


CH
CH





195


embedded image


CH
CH





196


embedded image


CH
CH





320


embedded image


CH
CH





321


embedded image


CH
CH





322


embedded image


CH
CH





323


embedded image


CH
CH





325


embedded image


CH
CH





326


embedded image


CH
CH





327


embedded image


CH
CH





328


embedded image


CH
CH





329


embedded image


CH
CH





330


embedded image


CH
CH





331


embedded image


CH
CH





332


embedded image


CH
CH





333


embedded image


CH
CH





334


embedded image


CH
CH





335


embedded image


CH
CH





336


embedded image


CH
CH





337


embedded image


CH
CH





338


embedded image


CH
CH





339


embedded image


CH
CH





340


embedded image


CH
CH





341


embedded image


CH
CH





342


embedded image


CH
CH





343


embedded image


CH
CH





344


embedded image


CH
CH





345


embedded image


CH
CH





346


embedded image


CH
CH





347


embedded image


CH
CH





348


embedded image


CH
CH





349


embedded image


CH
CH





350


embedded image


CH
CH





351


embedded image


CH
CH





352


embedded image


CH
CH





353


embedded image


CH
CH





354


embedded image


CH
CH





355


embedded image


CH
CH





356


embedded image


CH
CH





357


embedded image


CH
CH





358


embedded image


CH
CH





359


embedded image


CH
CH





360


embedded image


CH
CH





361


embedded image


CH
CH





362


embedded image


CH
CH





363


embedded image


CH
CH





364


embedded image


CH
CH





365


embedded image


CH
CH





366


embedded image


CH
CH





367


embedded image


CH
CH





368


embedded image


CH
CH





369


embedded image


CH
CH





370


embedded image


CH
CH





371


embedded image


CH
CH





372


embedded image


CH
CH





373


embedded image


CH
CH





374


embedded image


CH
CH





375


embedded image


CH
CH





377


embedded image


CH
CH





378


embedded image


CH
CH





379


embedded image


CH
CH





380


embedded image


CH
CH





381


embedded image


CH
CH





382


embedded image


CH
CH





383


embedded image


CH
CH





384


embedded image


CH
CH





385


embedded image


CH
CH





386


embedded image


CH
CH





387


embedded image


CH
CH





388


embedded image


CH
CH





389


embedded image


CH
CH





390


embedded image


CH
CH





391


embedded image


CH
CH





392


embedded image


CH
CH





393


embedded image


CH
CH





394


embedded image


CH
CH





395


embedded image


CH
CH





396


embedded image


CH
CH





397


embedded image


CH
CH





398


embedded image


CH
N





399


embedded image


CH
CH





400


embedded image


CH
CH





401


embedded image


CH
CH





402


embedded image


CH
CH





403


embedded image


CH
CH





404


embedded image


CH
CH





405


embedded image


CH
CH





406


embedded image


CH
CH





407


embedded image


CH
CH





408


embedded image


CH
CH





409


embedded image


CH
CH





410


embedded image


CH
CH





411


embedded image


CH
CH





412


embedded image


CH
CH





413


embedded image


CH
CH





414


embedded image


CH
CH





415


embedded image


CH
CH





416


embedded image


CH
CH





417


embedded image


CH
CH





418


embedded image


CH
CH





419


embedded image


CH
CH





420


embedded image


CH
CH





421


embedded image


CH
CH





422


embedded image


CH
CH





423


embedded image


CH
CH





424b


embedded image


CH
CH





425


embedded image


CH
CH





426


embedded image


CH
CH





427


embedded image


CH
CH





428


embedded image


CH
CH





429


embedded image


CH
CH





430


embedded image


CH
CH





431


embedded image


CH
CH





432


embedded image


CH
CH





433


embedded image


CH
CH





434


embedded image


CH
CH





435


embedded image


CH
CH





436


embedded image


CH
CH





437


embedded image


CH
CH





438


embedded image


CH
CH





439


embedded image


CH
CH





440


embedded image


CH
CH





441


embedded image


CH
CH





442


embedded image


CH
CH





443


embedded image


CH
CH





444


embedded image


CH
CH





445


embedded image


CH
N





446


embedded image


CH
N





447


embedded image


CH
CH





448


embedded image


CH
CH





449


embedded image


CH
CH





450


embedded image


CH
CH





451


embedded image


CH
CH





452


embedded image


CH
CH











453


embedded image







454


embedded image















455


embedded image


CH
CH





456


embedded image


CH
CH











457


embedded image















458


embedded image


CH
CH





459


embedded image


CH
CH





460


embedded image


CH
N





461


embedded image


CH
CH





462


embedded image


CH
CH





463


embedded image


N
CH





464


embedded image


N
CH





465


embedded image


CH
CH





466


embedded image


CH
CH





467


embedded image


CH
CH





468


embedded image


CH
CH





700


embedded image


CH
CH









In yet another a preferred embodiment (hereinafter embodiment [0100]), the novel histone deacetylase inhibitors of the invention are selected from the group consisting of the following and their pharmaceutically acceptable salts:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In another preferred embodiment (hereinafter embodiment [0101]) the compounds are selected from those listed in Tables 2a-b, 3a-d, 4a-c, and 5a-5f.


In a further preferred embodiment, the novel histone deacetylase inhibitors of the invention are formula (4) (hereinafter embodiment [0102])




embedded image



and pharmaceutically acceptable salts thereof, wherein

  • Cy5 is aryl, or heteroaryl, each of which is optionally substituted and wherein each of aryl and heteroaryl is optionally fused to one or more aryl or heteroaryl rings, or to one or more saturated or partially unsaturated cycloalkyl or heterocyclic rings, each of which rings is optionally substituted;
  • X is selected from the group consisting of: a covalent bond, C0-C4-hydrocarbyl, C0-C4-hydrocarbyl-(CO)—C0-C4-hydrocarbyl, C0-C4-hydrocarbyl-(NR')—C0-C4-hydrocarbyl, C0-C4-hydrocarbyl-(S)—C0-C4-hydrocarbyl, C0-C4-hydrocarbyl-(O)—C0-C4-hydrocarbyl, C0-C4-hydrocarbyl-(SO)—C0-C4-hydrocarbyl,
  • C0-C4-hydrocarbyl-(SO2)—C0-C4-hydrocarbyl, C0-C4-hydrocarbyl-(NH)—(CO)—C0-C4-hydrocarbyl, C0-C4-hydrocarbyl-(CO)—(NH)—C0-C4-hydrocarbyl, —NH—CO—NH—, —NH—CS—NH—, —O—CO—O—, —O—CS—O—, —NH—C(NH)—NH—, —S(O)2—N(R7)—, —N(R7)—S(O)2—, —NH—C(O)—O—, and —O—C(O)—NH—,
    • wherein R7 is selected from the group consisting of hydrogen, C1-C5-alkyl, aryl, aralkyl, acyl, heterocyclyl, heteroaryl, SO2-alkyl, SO2-aryl, CO-alkyl, CO-aryl, CO—NH-alkyl, CO—NH-aryl, CO—O-alkyl and CO—O-aryl, each of which is optionally substituted,
  • n is 0 to 4,
  • Y is N or CH,
  • T is NH2 or OH.


Compounds of formula (4) contain a chiral center. The invention encompasses both racemic mixtures and enantiomerically enriched mixtures of compounds of formula (4), as well as the enantiomerically pure isomers of compounds of formula (4). Preferably in enantiomerically enriched mixtures there is greater or equal to 80% of one enantiomer, more preferably greater than 90%, 95%, or 98%. Such embodiments and preferred embodiments are hereinafter collectively referred to as embodiment [0103].


Synthesis

Compounds of formula (1), wherein Y1 is —N(R1)(R2), preferably may be prepared according to the synthetic route depicted in Scheme 1. Thus, trichlorotriazine I reacts with amine II in the presence of diisopropylethylamine to produce dichloroaminotriazine III. The amine R1R2NH is added to dichloroaminotriazine III to produce diaminochlorotriazine V. Treatment of V with ammonia or R3R4NH in tetrahydrofuran (THF) or 1,4 dioxane affords triaminotriazine VI


Alternatively, dichloroaminotriazine III may be reacted with ammonia gas in 1,4 dioxane to produce diaminochlorotriazine IV. Treatment of IV with R1R2NH in THF or 1,4 dioxane in a sealed flask then affords triaminotriazine VI.


Hydrolysis of the ester moiety in VI is effected by treatment with a hydroxide base, such as lithium hydroxide, to afford the corresponding acid VII. Treatment of the acid VII with 1,2-phenylenediamine in the presence of BOP reagent, triethylamine, and dimethylformamide (DMF) yields the anilinyl amide VIII.




embedded image


Compounds of formula (1), wherein Y1 is —CH2—C(O)—N(R1)(R2), preferably may be prepared as outlined in Scheme 2. Thus, piperazine IX is treated with acetyl chloride and triethylamine to produce amide X. Reaction of X with dichloromorpholyltriazine and lithium hexamethyldisiloxane affords compound XI. The chloride of XI is converted to the anilinyl amide of XII as described above with respect to Scheme 1: treatment with the amine and diisopropylethylamine; followed by lithium hydroxide; followed by BOP reagent, phenylenediamine, triethylamine, and DMF.




embedded image


Compounds of formula (2), wherein Ar2 is pyridylene and X1 comprises —N(R7)—, compounds of formula (3), wherein Ara is pyridylene and X2 comprises —N(R9)—, and compounds of formula (4), wherein Ar4 is pyridylene and X3 comprises —N(R11)—, preferably may be prepared according to the procedures illustrated in Scheme 3. Dibromopyridine XIII or XIV is treated with amine RNH2 to produce aminobromopyridine XV or XVI, respectively. Treatment of XV or XVI with diacetoxypalladium, diphenylphosphinoferrocene, DMF, diisopropylethylamine, and phenylenediamine under carbon monoxide yields anilinyl amide XVII or XVIII, respectively.


Treatment of XV or XVI with tert-butylacrylate, diisopropylethylamine, dibenzylacetone palladium, and tri-o-tolylphosphine (POT) in DMF under nitrogen affords compounds XIX and XX, respectively. The ester moiety of XIX or XX is hydrolyzed to produce the corresponding acid moiety in XXI or XXII, respectively, by reaction with trifluoroacetic acid in dichloromethane. Treatment of the acid XXI or XXII with phenylenediamine, BOP, and triethylamine affords the anilinyl amide XXIII or XXIV, respectively.




embedded image


Compounds of formula (2), wherein X1 comprises —O—C(O)—NH—, preferably may be prepared according to the synthetic route depicted in Scheme 4. Thus, carbinol XXV is added to bromobenzylamine XXVI with carbonyldiimidazole (CDI), triethylamine, and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in DMF to produce compound XXVII. The remaining synthetic steps in the production of anilinyl amide XXVIII are as described above for Scheme 3.




embedded image


Compounds of formula (2), wherein X1 comprises —N(R7)—, preferably may be prepared as outlined in Scheme 5. Amine XXIX is reacted with p-bromobenzylbromide in the presence of potassium carbonate in DMF to produce bromobenzylamine XXX. Treatment of XXX with nitroacrylanilide, dibenzylacetone palladium, POT, and diisopropylethylamine in DMF affords nitroanilide XXXI. Nitroanilide XXXI is converted to the corresponding anilinyl amide XXXII by treatment with stannous chloride in methanol and water.


Treatment of amine XXXI in formic acid with paraformaldehyde provides methylamine XXXIII. The nitroanilide moiety in XXXIII is then converted to the corresponding anilinyl amide moiety in XXXIV by treatment with stannous chloride in methanol and water.




embedded image


Alternatively, compounds of formula (2), wherein X1 comprises —N(R7)—, may be prepared according to the synthetic route depicted in Scheme 6. Carboxylic acid XXXV in methanol is treated with hydrochloric acid to produce ester XXXVI. Conversion of the primary amine moiety in XXXVI to the secondary amine moiety in XXXVI is effected by treatment with a catalyst such as triethylamine, methoxybenzylchloride, sodium iodide, and potassium carbonate in DMF at 60° C. Ester XXXVI is converted to anilinyl amide XXXVII by treatment with sodium hydroxide, THF, and methanol, followed by BOP, triethylamine, and phenylenediamine in DMF, as described above for Scheme 3.




embedded image


Compounds of formula (2), wherein X1 comprises




embedded image



or —C(O)—NH—, preferably may be prepared according to the procedures illustrated in Scheme 7. Addition of amine 68 to haloaryl compound XXXVIII or XXXIX and potassium carbonate in DMF provides arylamine XL or XLI, respectively. Anilinyl amide XLII or XLIII is then prepared using procedures analogous to those set forth in Schemes 3-6 above.




embedded image


Compounds such as XLVII and XLIX preferably may be prepared as outlined in Scheme 8. Dibromopyridine is combined with diaminoethane to produce amine XLIV. Treatment of amine XLIV with isatoic anhydride LV in methanol and water, followed by refluxing in formic acid affords compound XLVI. Treatment of amine XLIV with the reaction products of benzylaminodiacetic acid and acetic anhydride provides compound XLVIII. Bromopyridylamines XLVI and XLVIII are then converted to the corresponding diene anilinylamides XLVII and XLIX, respectively, by procedures analogous to those set forth in Schemes 3-7 above.




embedded image


Compounds such as LIV preferably may be prepared according to the synthetic route depicted in Scheme 9. Trichlorotriazine is treated with aminoindan and diisopropylethylamine to produce dichloroaminotriazine L. Treatment with bromobenzylamine and diisopropylethylamine affords diaminochlorotriazine LI. Addition of ammonia gas and dioxane provides triaminotriazine LII. Treatment with protected acrylanilide, triethylamine, POT, and dibenzylacetone palladium then yields diene anilinylamide LIII, which is deprotected with trifluoroacetic acid to provide the final product LIV.




embedded image


Compounds of formula (2), wherein Ar2 is quinolylene and X1 comprises —N(R7)—, compounds of formula (3), wherein Ara is quinolylene and X2 comprises —N(R9)—, and compounds of formula (4), wherein Ar4 is quinolylene and X3 comprises —N(R11)—, preferably may be prepared according to the procedures illustrated in Scheme 10. Dihydroxyquinoline LV with dimethylaminopyridine (DMAP) in pyridine is treated with trifluoromethanesulfonic anhydride to provide bis(trifluoromethanesulfonyloxy)-quinoline LVI. Treatment of LVI with p-methoxybenzylamine affords aminoquinoline LVII. Anilinyl amides LVIII and LIX are then prepared using procedures analogous to those described for Schemes 1-9 above.




embedded image


Compounds of formula (3), wherein X2 comprises a sulfur atom, and compounds of formula (4), wherein X3 comprises a sulfur atom, preferably may be prepared as outlined in Scheme 11. Bromide LX is converted to diaryl ester LXI using procedures analogous to those described for Scheme 6 above. Synthetic methods similar to those set forth in Scheme 1 above are then used to convert ester LXI to the corresponding acid LXIV. Alternatively, ester LXI may be treated with chloroethylmorphonline, sodium iodide, potassium carbonate, triethylamine, and tetrabutylammonium iodide (TBAI) in DMF to produce ester LXIII, which is then converted to acid LXIV as in Scheme 1. Conversion of the acid LXIV to the anilinyl amide LXV is effected by procedures analogous to those set forth in Scheme 1 above.




embedded image


Alternatively, compounds of formula (3), wherein X2 comprises a sulfur atom, and compounds of formula (4), wherein X3 comprises a sulfur atom, may be prepared according to the procedures illustrated in Scheme 12. Sulfanyl anilinylamide LXVIII is prepared using procedures analogous to those set forth in Schemes 3 and 5 above.




embedded image


Compounds of formula (3), wherein X2 comprises —N(R9)—, and compounds of formula (4), wherein X3 comprises —N(R11)—, preferably may be prepared according to the synthetic route depicted in Scheme 13. Amino anilinyl amide LXXI is prepared according to synthetic steps similar to those described for Schemes 1 and 6 above.




embedded image


Compounds of formula (3), wherein X2 comprises a sulfur atom, and compounds of formula (4), wherein X3 comprises a sulfur atom, preferably may be prepared as outlined in Scheme 14. Phenylenediamine is reacted with di-tentbutyldicarbonate, followed by iodobenzoic acid, dimethylaminopropylethylcarbodiimide, hydroxybenzotriazole, and triethylamine to provide protected anilinyl amide LXXII. The iodide moiety of LXXII is converted to the methyl ester moiety of LXXIII using procedures analogous to those set forth for Scheme 3 above. The methyl ester moiety of LXXIII is converted to the hydroxyl moiety of LXXIV by treatment with a reducing agent such as diisobutylaluminum hydride (DIBAL-H). Addition of the heterocyclylsulfhydryl compound Het-SH with triphenylphosphine and diethylazodicarboxylate converts the hydroxyl moiety of LXXIV to the sulfanyl moiety of LXXV. LXXV is deprotected with trifluoroacetic acid to afford the sulfanyl anilinyl amide LXXVI.




embedded image


Compounds of formula (3), wherein X2 is a chemical bond, preferably may be prepared according to the synthetic route depicted in Scheme 15. Thus, chloroarylanilinylamide LXXVII is treated with aryl boronic acid, benzene, ethanol, aqueous sodium carbonate, and triphenylphosphine palladium to afford the diarylanilinylamide LXXVIII.




embedded image


Compounds such as LXXXI preferably may be prepared according to the procedures illustrated in Scheme 16. Thus, benzene-1,2-carbaldehyde LXXIX in acetic acid is treated with p-aminomethylbenzoic acid to produce the benzoic acid LXXX. The acid LXXX is converted to the corresponding anilinylamide LXXXI by treatment with hydroxybenzotriazole, ethylenedichloride, and phenylenediamine.




embedded image


Compounds such as LXXXVI and LXXXIX preferably may be prepared according to the procedures illustrated in Scheme 18. Phthalic anhydride LXXXV and p-aminomethylbenzoic acid are combined in acetic acid to produce an intermediate carboxylic acid, which is converted to the anilinylamide LXXXVI using procedures analogous to those set forth in Schemes 15 and 16 above.


The addition of 4-(2-aminoethyl)phenol to phthalic anhydride LXXXV in acetic acid affords the hydroxyl compound LXXXVII. The hydroxyl group of LXXXVII is converted to the triflate group of LXXXVIII by treatment with sodium hydride, THF, DMF, and phenylaminoditriflate. Treatment of LXXXVIII according to procedures analogous to those described for Scheme 3 above affords the anilinylamide LXXXIX.




embedded image


Compounds such as XCI-XCVI preferably may be prepared according to the synthetic route depicted in Scheme 19. Treatment of isatoic anhydride XC with p-aminomethylbenzoic acid in water and triethylamine, followed by formic acid affords an intermediate carboxylic acid, which is converted to anilinylamide XCI using procedures analogous to those described for Scheme 16 above.


Alternatively, treatment of isatoic acid XC with p-aminomethylbenzoic acid in water and triethylamine, followed by hydrochloric acid and sodium nitrite affords an intermediate carboxylic acid, which is converted to anilinylamide XCII using procedures analogous to those described for Scheme 16 above.


Alternatively, treatment of isatoic acid XC with p-aminomethylbenzoic acid in water and triethylamine affords benzoic acid XCIII. Treatment of XCIII with sodium hydroxide, dioxane, methylchloroformate, and methanol affords an intermediate quinazolinedione carboxylic acid, the acid moiety of which is then converted to the anilinylamide moiety of XCIV using procedures analogous to those described for Scheme 16 above. Alternatively, the intermediate quanzolinedione carboxylic acid in DMF is treated with potassium carbonate and methyl iodide to produce an intermediate benzoic acid methyl ester, which is converted to an intermediate benzoic acid by treatment with sodium hydroxide, methanol, and water. The benzoic acid is then converted to the corresponding anilinylamide XCV using procedures analogous to those described for Scheme 16 above.


Alternatively, treatment of XCIII with acetic anhydride followed by acetic acid produces an intermediate carboxylic acid, which is converted to anilinylamide XCVI using procedures analogous to those described for Scheme 16 above.




embedded image


Compounds such as C preferably may be prepared as outlined in Scheme 20. Alkylamine XCVII is treated with thiocarbonyl diimidazole in dichloromethane, followed by ammonium hydroxide to afford thiourea XCVIII. Treatment of thiourea XCVIII with methylmethoxyacrylate in dioxane and N-bromosuccinimide produces thiazole ester IC. The ester IC is converted to the corresponding anilinylamine C using procedures analogous to those set forth in Scheme 1 above.




embedded image


Compounds of formula (3), wherein X2 is a chemical bond and Cy3 has an amino substituent preferably may be prepared according to the synthetic route depicted in Scheme 21. Thus, protected iodoarylanilinylamide CI is treated according to procedures analogous to those described for Scheme 15 above afford the diarylanilinylamide CII. The aldehyde moiety in CII is converted to the corresponding secondary amine moiety by treatment with the primary amine and sodium triacetoxyborohydride followed by glacial acetic acid. The resultant compound is deprotected to yield CIII using procedures analogous to those set forth in Scheme 3 above.




embedded image


Compounds of formula (3), wherein X2 comprises an alkynylene moiety, and compounds of formula (4), wherein X3 comprises an alkynylene moiety, preferably may be prepared as outlined in Scheme 22. Treatment of protected iodoarylanilinylamide CI with triphenylphosphine palladium chloride, cuprous iodide, and 1-ethynylcyclohexylamine affords the alkynylarylanilinylamide CIV. The primary amine moiety in CIV is converted to the corresponding secondary amine and the aniline moiety is deprotected to afford CV using procedures analogous to those described for Scheme 21 above.




embedded image




embedded image


Compounds such as CVIII preferably may be prepared according to the synthetic route depicted in Scheme 24. Dichloroaminotriazine CVI is treated with methyl-4-aminobenzoate in the presence of diisopropylethylamine to produce diaminotriazine CVII. Addition of ammonia gas and dioxane, followed by a saponification and a peptide coupling using the same procedures analogous to those described for Scheme 1 above.




embedded image


Compounds such as CX preferably may be prepared according to the synthetic route depicted in Scheme 30. The Grignard reaction of trichloroaminotriazine with various alkyl magnesium bromide, followed by a treatment with methyl-4-aminobenzoate in the presence of diisopropylethylamine yields alkylaminotriazine CIX. Synthetic methods similar to those set forth in Scheme 1 above are then used to convert ester CIX to the corresponding anilinyl amide CX.




embedded image


Amination of dichlorotriazine proceeded using the usual condition described in Scheme 1 to afford CXI. Stille coupling using vinyl stannane provides CXII. Treatment with protected iodoanilide, triethylamine, POT and dibenzylacetone palladium then yields anilinylamide, which is deprotected with trifluoroacetic acid to provide the alkene CXIII. Hydrogenation of the alkene affords the final compound CXIV.




embedded image


Compounds such as CXVIII preferably may be prepared according to the synthetic route depicted in Scheme 33. Treatment of methoxyaminobenzothiazole with tribromide boron affords the corresponding acid CXV. Mitsunobu reaction using hydroxyethyl morpholine in the presence of diethylazodicarboxylate and triphenylphosphine yields the amine CXVI. Reductive amination with methyl-4-formylbenzoate using phenylsilane and tin catalyst yields to the ester CXVII. Saponification followed by the usual peptide coupling analogous to those describe for Scheme 1 above provides the desired anilide CXVIII.




embedded image


Treatment 4-methylcyanobenzoic acid with hydrogen sulfide affords CXIX, which is subjected to cyclization in the presence of 1,3-dichloroacetone to yield CXX, Treatment with morpholine followed by a peptide coupling using the standard condition produces CXXI.




embedded image


Compounds such as CXXIII and CXXVII preferably may be prepared according to the synthetic scheme 49. Consecutive treatment of acetyl acetone with methyl bromomethylbenzoate in the presence of NaOMe and phenyl hydrazine followed by saponification, afforded the intermediate acid CXXII. This material was coupled with 1,2-diaminobenzene in a standard fashion to afford CXXIII.


Consecutive treatment of acetyl acetone with methyl bromomethylbenzoate in the presence of NaOMe and a 1:1 mixture AcOH—HCl (conc.) afforded the intermediate acid CXXIV. This keto-acid reacting with sulfur and malonodinitrile in the presence of a base, produced the thiophene CXXV, which was converted into the desired CXXVII using standard procedures.




embedded image


Compounds such as CXXX preferably may be prepared according to the synthetic scheme 50. Treatment of 4-cyanomethylbenzoic acid with hydroxylamine produced the amidoxime CXXVIII, which upon treatment with acetic anhydride was converted into the oxadiazole CXXIX. The latter was coupled with 1,2-diaminobenzene in a standard fashion to afford CXXX.




embedded image


Compounds such as CXXXIII preferably may be prepared according to the synthetic route depicted in Scheme 57. Treatment of 4-formylbenzoic acid with thionyl chloride afford the acyl chloride which is coupled with protected anilide to produce CXXXI. Reductive amination with dimethoxyaniline using phenylsilane and tin catalyst yields to the protected anilide CXXXII. Treatment with isocyanate followed by deprotection with trifluoroacetic acid provides the ureidoanilide CXXXIII.


Pharmaceutical Compositions

In a second aspect, the invention provides pharmaceutical compositions comprising an inhibitor of histone deacetylase according to the invention and a pharmaceutically acceptable carrier, excipient, or diluent. Compounds of the invention may be formulated by any method well known in the art and may be prepared for administration by any route, including, without limitation, parenteral, oral, sublingual, transdermal, topical, intranasal, intratracheal, or intrarectal. In certain preferred embodiments, compounds of the invention are administered intravenously in a hospital setting. In certain other preferred embodiments, administration may preferably be by the oral route.


The characteristics of the carrier will depend on the route of administration. As used herein, the term “pharmaceutically acceptable” means a non-toxic material that is compatible with a biological system such as a cell, cell culture, tissue, or organism, and that does not interfere with the effectiveness of the biological activity of the active ingredient(s). Thus, compositions according to the invention may contain, in addition to the inhibitor, diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art. The preparation of pharmaceutically acceptable formulations is described in, e.g., Remington's Pharmaceutical Sciences, 18th Edition, ed. A. Gennaro, Mack Publishing Co., Easton, Pa., 1990.


As used herein, the term pharmaceutically acceptable salts refers to salts that retain the desired biological activity of the above-identified compounds and exhibit minimal or no undesired toxicological effects. Examples of such salts include, but are not limited to acid addition salts formed with inorganic acids (for example, hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid, and the like), and salts formed with organic acids such as acetic acid, oxalic acid, tartaric acid, succinic acid, malic acid, ascorbic acid, benzoic acid, tannic acid, pamoic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, naphthalenedisulfonic acid, and polygalacturonic acid. The compounds can also be administered as pharmaceutically acceptable quaternary salts known by those skilled in the art, which specifically include the quaternary ammonium salt of the formula —NR+Z—, wherein R is hydrogen, alkyl, or benzyl, and Z is a counterion, including chloride, bromide, iodide, —O-alkyl, toluenesulfonate, methylsulfonate, sulfonate, phosphate, or carboxylate (such as benzoate, succinate, acetate, glycolate, maleate, malate, citrate, tartrate, ascorbate, benzoate, cinnamoate, mandeloate, benzyloate, and diphenylacetate).


The active compound is included in the pharmaceutically acceptable carrier or diluent in an amount sufficient to deliver to a patient a therapeutically effective amount without causing serious toxic effects in the patient treated. A preferred dose of the active compound for all of the above-mentioned conditions is in the range from about 0.01 to 300 mg/kg, preferably 0.1 to 100 mg/kg per day, more generally 0.5 to about 25 mg per kilogram body weight of the recipient per day. A typical topical dosage will range from 0.01-3% wt/wt in a suitable carrier. The effective dosage range of the pharmaceutically acceptable derivatives can be calculated based on the weight of the parent compound to be delivered. If the derivative exhibits activity in itself, the effective dosage can be estimated as above using the weight of the derivative, or by other means known to those skilled in the art.


Inhibition of Histone Deacetylase

In a third aspect, the invention provides a method of inhibiting histone deacetylase in a cell, comprising contacting a cell in which inhibition of histone deacetylase is desired with an inhibitor of histone deacetylase according to the invention. Because compounds of the invention inhibit histone deacetylase, they are useful research tools for in vitro study of the role of histone deacetylase in biological processes. In addition, the compounds of the invention selectively inhibit certain isoforms of HDAC.


Measurement of the enzymatic activity of a histone deacetylase can be achieved using known methodologies. For example, Yoshida et al., J. Biol. Chem., 265: 17174-17179 (1990), describes the assessment of histone deacetylase enzymatic activity by the detection of acetylated histones in trichostatin A treated cells. Taunton et al., Science, 272: 408-411 (1996), similarly describes methods to measure histone deacetylase enzymatic activity using endogenous and recombinant HDAC-1.


In some preferred embodiments, the histone deacetylase inhibitor interacts with and reduces the activity of all histone deacetylases in the cell. In some other preferred embodiments according to this aspect of the invention, the histone deacetylase inhibitor interacts with and reduces the activity of fewer than all histone deacetylases in the cell. In certain preferred embodiments, the inhibitor interacts with and reduces the activity of one histone deacetylase (e.g., HDAC-1), but does not interact with or reduce the activities of other histone deacetylases (e.g., HDAC-2, HDAC-3, HDAC-4, HDAC-5, HDAC-6, HDAC-7, and HDAC-8). As discussed below, certain particularly preferred histone deacetylase inhibitors are those that interact with, and reduce the enzymatic activity of, a histone deacetylase that is involved in tumorigenesis. Certain other preferred histone deacetylase inhibitors interact with and reduce the enzymatic activity of a fungal histone deacetylase.


Preferably, the method according to the third aspect of the invention causes an inhibition of cell proliferation of the contacted cells. The phrase “inhibiting cell proliferation” is used to denote an ability of an inhibitor of histone deacetylase to retard the growth of cells contacted with the inhibitor as compared to cells not contacted. An assessment of cell proliferation can be made by counting contacted and non-contacted cells using a Coulter Cell Counter (Coulter, Miami, Fla.) or a hemacytometer. Where the cells are in a solid growth (e.g., a solid tumor or organ), such an assessment of cell proliferation can be made by measuring the growth with calipers and comparing the size of the growth of contacted cells with non-contacted cells.


Preferably, growth of cells contacted with the inhibitor is retarded by at least 50% as compared to growth of non-contacted cells. More preferably, cell proliferation is inhibited by 100% (i.e., the contacted cells do not increase in number). Most preferably, the phrase “inhibiting cell proliferation” includes a reduction in the number or size of contacted cells, as compared to non-contacted cells. Thus, an inhibitor of histone deacetylase according to the invention that inhibits cell proliferation in a contacted cell may induce the contacted cell to undergo growth retardation, to undergo growth arrest, to undergo programmed cell death (i.e., to apoptose), or to undergo necrotic cell death.


The cell proliferation inhibiting ability of the histone deacetylase inhibitors according to the invention allows the synchronization of a population of asynchronously growing cells. For example, the histone deacetylase inhibitors of the invention may be used to arrest a population of non-neoplastic cells grown in vitro in the G1 or G2 phase of the cell cycle. Such synchronization allows, for example, the identification of gene and/or gene products expressed during the G1 or G2 phase of the cell cycle. Such synchronization of cultured cells may also be useful for testing the efficacy of a new transfection protocol, where transfection efficiency varies and is dependent upon the particular cell cycle phase of the cell to be transfected. Use of the histone deacetylase inhibitors of the invention allows the synchronization of a population of cells, thereby aiding detection of enhanced transfection efficiency.


In some preferred embodiments, the contacted cell is a neoplastic cell. The term “neoplastic cell” is used to denote a cell that shows aberrant cell growth. Preferably, the aberrant cell growth of a neoplastic cell is increased cell growth. A neoplastic cell may be a hyperplastic cell, a cell that shows a lack of contact inhibition of growth in vitro, a benign tumor cell that is incapable of metastasis in vivo, or a cancer cell that is capable of metastasis in vivo and that may recur after attempted removal. The term “tumorigenesis” is used to denote the induction of cell proliferation that leads to the development of a neoplastic growth. In some embodiments, the histone deacetylase inhibitor induces cell differentiation in the contacted cell. Thus, a neoplastic cell, when contacted with an inhibitor of histone deacetylase may be induced to differentiate, resulting in the production of a non-neoplastic daughter cell that is phylogenetically more advanced than the contacted cell.


In some preferred embodiments, the contacted cell is in an animal. Thus, the invention provides a method for treating a cell proliferative disease or condition in an animal, comprising administering to an animal in need of such treatment a therapeutically effective amount of a histone deacetylase inhibitor of the invention. Preferably, the animal is a mammal, more preferably a domesticated mammal. Most preferably, the animal is a human.


The term “cell proliferative disease or condition” is meant to refer to any condition characterized by aberrant cell growth, preferably abnormally increased cellular proliferation. Examples of such cell proliferative diseases or conditions include, but are not limited to, cancer, restenosis, and psoriasis. In particularly preferred embodiments, the invention provides a method for inhibiting neoplastic cell proliferation in an animal comprising administering to an animal having at least one neoplastic cell present in its body a therapeutically effective amount of a histone deacetylase inhibitor of the invention.


It is contemplated that some compounds of the invention have inhibitory activity against a histone deacetylase from a protozoal source. Thus, the invention also provides a method for treating or preventing a protozoal disease or infection, comprising administering to an animal in need of such treatment a therapeutically effective amount of a histone deacetylase inhibitor of the invention. Preferably the animal is a mammal, more preferably a human. Preferably, the histone deacetylase inhibitor used according to this embodiment of the invention inhibits a protozoal histone deacetylase to a greater extent than it inhibits mammalian histone deacetylases, particularly human histone deacetylases.


The present invention further provides a method for treating a fungal disease or infection comprising administering to an animal in need of such treatment a therapeutically effective amount of a histone deacetylase inhibitor of the invention. Preferably the animal is a mammal, more preferably a human. Preferably, the histone deacetylase inhibitor used according to this embodiment of the invention inhibits a fungal histone deacetylase to a greater extent than it inhibits mammalian histone deacetylases, particularly human histone deacetylases.


The term “therapeutically effective amount” is meant to denote a dosage sufficient to cause inhibition of histone deacetylase activity in the cells of the subject, or a dosage sufficient to inhibit cell proliferation or to induce cell differentiation in the subject. Administration may be by any route, including, without limitation, parenteral, oral, sublingual, transdermal, topical, intranasal, intratracheal, or intrarectal. In certain particularly preferred embodiments, compounds of the invention are administered intravenously in a hospital setting. In certain other preferred embodiments, administration may preferably be by the oral route.


When administered systemically, the histone deacetylase inhibitor is preferably administered at a sufficient dosage to attain a blood level of the inhibitor from about 0.01 μM to about 100 μM, more preferably from about 0.05 μM to about 50 μM, still more preferably from about 0.1 μM to about 25 μM, and still yet more preferably from about 0.5 μM to about 25 μM. For localized administration, much lower concentrations than this may be effective, and much higher concentrations may be tolerated. One of skill in the art will appreciate that the dosage of histone deacetylase inhibitor necessary to produce a therapeutic effect may vary considerably depending on the tissue, organ, or the particular animal or patient to be treated.


In certain preferred embodiments of the third aspect of the invention, the method further comprises contacting the cell with an antisense oligonucleotide that inhibits the expression of a histone deacetylase. The combined use of a nucleic acid level inhibitor (e.g., antisense oligonucleotide) and a protein level inhibitor (i.e., inhibitor of histone deacetylase enzyme activity) results in an improved inhibitory effect, thereby reducing the amounts of the inhibitors required to obtain a given inhibitory effect as compared to the amounts necessary when either is used individually. The antisense oligonucleotides according to this aspect of the invention are complementary to regions of RNA or double-stranded DNA that encode HDAC-1, HDAC-2, HDAC-3, HDAC-4, HDAC-5, HDAC-6, HDAC7, and/or HDAC-8 (see e.g., GenBank Accession Number U50079 for HDAC-1, GenBank Accession Number U31814 for HDAC-2, and GenBank Accession Number U75697 for HDAC-3).


For purposes of the invention, the term “oligonucleotide” includes polymers of two or more deoxyribonucleosides, ribonucleosides, or 2′-substituted ribonucleoside residues, or any combination thereof. Preferably, such oligonucleotides have from about 6 to about 100 nucleoside residues, more preferably from about 8 to about 50 nucleoside residues, and most preferably from about 12 to about 30 nucleoside residues. The nucleoside residues may be coupled to each other by any of the numerous known internucleoside linkages. Such internucleoside linkages include without limitation phosphorothioate, phosphorodithioate, alkylphosphonate, alkylphosphonothioate, phosphotriester, phosphoramidate, siloxane, carbonate, carboxymethylester, acetamidate, carbamate, thioether, bridged phosphoramidate, bridged methylene phosphonate, bridged phosphorothioate and sulfone internucleoside linkages. In certain preferred embodiments, these internucleoside linkages may be phosphodiester, phosphotriester, phosphorothioate, or phosphoramidate linkages, or combinations thereof. The term oligonucleotide also encompasses such polymers having chemically modified bases or sugars and/or having additional substituents, including without limitation lipophilic groups, intercalating agents, diamines and adamantane.


For purposes of the invention the term “2′-substituted ribonucleoside” includes ribonucleosides in which the hydroxyl group at the 2′ position of the pentose moiety is substituted to produce a 2′-O-substituted ribonucleoside. Preferably, such substitution is with a lower alkyl group containing 1-6 saturated or unsaturated carbon atoms, or with an aryl or allyl group having 2-6 carbon atoms, wherein such alkyl, aryl or allyl group may be unsubstituted or may be substituted, e.g., with halo, hydroxy, trifluoromethyl, cyano, nitro, acyl, acyloxy, alkoxy, carboxyl, carbalkoxyl, or amino groups. The term “2′-substituted ribonucleoside” also includes ribonucleosides in which the 2′-hydroxyl group is replaced with an amino group or with a halo group, preferably fluoro.


Particularly preferred antisense oligonucleotides utilized in this aspect of the invention include chimeric oligonucleotides and hybrid oligonucleotides. For purposes of the invention, a “chimeric oligonucleotide” refers to an oligonucleotide having more than one type of internucleoside linkage. One preferred example of such a chimeric oligonucleotide is a chimeric oligonucleotide comprising a phosphorothioate, phosphodiester or phosphorodithioate region, preferably comprising from about 2 to about 12 nucleotides, and an alkylphosphonate or alkylphosphonothioate region (see e.g., Pederson et al. U.S. Pat. Nos. 5,635,377 and 5,366,878). Preferably, such chimeric oligonucleotides contain at least three consecutive internucleoside linkages selected from phosphodiester and phosphorothioate linkages, or combinations thereof.


For purposes of the invention, a “hybrid oligonucleotide” refers to an oligonucleotide having more than one type of nucleoside. One preferred example of such a hybrid oligonucleotide comprises a ribonucleotide or 2′-substituted ribonucleotide region, preferably comprising from about 2 to about 12 2′-substituted nucleotides, and a deoxyribonucleotide region. Preferably, such a hybrid oligonucleotide contains at least three consecutive deoxyribonucleosides and also contains ribonucleosides, 2′-substituted ribonucleosides, preferably 2′-O-substituted ribonucleosides, or combinations thereof (see e.g., Metelev and Agrawal, U.S. Pat. No. 5,652,355).


The exact nucleotide sequence and chemical structure of an antisense oligonucleotide utilized in the invention can be varied, so long as the oligonucleotide retains its ability to inhibit expression of the gene of interest. This is readily determined by testing whether the particular antisense oligonucleotide is active. Useful assays for this purpose include quantitating the mRNA encoding a product of the gene, a Western blotting analysis assay for the product of the gene, an activity assay for an enzymatically active gene product, or a soft agar growth assay, or a reporter gene construct assay, or an in vivo tumor growth assay, all of which are described in detail in this specification or in Ramchandani et al. (1997) Proc Natl. Acad. Sci. USA 94: 684-689.


Antisense oligonucleotides utilized in the invention may conveniently be synthesized on a suitable solid support using well known chemical approaches, including H-phosphonate chemistry, phosphoramidite chemistry, or a combination of H-phosphonate chemistry and phosphoramidite chemistry (i.e., H-phosphonate chemistry for some cycles and phosphoramidite chemistry for other cycles). Suitable solid supports include any of the standard solid supports used for solid phase oligonucleotide synthesis, such as controlled-pore glass (CPG) (see, e.g., Pon, R. T (1993) Methods in Molec. Biol. 20: 465-496).


Particularly preferred oligonucleotides have nucleotide sequences of from about 13 to about 35 nucleotides which include the nucleotide sequences shown in Table 1. Yet additional particularly preferred oligonucleotides have nucleotide sequences of from about 15 to about 26 nucleotides of the nucleotide sequences shown in Table 1.














TABLE 1







Accession


position within


Oligo
Target
Number
Nucleotide Position 
Sequence
Gene







HDAC1 AS1
Human HDAC1
U50079
1585-1604
5′-GAAACGTGAGGGACTCAGCA-3′
3′-UTR


HDAC1 AS2
Human HDAC1
U50079
1565-1584
5′-GGAAGCCAGAGCTGGAGAGG-3′
3′-UTR


HDAC1 MM
Human HDAC1
U50079
1585-1604
5′-GTTAGGTGAGGCACTGAGGA-3′
3′-UTR





HDAC2 AS
Human HDAC2
U31814
1643-1622
5′-GCTGAGCTGTTCTGATTTGG-3′
3′-UTR


HDAC2 MM
Human HDAC2
U31814
1643-1622
5′-CGTGAGCACTTCTCATTTCC-3′
3′-UTR





HDAC3 AS
Human HDAC3
AF039703
1276-1295
5′-CGCTTTCCTTGTCATTGACA-3′
3′-UTR


HDAC3 MM
Human HDAC3
AF039703
1276-1295
5′-GCCTTTCCTACTCATTGTGT-3′
3′-UTR





HDAC4 AS1
Human HDAC4
AB006626
514-33
5-GCTGCCTGCCGTGCCCACCC-3′
5′-UTR


HDAC4 MM1
Human HDAC4
AB006626
514-33
5′-CGTGCCTGCGCTGCCCACGG-3′
5′-UTR


HDAC4 AS2
Human HDAC4
AB006626
7710-29
5′-TACAGTCCATGCAACCTCCA-3′
3′-UTR


HDAC4 MM4
Human HDAC4
AB006626
7710-29
5′-ATCAGTCCAACCAACCTCGT-3′
3′-UTR





HDAC5 AS
Human HDAC5
AF039691
2663-2682
5′-CTTCGGTCTCACCTGCTTGG-3′
3′-UTR





HDAC6 AS
Human HDAC6
AJ011972
3791-3810
5′-CAGGCTGGAATGAGCTACAG-3′
3′-UTR


HDAC6 MM
Human HDAC6
AJ011972
3791-3810
5′-GACGCTGCAATCAGGTAGAC-3′
3′-UTR





HDAC7 AS
Human HDAC7
AF239243
2896-2915
5′-CTTCAGCCAGGATGCCCACA-3′
3′-UTR





HDAC8 AS1
Human HDAC8
AF230097
51-70
5′-CTCCGGCTCCTCCATCTTCC-3′
5′-UTR


HDAC8 AS2
Human HDAC8
AF230097
1328-1347
5′-AGCCAGCTGCCACTTGATGC-3′
3′-UTR









The following examples are intended to further illustrate certain preferred embodiments of the invention, and are not intended to limit the scope of the invention.


EXAMPLES



embedded image


embedded image


Example 1
4-{[4-Amino-6-(2-indanyl-amino)-[1,3,5]-triazin-2-yl-amino]-methyl}-N-(2-amino-phenyl)-benzamide (compound 8)
Step 1: Methyl-4-[(4,6-dichloro-[1,3,5]-triazin-2-yl-amino)-methyl]-benzoate (compound 3)

To a stirred solution at −78° C. of cyanuric chloride 1 (8.23 g, 44.63 mmol) in anhydrous THF (100 mL) under nitrogen was added a suspension of methyl 4-(aminomethyl)benzoate.HCl 2 (10.00 g, 49.59 mmol), in anhydrous THF (50 mL), followed by i-Pr2NEt (19.00 mL, 109.10 mmol). After 30 min, the reaction mixture was poured into a saturated aqueous solution of NH4Cl, and diluted with AcOEt. After separation, the organic layer was successively washed with sat. NH4Cl, H2O and brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (AcOEt/CH2Cl2: 5/95) to afford the title compound 3 (12.12 g, 38.70 mmol, 87% yield) as a pale yellow solid. 1H NMR (300 MHz, CDCl3) δ (ppm): AB system (δA=8.04, δB3=7.38, J=8.5 Hz, 4H), 6.54 (bt, 1H), 4.76 (d, J=6.3 Hz, 2H), 3.93 (s, 3H).


Pathway A
Step 2: Methyl-4-[(4-amino-6-chloro-[1,3,5]triazin-2-yl-amino)-methyl]-benzoate (compound 4)

In a 150 mL sealed flask, a solution of 3 (6.00 g, 19.16 mmol) in anhydrous 1,4-dioxane (60 mL) was stirred at room temperature, saturated with NH3 gas for 5 min, and warmed to 70° C. for 6 h. The reaction mixture was allowed to cool to room temperature, the saturation step with NH3 gas was repeated at room temperature for 5 min, and the reaction mixture was warmed to 70° C. again for 18 h. Then, the reaction mixture was allowed to cool to room temperature, poured into a saturated aqueous solution of NH4Cl, and diluted with AcOEt. After separation, the organic layer was successively washed with sat. NH4Cl, H2O and brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (AcOEt/CH2Cl2: 30/70) to afford the title compound 4 (5.16 g, 17.57 mmol, 91% yield) as a white a solid. 1H NMR (300 MHz, CDCl3) δ (ppm): AB system (δA=8.01, δB=7.35, J=8.1 Hz, 4H), 5.79 (bs, 1H), 5.40-5.20 (m, 2H), 4.72-4.63 (m, 2H), 3.91 (s, 3H).


Pathway B
Step 2: Methyl 4-[(4-chloro-6-(2-indanyl-amino)-[1,3,5]triazin-2-yl-amino)-methyl]-benzoate (compound 5)

To a stirred solution at room temperature of 3 (3.00 g, 9.58 mmol) in anhydrous THF (50 mL) under nitrogen were added i-Pr2NEt (8.34 mL, 47.90 mmol) and 2-aminoindan.HCl (1.95 g, 11.50 mmol) or R1R2NH (1.2 equiv), respectively. After 18 h, the reaction mixture was poured into a saturated aqueous solution of NH4Cl, and diluted with AcOEt. After separation, the organic layer was successively washed with sat. NH4Cl, H2O and brine, dried over anhydrous MgSO4, filtered and concentrated to afford the title compound 5 (4.06 g, 9.91 mmol, quantitative yield) as a white powder. 1H NMR (300 MHz, CDCl3) δ (ppm): mixture of rotamers, 8.06-7.94 (m, 2H), 7.43-7.28 (m, 2H), 7.24-7.12 (m, 4H), 6.41 and 6.05 (2 bt, 1H), 5.68-5.44 (m, 1H), 4.92-4.54 (m, 3H), 3.92 (bs, 3H), 3.41-3.12 (m, 2H), 2.90-2.70 (m, 2H).


Step 3: Methyl-4-[(4-amino-6-(2-indanyl-amino)-[1,3,5]triazin-2-yl-amino)-methyl]-benzoate (compound 6)

General Procedure for the Amination with NH3 Gas:


In a 150 mL sealed flask, a solution of 5 (3.90 g, 9.51 mmol) in anhydrous 1,4-dioxane (80 mL) was stirred at room temperature, saturated with NH3 gas for 5 min, and warmed to 140° C. for 6 h. The reaction mixture was allowed to cool to room temperature, the saturation step with NH3 gas was repeated for 5 min, and the reaction mixture was warmed to 140° C. again or 18 h. Then, the reaction mixture was allowed to cool to room temperature, poured into a saturated aqueous solution of NH4Cl, and diluted with AcOEt. After separation, the organic layer was successively washed with sat. NH4Cl, H2O and brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (MeOH/CH2Cl2: 3/97) to afford the title compound 6 (3.50 g, 8.96 mmol, 94% yield) as a pale yellow sticky solid. 1H NMR (300 MHz, CDCl3) δ (ppm): 7.99 (bd, J=8.2 Hz, 2H), 7.41-7.33 (m, 2H), 7.24-7.13 (m, 4H), 5.50-5.00 (m, 2H), 4.90-4.55 (m, 5H), 3.92 (s, 3H), 3.40-3.10 (m, 2H), 2.90-2.70 (m, 2H). 13C NMR: (75 MHz, CDCl3) δ (ppm): 166.88, 167.35, 166.07, 144.77, 141.07, 129.82, 128.93, 127.01, 126.61, 124.70, 52.06, 51.80, 44.25, 40.16. HRMS (calc.): 390.1804, (found): 390.1800.


Pathways A and B, Step 3, General Procedure with Primary and/or Secondary Amines:


In a 50-75 mL sealed flask, a stirred solution of 4 (500 mg, 1.70 mmol 1 equiv), i-Pr2NEt (1.48 mL, 8.51 mmol, 5 equiv) and R1R2NH or R3R4NH (1.5-3 equiv) in anhydrous THF or 1,4-dioxane (20-30 mL) was warmed to 120-140° C. for 15-24 h. Then, the reaction mixture was allowed to cool to room temperature, poured into a saturated aqueous solution of NH4Cl, and diluted with AcOEt. After separation, the organic layer was successively washed with sat. NH4Cl, H2O and brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel to afford the title compound.


Step 4: 4-[(4-Amino-6-(2-indanyl-amino)-[1,3,5]triazin-2-yl-amino)-methyl]-benzoic acid (compound 7)

To a stirred solution at room temperature of 6 (2.07 g, 5.30 mmol) in THF (50 mL) was added a solution of LiOH.H2O (334 mg, 7.96 mmol) in water (25 mL). After 18 h, the reaction mixture was diluted in water and acidified with 1 N HCl until pH 5-6 in order to get a white precipitate. After 1 h, the suspension was filtered off and the cake was abundantly washed with water, and dried to afford the title compound 7 (1.73 g, 4.60 mmol, 87% yield) as a white solid. 1H NMR (300 MHz, acetone-d6) δ (ppm): 8.05 (bd, J=8.1 Hz, 2H), 7.56-7.42 (m, 2H), 7.30-7.10 (m, 4H), 5.90-5.65 (m, 2H), 4.85-4.60 (m, 4H), 3.40-2.80 (m, 4H). HRMS (calc.): 376.1648, (found): 376.1651.


Step 5: 4-{[4-Amino-6-(2-indanyl-amino)-[1,3,5]-triazin-2-yl-amino]methyl}-N-(2-amino-phenyl)-benzamide (compound 8)

To a stirred solution at room temperature of 7 (200 mg, 0.53 mmol) in anhydrous DMF (5 mL) under nitrogen were added Et3N (74 μl, 0.53 mmol) and BOP reagent (282 mg, 0.64 mmol), respectively. After 40 min, a solution of 1,2-phenylenediamine (64 mg, 0.58 mmol), Et3N (222 μl, 1.59 mmol) in anhydrous DMF (2 mL) was added dropwise. After 1.5 h, the reaction mixture was poured into a saturated aqueous solution of NH4Cl, and diluted with AcOEt. After separation, the organic layer was successively washed with sat. NH4Cl, H2O and brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (MeOH/CH2Cl2: 2/98→5/95) to afford the title compound 8 (155 mg, 0.33 mmol, 63% yield) as a pale yellow foam. 1H NMR (300 MHz, acetone-d6) δ (ppm): 9.04 (bs, 1H), 7.96 (bd, J=8.0 Hz, 2H), 7.50-7.40 (m, 2H), 7.30 (dd, J=8.0 Hz, 1.4 Hz, 1H), 7.22-7.08 (m, 4H), 6.99 (ddd, J=8.0 Hz, 7.5 Hz, 1.5 Hz, 1H), 6.86 (dd, J=8.0 Hz, 1.4 Hz, 1H), 6.67 (dt, J=7.5 Hz, 1.4 Hz, 1H), 6.60-5.49 (m, 4H), 4.80-4.50 (m, 4H), 3.30-3.08 (m, 2H), 2.96-2.74 (m, 2H).


Examples 2-28

Examples 2 to 28 describe the preparation of compounds 9 to 35 using the same procedure as described for compound 8 of Example 1. Characterization data are presented in Tables 2a and 2b.









TABLE 2a





Characterization of Compounds Prepared in Examples 2-28




embedded image





















Ex.
Cpd
Y
X
Name





2
9


embedded image


NH2
4-[(4-amino-6-morpholin- 4-yl-[1,3,5]-triazin-2- ylamino)-methyl]-N-(2- amino-phenyl)- benzamide





3
10


embedded image


NH2
4-{[4-amino-6-(1-indanyl- amino)-[1,3,5]-triazin-2- ylamino]-methyl}-N-(2- amino-phenyl)- benzamide





4
11


embedded image


NH2
N-(2-Amino-pheny)-4-{[4- amino-6-(4-phenyl- piperazin-1-yl)- [1,3,5]triazin-2-ylamino]- methyl}-benzamide





5
12


embedded image


NH2
4-{[4-amino-6-(2- pyridinyl-methyl-amino)- [1,3,5]-triazin-2- ylamino]-methyl)-N-(2- amino-phenyl)- benzamide





6
13


embedded image




embedded image


4-{[4,6-bis-(2-indanyl- amino)-[1,3,5]-triazin-2- ylamino]-methyl}-N-(2- amino-phenyl)- benzamide





7
14


embedded image


NH2
4-{[4-Amino-6-(9H- fluoren-9-ylamino)- [1,3,5]triazin-2-ylamino]- methyl)-N-(2-amino- phenyl)-benzamide





8
15


embedded image


NH2
N-(2-amino-phenyl)-4-[(4- amino-6-piperidin-1-yl [1,3,5]-triazin-2- ylamino)-methyl]- benzamide





9
16


embedded image


NH2
4-[(4-amino-6- cyclopentyl-amino- [1,3,5]-triazin-2-yl- amino) -methyl]-N-(2- amino-phenyl)- benzamide





10
17


embedded image


NH2
(1R)-4-{[4-amino-6-(2- exo-fenchyl-amino)- [1,3,5]-triazin-2- ylamino]-methyl}-N-(2- amino-phenyl)- benzamide





11
18


embedded image




embedded image


4-{[4-allyl-amino-6-(2- indanyl-amino)-[1,3,5]- triazin-2-ylamino]- methyl}-N-(2-amino- phenyl)-benzamide





12
19


embedded image




embedded image


4-{[4-cyclopropyl-amino- 6-(2-indanyl-amino)- [1,3,5]-triazin-2- ylamino]-methyl}-N-(2- amino-phenyl)- benzamide





13
20


embedded image


NH2
4-[(4-Amino-6- phenethylamino- [1,3,5]triazin-2-ylamino)- methyl]-N-(2-amino- phenyl)-benzamide





14
21


embedded image


NH2
N-(2-Amino-phenyl)-4-{[4- amino-6-(3,4,5- trimethoxy- phenylamino)- [1,3,5]triazin-2-ylamino]- methyl}-benzamide





15
22


embedded image


NH2
4-{[4-Amino-6-(2,3- dihydro-indol-1-yl)- [1,3,5]triazin-2-ylamino]- methyl}-N-(2-amino- phenyl)-benzamide





16
23


embedded image


NH2
4-({4-Amino-6-[2-(2- methoxy-phenyl)- ethylamino]- [1,3,5]triazin-2- ylamino}-methyl)-N-(2- amino-phenyl)- benzamide





17
24


embedded image


NH2
4-({4-Amino-6-[2-(2- fluoro-phenyl)- ethylamino]- [1,3,5]triazin-2- ylamino)-methyl)-N-(2- amino-phenyl)- benzamide





18
25


embedded image




embedded image


4-{[4-benzyl-amino-6-(2- indanyl-amino)-[1,3,5]- triazin-2-ylamino]- methyl}-N-(2-amino- phenyl)-benzamide





19
26


embedded image




embedded image


N-(2-Amino-phenyl)-4- [(4,6-di-piperidin-1-yl- [1,3,5]triazin-2-ylamino)- methyl]-benzamide





20
27


embedded image




embedded image


4-{[6-(2-indanyl-amino)- 4-phenethyl-amino- [1,3,5]-triazin-2- ylamino]-methyl}-N-(2- amino-phenyl)- benzamide





21
28


embedded image


NH2
4-{[4-benzyl-amino-6-(2- indanyl-amino)-[1,3,5]- triazin-2-ylamino]- methyl)-N-(2-amino- phenyl)-benzamide





22
29


embedded image


NH2
4-[(4-Amino-6- benzylamino- [1,3,5]triazin-2-ylamino)- methyl]-N-(2-amino- phenyl)-benzamide





23
30


embedded image




embedded image


4-{[6-(2-indanyl-amino)- 4-(3-pyridinyl-methyl- amino)-[1,3,5]-triazin-2- ylamino]-methyl)-N-(2- amino-phenyl)- benzamide





24
31


embedded image




embedded image


N-(2-Amino-phenyl)-4-[(4- piperidin-1-yl-6- pyrrolidin-1-yl- [1,3,5]triazin-2-ylamino)- methyl]-benzamide





25
32


embedded image




embedded image


N-(2-Amino-phenyl)-4-{[2- piperidin-1-yl-6-(2- pyrrolidin-1-yl- ethylamino)-pyrimidin-4- ylamino]-methyl}- benzamide





26
33


embedded image




embedded image


4-{[6-(2-indanyl-amino)- 4-morpholin-4-yl-[1,3,5]- triazin-2-ylamino]- methyl}-N-(2-amino- phenyl)-benzamide





27
34


embedded image




embedded image


N-(2-Amino-phenyl)-4-{[2- piperidin-1-yl-6-(2- pyrrolidin-1-yl- ethylamino)-pyrimidin-4- ylamino]-methyl}- benzamide





28
35


embedded image


NH2
4-({4-Amino-6-[2-(1H- indol-3-yl)-ethylamino]- [1,3,5]triazin-2- ylamino}-methyl)-N-(2- amino-phenyl)- benzamide














Ex.
Characterization
Schm






2

1H NMR (CDCl3) δ (ppm): 8.02 (s, 1H), 7.79 (d, J=8.0

1A




Hz, 2H), 7.34 (d, J=8.0 Hz, 2H), 7.31 (m, 1H), 7.08 (dt,





J=7.6 Hz, 1.5 Hz, 1H), 6.82 (t, J=6.7 Hz, 2H), 5.62 (t,





J=5.9 Hz, 1H), 4.90 (bs, 2H), 4.61 (d, J=6.0 Hz, 2H),





3.75-3.62 (m, 10H).




3

1H NMR (acetone-d6) δ (ppm): 9.07 (bs, 1H), 8.05-7.95

1A




(m, 2H), 7.55-7.45 (m, 2H), 7.37-7.10 (m, 5H), 7.04 (dt, J=





7.6 Hz, 1.6 Hz, 1H), 6.90 (dd, J=8.0 Hz, 1.4 Hz, 1H),





6.71 (dt, J=7.6 Hz, 1.4 Hz, 1H), 6.65-5.55 (m, 5H),





4.75-4.60 (m, 3H), 3.05-2.75 (m, 2H), 2.60-2.45 (m, 1H)





), 2.00-1.84 (m, 1H). HRMS (calc.): 466.2229, (found):





466.2225




4

1H NMR (acetone-d6) δ (ppm): mixture of rotamers,

1A




9.05-9.00 (m, 1H), 7.98 (d, J=8.8 Hz, 2H), 7.93 (s),





7.84 (d, J=8.0 Hz), 7.72 (d, J=8.2 Hz), 7.58-7.40 (m,





3H), 7.31-7.19 (m, 3H), 7.12-7.05 (m), 6.98 (d, J=8.1





Hz, 2H), 6.86 (d, J=8.2 Hz, 1H), 6.80 (t, J=7.1 Hz,





1H), 6.67 (t, J=7.7 Hz, 1H), 6.57-6.50 (m, 1H), 5.78-





5.60 (m, 2H), 4.67-4.64 (m, 2H), 3.88-3.84 (m, 4H), 3.14





(s, 4H). HRMS (calc.): 477.2389 [M+− NH4], (found):





477.2383




5

1H NMR (acetone-d6) δ (ppm): 9.08 (bs, 1H), 8.51 (bs,

1A




1H), 8.05-7.90 (m, 2H), 7.80-7.60 (m, 1H), 7.55-7.15 (m,





5H), 7.04 (dt, J=7.6 Hz, 1.6 Hz, 1H), 6.90 (dd, J=8.0





Hz, 1.4 Hz, 1H), 6.71 (dt, J=7.6 Hz, 1.4 Hz, 1H), 6.85-





6.55 (m, 1H), 5.84 (bs, 2H), 4.75-4.60 (m, 4H). HRMS





(calc.): 441.2025, (found): 441.2029




6

1H NMR (acetone-d6) δ (ppm): 9.08 (bs, 1H), 8.05-7.95

1B




(m, 2H), 7.56-7.44 (m, 2H), 7.34 (bd, J=7.7 Hz, 1H),





7.27-7.10 (m, 8H), 7.04 (td, J=7.6 Hz, 1.4 Hz, 1H),





6.90 (dd, J=8.0 Hz, 1.4 Hz, 1H), 6.71 (dt, J=7.6 Hz,





1.4 Hz, 1H), 6.65-5.90 (m, 3H), 4.90-4.58 (m, 6H), 3.40-





2.80 (m, 4H). HRMS (calc.): 582.2855, (found):





582.2838




7

1H NMR (acetone-d6) δ (ppm): 9.05-9.00 (m, 1H), 8.03-

1B




7.87 (m, 2H), 7.80-7.70 (m, 2H), 7.63-7.20 (m, 9H), 7.00





(t, 1H), 6.86 (d, 1H), 6.66 (t, 1H), 6.50-5.50 (m, 6H),





4.75-4.55 (m, 3H). HRMS (calc.): 514.2229, (found):





514.2232




8

1H NMR (CDCl3) δ (ppm): 7.96 (bs, 1H), 7.81 (d, J=8.0

1A




Hz, 2H), 7.38 (d, J=8.0 Hz, 2H), 7.32 (d, J=8.0 Hz,





1H), 7.08 (dt, J=7.7 Hz, 1.4 Hz, 1H), 6.83 (t, J=6.6





Hz, 2H), 5.47 (bs, 1H), 4.80 (bs, 2H), 4.60 (d, J=6.0





Hz, 2H), 3.88 (bs, 2H), 3.67 (t, J=5.2 Hz, 4H), 1.66-





1.58 (m, 2H,), 1.56-1.48 (m, 4H).




9

1H NMR (CDCl3) δ (ppm): 7.97 (bs, 1H), 7.82 (d, J=8.0

1A




Hz, 2H), 7.39-7.34 (m, 3H), 7.10 (dt, J=7.6 Hz, 1.4 Hz,





1H), 6.85 (t, J=7.0 Hz, 2H), 5.56 (bs, 1H), 4.90 (bs,





3H), 4.62 (s, 2H), 4.25-4.19 (m, 1H) 3.88 (bs, 2H), 1.95





(m, 2H), 1.71-1.59 (m, 4H), 1.43-1.37 (m, 2H).




10

1H NMR (acetone-d6) δ (ppm): 9.08 (bs, 1H), AB system

1A




A=8.00, δB=7.51, J=8.0 Hz, 4H), 7.33 (bd, J=7.7





Hz, 1H), 7.03 (ddd, J=8.0 Hz, 7.3 Hz, 1.4 Hz, 1H), 6.90





(dd, J=8.0 Hz, 1.4 Hz, 1H), 6.71 (dt, J=7.6 Hz, 1.4 Hz,





1H), 6.60-6.28 (m, 1H), 5.80-5.20 (m, 3H), 4.67 (bs, 4H),





3.87 (bd, J=9.1 Hz, 1H), 1.80-1.60 (m, 4H), 1.56-1.42





(m, 1H), 1.34-1.00 (m including 2 s, 8H), 0.84 (s, 3H).





HRMS (calc.): 486.2855, (found): 486.2844




11

1H NMR (acetone-d6) δ (ppm): 9.07 (bs, 1H), 8.00 (bd,

1B




J=7.4 Hz, 2H), 7.58-7.42 (m, 2H), 7.34 (bd, J=8.0 Hz,





1H), 7.27-7.10 (m, 4H), 7.04 (td, J=7.6 Hz, 1.5 Hz, 1H),





6.90 (dd, J=8.0, 1.4 Hz, 1H), 6.71 (dt, J=7.6 Hz, 1.4





Hz, 1H), 6.60-5.70 (m, 3H), 5.26-5.00 (m, 2H), 4.86-4.54





(m, 4H), 4.10-3.90 (m, 2H), 3.38-3.10 (m, 2H), 3.00-2.80





(m, 2H). HRMS (calc.): 506.2542, (found): 506.2533




12

1H NMR (acetone-d6) δ (ppm): 9.07 (bs, 1H), 8.00 (bd,

1B




J=7.7 Hz, 2H), 7.60-7.40 (m, 2H), 7.33 (dd, J=7.8 Hz,





1.3 Hz, 1H), 7.28-7.10 (m, 4H), 7.04 (dt, J=7.6 Hz, 1.5





Hz, 1H), 6.90 (dd, J=7.8 Hz, 1.4 Hz, 1H), 6.71 (dt, J=





7.6 Hz, 1.3 Hz, 1H), 6.67-5.80 (m, 2H), 4.90-4.50 (m,





4H), 3.40-3.10 (m, 2H), 3.05-2.70 (m, 3H), 0.75-0.43 (m,





4H). HRMS (calc.): 506.2542, (found): 506.2548




13

1H NMR (acetone-d6) δ (ppm): 9.03 (s, 1H), 7.97 (d, J=

1A




7.7 Hz, 2H), 7.55-7.40 (m, 2H), 7.35-7.10 (m, 6H), 6.99





(td, J=8.0 Hz, 1.3 Hz, 1H), 6.86 (dd, J=8.0 Hz, 1.3 Hz,





1H), 6.67 (dt, J=8.0 Hz, 1.4 Hz, 1H), 6.62-5.40 (m, 5H),





4.75-4.45 (m, 3H), 3.59-3.45 (m, 2H), 2.95-2.70 (m, 2H).





HRMS (calc.): 454.2229, (found): 454.2235




14

1H NMR (CDCl3/MeOD) δ (ppm): 7.72 (d, J=8.2 Hz,

1B




2H), 7.21 (d, J=8.2 Hz, 2H), 7.04 (d, J=7.7 Hz, 1H),





6.91 (td, J=7.7 Hz, 1.2 Hz, 1H), 6.70-6.61 (m, 4H),





4.61 (bs, 2H), 3.58-3.52 (m, 9H).




15

1H NMR (CDCl3/MeOD) δ (ppm): 8.06 (bs, 1H), 7.82 (d,

1B




J=8.0 Hz, 2H), 7.37 (d, J=8.2 Hz, 2H), 7.13 (d, J=





7.4 Hz, 1H), 7.06 (d, J=7.4 Hz, 1H), 7.02-6.96 (m, 2H),





6.84-6.71 (m, 3H), 4.61 (bs, 2H), 4.03 (t, J=8.5 Hz,





2H), 3.02 (t, J=8.5 Hz, 2H).




16

1H NMR (acetone-d6) δ (ppm): mixture of rotamers,

1A




9.06 (s, 1H), 7.96 (d, J=8.0 Hz, 2H), 7.55-7.40 (m, 2H),





7.28 (d, J=7.4 Hz, 1H), 7.21-6.70 (m, 6H), 6.67 (t, J=





7.4 Hz, 1H), 6.60-5.70 (m, 5H), 4.75-4.55 (m, 3H), 3.81





(s, 3H), 3.55-3.45 (m, 2H), 2.90-2.78 (m, 2H). HRMS





(calc.): 484.2335, (found): 484.2331




17

1H NMR (acetone-d6) δ (ppm): mixture of rotamers,

1A




9.03 (s, 1H), 7.97 (d, J=8.0 Hz, 2H), 7.55-7.40 (m, 2H),





7.38-7.17 (m, 2H), 7.17-6.95 (m, 4H), 6.86 (dd, J=8.0





Hz, 1.4 Hz, 1H), 6.67 (t, J=7.0 Hz, 1H), 6.50-5.60 (m,





5H), 4.75-4.55 (m, 3H), 3.60-3.52 (m, 2H), 2.95-2.85 (m,





2H). HRMS (calc.): 472.2135, (found): 472.2146




18

1H NMR (acetone-d6) δ (ppm): 9.06 (bs, 1H), 8.04-7.93

1B




(m, 2H), 7.57-7.12 (m, 12H), 7.04 (td, J=7.6 Hz, 1.5





Hz, 1H), 6.91 (dd, J=8.0 Hz, 1.1 Hz, 1H), 6.72 (bt, J=





7.6 Hz, 1H), 6.68-5.90 (m, 3H), 4.84-4.50 (m, 7H), 3.35-





3.13 (m, 2H), 3.00-2.80 (m, 2H). HRMS (calc.):





556.2699, (found): 556.2706




19

1H NMR: (CDCl3) δ (ppm): 7.83 (d, J=8.2 Hz, 3H), 7.44

1B




(d, J=8.2 Hz, 2H), 7.32 (d, J=7.4, 1H), 7.12-7.06 (m,





1H) 6.87-6.82 (m, 2H), 5.11 (t, J=6.2 Hz, 1H), 4.64 (d,





J=6.3 Hz, 2H), 3.87 (bs, 2H), 3.69 (t, J=5.4 Hz, 8H),





1.63-1.53 (m, 12H).




20

1H NMR (acetone-d6) δ (ppm): 9.07 (bs, 1H), 8.05-7.90

1B




(m, 2H), 7.60-7.40 (m, 2H), 7.35-7.05 (m, 10H), 7.04 (td,





J=7.6 Hz, 1.5 Hz, 1H), 6.90 (d, J=7.7 Hz, 1H), 6.71 (t,





J=7.3 Hz, 1H), 6.60-5.70 (m, 3H), 4.95-4.50 (m, 5H),





3.70-2.80 (m, 8H). HRMS (calc.): 552.2750 [M+− NH4],





(found): 552.2746




21

1H NMR (CDCl3) δ (ppm): 7.83 (d, J=8.2 Hz, 3H), 7.44

1A




(d, J=8.2 Hz, 2H), 7.32 (d, J=7.4, 1H), 7.12-7.06 (m,





1H), 6.87-6.82 (m, 2H), 5.11 (t, J=6.2 Hz, 1H), 4.64 (d,





J=6.3 Hz, 2H), 3.87 (bs, 2H), 3.69 (t, J=5.4 Hz), 1.63-





1.53 (m, 12H).




22

1H NMR (acetone-d6) δ (ppm): 9.04 (s, 1H), 7.95 (d, J=

1A




7.3 Hz, 2H), 7.45 (d, J=7.1 Hz, 2H), 7.38-7.15 (m,





6H), 7.00 (td, J=8.0 Hz, 1.5 Hz, 1H), 6.86 (dd, J=8.0





Hz, 1.4 Hz, 1H), 6.67 (dt, J=8.0 Hz, 1.4 Hz, 1H), 6.67-





6.25 (m, 3H), 5.85-5.55 (m, 3H), 4.61 (d, J=6.3 Hz,





2H), 4.54 (d, J=5.2 Hz, 2H). HRMS (calc.): 440.2073,





(found): 440.2078




23

1H NMR (acetone-d6) δ (ppm): mixture of rotamers,

1B




9.20-9.00 (m, 1H), 8.70-8.35 (m, 2H), 8.05-7.90 (m, 2H),





7.85-7.55 (m, 1H), 7.55-7.10 (m, 8H), 7.04 (dt, J=7.6





1.5 Hz, 1H), 6.91 J=7.4 Hz, 1H), 6.71 (bt, J=





7.3 Hz, 1H), 6.80-6.00 (m, 3H), 4.844.50 (m, 7H), 3.34-





3.12 (m, 2H), 3.00-2.80 (m, 2H). HRMS (calc.):





539.2546 [M+− NH4], (found): 539.2533




24

1H NMR (CDCl3) δ (ppm): 7.89 (bs, 1H,), 7.82 (d, J=

1B




8.2 Hz, 2H), 7.42 (d, J=8.0 Hz, 2H), 7.32 (d, J=8.0





Hz, 1H), 7.09 (dt, J=7.7 Hz, 1.6 Hz, 1H), 6.87-6.82 (m,





2H) 4.83 (bs, 1H), 4.62 (d, J=6.0 Hz, 2H), 4.24 (m,





1H), 3.88 (bs, 1H), 2.04-1.96 (m, 2H), 1.70-1.52 (m,





10H), 1.46-1.38 (m, 2H).




25

1H NMR (CDCl3) δ (ppm): 8.27 (bs, 1H), 7.74 (d, J=7.4

1B




Hz, 2H), 7.29 (m, 3H), 7.05 (dt, J=7.6 Hz, 1.4 Hz, 1H),





6.81-6.76 (m, 2H), 5.62 (bs, 2H), 4.57 (bs, 2H), 3.91 (bs,





2H), 3.69 (m, 4H), 3.45 (m, 2H), 2.57 (t, J=6.2 Hz, 2H),





2.47 (m, 4H), 1.71 (m, 4H), 1.59-1.50 (m, 6H).




26

1H NMR (acetone-d6) δ (ppm): 9.07 (bs, 1H), 8.08-7.95

1B




(m, 2H), 7.60-7.43 (m, 2H), 7.33 (d, J=8.0 Hz, 1H),





7.28-7.12 (m, 4H), 7.04 (dt, J=7.6 Hz, 1.4 Hz, 1H),





6.91 (d, J=7.4 Hz, 1H), 6.72 (t, J=7.4 Hz, 1H), 6.55-





6.05 (m, 2H), 4.86-4.60 (m, 5H), 3.80-3.56 (m, 8H),





3.38-3.12 (m, 2H), 3.04-2.82 (m, 2H).




27

1H NMR (acetone-d6) δ (ppm): 9.08 (bs, 1H), 8.01 (bd,

1B




J=7.4 Hz, 2H), 7.56-7.43 (m, 2H), 7.33 (bd, J=8.0 Hz,





1H), 7.28-7.12 (m, 4H), 7.04 (dt, J=7.6 Hz, 1.4 Hz, 1H),





6.90 (dd, J=8.0 Hz, 1.4 Hz, 1H), 6.71 (dt, J=7.6 Hz,





1.4 Hz, 1H), 6.65-5.75 (m, 2H), 4.904.58 (m, 5H), 3.66-





2.34 (m, 16H).




28

1H NMR (acetone-d6) δ (ppm): 10.00 (s, 1H), 9.13 (s,

1A




1H), 7.93 (d, J=8.0 Hz, 2H), 7.70-7.50 (m, 1H), 7.50-





7.22 (m, 4H), 7.18-6.91 (m, 4H), 6.85 (d, J=7.1 Hz,





1H), 6.67 (t, J=7.4 Hz, 1H), 6.40-5.90 (m, 3H), 4.75-





4.50 (m, 2H), 4.37 (s, 2H), 3.62 (d, J=6.3 Hz, 2H), 2.99





(s, 2H).
















TABLE 2b







embedded image





















Ex.
Cpd
X
Y
Name





329
470


embedded image


NH2
4-{[4-amino-6-(3-phenyl- propyl-1-amino)- [1,3,5]triazin-2-yl-amino]- methyl)-N-(2-amino- phenyl)-benzamide













330
471


embedded image




embedded image


N-(2-amino-phenyl)-4-[(4- cyclopropyl-amino-6- phenethyl-amino- [1,3,5]triazin-2-yl-amino)- methyl]-benzamide














331
472


embedded image




embedded image


N-(2-amino-phenyl)-4-{[4- cyclopropyl- methylamino-6-(2- indanyl-amino)-[1,3,5]- triazin-2-yl-amino]- methyl}-benzamide





332
473


embedded image


n-BuNH
N-(2-amino-phenyl)-4-[(4- n-butyl-amino-6- phenethyl-amino- [1,3,5]triazin-2-yl-amino)- methyl]-benzamide





333
474


embedded image


MeOCH2CH2NH
N-(2-amino-phenyl)-4-{[4- (2-methoxy-ethyl-1- amino)-6-phenethyl- amino-[1,3,5]triazin-2-yl- amino]-methyl}- benzamide





334
475


embedded image




embedded image


N-(2-amino-phenyl)-4-{[4- (4-chloro-phenethyl- amino)-6-cyclopropyl- amino-[1,3,5]triazin-2-yl- amino]-methyl}- benzamide





335
476


embedded image




embedded image


N-(2-amino-phenyl)-4-{[6- cyclopropyl-amino-4-(4- methoxy-phenethyl- amino)-[1,3,5]triazin-2-yl- amino]-methyl}- benzamide





336
477


embedded image




embedded image


N-(2-amino-phenyl)4-{[4- (3-chloro-phenethyl- amino)-6-cyclopropyl- amino-[1,3,5]triazin-2-yl- amino]-methyl}- benzamide





337
478


embedded image




embedded image


N-(2-amino-phenyl)-4-{[6- cyclopropyl-amino-4- (3,4-dimethoxy- phenethyl-amino)- [1,3,5]triazin-2-yl-amino]- methyl}-benzamide





338
479


embedded image




embedded image


N-(2-amino-phenyl)4-{[6- cyclopropyl-amino-4-(3- methoxy-phenethyl- amino)-[1,3,5]triazin-2-yl- aminol-methyl}- benzamide





339
480


embedded image




embedded image


N-(2-amino-phenyl)-4-{[6- cyclopropyl-amino-4-(2- pyridin-2-yl-ethyl-1- amino)-[1,3,5]triazin-2-yl- amino]-methyl}- benzamide





340
481


embedded image




embedded image


N-(2-amino-phenyl)-4-{[6- cyclopropyl-amino-4-(3- pyridin-2-yl-ethyl-1- amino)-[1,3,5]triazin-2-yl- amino]-methyl}- benzamide





341
482


embedded image




embedded image


N-(2-amino-phenyl)-4-[(4- cyclopropyl-amino-6- phenethyl-oxy- [1,3,5]triazin-2-yl-amino)- methyl]-benzamide





342
483


embedded image


Me
N-(2-amino-phenyl)-4-[(6- methyl-4- phenethylamino- [1,3,5]triazin-2-yl-amino)- methyl]-benzamide





343
484


embedded image


NH2
N-(2-amino-phenyl)4-{[4- amino-6-phenyl-[1,3,5]- triazin-2-yl-amino] methyl)-benzamide





344
485


embedded image




embedded image


N-(2-amino-phenyl)-4-{[6- (2-indanyl-amino)-4- phenyl-[1,3,5]-triazin-2- yl-amino]-methyl}- benzamide














Ex.
Characterization
Schm






329

1H NMR (300 MHz, acetone-d6) δ (ppm): 9.03 (s,

1A




1H), 7.96 (d, J=8.2 Hz, 2H), 7.46 (d, J=7.7 Hz, 2H),





7.35-7.10 (m, 6H), 7.00 (t, J=7.7 Hz, 1H), 6.86 (d,





J=8.0 Hz, 1H), 6.67 (t, J=7.7 Hz, 1H), 6.60-5.40 (m,





6H), 4.62 (s, 2H), 3.35 (dd, J=12.1, 6.9 Hz, 2H),





2.75-2.60 (m, 2H), 1.95-1.80 (m, 2H).




330

1H NMR (300 MHz, acetone-d6) δ (ppm): 9.04 (s,

1B




1H), 7.96 (d, J=8.0 Hz, 2H), 7.55-7.40 (m, 2H), 7.35-





7.10 (m, 6H), 6.98 (t, J=7.4 Hz, 1H), 6.85 (d, J=6.9





Hz 1H), 6.66 (t, J=7.3 Hz, 1H), 6.20-5.50 (m, 3H),





4.80-4.50 (m, 4H), 3.65-3.45 (m, 2H), 3.00-2.60 (m,





2H), 0.80-0.40 (m, 4H).




331

1H NMR (300 MHz, acetone-d6) δ (ppm): 9.06 (bs,

1B




1H), 8.00 (bd, J=7.1, 2H), 7.50 (bs, 1H),), 7.33 (d,





J=6.6 Hz, 1H), 7.28-7.07 (m, 4H), 7.03 (td, J=7.6,





1.5 Hz, 1H), 6.90 (dd, J=8.0, 1.4 Hz, 1H), 6.71 (td,





J=7.6, 1.4 Hz, 1H), 6.55-5.70 (m, 3H), 4.90-4.50





(m, 5H), 3.40-2.80 (m, 6H), 1.07 (bs, 1H), 0.44 (bs,





2H), 0.23 (bs, 2H).




332

1H NMR (300 MHz, CDCl3) δ (ppm): 8.08 (s, 1H),

1B




7.83 (d, J=6.6 Hz, 2H), 7.45-7.05 (m, 8H), 7.08 (td,





J=7.8, 1.5 Hz, 1H), 6.84 (t, J=8.1 Hz, 2H), 6.70-





5.00 (m, 3H), 4.70-4.50 (m, 2H), 3.65-3.50 (m, 2H),





3.45-3.25 (m, 2H), 2.40-2.25 (m, 2H), 1.60-1.45 (m,





2H), 1.45-1.00 (m, 2H), 1.00-0.8 (m, 3).




333

1H NMR (300 MHz, acetone-d6) δ (ppm): 9.02 (s),

1B




8.58 (s), 8.40 (dd, J=7.2, 2 Hz, 1H), 7.97 (d, J=





7.5 Hz, 1H), 7.51-7.40 (m, 2H), 7.70-6.90 (m, 7H),





6.86 (dd, J=8.1, 1.2 Hz), 6.76 (dd, J=7.5, 1.8 Hz),





6.67 (td, J=7.8, 1.5 Hz), 6.60-5.50 (m, 3H), 4.75-





4.55 (m, 4H), 3.65-3.35 (m, 6H), 3.35-3.20 (s, 3H),





2.95-2.75 (m, 2H).




334

1H NMR (300 MHz, acetone-d6) δ (ppm): 9.02 (s,

1B




1H), 8.02-7.91 (m, 2H), 7.58-7.40 (m, 2H), 7.28 (s,





4H), 7.20-7.05 (m, 1H), 6.99 (td, J=7.5, 1.8 Hz,





1H), 6.86 (d, J=7.8 Hz, 1H), 6.67 (t, J=6.9 Hz,





1H), 6.60-5.60 (m, 3H), 4.75-4.50 (m, 4H), 3.65-3.40





(bs, 2H), 2.95-2.65 (m, 2H), 0.75-0.55 (m, 2H), 0.55-





0.40 (m, 2H).




335

1H NMR (300 MHz, CDCl3) δ (ppm): 8.55-7.72 (m,

1B




4H), 7.55-6.75 (m, 9H), 6.75-5.30 (m, 3H), 4.69 (m,





2H), 3.85 (s, 3H), 3.63 (bs, 2H), 2.86 (m, 3H), 0.85





(bs, 2H), 0.61 (bs, 2H).




336

1H NMR (300 MHz, acetone-d6) δ (ppm): 9.03 (s,

1B




1H), 7.96 (d, J=7.5 Hz, 2H), 7.60-7.37 (m, 2H),





7.37-7.12 (m, SH), 6.99 (t, J=6.9 Hz, 1H), 6.86 (d, J=





6.9 Hz, 1H), 6.67 (t, J=7.2 Hz, 1H), 6.60-5.60 (m,





3H), 4.75-4.50 (m, 4H), 3.67-3.45 (m, 2H), 3.00-2.67





(m, 3H), 0.75-0.40 (m, 4H).




337

1H NMR (300 MHz, acetone-d6) δ (ppm): 9.02 (s,

1B




1H), 7.96 (d, J=8.1 Hz, 2H), 7.60-7.40 (m, 2H),





7.29 (d, J=8.1 Hz, 1H), 6.99 (td, J=8.1, 1.5 Hz,





1H), 6.95-6.72 (m, 4H), 6.67 (td, J=7.8, 1.5 Hz,





1H), 6.20-5.60 (m, 3H), 4.78-4.52 (m, 4H), 3.75 (s,





6H), 3.65-3.42 (m, 2H), 2.95-2.65 (m, 3H), 0.72-0.40





(m, 4H).




338

1H NMR (300 MHz, acetone-d6) δ (ppm): 9.02 (s,

1B




1H), 7.96 (d, J=7.8 Hz, 2H), 7.60-7.35 (m, 2H),





7.29 (d, J=7.5 Hz, 1H), 7.18 (t, J=7.8 Hz, 1H),





6.99 (td, J=7.5, 1.5 Hz, 1H), 6.90-6.70 (m, 4H),





6.67 (t, J=7.8 Hz, 1H), 6.60-5.60 (m, 3H), 4.77-





4.50 (m, 4H), 3.76 (s, 3H), 3.65-3.45 (m, 2H), 2.92-





2.65 (m, 3H), 0.72-0.42 (m, 4H).




339

1H NMR (300 MHz, acetone-d6) δ (ppm): 9.03 (s,

1B




1H), 8.50 (d, J=1.2 Hz, 1H), 7.96 (d, J=8.1 Hz,





2H), 7.66 (t, J=7.5 Hz, 1H), 7.60-7.40 (m, 2H),





7.35-7.08 (m, 3H), 6.99 (td, J=8.1, 1.5 Hz, 1H),





6.86 (dd, J=8.1,1.5 Hz, 1H), 6.67 (td, J=7.8, 1.5





Hz, 1H), 6.60-5.60 (m, 3H), 4.75-4.50 (m, 4H), 3.80-





3.60 (m, 2H), 3.15-2.90 (m, 2H), 2.90-2.65 (m, 1H),





0.73-0.40 (m, 4H).




340

1H NMR (300 MHz, acetone-d6) δ (ppm): 9.20-9.00

1B




(m, 1H), 8.70-8.50 (m, 2H), 8.00 and 7.88 (2d, J=





7.9 Hz, 2H), 7.75-7.43 (m, 3H), 7.38-6.67 (m, 5H),





6.22-5.78 (m, 3H), 4.80-4.55 (m, 4H), 3.61 (bs, 2H),





3.20-2.65 (m, 3H), 0.80-0.45 (m, 4H).




341

1H NMR (300 MHz, acetone-d6) δ (ppm): 9.04 (s,

1, 25




1H), 7.98 (d, J=8.1 Hz, 2H), 7.60-7.40 (m, 2H),





7.35-7.15 (m, 6H), 7.00 (td, J=7.5, 1.5 Hz, 1H),





6.86 (d, J=8.1 Hz, 1H), 6.67 (t, J=7.5 Hz, 1H),





7.18-6.35 (m, 2H), 4.75-4.30 (m, 6H), 3.10-2.92 (m,





2H), 0.75-0.63 (m, 2H), 0.57-0.48 (m, 2H).




342

1H NMR (300 MHz, acetone-d6 + □ DMSO-d6) δ

30




(ppm): mixture of rotamers, 9.62 (bs, 1H), 8.03 (d, J=





8.0 Hz, 2H), 7.80-7.44 (m, 3H), 7.40-7.10 (m, 8H),





7.01 (t, J=7.6 Hz, 1H), 6.87 (d, J=7.9 Hz, 1H),





6.67 (t, J=7.4 Hz, 1H), 4.85 (bs, 2H), 4.72-4.54 (m,





2H), 3.63-3.42 (m, 2H), 2.96-2.74 (m, 2H), 2.21 and





2.13 (2s, 3H).




343

1H NMR (300 MHz, acetone-d6) δ (ppm): mixture of

30




rotamers, 9.08 (bs, 1H), 8.48-8.36 (m, 2H), 8.02 (d, J=





8.2 Hz, 2H), 7.63-7.42 (m, 5H), 7.33 (d, J=7.7





Hz, 1H), 7.19 (bs, 1H), 7.03 (t, J=7.4 Hz, 1H), 6.88





(d, J=7.9 Hz, 1H), 6.70 (t, J=7.6 Hz, 1H), 6.35 and





6.25 (2bs, 2H), 4.87 and 4.75 (2d, J=5.9 Hz, 2H),





4.65 (bs, 2H).




344

1H NMR (300 MHz, acetone-d6) δ (ppm): mixture of

30




rotamers, 9.14-8.96 (m, 1H), 8.54-8.30 (m, 2H),





8.09-7.95 (m, 2H), 7.68-7.40 (m, 5H), 7.38-7.08 (m,





6H), 7.03 (t, J=7.3 Hz, 1H), 6.94-6.76 (m, 2H), 6.71





(t, J=7.3 Hz, 1H), 5.13-4.54 (m, 5H), 3.49-3.18 (m,





2H), 3.12-2.90 (m, 2H).











embedded image


Example 29
N-(2-Amino-phenyl)-4-({4-[2-(4-benzo[1,3]dioxol-5-ylmethyl-piperazin-1-yl)-2-oxo-ethyl]-6-morpholin-4-yl-[1,3,5]triazin-2-ylamino}-methyl)-benzamide (compound 39)
Step 1: N-Acetyl-1-piperonylpiperazine (compound 37)

To a stirred solution at 0° C. of 1-piperonylpiperazine 36 (5.00 g, 22.7 mmol) in anhydrous CH2Cl2 (60 mL) was added Et3N (6.33 mL, 45.4 mmol) followed by acetyl chloride (1.94 mL, 27.2 mmol). The reaction mixture was stirred 30 min. at 0° C. and then 2 h at room temperature. The reaction mixture was poured into a saturated aqueous solution of NH4Cl, and diluted with AcOEt. After separation, the organic layer was successively washed with sat. NH4Cl, H2O and brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (MeOH/CH2Cl2: 4/96) to afford the title compound 37 (5.52 g, 21.11 mmol, 93% yield) as a yellow solid. 1H NMR: (300 MHz, CDCl3) δ (ppm): 6.83 (s, 1H), 6.72 (m, 2H), 5.92 (s, 2H), 3.59 (t, J=5.1 Hz, 2H), 3.44-3.40 (m, 4H), 2.42 (dt, J=5.1 Hz, 5.1 Hz, 4H), 2.06 (s, 3H).


Step 2: 2-Chloro-4-morpholin-4-yl-6-[2-(4-benzo[1,3]-dioxol-5-ylmethyl-piperazin-1yl)-2-oxo-ethyl]-[1,3,5]-triazine (compound 38)

To a stirred solution of 37 (3.00 g, 11.4 mmol) in anhydrous THF (25 mL) at −78° C. was slowly added a solution of LiHMDS (11.4 mL, 11.4 mmol, 1 M in THF). The reaction mixture was stirred 1 h at −78° C. and a solution of 2,4-dichloro-6-morpholin-4-yl-[1,3,5]triazine (2.69 g, 11.4 mmol) in anhydrous THF (25 mL) was added. The reaction mixture was slowly warmed up at room temperature and the reaction was quenched after 16 h with a saturated aqueous solution of NH4Cl. The THF was evaporated and the residue was diluted with AcOEt. The organic layer was successively washed with sat. NH4Cl and brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (MeOH/CH2Cl: 1/99→3/97) to afford the title compound 38 (4.84 g, 10.49 mmol, 92% yield) as a pale yellow solid. 1H NMR (300 MHz, CDCl3) δ (ppm): 6.84 (s, 1H), 6.77-6.69 (m, 2H), 5.95 (s, 2H), 3.75-3.43 (m, 16H), 2.42 (m, 4H).


Step 3: N-(2-Amino-phenyl)-4-({4-[2-(4-benzo[1,3]-dioxol-5-ylmethyl-piperazin-1-yl)-2-oxo-ethyl]-6-morpholin-4-yl-[1,3,5]triazin-2-ylamino}-methyl)-benzamide (compound 39)

The title compound 39 was obtained following the same procedure as Example 1, step 5. 1H NMR (CDCl3) δ (ppm): 7.96 (bs, 1H), 7.87 (d, J=8.2 Hz, 2H), 7.39 (d, J=8.2 Hz, 2H), 7.33 (d, J=8.5 Hz, 1H), 7.10 (dt, J=7.6 Hz, 1.2 Hz, 1H), 6.87-6.81 (m, 3H), 6.75-6.68 (m, 2H), 5.93 (s, 2H), 5.67 (bs, 1H), 4.64 (s, 2H), 3.90 (bs, 2H), 3.75-3.35 (m, 16H), 2.45-2.30 (m, 4H).




embedded image


embedded image


Example 40
N-(2-aminophenyl)-6-(2-phenylamino-ethylamino)-nicotinamide (compound 44)
Step 1: N-(5-Bromo-pyridin-2-yl)-N′-phenyl-ethane-1,2-diamine (compound 42)

A mixture of 2,5-dibromopyridine 40 (2.08 g, 8.6 mmol) and phenyl-1,2-ethyldiamine (1.98 g, 14.6 mmol, 1.7 equiv.) was stirred under nitrogen at 120° C. for 6 h. After cooling down to room temperature, the solid mixture was ground in a mortar, dissolved in ethyl acetate (200 mL), washed with saturated NaHCO3 (2×50 mL), dried (MgSO4), filtered and concentrated. After a quick purification through a short chromatographic column (silica gel, elution 50% ether in hexanes), a pale yellow solid 42 (1.75 g, 6.01 mmol, 70% yield) was obtained. 13C NMR (300 MHz, acetone-d6) δ (ppm): 158.6, 149.6, 148.8, 139.9, 129.8, 117.1, 113.1, 110.8, 106.6, 43.9, 41.5. LMRS=294.0 (M+1).


Step 2: N-(2-aminophenyl)-6-(2-phenylamino-ethylamino)-nicotinamide (compound 44)

A mixture of 5-bromo-2-N-alkanyl-2-aminopyridine 42 (352 mg, 1.2 mmol), 1,2-phenylenediamine (3.95 mmol, 3.3 equiv.), Pd(OAc)2 (0.31 mmol, 26% mol) and 1,1′-bis (diphenylphosphino) ferrocene (124 mg, 0.22 mmol) was suspended in degassed DMF (3 mL), treated with diisopropylethyl amine (0.9 mL, 5.2 mmol) and the system flushed with CO. The reaction mixture was warmed up to 60° C. and stirred under CO (balloon) for 18 h at this temperature. After evaporation of the DMF under vacuo, the residue was purified through a chromatographic column (silica gel, elution 3% to 6% methanol in dichloromethane) to give 258 mg (0.74 mmol, 62% yield) of the aminoanilide 44. 1H-NMR (CD3OD-d4), δ (ppm): 8.67 (d, J=2.2 Hz, 1H), 7.97 (dd, J=8.9 Hz, 2.5 Hz, 1H), 7.58 (m, 1H), 7.51 (m, 1H), 7.15 (dd, J=7.7 Hz, 1.1 Hz, 1H), 7.08 (m, 2H), 6.89 (dd, J=8.0 Hz, 1.4 Hz, 1H), 6.76 (dt, J=7.7 Hz, 4.4 Hz, 1H), 6.67 (t, J=7.7 Hz, 2H), 6.60 (m, 2H), 4.87 (bs, 4H), 3.60 (t, J=6.3 Hz, 2H), 3.35 (t, J=6.3 Hz, 2H).


Example 41
N-(2-amino-phenyl)-6-(4-methoxy-benzylamino)-nicotinamide (compound 45)
Step 1: N-(5-Bromo-pyridin-2-yl)-4-methoxybenzylamine (compound 43)

A mixture of 2,6-dibromopyridine 41 (6.03 mmol, 2 equiv.) and para-methoxybenzyl amine (413 mg, 3.01 mmol) was stirred under nitrogen at 120° C. for 6 h. After identical work-up procedure described before and purification through a pad of silica gel (elution 50% ether in hexanes), a pale yellow solid 43 (773 mg, 2.60 mmol, 87% yield) was obtained. 13C NMR (300 MHz, CDCl3) δ (ppm): 159.1, 139.7, 132.1, 130.5, 128.9, 127.2, 116.2, 114.3, 104.8, 55.4, 46.0. LMRS=295.0 (M+1).


Step 2: N-(2-amino-phenyl)-6-(4-methoxy-benzylamino)-nicotinamide (compound 45)

Following the procedure described in Example 40, step 2, but substituting 43 for 42, the title compound 45 was obtained in 61% yield.


Example 42
N-(2-aminophenyl)-3-[6-(2-phenylamino-ethylamino)-pyridin-3-yl]-acrylamide (compound 50)
Step 2: 346-(2-Phenylamino-ethylamino)-pyridin-3-yl)-acrylic acid tert-butyl ester (compound 46)

In a 50 mL flask, a mixture of 42 (308 mg, 1.05 mmol), tert-butylacrylate (0.8 mL, 5.5 mmol), diisopropylethylamine (0.8 mL, 4.6 mmol), tri-o-tolylphosphine (POT, 192 mg 0.63 mmol), Pd2(dba)3 (73 mg, 0.08 mmol) in anhydrous DMF (4 mL) was stirred at 120° C. (preheated oil bath) for 2 h under nitrogen. After DMF removal, the crude residue was submitted to a chromatographic purification (column silica gel, 50% ether in hexanes) to afford 316 mg of 46 (88% yield). 13C NMR (300 MHz, CDCl3) δ (ppm): 166.6, 159.3, 149.6, 147.8, 140.7, 134.9, 129.1, 119.8, 117.3, 115.9, 112.6, 107.8, 80.0, 43.5, 40.9, 28.1. LRMS=340.3 (M+1).


Step 3: 3-[6-(2-Phenylamino-ethylamino)-pyridin-3-yl)-acrylic acid (compound 48)

Ester 46 (0.93 mmol) was dissolved 40% TFA in dichloromethane (10 mL) and the solution stirred at room temperature overnight. The solvent was removed under vacuo distilling with acetonitrile (3×10 mL) and stored under high vacuum for 6 h. The solid residue 48 was employed for the next reaction without further purification. LRMS=284.1 (M+1).


Step 4: N-(2-aminophenyl)-3-[6-(2-phenylamino-ethylamino)-pyridin-3-yl]-acrylamide (compound 50)

A mixture of acid 48 (0.93 mmol), BOP (495 mg, 1.12 mmol) and 1,2-phenylenediamine (124 mg, 1.15 mmol) were dissolved in dry acetonitrile (4 mL) and treated with triethylamine (0.8 mL, 5.7 mmol). The solution was stirred under nitrogen at room temperature for 16 h. After concentration under vacuo, the crude was purified through chromatographic column (5% methanol in dichloromethane), then was crystallized from chloroform to give 50 (247 mg, 71% yield). 1H-NMR (DMSO-d6), δ (ppm): 9.25 (bs, 1H), 8.21 (d, J=1.6 Hz, 1H), 7.67 (d, J=8.5 Hz, 1H), 7.43 (d, J=15.7 Hz, 1H), 7.32 (d, J=7.4 Hz, 1H), 7.24 (t, J=1.0 Hz, 1H), 7.08 (t, J=7.4 Hz, 2H), 6.91 (t, J=8.0 Hz, 1H), 6.75 (dt, J=8.0 Hz, 0.4 Hz, 1H), 6.57 (m, 6H), 5.20 (bs, 1H), 3.48 (t, J=6.3 Hz, 2H), 3.33 (bs, 2H), 3.21 (t, J=6.3 Hz, 2H).


Example 43
N-(2-aminophenyl)-3-[6-(4-methoxy-benzylamino)-pyridin-2-yl]-acrylamide (compound 51)
Step 2: N-(2-aminophenyl)-3-[6-(4-methoxy-benzylamino)-pyridin-2-yl]-acrylamide (compound 51)

Following the procedure described in Example 42, steps 2, 3, 4, but substituting 43 for 42, the title compound 51 was obtained in 50% yield (on 2 steps). 1H-NMR (CDCl3), δ (ppm): 7.60 (bs, 1H), 7.55 (bs, 1H), 7.43 (t, J=7.7 Hz, 1H), 7.29 (d, J=8.3 Hz, 2H), 7.17 (d, J=15.1 Hz, 1H), 7.06 (t, J=7.7 Hz, 1H), 6.88 (d, J=8.3 Hz, 2H), 6.80 (m, 2H), 6.70 (m, 3H), 6.41 (d, J=8.5 Hz, 1H), 4.50 (d, J=5.5 Hz, 2H), 3.80 (s, 3H), 3.45 (bs, 2H).




embedded image


Example 44
4-[2-(2-amino-phenylcarbamoyl)-vinyl]-benzyl}-carbamic acid pyridin-3-yl-methyl ester (compound 55)
Step 1: (4-bromo-benzyl)-carbamic acid pyridin-3-yl-methyl ester (compound 54)

4-bromobenzylamine HCl (3.0 g, 13.4 mmol) was dissolved in DMF (60 mL) at rt and then Et3N (4.13 mL, 29.7 mmol) was added dropwise over 10 min to give cloudy solution. To this, DBU (2.42 mL, 16.2 mmol) and 1,1′-carbonyl diimidazole (2.41 g, 14.8 mmol) were added. After being stirred for 1 h at rt, 3-pyridylcarbinol (1.44 mL, 14.8 mmol) was added dropwise over 10 min. The resulting reaction mixture was stirred overnight and then concentrated under reduced pressure. The residue obtained was diluted with ether/EtOAc (9:1) and then washed with H2O. The organic layer was dried over Na2SO4, filtered and then concentrated to give the crude product which was recrystallized from EtOAc to give 2.55 g of product 54 (59% yield, LRMS=323 (M+1).


Step 2: 4-[2-(2-amino-phenylcarbamoyl)-vinyl]-benzyl}-carbamic acid pyridin-3-yl-methyl ester (compound 55)

Following the procedure described in Example 42, steps 2, 3, but substituting 54 for 42, and acrylic acid for tert-butyl acrylate the title compound 55 was obtained in an overall yield of 20%. 1H NMR: (DMSO-d6) δ (ppm): 10.03 (s, 1H), 9.32 (s, 1H), 8.65 (s, 1H), 8.55 (d, J=3.3 Hz, 1H), 7.85 (d, J=7.69 Hz, 1H), 7.40-7.60 (m, 6H), 7.31 (d, J=7.69 Hz, 1H), 6.89 (dd, J=7.14 Hz, J=7 Hz, 1H), 6.71-6.79 (m, 2H), 6.55 (dd, J=7.1 Hz, J=7 Hz, 1H), 5.20 (s, 2H), 4.93 (bs, 2H).




embedded image


Example 45
N-(2-aminophenyl)-3-{4-[(3,4,5-trimethoxy-benzylamino)-methyl]-phenyl}-acrylamide (compound 59)
Step 1: (4-Bromo-benzyl)-(3,4,5-trimethoxy-benzyl)-amine (compound 57)

To a stirred suspension of K2CO3 (522 mg, 3.77 mmol) in dry DMF was added 3,4,5-trimethoxybenzylamine (1.10 mL, 6.44 mmol, 2.2 equiv.) followed by a solution of p-bromo benzylbromide (0.73 g, 2.91 mmol) in dry DMF (8 mL). The mixture was stirred at room temperature under nitrogen for two days in the dark, diluted with dichloromethane (200 mL), washed with brine, dried (MgSO4), filtered and concentrated. The crude residue was purified by chromatographic column on silica gel (elution 5% methanol in dichloromethane) to give 2.59 mmol (89% yield) of dibenzylamine 57. 13C NMR (300 MHz, CDCl3) δ (ppm): 152.5, 138.8, 136.1, 135.4, 130.6, 129.2, 119.8, 104.2, 59.9, 55.3, 52.6, 51.7. LRMS=368.4 (M+1).


Step 2: N-(2-Nitro-phenyl)-3-{4-[(3,4,5-trimethoxy-benzylamino)-methyl]-phenyl}-acrylamide (compound 58)

Preparation of the Nitroacrylanilide


To a mixture of 2-nitroaniline (1.73 g, 12.5 mmol), DMAP (321 mg, 2.6 mmol) and 2,6-di-tert-butyl-4-methylphenol (308 mg) in dry dichloromethane (50 mL) at 0° C. was added triethylamine (10.6 mL, 76 mmol) followed by acryloylchloride (3.2 mL, 38 mmol, 3.0 equiv.), and the mixture was stirred at room temperature for 16 h. The solution was diluted with dichloromethane (250 mL), cooled to 0° C. and the excess of reagent quenched with saturated NaHCO3 (stirring for 1 h). The organic layer was then washed (5% KHSO4, then brine), dried (MgSO4), filtered and concentrated under reduced pressure. After purification through chromatographic column on silica gel (elution 50% ether in hexanes), 642 mg (3.34 mmol, 27% yield) of the amide was obtained. 13C NMR (300 MHz, CDCl3) δ (ppm): 163.6, 136.0, 135.6, 134.5, 131.3, 128.6, 125.4, 123.1, 121.8. LRMS=193.2 (M+1).


Step 3: N-(2-aminophenyl)-3-{4-[(3,4,5-trimethoxy-benzylamino)-methyl]-phenyl}-acrylamide (59)

A mixture of nitro-compound 58 (127 mg, 0.27 mmol), SnCl2 (429 mg, 2.26 mmol, 8.4 equiv.) and NH4OAc (445 mg) was suspended in methanol (9.5 mL) and water (1.5 mL), and the mixture was heated at 70° C. for 45 min. The mixture was diluted with ethylacetate (100 mL) and washed with brine and then saturated NaHCO3, dried (MgSO4), filtered, and concentrated. Purification by chromatographic column on silica gel (elution 5 to 10% methanol in dichloromethane) gave 52 mg (43% yield) of 59. 1H-NMR (CDCl3), δ (ppm): 8.25 (bs, 1H), 7.59 (d, J=15.6 Hz, 1H), 7.38 (d, J=7.5 Hz, 2H), 7.29 (d, J=7.5 Hz, 2H), 7.25 (m 1H), 7.02 (t, J=6.8 Hz, 1H), 6.75 (m, 2H), 6.62 (d, J=15.6 Hz, 1H), 6.58 (s, 2H), 3.97 (bs, 3H), 3.80 (s, 9H), 3.78 (s, 2H), 3.72 (s, 2H).


Example 46
N-(2-aminophenyl)-3-(4-{[(3,4,5-trimethoxy-benzyl)-amino]-methyl}-phenyl)-acrylamide (compound 61)
Step 1: 3-{4-{[Methyl-(3,4,5-trimethoxy-benzyl)-amino]methyl}-phenyl)-N-(2-nitro-phenyl)-acrylamide (compound 60)

Amine 58 (180.2 mg, 0.38 mmol) was dissolved in 88% of HCO2H (6 mL), treated with excess of paraformaldehyde (7.67 mmol) and the mixture stirred at 70° C. for 2.5 h. A saturated NaHCO3 solution, was added slowly, extracted with dichloromethane (2×75 mL), dried (MgSO4), filtered and concentrated. After chromatographic column on silica gel (elution 3 to 5% methanol in dichloromethane), pure N-methyl amine 60 (118 mg, 63% yield) was obtained. 13C NMR (300 MHz, CDCl3) δ (ppm): 164.5, 153.1, 143.5, 142.3, 136.8, 136.1, 136.0, 135.3, 134.9, 132.9, 129.3, 128.2, 125.8, 123.1, 122.2, 120.3, 105.4, 62.2, 61.2, 60.8, 56.0, 42.5. LRMS=492.5 (M+1).


Step 2: N-(2-aminophenyl)-3-(4-{[(3,4,5-trimethoxy-benzyl)-amino]-methyl}-phenyl)-acrylamide (compound 61)

Following the procedure described in Example 45, step 3, but substituting the nitro-compound 60 for 58, the title compound 61 was obtained in 72% yield. 1H-NMR (DMSO-d6), δ (ppm): 9.15 (bs, 1H), 8.13 (bs, 1H), 7.58 (d, J=1.9 Hz, 1H), 7.30 (m 4H), 7.12 (d, J=7.7 Hz, 1H), 6.91 (m 3H), 6.75 (d, J=7.8 Hz, 1H), 6.57 (m 2H), 4.83 (bs, 2H), 4.43 (d, J=5.5 Hz, 2H), 3.72 (s, 3H), 3.33 (s, 3H).




embedded image


Example 47
N-(2-aminophenyl)-3-{4-(4-methoxy-benzylamino)-phenyl}-acrylamide (compound 65)
Step 1: Methyl-3-(4-amino-phenyl)-acrylate hydrochloride (compound 63)

4-amino-cinnamic acid (10.41 g, 0.052 mol) was dissolved in methanol (100 mL) at rt. A solution of HCl in dioxane (15.6 mL, 4 N) was then added. The reaction mixture was heated at reflux overnight. The clear solution was evaporated to a half volume and then settled down at rt. The white suspension obtained was collected by vacuum filtration. The mother liquid was evaporated again to a quart volume and cooled down to rt. The suspension was filtered again. The combined the solid collected from two filtration was dried in vacuo to give 7.16 g of 63 (64.3% yield). LRMS: 178 (M+1).


Step 2: Methyl-3-{4-(4-methoxy-benzylamino)-phenyl}-acrylate hydrochloride (compound 64)

To a suspension of compound 63 (3.57 g, 16.7 mmol) in DMF (30 mL) was added Et3N. after 10 min 4-methoxybenzyl chloride (2.0 g, 12.8 mmol), NaI (0.38 g, 2.6 mmol) and K2CO3 (3.53 g, 25.5 mmol) were added successively. The mixture was heated at 60° C. overnight and evaporated to dryness. The residue was partitioned between NaHCO3 sat. solution (50 mL) and EtOAc (50 mL×3). The combined organic layers were washed with brine and then evaporated to dryness. The residue was purified by flash chromatography and then recrystallized from isopropylalcohol to give 1.16 g 64 (yield 30.6%, LRMS=298) and 1.46 g of 63 (49% recovered yield).


Step 3: N-(2-aminophenyl)-3-{4-(4-methoxy-benzylamino)-phenyl}-acrylamide (compound 65)

Following the procedure described in Example 42, step 4, but substituting 64 for 48, the title compound 65 was obtained in 32% yield. 1H NMR: (DMSO-d6) δ (ppm): 9.15 (s, 1H), 7.24-7.38 (m, 6H), 6.84-6.90 (m, 3H), 6.72 (m, 2H), 6.49-6.60 (m, 4H), 4.84 (s, 2H), 4.22 (d, J=5.77 Hz, 2H).




embedded image


Example 48
N-(2-Amino-phenyl)-3-(4-styrylamino-phenyl)-acrylamide (compound 71)
Step 1: N-(4-Iodo-phenyl)-(3-phenyl-allyl)-amine (compound 69)

Following the procedure described in Example 47, step 2, but substituting 68 for 63, the title compound 69 was obtained in 70% yield. LRMS=288 (M+1)


Step 2: N-(2-Amino-phenyl)-3-(4-styrylamino-phenyl)-acrylamide (71)

Following the procedure described in Example 42, steps 2, 4, but substituting 69 for 42, and acrylic acid for tert-butyl acrylate the title compound 71 was obtained in an overall yield of 60%. 1H NMR: (DMSO-d6) δ (ppm): 9.22 (bs, 1H), 7.45 (d, J=6.9 Hz, 2H), 7.39 (d, J=9.0 Hz, 2H), 7.34 (d, J=7.4 Hz, 2H), 7.26 (dt, J=7.4 Hz, 6.8 Hz, 2H), 6.93 (dt, J=7.9 Hz, 7.1 Hz, 1H), 6.78 (d, J=7.9 Hz, 1H), 6.69 (d, J=8.5 Hz, 2H), 6.63-6.55 (m, 4H), 6.44-6.37 (m, 1H), 4.95 (bs, 2H), 3.95 (bs, 2H).


Example 49
N-(2-Amino-phenyl)-3-[4-(4-methoxy-benzamide)]-acrylamide (compound 72)
Step 1: N-(4-Iodo-phenyl)-4-methoxy-benzamide (compound 70)

Following the procedure described in Example 47, step 2, but substituting 68 for 63, the title compound 70 was obtained in 90% yield. LRMS=354.0 (M+1)


Step 2: N-(2-Amino-phenyl)-3-[4-(4-methoxy-benzamide)]-acrylamide (compound 72)

Following the procedure described in Example 42, steps 2, 4, but substituting 70 for 42, and acrylic acid for tert-butyl acrylate the title compound 72 was obtained in an overall yield of 90%. 1H NMR: (DMSO-d6) δ (ppm): 9.4 (bs, 1H), 7.60 (d, J=8.5 Hz, 1H), 7.54-7.45 (m, 3H), 7.87 (d, J=7.7 Hz, 1H), 7.10 (d, J=8.8 Hz, 1H), 6.95-6.77 (m, 3H), 6.62 (d, J=7.7 Hz, 2H), 6.08-6.04 (m, 2H), 4.98 (bs, 2H), 3.72 (s, 3H).




embedded image


Example 50
N-(2-aminophenyl)-3-{6-[2-(4-oxo-4H-quinazolin-3-yl)-ethylamino]-pyridin-3-yl}-acrylamide (compound 76)
Step 1: N-(5-Bromo-pyridin-2-yl)-ethane-1,2-diamine (compound 73)

Following the procedure described in Example 40, step 1, but using 1,2-diaminoethane as alkyl amine, the title compound 73 was obtained in 84% yield. 13C NMR (300 MHz, CD3OD): 159.1, 148.7, 140.7, 111.7, 107.2, 44.3, 41.7. LRMS=218.1 (M+1)


Step 2: 3-[2-(5-Bromo-pyridin-2-ylamino)-ethyl]-3H-quinazolin-4-one (compound 75)

A suspension of primary amine 73 (1.17 g, 5.40 mmol) and isatoic anhydride 74 (880 mg, 5.40 mmol) in methanol (25 mL) was stirred for 3 h at 50° C. and then concentrated. The resulting oily residue was dissolved in 88% formic acid (20 mL) and refluxed overnight. After removal of formic acid, the solid residue was purified through column chromatography on silica gel (5% methanol in dichloromethane) to give 1.24 g (3.6 mmol, 67% yield) of 75. 13C NMR (300 MHz, CDCl3): 161.6, 156.8, 147.7, 147.6, 147.2, 139.8, 134.5, 127.4, 126.8, 126.3, 121.6, 110.1, 107.0, 46.3, 40.1. LRMS=347.1 (M+1).


Step 3: N-(2-aminophenyl)-3-{6-[2-(4-oxo-4H-quinazolin-3-yl}-ethylamino]-pyridin-3-yl′-acrylamide (compound 76)

Following the procedure described in Example 42, steps 2 to 4, but substituting 75 for 42, the title compound 76 was obtained in an overall yield of 68%. 1H-NMR (DMSO-d6), δ (ppm): 9.24 (bs, 1H), 8.17 (dd, J=8.0 Hz, 1.6 Hz, 1H), 8.11 (bs, 1H), 8.08 (d, J=1.9 Hz 1H), 7.82 (dt, J=8.5 Hz, 1.4 Hz, 1H), 7.64 (d, J=8.2 Hz, 2H), 7.25 (t, J=5.8 Hz, 1H), 6.90 (dt, J=15.7 Hz, 1H), 6.74 (dd, J=8.0 Hz, 1.4 Hz, 1H), 6.58 (m, 3H), 4.95 (bs, 2H), 4.17 (t, J=5.2 Hz, 2H), 3.68 (m, J=5.2 Hz, 2H).


Example 51
N-(2-aminophenyl)-3-{6-[2-(4-benzyl-2,6-dioxo-piperazin-1-yl)-ethylamino]-pyridin-3-yl}-acrylamide (compound 78)
Step 2: 4-Benzyl-1-[2-(5-bromo-pyridin-2-ylamino)-ethyl]-piperazine-2,6-dione (compound 77)

A suspension of benzyliminodiacetic acid (702 mg, 3.15 mmol) and acetic anhydride (15 mL) was stirred at 120° C. for 45 min. The reaction mixture was diluted with dry toluene and concentrated in vacuo to remove the volatiles. The residue was dissolved in dry toluene (15 mL) and transferred via cannula to a reaction flask containing the amine 73 (475 mg, 3.2 mmol). The mixture was heated at 90° C. for 16 h, concentrated and chromatographed by column on silica gel (elution 5% methanol in dichloromethane) to give 684 mg (1.70 mmol, 54% yield) of 77.


Step 3: N-(2-aminophenyl)-3-{6-[2-(4-benzyl-2,6-dioxo-piperazin-1-yl)-ethylamino]-pyridin-3-yl}-acrylamide (compound 78)

Following the procedure described in Example 42, steps 2 to 4, but substituting 77 for 42, the title compound 78 was obtained in an overall yield of 60%. 1H-NMR (CD3OD-d4), δ (ppm): 8.09 (d, J=1.8 Hz, 1H), 7.68 (dd, J=8.7 Hz, 2.1 Hz, 1H), 7.53 (d, J=15.6 Hz, 1H), 7.29 (m, 6H), 7.20 (dd, J=7.8 Hz, 1.2 Hz, 1H), 7.02 (dt, J=9.0 Hz, 1.2 Hz, 1H), 6.86 (dd, J=8.1 Hz, 1.2 Hz, 1H), 6.73 (dt, J=7.5 Hz, 1.5 Hz, 1H), 6.61 (d, J=15.6 Hz, 1H), 6.50 (d, J=8.7 Hz, 1H), 4.85 (bs, 3H), 3.97 (t, J=7.5 Hz, 2H), 3.60 (s, 2H), 3.57 (t, J=7.5 Hz, 2H), 3.38 (s, 4H).




embedded image


Example 52

(E)-4-{[4-Amino-6-(2-indanyl-amino)-[1,3,5]triazin-2-yl-amino]-methyl}-N-(2-amino-phenyl)-cinnamide (compound 83)


Step 1: 4,6-Dichloro-2-(2-indanyl-amino)-[1,3,5]triazine (compound 79)

To a stirred solution at −78° C. of cyanuric chloride (13.15 g, 71.33 mmol) in anhydrous THF (100 mL) under nitrogen was slowly canulated a solution of 2-aminoindan (10.00 g, 75.08 mmol), i-Pr2NEt (14.39 mL, 82.59 mmol) in anhydrous THF (60 mL). After 50 min, the reaction mixture was poured into a saturated aqueous solution of NH4Cl, and diluted with AcCEt. After separation, the organic layer was successively washed with sat. NH4Cl, H2O and brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (AcOEt/CH2Cl2: 2/98→5/95) and by co-precipitation (AcOEt/hexanes) to afford the title compound 79 (18.51 g, 65.78 mmol, 92% yield) as a beige powder. 1H NMR (300 MHz, CDCl3) δ (ppm): 7.29-7.18 (m, 4H), 6.02 (bd, J=6.3 Hz, 1H), 4.94-4.84 (m, 1H), 3.41 (dd, J=16.2, 6.9 Hz, 2H), 2.89 (dd, J=16.1, 4.5 Hz, 2H).


Step 2: 2-(4-Bromo-benzyl-amino)-4-chloro-6-(2-indanyl-amino)-[1,3,5]triazine (compound 80)

To a stirred solution at room temperature of 79 (2.68 g, 9.52 mmol) in anhydrous THF (50 mL) under nitrogen were added i-Pr2NEt (4.79 mL, 27.53 mmol) and 4-bromobenzylamine.HCl (2.45 g, 11.01 mmol), respectively. After 17 h, the reaction mixture was poured into a saturated aqueous solution of NH4Cl, and diluted with AcOEt. After separation, the organic layer was successively washed with sat. NH4Cl, H2O and brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (AcOEt/CH2Cl2: 3/97→5/95) to afford the title compound 80 (4.00 g, 9.29 mmol, 97% yield) as a white powder. 1H NMR (300 MHz, CDCl3) δ (ppm): mixture of rotamers, 7.52-7.42 (m, 2H), 7.26-7.11 (m, 6H), 6.51 and 6.12 (2 m, 1H), 5.72-5.46 (m, 1H), 4.94-4.64 (m, 1H), 4.62-4.46 (m, 2H), 3.43-3.16 (m, 2H), 2.92-2.74 (m, 2H).


Step 3: 4-Amino-2-(4-bromo-benzyl-amino)-6-(2-indanyl-amino)-[1,3,5]-triazine (compound 81)

In a 75 mL sealed flask, a solution of 80 (2.05 g, 4.76 mmol) in anhydrous 1,4-dioxane (60 mL) was stirred at room temperature, saturated with NH3 gas for 5 min, and warmed to 140° C. for 18 h. The reaction mixture was allowed to cool to room temperature, the saturation step with NH3 gas was repeated for 5 min, and the reaction mixture was warmed to 140° C. again for 24 h. Then, the reaction mixture was allowed to cool to room temperature, poured into 1N HCl, and diluted with AcOEt. After separation, the organic layer was successively washed with sat. NH4Cl, H2O and brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (MeOH/CH2Cl2: 5/95) to afford the title compound 81 (1.96 g, 4.76 mmol, quantitative yield) as a colorless foam. 1H NMR (300 MHz, CDCl3) δ (ppm): 7.43 (d, J=8.2 Hz, 2H), 7.25-7.12 (m, 6H), 5.70-5.10 (m, 2H), 5.00-4.65 (m, 3H), 4.52 (bs, 2H), 3.40-3.10 (m, 2H), 2.90-2.65 (m, 2H).


Step 4: (E)-4-{[4-Amino-6-(2-indanyl-amino)-[1,3,5]triazin-2-yl-amino]-methyl}-N-[2-(N-t-butoxycarbonyl)-amino-phenyl]-cinamide (compound 82)
Preparation of N-[2-(N-t-Butoxycarbonyl)-amino-phenyl]-acrylamide

Following the procedure described in Example 45, step 2, but substituting the nitro-compound 2-(N-t-butoxycarbonyl)-amino-aniline for 2-nitroaniline, the title compound was obtained in 77% yield. 1H NMR (300 MHz, CDCl3) δ (ppm): 8.51 (bs, 1H), 7.60-7.45 (m, 1H), 7.38-7.28 (m, 1H), 7.20-7.05 (m, 2H), 6.98 (bs, 1H), 6.41 (dd, J=17.0 Hz, 1.1 Hz, 1H), 6.25 (dd, J=16.9 Hz, 10.0 Hz, 1H), 5.76 (dd, J=10.2 Hz, 1.4 Hz, 1H), 1.52 (s, 9H).


In a 50 mL sealed flask, a solution of 81 (300 mg, 0.73 mmol), the acrylamide (230 mg, 0.88 mmol), Et3N (407 μl, 2.92 mmol), tri-o-tolylphosphine (POT, 13 mg, 0.04 mmol), Pd2(dba)3 (20 mg, 0.02 mmol) in anhydrous DMF (10 mL) was stirred at room temperature, saturated with N2 gas for 15 min, and warmed to 100° C. for 15 h. Then, the reaction mixture was allowed to cool to room temperature, poured into a saturated aqueous solution of NH4Cl, and diluted with AcOEt. After separation, the organic layer was successively washed with sat. NH4Cl, H2O and brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (MeOH/CH2Cl2: 2/98→5/95) to afford the title compound 82 (240 mg, 0.41 mmol, 56% yield) as a beige solid. 1H NMR (300 MHz, CDCl3) δ (ppm): 8.46 (bs, 1H), 7.71 (bd, J=15.7 Hz, 1H), 7.62-7.05 (m, 13H), 6.54 (bd, J=15.9 Hz, 1H), 5.95-4.90 (m, 4H), 4.85-4.48 (m, 3H), 3.40-3.14 (m, 2H), 2.90-2.70 (m, 2H), 1.52 (s, 9H).


Step 5: (E)-4-{[4-Amino-6-(2-indanyl-amino)-[1,3,5]triazin-2-yl-amino]-methyl}-N-(2-amino-phenyl)-cinnamide (compound 83)

To a stirred solution at room temperature of 82 (230 mg, 0.39 mmol) in CH2Cl2 (5 mL) was added TFA (1 mL, 95% in water). After 18 h, the reaction mixture was poured into a saturated aqueous solution of NaHCO3, and diluted with AcOEt. After separation, the organic layer was successively washed with sat. NaHCO3, H2O and brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (MeOH/CH2Cl2: 5/95) to afford the title compound 83 (170 mg, 0.35 mmol, 89% yield) as a yellow solid. 1H NMR (300 MHz, acetone-d6) δ (ppm): 8.87 (bs, 1H), 7.69 (d, J=15.7 Hz, 1H), 7.59 (bd, J=7.7 Hz, 2H), 7.49-7.34 (m, 3H), 7.28-7.11 (m, 4H), 7.05-6.91 (m, 2H), 6.88 (dd, J=8.0, 1.4 Hz, 1H), 6.69 (td, J=7.6, 1.4 Hz, 1H), 6.65-5.50 (m, 4H), 4.83-4.53 (m, 5H), 3.34-3.11 (m, 2H), 2.98-2.80 (m, 2H).




embedded image


Example 53
N-(2-aminophenyl)-2-(4-methoxy-benzylamino)-quinolin-6-yl-amide (compound 87)
Step 1: 2,6-ditrifluoromethanesulfonyloxy-quinoline (compound 85)

A solution of 2,6-dihydroxyquinoline 84 (1.254 g, 7.78 mmol) and DMAP (a few crystals) in dry pyridine (15 mL) was treated with neat trifluoromethanesulfonic anhydride (5.2 g, 18.4 mmol, 1.2 equiv.) and stirred at 0° C. for 5 h. This solution was then poured on a mixture brine/sat NaHCO3 and extracted with dichloromethane (2×150 mL), dried (MgSO4), filtered and concentrated. Purification by column chromatography on silica gel (30% to 50% ether in hexanes) gave 2.58 g (6.1 mmol, 78% yield) of 85. 13C NMR (300 MHz, CDCl3): 154.5, 147.8, 144.6, 142.0, 131.6, 127.8, 124.9, 119.3, 118.7, 114.9. LRMS=426.0 (M+1).


Step 2: N-(2-aminophenyl)-2-(4-methoxy-benzylamino)-quinolin-6-yl-amide (compound 87)

Following the procedure described in Example 40, steps 1, 2, but substituting 85 for 40, the title compound 87 was obtained in 92% yield. 1H-NMR (DMSO-d6), δ (ppm): 9.66 (bs, 1H), 8.32 (s, 1H), 8.05 (d, J=8.8 Hz, 1H), 7.96 (dd, J=9.1 Hz, 2.2 Hz, 1H), 7.72 (d, J=2.2 Hz, 1H), 7.55 (dd, J=8.5 Hz, 2.2 Hz, 1H), 7.34 (dd, J=8.5 Hz, 2.2 Hz, 1H), 7.20 (d, J=7.7 Hz, 1H), 6.97 (t, J=7.7 Hz, 1H), 6.90 (m 2H), 6.80 (d, J=7.9 Hz, 1H), 6.61 (t, J=6.3 Hz, 1H), 4.90 (bs 2H), 4.58 (d, J=3.3 Hz, 2H), 3.73 (s, 3H), 3.33 (bs, 1H).


Example 54
N-(2-aminophenyl)-3-[2-(4-methoxy-benzylamino)-quinolin-6-yl]-acrylamide (compound 88)
Step 3: N-(2-aminophenyl)-3-[2-(4-methoxy-benzylamino)-quinolin-6-yl]-acrylamide (compound 88)

Following the procedure described in Example 42, steps 1 to 4, but substituting 85 for 40, the title compound 88 was obtained in an overall yield of 71%. 1H-NMR (DMSO-d6), δ (ppm): 9.70 (bs, 1H), 9.40 (bs, 1H), 8.20 (d, J=8.9 Hz, 1H), 8.03 (bs, 2H), 7.94 (d, J=7.2 Hz, 1H), 7.64 (dd, J=15.7 Hz, 2.5 Hz, 1H), 7.41 (d, J=8.5 Hz, 2H), 7.39 (m, 1H), 7.14 (d, J=8.9 Hz, 1H), 7.05 (d, J=15.7 Hz, 1H), 6.97 (m, 1H), 6.95 (d, J=8.5 Hz, 2H), 6.81 (d, J=8.0 Hz, 1H), 6.65 (t, J=7.2 Hz, 1H), 4.76 (s, 2H), 3.75 (s, 3H).


Examples 55-84

Examples 55 to 84 describe the preparation of compounds 89 to 118 using the same procedures as described for compounds 44 to 88 in Examples 40 to 54. Characterization data are presented in Tables 3a-d









TABLE 3a





Characterization of Compounds Prepared in Examples 42-84




embedded image























Ex.
Cpd.
W
Y
Z
R
Name





42
50


embedded image


N
CH
H
N-(2-aminophenyl)-3- [6-(2-phenylamino- ethylamino)-pyridin- 3-yl]-acrylamide





44
 55b


embedded image


CH
CH
H
{4-[2-(2-amino- phenylcarbamoyl)- vinyl]-phenyl}- carbamic acid pyridin-3-yl methyl ester





45
59


embedded image


CH
CH
H
N-(2-aminophenyl)-3- {4-[(3,4,5- trimethoxy- benzylamino)- methyl]-phenyl}- acrylamide





46
 61b


embedded image


N
CH
Me
N-(2-aminophenyl)-3- [6-(4-methoxy- benzylamino)- pyridin-3-yl]-2- methyl-acrylamide





47
65


embedded image


CH
CH
H
N-(2-amino-phenyl)- 3-[4-(4-methoxy- benzylamino)- phenyl]-acrylamide





48
71


embedded image


CH
CH
H
N-(2-Amino-phenyl)- 3-(4-styrylamino- phenyl)-acrylamide





49
72


embedded image


CH
CH
H
N-(4-[2-(2-Amino- phenylcarbamoyl)- vinyl]-phenyl}-4- methoxy-benzamide





50
76


embedded image


N
CH
H
N-(2-aminophenyl)-3- {6-[2-(4-oxo-4H- quinazolin-3-yl)- ethylamino]-pyridin- 3-yl}-acrylamide





51
78


embedded image


N
CH
H
N-(2-aminophenyl)-3- {6-[2-(4-benzyl-2,6- dioxo-piperazin-1-yl)- ethylamino]-pyridin- 3-yl}-acrylamide





52
83


embedded image


CH
CH
H
(E)-4-{[4-Amino-6-(2- indanyl-amino)- [1,3,5]triazin-2- ylamino]-methyl}-N- (2-amino-phenyl)- cinamide





55
89


embedded image


N
CH
H
N-(2-aminophenyl)-3- [6-(4-methoxy- benzylamino)- pyridin-3-yl]- acrylamide





56
90


embedded image


N
CH
H
N-(2-aminophenyl)-3- {6-[(pyridin-3- ylmethyl)-amino]- pyridin-3-yl}- acrylamide





57
91


embedded image


N
CH
H
N-(2-aminophenyl)-3- {6-[(pyridin-4- ylmethyl)-amino]- pyridin-3-y}- acrylamide





58
92


embedded image


N
CH
H
N-(2-aminophenyl)-3- [6-(4-fluoro- benzylamino)- pyridin-3-yl]- acrylamide





59
93


embedded image


N
CH
H
N-(2-aminophenyl)-3- (6-benzylamino- pyridin-3-yl)- acrylamide





60
94


embedded image


N
CH
H
N-(2-aminophenyl)-3- [6-(3-phenyl- propylamino)- pyridin-3-yl]- acrylamide





61
95


embedded image


N
CH
H
N-(2-aminophenyl)-3- {6-[2-(4-methoxy- phenyl)-ethylamino]- pyridin-3-yl}- acrylamide





62
96


embedded image


N
CH
H
N-(2-aminophenyl)-3- [6-(4-dimethylamino- benzylamino)- pyridin-3-yl]- acrylamide





63
97


embedded image


N
CH
H
N-(2-aminophenyl)-3- [6-(3-imidazol-1-yl- propylamino)- pyridin-3-yl]- acrylamide





64
98


embedded image


N
CH
H
N-(2-aminophenyl)-3- [6-(3- trifluoromethoxy- benzylamino)- pyridin-3-yl]- acrylamide





65
99


embedded image


N
CH
H
N-(2-aminophenyl)-3- [6-(4- trifluoromethoxy- benzylamino)- pyridin-3-yl]- acrylamide





66
100 


embedded image


N
CH
H
N-(2-aminophenyl)-3- [6-(3,5-difluoro- benzylamino)- pyridin-3-yl]- acrylamide





67
101 


embedded image


N
CH
H
N-(2-aminophenyl)-3- [6-(3-trifluoromethyl- benzylamino)- pyridin-3-yl]- acrylamide





68
102 


embedded image


N
CH
H
3-[6-(3-aminomethyl- benzylamino)- pyridin-3-yl]-N-(2- aminophenyl)- acrylamide





70
104 


embedded image


CH
CH
H
{4-[2-(2-amino- phenylcarbamoyl)- vinyl]-benzyl)- carbamic acid pyridin-3-yl methyl ester





71
105 


embedded image


CH
CH
H
(2-{4-[2-(2-amino- phenylcarbamoyl)- vinyl]-phenyl}-ethyl)- carbamic acid pyridin-3-yl methyl ester





72
106 


embedded image


CH
CH
H
N-(2-aminophenyl)-3- {4-[(3,4,5- trimethoxy- phenylamino)- methyl]-phenyl}- acrylamide





73
107 


embedded image


CH
CH
H
N-(2-aminophenyl)-3- (4-{[(3,4,5- trimethoxy-benzyl)- amino]-methyl}- pheyl)-acrylamide





74
108 


embedded image


CH
CH
H
N-(2-aminophenyl)-3- {4-[(3,4,5- trimethoxy-phenyl)- amino]-methyl}- phenyl}-acrylamide





75
109 


embedded image


CH
CH
H
N-(2-Amino-phenyl)- 3-{4-[(6-methoxy- pyridin-3-ylamino)- methyl]-phenyl}- acrylamide





76
110 


embedded image


CH
CH
H
N-(2-Amino-phenyl)- 3-[4-(quinolin-2- ylsulfanylmethyl)- phenyl]-acrylamide





77
111 


embedded image


CH
CH
H
N-(2-amino-phenyl)- 3-{4-[(pyridin-3- ylmethyl)-amino]- phenyl}-acrylamide





78
112 


embedded image


N
CH
H
N-(2-Amino-phenyl)- 3-(6-styrylamino- pyridin-3-yl)- acrylamide





79
113 


embedded image


N
N
H
N-(2-amino-phenyl)- 3-[2-(4-nitro- benzylamino)- pyrimidin-5-yl]- acrylamide





80
114 


embedded image


N
CH
H
N-(5-[2-(2-Amino- phenylcarbamoyl- vinyl)-pyridin-2-yl)4- methoxy-benzamide





81
115 


embedded image


N
N
H
3-[2-(4-amino- benzylamino)- pyrimidin-5-yl]-N-(2- amino-phenyl)- acrylamide





82
116 


embedded image


N
CH
H
N-(2-aminophenyl)-3- [6-(3,4,5-trimethoxy- benzylamino)- pyridin-3-yl]- acrylamide





83
117 


embedded image


N
CH
H
N-(2-Amino-phenyl)- 3-[6-(4-methyl- benzylamino)- pyridin-3-yl]- acrylamide





84
118 


embedded image


N
N
H
N-(2-amino-phenyl)- 3-[2(4-methoxy- benzylamino)- pyrimidin-5-yl]- acrylamide





 84b
118b


embedded image


N
CH
H
N-(2-Amino-phenyl)- 3-[6-(3,4-dimethoxy- phenyl)-pyridin-3-yl]- acrylamide














Ex.
Characterization
Schm






42

1H-NMR (DMSO-d6), δ (ppm): 9.25 (bs, 1H), 8.21

3




(d, J=1.6 Hz, 1H), 7.67 (d, J=8.5 Hz, 1H), 7.43





(d, J=15.7 Hz, 1H), 7.32 (d, J=7.4 Hz, 1H),





7.24 (t, J=1.0 Hz, 1H), 7.08 (t, J=7.4 Hz, 2H),





6.91 (t, J=8.0 Hz, 1H), 6.75 (dt, J=8.0 Hz, 0.4





Hz, 1H), 6.57 (m, 6H), 5.20 (bs, 1H), 3.48 (t, J=





6.3 Hz, 2H), 3.33 (bs, 2H), 3.21 (t, J=6.3 Hz, 2H)




44

1H NMR: (DMSO-d6) δ (ppm): 10.03 (s, 1H), 9.32

4




(s, 1H), 8.65 (s, 1H), 8.55 (d, J=3.3 Hz, 1H),





7.85 (d, J=7.69 Hz, 1H), 7.40-7.60 (m, 6H), 7.31





(d, J=7.69 Hz, 1H), 6.89 (dd, J=7.14 Hz, J=7





Hz, 1H), 6.71-6.79 (m, 2H), 6.55 (dd, J=7.1 Hz, J=





7 Hz, 1H), 5.20 (s, 2H), 4.93 (bs, 2H).




45

1H-NMR (CDCl3), δ (ppm): 8.25 (bs, 1H), 7.59 (d,

5




J=15.6 Hz, 1H), 7.38 (d, J=7.5 Hz, 2H), 7.29





(d, J=7.5 Hz, 2H), 7.25 (m 1H), 7.02 (t, J=6.8





Hz, 1H), 6.75 (m, 2H), 6.62 (d, J=15.6 Hz, 1H),





6.58 (s, 2H), 3.97 (bs, 3H), 3.80 (s, 9H), 3.78 (s,





2H), 3.72 (s, 2H).




46

1H-NMR (DMSO-d6), δ (ppm): 9.15 (bs, 1H), 8.13

3




(bs, 1H), 7.58 (d, J=1.9 Hz, 1H), 7.30 (m 4H),





7.12 (d, J=7.7 Hz, 1H), 6.91 (m 3H), 6.75 (d, J=





7.8 Hz, 1H), 6.57 (m 2H), 4.83 (bs, 2H), 4.43 (d, J=





5.5 Hz, 2H), 3.72 (s, 3H), 3.33 (s, 3H).




47

1H NMR: (DMSO-d6) δ (ppm): 9.15 (s, 1H), 7.24-

6




7.38 (m, 6H), 6.84-6.90 (m, 3H), 6.72 (m, 2H),





6.49-6.60 (m, 4H), 4.84 (s, 2H), 4.22 (d, J=





5.77 Hz, 2H).




48

1H NMR: (DMSO-d6) δ (ppm): 9.22 (bs, 1H), 7.45

7




(d, J=6.9 Hz, 2H), 7.39 (d, J=9.0 Hz, 2H), 7.34





(d, J=7.4 Hz, 2H), 7.26 (dt, J=7.4 Hz, 6.8 Hz,





2H), 6.93 (dt, J=7.9 Hz, 7.1 Hz, 1H), 6.78 (d, J=





7.9 Hz, 1H), 6.69 (d, J=8.5 Hz, 2H), 6.63-6.55





(m, 4H), 6.44-6.37 (m, 1H), 4.95 (bs, 2H), 3.95





(bs, 2H).




49

1H NMR: (DMSO-d6) δ (ppm): 9.4 (bs, 1H),

7




7.60(d, J=8.5 Hz, 1H), 7.54-7.45 (m, 3H), 7.87





(d, J=7.7 Hz, 1H), 7.10 (d, J=8.8 Hz, 1H), 6.95-





6.77 (m, 3H), 6.62 (d, J=7.7 Hz, 2H), 6.08-6.04





(m, 2H), 4.98 (bs, 2H), 3.72 (s, 3H).




50

1H-NMR (DMSO-d6), δ (ppm): 9.24 (bs, 1H), 8.17

8




(dd, J=8.0 Hz, 1.6 Hz, 1H), 8.11 (bs, 1H), 8.08





(d, J=1.9 Hz, 1H), 7.82 (dt, J=8.5 Hz, 1.4 Hz,





1H), 7.64 (d, J=8.2 Hz, 2H), 7.25 (t, J=5.8 Hz,





1H), 6.90 (dt, J=15.7 Hz, 1H), 6.74 (dd, J=8.0





Hz, 1.4 Hz, 1H), 6.58 (m, 3H), 4.95 (bs, 2H), 4.17





(t, J=5.2 Hz, 2H), 3.68 (m, J=5.2 Hz, 2H).




51

1H-NMR (CD3OD-d4), δ (ppm): 8.09 (d, J=1.8

8




Hz, 1H), 7.68 (dd, J=8.7 Hz, 2.1 Hz, 1H), 7.53





(d, J=15.6 Hz, 1H), 7.29 (m, 6H), 7.20 (dd, J=





7.8 Hz, 1.2 Hz, 1H), 7.02 (dt, J=9.0 Hz, 1.2 Hz,





1H), 6.86 (dd, J=8.1 Hz, 1.2 Hz, 1H), 6.73 (dt,





7.5 Hz, 1.5 Hz, 1H), 6.61 (d, J=15.6 Hz, 1H),





6.50 (d, J=8.7 Hz, 1H), 4.85 (bs, 3H), 3.97 (t, J=





7.5 Hz, 2H), 3.60 (s, 2H), 3.57 (t, J=7.5 Hz,





2H), 3.38 (s, 4H).




52

1H NMR (300 MHz, acetone-d6) δ (ppm): 8.87

9




(bs, 1H), 7.69 (d, J=15.7 Hz, 1H), 7.59 (bd, J=





7.7 Hz, 2H), 7.49-7.34 (m, 3H), 7.28-7.11 (m, 4H),





7.05-6.91 (m, 2H), 6.88 (dd, J=8.0,1.4 Hz, 1H),





6.69 (td, J=7.6, 1.4 Hz, 1H), 6.65-5.50 (m, 4H),





4.83-4.53 (m, 5H), 3.34-3.11 (m, 2H), 2.98-2.80





(m, 2H).




55

1H-NMR (DMSO-d6), δ (ppm): 9.24 (bs, 1H), 8.19

3




(d, J=1.6 Hz, 1H), 7.64 (d, J=8.5 Hz, 1H), 7.52





(t, J=5.5 Hz, 1H), 7.42 (d, J=15.7 Hz, 1H), 7.32





(d, J=7.4 Hz, 1H), 7.26 (d, J=8.5 Hz, 2H), 6.90





(m, 1H), 6.88 (dd, J=8.5 Hz, 2H), 6.74 (d, J=6.9





Hz, 1H), 6.58 (m, 3H), 4.92 (bs, 2H), 4.45 (d, J=





5.5 Hz, 2H), 3.72 (s, 3H).




56

1H-NMR (CD3OD-d4), δ (ppm): 8.47 (bs, 1H),

3




8.33 (bs, 1H), 8.02 (m, 1H), 7.73 (m, 1H), 7.61 (d,





J=8.5 Hz, 1H), 7.46 (d, J=15.4 Hz, 1H), 7.29





(m, 1H), 7.14 (d, J=7.7 Hz, 1H), 6.94 (d, J=7.4





Hz, 1H), 6.80 (d, J=7.9 Hz, 1H), 6.66 (t, J=7.9





Hz, 1H), 6.53 (m, 2H), 4.54 (m, 2H), 3.59 (bs, 2H).




57

1H-NMR (DMSO-d6), δ (ppm): 9.27 (bs, 1H), 8.48

3




(dd, J=1.6 Hz, 4.4, 1H), 8.16 (d, J=1.6 Hz, 1H),





7.70 (m 2H), 7.42 (d, J=15.6 Hz, 1H), 7.31 (m





3H), 6.90 (t, J=6.9 Hz, 1H), 6.73 (d, J=6.9 Hz,





1H), 6.58 (m 4H), 4.98 (bs, 2H), 4.57 (d, J=6.0





Hz, 2H).




58

1H-NMR (DMSO-d6), δ (ppm): 9.24 (bs, 1H), 8.18

3




(d, J=1.6 Hz, 1H), 7.65 (dd, J=8.8 Hz, 0.8 Hz,





1H), 7.60 (t, J=5.8 Hz, 1H), 7.42 (d, J=15.7 Hz,





1H), 7.36 (m, 3H), 7.13 (t, J=8.8 Hz, 2H), 6.90 (t,





J=7.4 Hz, 1H), 6.73 (dd, J=6.9 Hz, 1.0 Hz, 1H),





6.58 (m, 3H), 4.91 (bs, 2H), 4.50 (d, J=6.0 Hz,





2H).




59

1H-NMR (DMSO-d6), δ (ppm): 9.24 (bs, 1H), 8.17

3




(d, J=1.9 Hz, 1H), 7.65 (dd, J=8.8 Hz, 1.6 Hz,





1H), 7.60 (t, J=6.0 Hz, 1H), 7.41 (d, J=15.7 Hz,





1H), 7.31 (m, 5H), 7.23 (m, 1H), 6.89 (dt, J=8.0





Hz, 1.6 Hz, 1H), 6.73 (dd, J=8.0 Hz, 1.5 Hz, 1H),





6.58 (m, 3H), 4.92 (bs, 2H), 4.53 (d, J=6.0 Hz,





2H).




60

1H-NMR (DMSO-d6), δ (ppm): 9.22 (bs, 1H), 8.18

3




(ds, 1H), 7.63 (d, J=8.8 Hz, 1H), 7.42 (d, J=





15.4 Hz, 1H), 7.22 (m 7H), 6.90 (t, J=7.7 Hz,





1H), 6.75 (d, J=8.0 Hz, 1H), 6.57 (m, 3H), 4.92





(bs, 2H), 3.29 (dt, J=7.7 Hz, 6.0 Hz, 2H), 2.66 (t,





J=7.7 Hz, 2H), 1.84 (m, J=7.7 Hz, 2H).




61

1H-NMR (DMSO-d6), δ (ppm): 9.22 (bs, 1H), 8.19

3




(bs, 1H), 7.62 (d, J=8.5 Hz, 1H), 7.42 (d, J=





15.7 Hz, 1H), 7.32 (d, J=7.8 Hz, 1H), 7.16 (d, J=





7.8 Hz, 2H), 7.13 (m, 1H), 6.91 (m, 1H), 6.85 (d,





J=7.9 Hz, 1H), 6.74 (d, J=7.8 Hz, 1H), 6.57 (m





3H), 4.92 (bs, 2H), 3.71 (s, 3H), 3.47 (dd, J=7.3





Hz, 6.0 Hz, 2H), 2.78 (t, J=7.3 Hz, 2H).




62

1H-NMR (DMSO-d6), δ (ppm): 9.23 (bs, 1H), 8.18

3




(bs, 1H), 7.63 (d, J=8.2 Hz, 1H), 7.41 (m 2H),





7.31 (d, J=7.4 Hz, 1H), 7.15 (d, J=8.5 Hz, 2H),





6.90 (t, J=7.4 Hz, 1H), 6.74 (d, J=7.0 Hz, 1H),





6.68 (d, J=8.5 Hz, 2H), 6.58 (m, 3H), 4.91 (bs,





2H), 4.39 (d, J=5.5 Hz, 2H), (bs, 2H).




63

1H-NMR (CD3OD-d4), δ (ppm): 8.09 (bs, 1H),

3




8.05 (d, J=1.9 Hz, 1H), 7.67 (m, 2H), 7.49 (d, J=





15.7 Hz, 1H), 7.28 (m, 2H), 7.17 (m, 2H), 6.98





(dt, J=13.7 Hz, 7.7 Hz, 1H), 6.83 (dd, J=8.0 Hz,





1.1 Hz, 1H), 6.69 (dt, J=9.1 Hz, 1.4 Hz, 1H),





6.58 (d, J=15.7 Hz, 1H), 6.51 (d, J=8.8 Hz,





1H), 4.15 (t, J=7.1 Hz, 2H), 3.29 (m, 2H), 2.08





(m, J=6.9 Hz, 2H).




64

1H-NMR (acetone-d6), δ (ppm): 8.75 (bs, 1H),

3




8.23 (d, J=1.9 Hz, 1H), 7.69 (d, J=8.2 Hz, 1H),





7.55 (d, J=15.4 Hz, 1H), 7.43 (m, 2H), 7.34 (bs,





2H), 7.19 (d, J=6.6 Hz, 1H), 6.93 (m, 2H), 6.83





(dd, J=8.0 Hz, 1.4 Hz, 1H), 6.67 (m, 3H), 4.71 (d,





J=6.3 Hz, 2H), 4.65 (bs, 2H).




65

1H-NMR (acetone-d6), δ (ppm): 8.81 (bs, 1H),

3




8.21 (d, J=1.9 Hz, 1H), 7.66 (d, J=7.4 Hz, 1H),





7.56 (d, J=15.7 Hz, 2H), 7.49 (d, 2H), J=8.2





Hz, 1H), 7.34 (d, J=8.1 Hz, 1H), 7.25 (t, J=8.0





Hz, 1H), 6.93 (m, 2H), 6.73 (m, 3H), 4.67 (d, J=





6.0 Hz, 2H), 4.66 (bs, 2H).




66

1H-NMR (DMSO-d6), δ (ppm): 9.25 (bs, 1H), 8.18

3




(d, J=2.2 Hz, 1H), 7.67 (m, 2H), 7.42 (d, J=





15.7 Hz, 1H), 7.31 (d, J=7.7 Hz, 1H), 7.08 (dt, J=





9.3 Hz, 2.2 Hz, 1H), 7.03 (dd, J=8.8 Hz, 1.9





Hz, 2H), 6.90 (dt, J=7.3 Hz, 1.4 Hz, 1H), 6.73





(dd, J=8.0 Hz, 1.4 Hz, 1H), 6.60 (m 3H), 4.92





(bs, 2H), 4.56 (d, J=6.0 Hz, 2H).




67

1H-NMR (DMSO-d6), δ (ppm): 9.25 (bs, 1H), 8.14

3




(bs, 1H), 7.86 (m, 6H), 7.42 (d, J=15.6 Hz, 1H),





7.31 (d, J=7.4 Hz, 1H), 6.90 (dt, J=8.8 Hz, 1.1





Hz, 1H), 6.74 (dd, J=8.0 Hz, 1.4 Hz, 1H), 6.60 (m





3H), 4.96 (bs, 2H), 4.63 (d, J=5.8 Hz, 2H).




68

1H-NMR (DMSO-d6), δ (ppm): 9.28 (bs, 1H), 8.17

3




(bs, 1H), 7.66 (d, J=5.8 Hz, 2H), 7.37 (m, 6H),





6.88 (dd, J=8.0 Hz, 0.9 Hz, 1H), 6.73 (dd, J=





8.0 Hz, 0.9 Hz, 1H), 6.59 (m, 3H), 4.55 (d, J=5.8





Hz, 2H), 3.96 (s, 2H), 3.37 (bs, 4H).




70

1H NMR: (DMSO-d6) δ (ppm): 9.36 (s, 1H), 8.57

4




(s, 1H), 8.51 (d, J=4.6 Hz, 1H), 7.91 (m, 1H),





7.77 (d, J=7.68 Hz, 1H), 7.28-7.57 (m, 7H),





6.88 (dd, J=15.66 Hz, 4.4 0 Hz, 2H), 6.73 (m,





1H), 6.56 (m, 1H), 5.01 (s, 2H), 4.93 (bs, 2H),





4.10 (d, J=6.04 Hz, 2H).




71

1H NMR: (DMSO-d6) δ (ppm): 9.34 (s, 1H), 8.52

4




(m, 2H), 7.71 (d, J=7.69 Hz, 1H), 7.20-7.60 (m,





8H), 6.87 (m, 2H), 6.73 (m, 1H), 6.56 (m, 1H),





5.03 (s, 2H), 4.92 (s, 2H), 3.30 (m, 2H), 2.75 (m,





2H).




72

1H-NMR (acetone-d6), δ (ppm): 8.49 (bs, 1H),

5




8.41 (d, J=7 Hz, 1H), 7.63 (d, J=15.6 Hz, 1H),





7.56 (d, J=8 Hz, 2H), 7.45 (d, J=8 Hz, 2H),





1.07 (m, 2H), 6.90 (d, J=15.6 Hz, 1H), 6.76 (m,





1H), 6.74 (m, 1H), 5.99 (s, 2H), 4.36 (s, 2H), 3.69





(s, 6H), 3.68 (bs, 2H), 3.67 (s, 3H).




73

1H-NMR (CDCl3), δ (ppm): 7.70 (bs, 1H), 7.43 (d,

5




J=7.4 Hz, 1H), 7.33 (d, J=4.9 Hz, 2H), 7.26 (d,





J=4.9 Hz, 2H), 7.25 (m, 1H), 7.03 (t, J=7.4 Hz,





1H), 6.78 (d, J=7.4 Hz, 1H), 6.75 (m, 1H), 6.61





(s, 2H), 6.57 (m, 1H), 4.08 (bs, 2H), 3.86 (s, 6H),





3.83 (s, 3H), 3.50 (s, 2H), 3.47 (s, 2H), 2.21 (s,





3H).




74

1H-NMR (CDCl3), δ (ppm): 7.74 (d, J=15.4 Hz,

5




1H), 7.50 (d, J=7.4 Hz, 2H), 7.25 (m, 3H), 7.06 (t,





J=1.9 Hz, 1H), 6.82 (d, J=7.4 Hz, 2H),





J=15.4 Hz, 1H), 5.96 (s, 2H), 4.50 (s, 2H), 3.79





(s, 6H), 3.78 (bs, 2H), 3.77 (s, 3H), 3.00 (s, 3H).




75

1H NMR: (DMSO-d6) δ (ppm): 9.4 (bs, 1H),

5




7.60(d, J=8.5 Hz, 1H), 7.54-7.45 (m, 3H), 7.87





(d, J=7.7 Hz, 1H), 7.10 (d, J=8.8 Hz, 1H), 6.95-





6.77 (m, 3H), 6.62 (d, J=7.7 Hz, 2H), 6.08-6.04





(m, 2H), 4.98 (bs, 2H), 3.72 (s, 3H).




76

1H NMR: (DMSO-d6) δ (ppm): 9.41 (bs, 1H), 8.21

5




(d, J=8.5, 1H), 7.97 (dt, J=7.7, 8.8 Hz, 2H),





7.78 (dt, J=7.1 Hz, 8.2 Hz, 1H), 7.61-7.53 (m,





5H), 7.40 (dd, J=8.5 Hz, 7.6 Hz, 2H), 6.97-6.77





(m, 4H), 6.6 (dt, J=7.7 Hz, 7.5 Hz, 1H), 4.98 (bs,





2H), 4.65 (bs, 2H).




77

1H NMR: (DMSO-d6) δ (ppm): 9.15 (s, 1H), 7.24

6




7.38 (m, 6H), 6.84-6.90 (m, 3H), 6.72 (m, 2H),





6.49-6.60 (m, 4H), 4.84 (s, 2H), 4.22 (d, J=





5.77 Hz, 2H).




78

1H NMR: (DMSO-d6) δ (ppm): 7.96 (d, J=9.1 Hz,

7




2H), 7.55 (d, J=14.2 Hz, 1H), 7.48 (d, J=7.4





Hz, 2H) 7.39-7.29 (m, 4H) 7.07-6.91 (m, 3H)





6.81-6.64 (m, 3H), 6.47-6.38 (m, 1H), 4.21 (bs,





2H).




79

1H NMR: (DMSO-d6) δ (ppm): 9.30 (s, 1H), 8.58

7




(bs, 2H), 8.36 (m, 1H), 8.20 (m, 2H), 7.58 (m, 2H),





7.28-7.42 (m, 2H), 6.52-6.92 (m, 4H), 4.90 (s,





2H), 4.64 (d, J=6 Hz, 2H).




80

1H NMR: (DMSO-d6) δ (ppm): 10.87 (bs, 1H),

7




9.45 (bs, 1H), 8.66 (bs, 1H), 8.33 (d, J=7.4 Hz,





1H), 8.14-8.08 (m, 3H), 7.63 (d, J=15.6 Hz, 1H),





7.40 (d, J=7.7 Hz, 1H), 7.08 (d, J=6.8 Hz, 2H),





6.97 (d, J=12.3 Hz, 2H), 6.80 (d, J=7.9 Hz,





1H), 6.63 (dt, J=7.7 Hz, 7.4 Hz, 1H), 5.06 (bs,





2H), 3.88 (s, 3H)




81

1H NMR: (DMSO-d6) δ (ppm): 9.27 (s, 1H), 8.83

7




(s, 2H), 7.97 (t, J=6 Hz, 1H), 7.37 (d, J=15.9





Hz, 1H), 7.29 (d , J=7.11 Hz, 1H), 6.96 (d, J=





8.24 Hz, 2 H), 6.88 (m, 1H), 6.70 (m, 2 H), 6.55





(m, 1H), 6.47 (d, J=8.2 Hz, 2H), 4.90 (s, 4H),





4.34 (d, J=6.0 Hz, 2H).




82

1H-NMR (CDCl3), δ (ppm): 8.38 (bs, 1H), 7.49 (m,

7, 3




1H), 7.42 (dd, J=8.5 Hz, 2.2 Hz, 1H), 7.41 (m,





1H), 7.30 (d, J=7.9 Hz, 1H), 7.10 (bs, 1H), 7.02





(t, J=7.4 Hz, 1H), 6.75 (d, J=15.0 Hz, 1H), 6.73





(m, 1H), 6.65 (m, 2H), 6.36 (d, J=8.8 Hz, 1H),





6.23 (d, J=15.0 Hz, 1H), 4.34 (s, 2H and bs,





2H), 3.84 (s, 3H), 3.81 (s, 6H).




83

1H NMR: (DMSO-d6) δ (ppm): 8.28 (bs, 1H), 7.98

7




(d, J=9.6 Hz, 1H), 7.57 (d, J=15.6 Hz, 1H),





7.38 (d, J=7.7 Hz, 1H), 7.29 (d, J=7.9 Hz, 2H),





7.22 (d, J=7.6 Hz, 2H), 7.08 (dt, J=8.2 Hz, 7.7





Hz, 1H), 6.98 (d, J=9.1 Hz, 2H), 6.87 (t, J=8.2





Hz, 1H), 6.75 (d, J=15.1 Hz, 1H), 4.57 (s, 2H),





2.53 (s, 3H).




84

1H NMR: (DMSO-d6) δ (ppm): 9.27 (s, 1H), 8.54

7




(s, 2H), 8.12 (m, 1H), 7.30 (m, 4H), 6.53-6.91 (m,





6H), 4.90 (s, 2H), 4.46 (d, J=4.9 Hz, 2H), 3.7 (s,





3H).




 84b

1H NMR (20% CD3OD in CDCl3): □□8.75 (s, 1H),

9, 15




7.95 (m, 1H), 7.74-7.59 (m, 3H), 7.50 (m, 1H),





7.24 (d, J=7.8 Hz, 1H), 7.07 (m, 1H), 6.95 (d, J=





8.4 Hz, 1H), 6.89-6.83 (m, 3H), 3.96 (s, 3H),





3.91 (s, 3H).
















TABLE 3b









embedded image

















Ex.
Cpd.
n
Name
Characterization
Scheme





53
87
0
2-(4-methoxy-

1H-NMR(DMSO-d6), δ(ppm): 9.66(bs, 1H), 8.32(s, 1H), 8.05(d, J=8.8 Hz,

10





benzylamino)-quinoline-
1H), 7.96(dd, J=9.1 Hz, 2.2 Hz, 1H), 7.72(d, J=2.2 Hz, 1H), 7.55(dd, J=8.5






6-carboxylic acid(2-
Hz, 2.2 Hz, 1H), 7.34(dd, J=8.5 Hz, 2.2 Hz, 1H), 7.20(d, J=7.7 Hz, 1H), 6.97






aminophenyl)-amide
(t, J=7.7 Hz, 1H), 6.90(m 2H), 6.80(d, J=7.9 Hz, 1H), 6.61(t, J=6.3 Hz, 1H),







4.90(bs 2H), 4.58(d, J=3.3 Hz, 2H), 3.73(s, 3H), 3.33(bs, 1H).



54
88
1
N-(2-aminophenyl)-3-[2-

1H-NMR(DMSO-d6), δ(ppm): 9.70(bs, 1H), 9.40(bs, 1H), 8.20(d, J=8.9 Hz,

10





(4-methoxy-
1H), 8.03(bs, 2H), 7.94(d, J=7.2 Hz, 1H), 7.64(dd, J=15.7 Hz, 2.5 Hz, 1H),






benzylamino)-quinolin-6-
7.41(d, J=8.5 Hz, 2H), 7.39(m, 1H), 7.14(d, J=8.9 Hz, 1H), 7.05(d, J=15.7






yl]-acrylamide
Hz, 1H), 6.97(m, 1H), 6.95(d, J=8.5 Hz, 2H), 6.81(d, J=8.0 Hz, 1H), 6.65(t, J=







7.2 Hz, 1H), 4.76(s, 2H), 3.75(s, 3H).
















TABLE 3c









embedded image


















Ex.
Cpd.
Name
Characterization
Scheme






43
51
N-(2-aminophenyl)-3-[6-(4-methoxy-

1H-NMR(CDCl3), δ(ppm): 7.60(bs, 1H), 7.55(bs, 1H), 7.43(t, J=7.7

3





benzylamino)-pyridin-2-yl]-acrylamide
Hz, 1H), 7.29(d, J=8.3 Hz, 2H), 7.17(d, J=15.1 Hz, 1H), 7.06(t, J=







7.7 Hz, 1H), 6.88(d, J=8.3 Hz, 2H), 6.80(m, 2H), 6.70(m, 3H), 6.41







(d, J=8.5 Hz, 1H), 4.50(d, J=5.5 Hz, 2H), 3.80(s, 3H), 3.45(bs, 2H).
















TABLE 3d







embedded image























Ex.
Cpd
W
Y
Z
R
Name





347
492


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(4,6-dimethoxy- pyrimidin-2-ylamino)- methyl]-phenyl}- acrylamide





348
493


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(4-chloro-6- methoxy-pyrimidin-2- ylamino)-methyl]- phenyl]-acrylamide





349
494


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- [4-(3,5-dimethoxy- benzylamino)-phenyl]- acrylamide





350
495


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- [4-(3,5-dinitro- benzylamino)-phenyl]- acrylamide





351
496


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- [4-(3-trifluoromethoxy- benzylamino)-phenyl]- acrylamide





352
497


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- [4-(3,4,5-trimethoxy- phenoxymethyl)- phenyl]-acrylamide





353
498


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- [4-(6,7-dimethoxy-3,4- dihydro-1H-isoquinolin- 2-yl)-phenyl]- acrylamide





354
499


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-([(1 H-indol-2- ylmethyl)-(3,4,5- trimethoxy-phenyl)- amino]-methyl}- phenyl)-acrylamide





355
500


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- [4-(3,4,5-trimethoxy- phenylsulfanylmethyl)- phenyl]-acrylamide





356
501


embedded image


CH
CH
H
3-{4-[(6-Acetyl- benzo[1,3]dioxol-5- ylamino)-methyl]- phenyl}-N-(2-amino- phenyl)-acrylamide





357
502


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(5-methoxy- benzothiazol-2- ylamino)-methyl]- phenyl}-acrylamade





358
503


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(4-morpholin-4-yl- phenylamino)-methyl]- phenyl}-acrylamide





359
504


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(4- trifluoromethoxy- phenylamino)-methyl]- phenyl}-acrylamide





360
505


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- [4-(benzo[1,3]dioxol-5- ylaminomethyl)- phenyl]-acrylamide





361
506


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(3- trifluoromethoxy- phenylamino)-methyl]- phenyl}-acrylamide





362
507


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(3-methoxy- phenylamino)-methyl]- phenyl}-acrylamide





363
508


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(2-methoxy- phenylamino)-methyl]- phenyl}-acrylamide





364
509


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- (4-phenylaminomethyl- phenyl)-acrylamide





365
510


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(4-isopropyl- phenylamino)-methyl]- phenyl}-acrylamide





366
511


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- [4-(biphenyl-4- ylaminomethyl)- phenyl]-acrylamide





367
512


embedded image


CH
N
H
N-(2-Amino-phenyl)-3- {6-[(3,4,5-trimethoxy- phenylamino)-methyl]- pyridin-3-yl}- acrylamide





369
514


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- (4-{[1-(3-benzyl-7- chloro-4-oxo-3,4- dihydro-quinazolin-2- yl)-ethylamino]-methyl}- phenyl)-acrylamide





371
516
Br—
CH
CH
CH
N-(2-Amino-phenyl)-3-








(4-bromo-phenyl)-








acrylamide





372
517


embedded image


CH
CH
CH
N-(2-Amino-phenyl)-4- (2,4,5-trimethoxy- benzylamino)- benzamide





373
518


embedded image


CH
CH
CH
N-(2-Amino-phenyl)-3- {4-[1-(3,4,5- trimethoxy- phenylamino)-ethyl]- phenyl}-acrylamide





374
519


embedded image


C
CH
H
N-(2-Amino-phenyl)-3- (9H-fluoren-2-yl)- acrylamide





375
520


embedded image


CH
CH
H
N-(2-Amino-phenyl)-4- [2-(2-amino- phenylcarbamoyl)- vinyl]-benzamide





376
521


embedded image


N
CH
H
N-(2-Amino-phenyl)-3- {6-[2-(pyrimidin-2- ylamino)-ethylamino]- pyridin-3-yl}- acrylamide





377
522


embedded image


N
CH
H
N-(2-Amino-phenyl)-3- {6-[2-(thiazol-2- ylamino)-ethylamino]- pyridin-3-yl}- acrylamide





378
523


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- (4-{[(2-morpholin-4-yl- ethyl)-(3,4,5- trimethoxy-phenyl)- amino]-methyl}- phenyl)-acrylamide





379
524


embedded image


N
CH
H
N-(2-Amino-phenyl)-3- [6-(3-hydroxy- benzylamino)-pyridin-3- yl]-acrylamide





380
525


embedded image


N
CH
H
N-(2-Amino-phenyl)-3- {6-[3-(2,2,2-trifluoro- ethoxy)-benzylamino]- pyridin-3-yl}- acrylamide





381
526


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- (4-{[3-hydroxy-4-(4- methyl-piperazin-1-yl)- phenylamino]-methyl}- phenyl)-acrylamide





382
527


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- (4-{[3-fluoro-4-(4- methyl-piperazin-1-yl)- phenylamino]-methyl}- phenyl)-acrylamide





383
528


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(3-hydroxy- phenylamino)-methyl]- phenyl}-acryamide





384
529


embedded image


CH
CH
H
N{2-Amino-phenyl)-3- {4-[(4-trifluoromethyl- pyrimidin-2-ylamino)- methyl]-phenyl}- acrylamide





385
530


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(3-hydroxymethyl- phenylamino)-methyl]- phenyl}-acrylamide





386
531


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(4-pyridin-4- ylmethyl-phenylamino)- methyl]-phenyl}- acrylamide





387
532


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(3-cyano- phenylamino)-methyl]- phenyl}-acrylamide





388
533


embedded image


CH
CH
H
3-(4-{[3-(Acetylamino- methyl)-phenylamino]- methyl}-phenyl)-N-(2- amino-phenyl)- acrylamide





389
534


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4[(4-nitro-3- trifluoromethyl- phenylamino)-methyl]- phenyl}-acrylamide





390
535


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(3,5-dichloro- phenylamino)-methyl]- phenyl}-acrylamide





391
536


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[2-(3,4,5- trimethoxy-phenyl)- vinyl]-phenyl}- acrylamide





392
537


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[2-(3,4,5- trimethoxy-phenyl)- vinyl]-phenyl}- acrylamide





393
538


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(3-sulfamoyl- phenylamino)-methyl]- phenyl}-acrylamide





394
539


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- (4-{[3-(3-morpholin-4- yl-propylsulfamoyl)- phenylamino]-methyl}- phenyl)-acrylamide





395
540


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[2-(3,4,5- trimethoxy-phenyl)- ethyl]-phenyl}- acrylamide





396
541


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(4-methoxy- phenylamino)-methyl]- phenyl}-acrylamide





397
542


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(3,4-dimethoxy- phenylamino)-methyl]- phenyl}-acrylamide





398
543


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- (4-{[3-(1H-tetrazol-5-yl)- phenylamino]-methyl}- phenyl)-acrylamide





399
544


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- (4-{[4-(1H-tetrazol-5- ylmethyl)- phenylamino]-methyl}- phenyl)-acrylamide





400
545


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4[(4-bromo- phenylamino)-methyl]- phenyl}-acrylamide





401
546


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(3-bromo- phenylamino)-methyl]- phenyl}-acrylamide





402
547


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(4-iodo- phenylamino)-methyl]- phenyl}-acrylamide





403
548


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(3-iodo- phenylamino)-methyl]- phenyl}-acrylamide





404
549


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- (4-{[3-(2-hydroxy- ethoxy)-phenylamino]- methyl}-phenyl)- acrylamide





405
550


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(4-nitro- phenylamino)-methyl]- phenyl}-acrylamide





406
551


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(3-nitro- phenylamino)-methyl]- phenyl}-acrylamide





407
552


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(4-chloro- phenylamino)-methyl]- phenyl}-acrylamide





408
553


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(3-chloro- phenylamino)-methyl]- phenyl}-acrylamide





409
554


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(4-fluoro- phenylamino)-methyl]- phenyl}-acrylamide





410
555


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(3-methylsulfanyl- phenylamino)-methyl]- phenyl}-acrylamide





411
556


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(4-methylsulfanyl- phenylamino)-methyl]- phenyl}acrylamide





412
557


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(5-bromo-pyridin-2- ylamino)-methyl]- phenyl}acrylamide





413
558


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- [4-(naphthalen-1- ylaminomethyl)- phenyl]-acrylamide





414
559


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3- {4-[(3-fluoro- phenylamino)-methyl]- phenyl}-acrylamide













415
560


embedded image


N-(2-Amino-phenyl)-3-{3,5-dimethoxy-4-[(3,4,5- trimethoxy-phenylamino)- methyl]-phenyl}-acrylamide





416
561


embedded image


N-(2-Amino-3-hydroxy- phenyl)-3-{4-[(3,4,5- trimethoxy-phenylamino)- methyl]-phenyl}- acrylamide
















417
562


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3-[4- [(2,3,4-trimethoxy- phenylamino)-methyl]- phenyl}-acrylamide





418
563


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3-[4-([4- methoxy-3-[(3,4,5- trimethoxy-phenylamino)- methyl]-phenylamino}- methyl)-phenyl]-acrylamide













419
564


embedded image


N-(2,3-Diamino-phenyl)-3- {4-[(3,4,5-trimethoxy- phenylamino)-methyl]- phenyl]-acrylamide
















420
565


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3-{4-[(3- fluoro4-methylsulfanyl- phenylamino)-methyl]- phenyl}-acrylamide





421
566


embedded image


CH
CH
H
N-(2-Amino-phenyl)-3-{4-[(4- methylsulfanyl-3- trifluoromethyl- phenylamino)-methyl]- phenyl]-acrylamide













422
567


embedded image


N-(2-Amino-phenyl)-3-{3- nitro-4-[(3,4,5-trimethoxy- phenylamino)-methyl]- phenyl]-acrylamide





423
568


embedded image


N-(2-Amino-phenyl)-3-{3- amino-4-[(3,4,5- trimethoxy-phenylamino)- methyl]-phenyl}-acrylamide





424
569


embedded image


N-(2-Amino-phenyl)-3-[6- (3,4-dimethoxy-phenyl)- pyridin-3-yl]-acrylamide





425
570


embedded image


N-(4-Amino-thiophen-3-yl)- 3-{4-[(4-morpholin-4-yl- phenylamino)-methyl]- phenyl}-acrylamide














Ex.
Characterization
Schm






347

1H-NMR(DMSO-d6), δ(ppm): 9.36(bs, 1H), 7.55(d, J=

3, 7




7.4 Hz, 2H), 7.48(s, 1H), 7.38(d, J=7.9 Hz, 2H), 7.33(d





J=7.9 Hz, 1H), 6.91(m, 2H), 6.73(d, J=8.2 Hz, 1H), 6.56





(dd, J=7.4, 7.7 Hz, 1H), 5.35(s, 1H), 4.93(bs, 2H), 4.46





(dd, J=6.04 2H), 3.32(s, 6H)




348

1H-NMR(DMSO-d6), δ(ppm): 9.37(bs, 1H), 7.58-7.50

3, 7




(m, 3H), 7.37-7.32(m, 3 H), 6.94-6.83(m, 2H), 6.75(d





J=8.0 Hz, 1H), 6.57(t, J=7.5, 1H), 6.13(bs, 1H), 4.94





(bs, 2H), 4.48(d, J=6.0, 2H), 3.84(s, 3H)




349

1H-NMR(DMSO-d6), δ(ppm): 9.38(bs, 1H), 7.55-7.40

3, 7




(m, 6H), 6.88-6.57(m, 3 H), 6.35-6.32(m, 1H), 5.73(m,





3H), 4.94(s, 2 H), 4.26(s, 2H), 3.63(s, 6H).




350

1H-NMR(DMSO-d6), δ(ppm): 9.38(bs, 1H), 7.74(bs,

3, 7




3H), 7.61(d, J=8.2 Hz, 2 H), 7.56-7.44(m, 3H), 7.32(d





J=8.0 Hz, 1H), 6.91-6.85(m, 2H), 6.73(d , J=7.9 Hz, 1H),





6.66-6.56(m, 1H), 4.93(bs, 2H), 4.52(bs, 2H).




351

1H-NMR(DMSO-d6), δ(ppm): 9.22(bs, 1H), 7.52(d,

58




J=7.9 Hz, 2H), 7.44(bs, 1H), 7.38(bs, 3H), 7.28(d





J=6.9 Hz, 2H), 6.95-6.92(m, 2H), 6.79(d, J=8.2 Hz, 1H),





6.69-6.59(m, 3H), 4.95(bs, 2H), 4.45(bs, 2H).




352

1H-NMR(DMSO-d6), δ(ppm): 9.45(bs, 1H), 8.01(bs,

3, 7




2H), 7.78-7.5(m, 4H), 7.49-7.40(m, 1H), 6.98(dd, J=7.0,





8.2 Hz, 1H), 6.82(d, J=7.0 Hz, 1H), 6.64(dd , J=7.0, 7.6





Hz, 1H), 6.41(bs, 2H), 5.17(s, 2H), 3.81(s, 6H), 3.64(s,





3H).




353

1H-NMR(DMSO-d6), δ(ppm): 9.22(bs, 1H), 7.17(d,

37




J=8.2 Hz, 2H), 6.97(d, J=8.2 Hz, 2H), 6.93(d, J=7.6 Hz,





1H), 6.85(bs, 1H), 6.77(bs, 1H), 6.60-6.53(m, 3H), 6.43-





6.40(m, 2H), 4.97(bs, 2H), 4.43(bs, 2H), 3.78(s, 3H),





3.77(s, 3H), 2.87-2.85(m, 2H), 2.65-2.62(m, 2H).




354

1H-NMR(DMSO-d6), δ(ppm): 10.77(bs, 1H), 9.39(bs,

58




1H), 7.62(d, J=7.9 Hz, 1H), 7.49(d, J=5.7 Hz, 2H), 7.37





(d, J=7.9 Hz, 2H), 7.26(d, J=7.9, 2H), 7.10(t, J=7.5 Hz,





2H), 7.00-6.83(m, 4H), 6.78(d, J=7.9 Hz, 1H), 6.61(t,





J=7.5 Hz, 1H), 5.98(s, 1H), 5.32(bs, 1H), 4.98(bs, 2H),





4.32(d, J=5.2 Hz, 2H), 3.98(bs, 2H), 3.73(s, 3H), 3.67





(s, 3H), 3.64(s, 3H).




355

1H-NMR(DMSO-d6), δ(ppm): 9.69(bs, 1H), 8.04(d,

3, 7




J=8.3 Hz, 2H), 7.78(d, J=8.3 Hz, 2H), 7.58-7.55(m, 2H),





7.06(d, J=6.2 Hz, 1H), 6.96(d, J=7.3 Hz, 1H), 6.90(d,





J=7.0 Hz, 1H), 6.60(bs, 1H), 5.81(s, 2H), 4.34(bs, 2H),





3.78(s, 6H), 3.67(s, 3H).




356

1H-NMR(DMSO-d6), δ(ppm): 9.81(bs, 1H), 7.95(d,

58




J=7.9 Hz, 2H), 7.58(d, J=7.9 Hz, 2H), 7.39(bs, 1H), 7.21





(d, J=7.4 Hz, 1H), 7.02-7.00(m, 2H), 6.85(d, J=7.5 Hz,





1H), 6.64(t, J=7.4 Hz, 1H), 6.60(bs, 1H), 6.36(bs, 1H),





6.00(d, J=2.2 Hz, 2H), 4.60(bs, 2H), 2.50(bs, 3H).




357

1H-NMR(DMSO-d6), δ(ppm): 9.43(bs, 1H), 8.37(bs,

58




1H), 7.66-7.57(m, 3H), 7.49(d, J=7.5 Hz, 2H), 7.37-7.33





(m, 3H), 6.96-6.90(m, 1H), 6.87(d, J=8.8 Hz, 1H), 6.80





(d, J=7.9 Hz, 1H), 6.63(t, J=7.5 Hz, 1H), 4.99(bs, 2H),





4.64(bs, 2H), 3.37(s, 3H).




358

1H-NMR(DMSO-d6), δ(ppm): 9.42(bs, 1H), 7.63-7.56

58




3H), 7.47(d, J=7.9 Hz, 2H), 7.39(d, J=7.5 Hz, 1H),





6.95(d, J=8.3 Hz, 1H), 6.82(bs, 1H), 6.77(d, J=8.4 Hz,





2H), 6.66-6.56(m, 3H), 5.91(bs, 1H), 5.01(bs, 2H), 4.30





(bs, 2H), 3.74(bs, 4H), 2.93(bs, 4H).




359

1H-NMR(DMSO-d6), δ(ppm): 9.42(s, 1H), 7.64(d, J=

3, 33




7.9 Hz, 2H), 7.59(d, J=15.9 Hz, 1H), 7.48(d, J=8.0





Hz, 2H) 7.39(d J=7.4 Hz, 1H) 7.10(d, J=8.2 Hz, 2H),





6.99(d, J=7.1 Hz, 1H), 6.92(d, J=15.4 Hz, 1H), 6.81





(dd, J=1.3, 8.0 Hz, 1H), 6.61-6.68(m, 4H), 4.99(s, 2H),





4.36(d, J=6.0 Hz, 2H).




360

1H-NMR(DMSO-d6), δ(ppm): 9.42(s, 1H), 7.63(d, J=

3, 33




7.7 Hz, 2H), 7.59(d, J=15.4 Hz, 1H), 7.47(d, J=8.0





Hz, 2H), 7.40(d, J=7.7 Hz, 1H), 6.99(d, J=7.1 Hz, 1H),





6.92(d, J=16.2 Hz, 1H), 6.81(dd, J=1.4, 8.0 Hz, 1H),





6.68(d, J=8.2 Hz, 1H), 6.62(dd, J=1.4, 7.7 Hz, 1H),





6.34(d, J=2.2 Hz, 1H), 6.05(m, 2H), 5.87(s, 2H), 4.99





(s, 2H), 4.29(d, J=6.0 Hz, 2H).




361

1H-NMR(DMSO-d6), δ(ppm): 9.43(s, 1H), 7.57-7.66(m,

3, 33




3H), 7.48(d, J=7.6 Hz, 2H), 7.40(d, J=7.6 Hz, 1H),





7.20(dd, J=8.2, 8.2 Hz, 1H), 6.99(d, J=7.6 Hz, 1H),





6.93(d, J=15.2 Hz, 1H), 6.81(m, 2H), 6.64(m, 2H), 6.49-





6.55(m, 2H), 5.00(s, 2H), 4.38(d, J=5.3 Hz, 2H).




362

1H-NMR(DMSO-d6), δ(ppm): 9.42(s, 1H), 7.63(d, J=

3, 33




7.6 Hz, 2H), 7.59(d, J=15.8 Hz, 1H), 7.47(d, J=7.6





Hz, 2H), 7.40(d, J=7.6 Hz, 1H), 6.90-7.02(m, 3H), 6.81





(d, J=7.6 Hz, 1H), 6.64(dd, J=7.0, 7.0 Hz, 1H), 6.36(m,





1H), 6.24(d, J=8.2 Hz, 1H), 6.18(m, 2H), 5.00(s, 2H),





4.34(d, J=5.3 Hz, 2H), 3.69(s, 3H).




363

1H-NMR(DMSO-d6), δ(ppm): 9.42(s, 1H), 7.62(d, J=

3, 33




7.0 Hz, 2H), 7.58(d, J=15.2 Hz, 1H), 7.46(d, J=7.6





Hz, 2H), 7.40(d, J=7.0 Hz, 1H), 6.94-7.00(m, 1H), 6.87





(d, J=7.6 Hz, 2H), 6.81(d, J=7.6 Hz, 1H), 6.73(dd, J=





7.6, 7.6 Hz, 1H), 6.56-6.66(m, 2H), 6.45(d, J=7.6 Hz,





1H), 5.68(t, J=5.9 Hz, 1H), 4.99(s, 2H), 4.41(d, J=6.4





Hz, 2H), 3.87(s, 3H).




364

1H-NMR(DMSO-d6), δ(ppm): 9.42(s, 1H), 7.63(d, J=

3, 33




7.9 Hz, 2H), 7.59(d, J=15.8 Hz, 1H), 7.48(d, J=7.9 Hz,





2H), 7.39(d, J=7.5 Hz, 1H), 7.10(2d, J=7.5, 7.5 Hz,





2H), 6.99(d, J=7.5 Hz, 1H), 6.92(d, J=16.2 Hz, 1H),





6.81(d, J=7.5 Hz, 1H), 6.55-6.64(m, 4H), 6.32(t, J=





6.0, 1H), 4.99(s, 2H), 4.35(d, J=5.7 Hz, 2H).




365

1H-NMR(DMSO-d6), δ(ppm): 9.42(s, 1H), 7.62(d, J=

3, 33




7.0 Hz, 2H), 7.59(d, J=15.8 Hz, 1H), 7.47(d, J=8.2





Hz, 2H), 7.40(d, J=7.6 Hz, 1H), 6.89-6.99(m, 4H), 6.81





(d, J=7.6 Hz, 1H), 6.64(dd, J=7.0, 7.6 Hz, 1H), 6.56(d,





J=8.2 Hz, 2H), 6.14(t, J=5.9 Hz, 1H), 4.99(s, 2H), 4.32





(d, J=5.9 Hz, 2H), 2.76(m, 1H), 1.17(d, J=7.0 Hz, 6H).




366

1H-NMR(DMSO-d6) δ(ppm): 9.43(s 1H) 7.57-7.66(m,

3, 33




5H), 7.40-7.52(m, 7H), 7.27(dd, J=7.0, 7.6 Hz, 1H),





6.98(d, J=7.6 Hz, 1H), 6.93(d, J=15.2 Hz, 1H), 6.81(d,





J=8.2 Hz, 1H), 6.73(d, J=8.2Hz, 2H), 6.64(dd, J=7.6





Hz, 1H), 6.56(t, J=5.9 Hz, 1H), 4.99(s, 2H), 4.12(d, J=





5.9 Hz, 2H).




367

1H-NMR(DMSO-d6), δ(ppm): 9.50(s, 1H), 8.81(s, 1H),

3, 33




8.05(d, J=8.2 Hz, 1H), 7.64(d, J=15.7 Hz, 1H), 7.52





(d, J=8.2 Hz, 1H), 7.39(d, J=7.4 Hz, 1H), 6.96-7.05(m,





2H), 6.81(d, J=8.0Hz, 1H), 6.64(dd, J=7.4, 7.4 Hz,





1H), 6.26(m, 1H), 5.96(s, 2H), 5.01(s, 2H), 4.43(d, J=





5.5 Hz, 2H), 3.72(s, 6H), 3.56(s, 3H).




369

1H-NMR(DMSO-d6), δ(ppm): 9.50(s, 1H), 8.28(d, J=

55




8.4 Hz, 1H), 7.81-7.72(s, 3H), 7.66(d, J=8.1 Hz, 2H),





7.88(d, J=15.6 Hz, 1H), 7.50(d, J=8.1 Hz, 2H), 7.45-





7.26(m, 4H), 7.24-7.15(m, 2H), 7.00-6.86(m, 2H), 6.84





(d, J=8.1 Hz, 1H), 6.68(t, J=7.5 Hz, 1H), 5.45(d, J=





16.8 Hz, 1H), 533(d, J=16.8 Hz, 1H), 4.62(bs, 1H),





4.25(d, J=12.9 Hz, 1H), 4.92(d, J=12.9 Hz, 1H), 1.91





(m, 2H), 1.28(m, 1H), 0.90(m, 1H), 0.72(t, J=7.5 Hz,





3H).




371

1H NMR: (Acetone-d6) δ(ppm): 9.47(bs, 1H), 7.72-7.56

14




(m, 5H), 7.39(d, J=7.4 Hz, 1H), 7.00-6.95(m, 2H), 6.81





(d, J=6.9 Hz, 1H), 6.64(t, J=7.1 Hz, 1H), 5.00(bs, 2H).




372

1H NMR: (CD3OD) δ(ppm): 7.61(d, J=15.4 Hz, 1H),

1, 7, 10




7.44(d, J=8.4 Hz, 2H), 7.25(d, J=7.5 Hz, 1H), 7.10(t,





J=7.5 Hz, 1H), 7.00(s, 1H), 6.94(d, J=8.4 Hz, 1H), 6.81





(t, J=7.0 Hz, 1H), 6.76(s, 1H) 6.70(d, J=8.4 Hz, 2H), 6.92





(d, J=15.4 Hz, 1H), 4.35(s, 2H), 3.94(s, 3H), 3.92(s, 3H),





3.77(s, 3H).




373
1H NMR(DMSO-d6) δ(ppm): 9.24(s, 1H), 8.00 1(d,
58




J=12Hz, 1H); 7.80(d, J=12Hz, 1H), 7.40-7.70(m, 7H),





6.80-7.00(m, 2H), 6.70(d, J=12Hz, 1H), 6.20(s, 2H),





4.50(m, 1H), 3.70(s, 6H), 3.50(s, 3H), 1.50(d, 3H).




374

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.41(s, 1H),

59




8.00(t, J=7.9 Hz, 2H), 7.88(s, 1H), 7.77-7.56(m, 3H),





7.52-7.32(m, 3H), 7.00(d, J=15.8 Hz, 1H), 6.96(t, J=





7.5 Hz, 1H), 6.80(d, J=7.9 Hz, 1H), 6.63(t, J=7.5 Hz,





1H), 5.00(s, 2H), 4.03(s, 2H).




375

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.71(s, 1H),

59




9.43(s, 1H), AB system(δA=8.05, δB=7.75, J=7.9 Hz,





4H), 7.62(d, J=15.8 Hz, 1H), 7.36(d, J=7.9 Hz, 1H),





7.18(d, J=7.5 Hz, 1H), 7.05-6.88(m, 3H), 6.78(t, J=





7.9 Hz, 2H), 6.65-6.55(m, 2H), 4.96 and 4.92(2s, 4H).




376

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.29(s, 1H),

 3




8.32(d, J=4.9 Hz, 2H), 8.24(d, J=1.9 Hz, 1H), 7.71(d,





J=6.9 Hz, 1H), 7.48(d, J=15.7 Hz, 1H), 7.38(d, J=7.7





Hz, 1H), 7.26(bs, 2H), 6.96(t, J=6.9 Hz, 1H), 6.80(dd, J





1.1, 7.7 Hz, 1H), 6.69-6.61(m, 4H), 5.00(s, 2H), 3.52





(bs, 4H),




377

1H NMR(300 MHz,(CD3OD) δ(ppm): 8.12(s, 1H), 8.08

 3




(s, 1H) 7.78(d, J=8.8 Hz, 1H), 7.54(d, J=15.4 Hz, 1H),





7.19(d, J=8.0 Hz, 1H) 7.04(t, J=7.4 Hz, 1H) 6.87(d





J=8.0 Hz, 1H), 6.75(t, J=7.4 Hz, 1H), 6.64(d, J=15.4





Hz, 1H), 6.65(s, 1H), 4.90(s, SH), 3.50-3.45(m, 4H), 3.30





(d, J=1.3 Hz, 1H).




378

1H-NMR(CD3OD), δ(ppm): 7.83(d, J=15.6 Hz, 1H),

3, 33,




7.67(d, J=7.8 Hz, 2H), 7.62-7.58(m, 2H), 7.53-7.51(m,
57




2H), 7.49(d, J=7.8 Hz, 2H), 7.01(d, J=15.6 Hz, 1H), ),





4.99(bs, 9H), 4.84(bs, 2H), 4.22(t, J=6.5 Hz, 2H), 4.05





(s, 4H), 3.85(s, 6H), 3.76(s, 3H), 3.57-3.50(m, 4H).




379

1H-NMR(DMSO-d6), δ(ppm): 9.32(s, 1H), 9.26(s, 1H),

 3




8.19(s, 1H), 7.66(d, J=8.5 Hz, 1H), 7.57(t, J=6.0 Hz,





1H), 7.41(d, J=15.7 Hz, 1H), 7.32(d J=7.7 Hz), 7.10(t, 3





J=7.6 Hz, 1H), 6.91(t, J=7.6 Hz, 1H), 6.75(m, 3H), 6.59





(m, 4H), 4.98(bs, 2H), 4.46(d, J=5.8 Hz, 2H).




380

1H-NMR(DMSO-d6), δ(ppm): 9.25(s, 1H), 8.18(s, 1H),

 3




7.67(d, J=8.8 Hz, 1H), 7.59(t, J=6.0 Hz, 1H), 7.42(d,





J=15.7 Hz, 1H), 7.30(m, 2H), 7.00(m, 2H), 6.92(m,





2H), 6.74(d, J=8.0 Hz, 1H), 6.60(m, 3H), 4.92(s, 2H),





4.73(q, J=8.8 Hz, 2H), 4.52(d, J=5.8 Hz, 2H).




381

1H-NMR(CD3OD), δ(ppm): 7.64(d, J=15.6 Hz, 1H),

3, 33,




7.56(d, J=8.0 Hz, 2H), 7.49(m, 1H), 7.40(d, J=8.0
58




Hz, 2H), 7.21(m, 2H), 7.03(t, J=7.6 Hz, 1H), 6.88-6.71





(m, 4H), 4.88(bs, 4H), 4.34(s, 2H), 2.86(t, J=4.1 Hz,





4H), 2.67(bs, 4H), 2.41(s, 3H).




382

1H-NMR(DMSO-d6, δ(ppm): 9.43(s, 1H), 7.61(d, J=

3, 33,




8.0 Hz, 2H), 7.45(d, J=8.0 Hz, 2H), 7.38(d, J=7.6 Hz,
58




1H), 7.00-6.88(m, 2H), 6.85-6.79(m, 2H), 6.63(t, J=7.6





Hz, 1H), 6.44-6.30(m, 3H), 4.99(bs, 2H), 4.30(d, J=5.5





Hz, 2H), 2.87(bs, 4H), 2.55(m, 4H), 2.27(s, 3H).




383

1H-NMR(CDCl3), δ(ppm): 7.49(d, J=14.0 Hz, 1H); 7.32

3, 33




(d, J=7.2 Hz, 2H), 7.15(d, J=7.2 Hz, 2H), 7.05(m, 1H),





6.96(m, 1H), 6.90(m, 3H), 6.76(m, 1H), 6.55(d, J=





14.0 Hz, 1H), 6.03(m, 1H), 5.99(m, 1H), 4.30(bs, 5H),





4.10(s, 2H).




384

1H-NMR(CD3OD), δ(ppm): 7.73(d, J=16.0 Hz, 1H);

3, 33




7.63(d, J=8.5 Hz, 1H), 7.58(d, J=8.0 Hz, 2H), 7.46(d,





J=8.0 Hz, 2H), 7.38(d, J=8.5 Hz, 1H), 7.20(d, J=8.0





Hz, 1H), 7.03(dt, J=7.7, 1.4 Hz, 1H), 6.89(d, J=1.1 Hz,





1H), 6.85(m, 1H), 6.73(dt, J=7.7, 1.1 Hz, 1H), 6.56(d,





J=16.0 Hz, 1H), 5.27(s, 2H), 4.87(bs, 2H), 4.62(s,





2H).




385

1H-NMR(DMSO-d6), δ(ppm): 9.90(s, 1H), 7.58(m, 3H),

3, 33




7.43(d, J=8.0 Hz, 2H); 7.37(d, J=8.0 Hz, 1H), 7.11





(m, 1H), 7.00(m, 3H), 6.85(d, J=15.4 Hz, 1H), 6.63(s,





1H), 6.51(d, J=7.4, Hz, 1H), 6.46(d, J=7.7 Hz, 1H),





4.35(s, 2H), 4.32(s, 2H).




386

1H-NMR(DMSO-d6), δ(ppm): 9.66(s, 1H), 8.46(d, J=

3, 33




4.7 Hz, 2H); 7.55(d, J=8.0 Hz, 2H), 7.50(d, J=15.7





Hz, 1H), 7.39(d, J=8.0 Hz, 2H), 7.28(d, J=4.7 Hz, 2H),





7.00(d, J=15.7 Hz, 1H), 6.92(d, J=6.9 Hz, 2H), 6.90





(m, 1H), 6.75(d, J=8 Hz, 1H), 6.58(m, 2H), 6.52(d, J=





6.9, Hz, 2H), 6.10(bs, 1H), 4.26(bs, 2H), 3.80(s, 2H),





2.08(d, J=1.9 Hz, 2H).




387

1H-NMR(DMSO-d6), δ(ppm): 9.38(s, 1H), 7.58(d, J=

3, 33




7.7 Hz, 2H); 7.54(d, J=15.9 Hz, 1H), 7.41(d, J=7.7 Hz,





2H), 7.33(d, J=8.0 Hz, 1H), 7.24(t, J=7.7 Hz, 1H),





6.92-6.83(m, SH), 6.75(d, J=8.0 Hz, 1H), 6.58(t, J=





7.4 Hz, 1H), 4.95(bs, 2H), 4.34(d, J=5.8 Hz, 2H).




388

1H-NMR(DMSO-d6), δ(ppm): 9.37(bs, 1H), 8.21(t, J=

3, 33




5.8 Hz, 1H), 7.56(d, J=7.7 Hz, 2H), 7.53(d, J=15.7 Hz,





1H), 7.41(d, J=8.0 Hz, 2H), 7.33(d, J=7.1 Hz, 1H),





6.97(m, 1H), 6.85(d, J=15.7 Hz, 1H), 6.74(dd, J=1.4,





8.0 Hz, 1H), 6.58(dt, J=1.4, 8.0 Hz, 1H), 6.50(bs, 1H),





6.41(d, J=8.0 Hz, 2H), 6.30(t, J=6.0 Hz, 1H), 4.94(bs,





2H), 4.28(d, J=6.0 Hz, 2H), 4.09(d, J=6.0 Hz, 2H),





1.83(s, 3H).




389

1H-NMR(DMSO-d6), δ(ppm): 9.37(bs, 1H), 7.56(d, J=

3, 33




8.0 Hz, 2H), 7.53(d, J=15.7Hz, 1H), 7.41(d, J=8.0 Hz,





2H), 7.33(d, J=7.7 Hz, 1H), 6.92(d, J=7.7 Hz, 2H),





6.85(d, J=15.7 Hz, 1H), 6.74(d, J=8.0 Hz, 1H), 6.67-





6.55(m, 4H), 5.84(t, J=5.8 Hz, 1H), 4.94(bs, 2H), 4.22





(d, J=5.8 Hz, 2H).




390

1H-NMR(DMSO-d6), δ(ppm): 9.39(bs, 1H), 7.60(d, J=

3, 33




8.0 Hz, 2H), 7.54(d, J=15.7 Hz, 1H), 7.40(d, J=8.0 Hz,





2H), 7.33(d, J=7.1 Hz, 1H), 6.97-6.89(m, 2H), 6.87(d,





J=15.7 Hz, 1H), 6.75(dd, J=1.4, 8.0 Hz, 1H), 6.60-6.55





(m, 4H), 4.95(bs, 2H), 4.33(d, J=6.0 Hz, 2H).




391

1H-NMR(CDCl3), δ(ppm): 8.12(bs, 1H), 7.64(d, J=

 3




14.2 Hz, 1H), 7.42(bs, 4H), 7.23(bs, 2H), 6.97(d, J=





14.2 Hz, 1H), 6.94-6.82(m, 4H), 6.70(s, 2H), 4.11(bs,





2H), 3.87(s, 6H), 3.84(s, 3H).




392

1H-NMR(DMSO-d6), δ(ppm): 8.49(s, 1H), 7.58(d, J=

 3




15.7 Hz, 1H), 7.33(d, J=8.5 Hz, 1H), 7.23(m, 4H), 7.00





(d, J=8.5 Hz, 1H), 6.73(d, J=5.0 Hz, 2H), 6.69(d, J=





5.0 Hz, 2H), 6.58(d, J=15.4 Hz, 1H), 6.53(bs, 2H), 6.47





(s, 2H), 3.85(s, 3H), 3.63(s, 6H).




393

1H-NMR(CD3OD/CDCl3), δ(ppm): 7.61(d, J=15.7 Hz,

1, 3,




1H), 7.45(d, J=8.1 Hz, 2H), 7.29(d, J=8.1 Hz, 2H),
33




7.18(dd, J=8.0 Hz, 2H), 7.12(d, J=15.7 Hz, 1H), 7.10





(m, 1H), 7.03(t, J=7.4 Hz, 1H), 6.83-6.66(m, 4H), 3.93





(bs, all NH signals).




394

1H-NMR(CDCl3), δ(ppm): 8.34(bs, 1H), 7.64(d, J=

3, 33,




15.4 Hz, 1H), 7.37(d, J=8.0 Hz, 2H), 7.34(m, 1H), 7.26
42




(d, J=8.0 Hz, 2H), 7.23(d, J=15.4 Hz, 1H), 7.14(d, J=





7.8 Hz, 1H), 7.04(m, 2H), 6.74(m, 4H), 4.85(bs, 1H),





4.30(d, J=4.4 Hz, 2H), 3.69(t, J=4.4 Hz, 4H), 2.99(t, J=





5.8 Hz, 2H), 2.40(bs, 6H), 1.59(t, J=4.4 Hz, 2H).




395

1H-NMR(CDCl3), δ(ppm): 8.53(5, 1H), 7.72(d, J=15.6

3, 32




Hz, 1H), 7.38(d, J=7.7 Hz, 2H), 7.33(m, 1H), 7.16(d, J=





7.7 Hz, 2H), 7.07(m, 1H), 6.79(m, 2H), 6.69(d, J=





15.6 Hz, 1H), 6.41(s, 2H), 4.04(bs, 2H), 3.91(s, 3H),





3.85(5, 6H), 2.94(m, 4H).




396

1H-NMR(DMSO-d6), δ(ppm): 9.35(s, 1H), 7.56(d, J=

3, 33




7.5 Hz, 2H), 7.52(d, J=15.4 Hz, 1H), 7.40(d, J=7.5 Hz,





2H), 7.33(d, J=7.7 Hz, 1H), 6.92(d, J=7.7 Hz, 1H),





6.85(d, J=15.4 Hz, 1H), 6.75(d, J=8.0 Hz, 1H), 6.67





(d, J=8.6 Hz, 2H), 6.58(m, 1H), 6.52(d, J=8.6 Hz, 2H),





5.84(t, J=5.5 Hz, 1H), 4.23(d, J=5.5 Hz, 2H), 3.61(s,





3H).




397

1H-NMR(CDCl3), δ(ppm): 8.48(s, 1H), 7.60(d, J=15.4

3, 33




Hz, 1H), 7.27(m, SH), 6.97(t, J=7.5 Hz, 1H), 6.70(m,





3H), 6.59(d, J=15.4 Hz, 1H), 6.25(s, 1H), 6.12(d, J=





7.1 Hz, 1H), 4.23(s, 2H), 3.93(bs, 3H), 3.75(s, 3H), 3.73





(s, 3H).




398

1H-NMR(CD3OD), δ(ppm): 7.75(d, J=15.2 Hz, 1H),

3, 33




7.60(d, J=7.6 Hz, 2H), 7.48(d, J=7.6 Hz, 2H), 7.33(m,





3H), 7.27(m, 3H), 7.20(m, 1H), 6.84(m, 2H), 5.48(bs,





5H), 4.46(s, 2H).




399

1H-NMR(CD3OD), δ(ppm): 7.75(d, J=15.2 Hz, 1H),

3, 33




7.58(d, J=8.2 Hz, 2H), 7.42(d, J=8.2 Hz, 2H), 7.29(m,





2H), 7.20(m, 2H), 7.04(d, J=8.2 Hz, 2H), 6.83(d, J=





15.2 Hz, 1H), 6.67(d, J=8.2 Hz, 2H), 5.48(bs, 5H), 4.39





(s, 2H). 4.16(s, 2H).




400

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.42(s, 1H),

3, 33




7.62(d, J=8.5 Hz, 2H), 7.59(d, J=15.6 Hz, 1H), 7.45





(d, J=8.0 Hz, 2H), 7.40(d, J=7.5 Hz, 1H), 7.23(d, J=





8.5 Hz, 2H), 6.98(d, J=7.5 Hz, 1H), 6.92(d, J=15.6 Hz,





1H), 6.80(d, J=8.0 Hz, 1H), 6.66-6.57(m, 4H), 4.99(bs,





2H), 4.34(d, J=5.8 Hz, 2H).




401

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.36(s, 1H),

3, 33




7.57(d, J=7.6 Hz, 2H), 7.54(d, J=15.8 Hz, 1H), 7.40





(d, J=8.2 Hz, 2H), 7.33(d, J=7.6 Hz, 1H), 7.00-6.91(m,





2H), 6.86(d, J=15.8 Hz, 1H), 6.74(d, J=8.2 Hz, 2H),





6.66-6.54(m, 4H), 4.93(bs, 2H), 4.30(d, J=5.3 Hz, 2H).




402

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.36(s, 1H),

3, 33




7.56(d, J=8.0 Hz, 2H), 7.53(d, J=15.8 Hz, 1H), 7.39





(d, J=8.0 Hz, 2H), 7.35(m, 1H), 7.31(d, J=8.2 Hz, 2H),





6.92(d, J=7.1 Hz, 1H), 6.85(d, J=15.8 Hz, 1H), 6.75





(d, J=7.7 Hz, 1H), 6.57(t, J=8.0 Hz, 1H), 6.52(t, J=





6.0 Hz, 1H), 6.42(d, J=8.5 Hz, 2H), 4.94(bs, 2H), 4.28





(d, J=6.0 Hz, 2H).




403

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.40(s, 1H),

3, 33




7.57(d, J=7.6 Hz, 2H), 7.53(d, J=15.6 Hz, 1H), 7.40





(d, J=8.2 Hz, 2H), 7.33(d, J=7.6 Hz, 1H), 6.92(m, 3H),





6.84(m, 2H), 6.74(d, J=7.6 Hz, 1H), 6.60-6.50(m, 3H),





4.93(bs, 2H), 4.28(d, J=5.9 Hz, 2H).




404

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.42(s, 1H),

3, 33




7.63(d, J=8.2 Hz, 2H), 7.60(d, J=15.3 Hz, 1H), 7.46





(d, J=8.2 Hz, 2H), 7.40(d, J=7.6 Hz, 1H), 7.03-6.98(m,





2H), 6.91(d, J=15.3 Hz, 1H), 6.81(d, J=7.6 Hz, 1H),





6.64(t, J=7.6 Hz, 1H), 6.36(t, J=5.9 Hz, 1H), 6.28-





6.22(m, 3H), 4.99(bs, 3H), 4.61(s, 2H), 4.34(d, J=5.0





Hz, 2H) 4.28(d, J=5.0 Hz, 2H).




405

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.38(s, 1H), 7.99

3, 33




(d, J=9.1 Hz, 2H), 7.85(t, J=5.9 Hz, 1H), 7.60(d, J=





7.6 Hz, 2H), 7.54(d, J=15.8 Hz, 1H), 7.40(d, J=7.6 Hz,





2H), 7.34(d, J=7.6 Hz, 1H), 6.94-6.92(m, 1H), 6.88(d, J=





15.8 Hz, 1H), 6.75(d, J=7.6 Hz, 1H), 6.68(d, J=9.1





Hz, 2H), 6.58(t, J=7.6 Hz, 1H), 4.94(bs, 2H), 4.46(d, J=





5.9 Hz, 2H)




406

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.37(s, 1H),

3, 33




7.59(d, J=7.6 Hz, 2H), 7.54(d, J=15.2 Hz, 1H), 7.43





(d, J=7.6 Hz, 2H), 7.36-7.28(m, 4H), 7.05-6.98(m, 2H),





6.92(d, J=7.6 Hz, 1H), 6.88(d, J=15.2 Hz, 1H), 6.75





(d, J=7.6 Hz, 1H), 6.58(t, J=7.6 Hz, 1H), 4.96(bs, 2H),





4.39(d, J=5.3 Hz, 2H).




407

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.43(s, 1H),

3, 33




7.62(d, J=7.6 Hz, 2H), 7.59(d, J=15.8 Hz, 1H), 7.46





(d, J=7.6 Hz, 2H), 7.40(d, J=7.6 Hz, 1H), 7.12(d, J=





8.8 Hz, 2H), 6.98(d, J=7.6 Hz, 1H), 6.93(d, J=15.8 Hz,





1H), 6.81(d, J=7.6 Hz, 1H), 6.62(d, J=8.8 Hz, 2H),





6.55(bs, 2H), 4.99(bs, 2H), 4.46(d, J=5.9 Hz, 2H), 4.35





(d, J=5.9 Hz, 2H)




408

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.50(s, 1H),

3, 33




7.65(d, J=8.2 Hz, 2H), 7.61(d, J=15.4 Hz, 1H), 7.47





(d, J=7.6 Hz, 2H), 7.43(m, 1H), 6.93(d, J=7.0 Hz, 1H),





6.79(d, J=15.4 Hz, 1H), 6.68(m, 3H), 6.59(m, 3H),





5.24(bs, 2H), 4.31(s, 2H).




409

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.37(s, 1H), 7.63

3, 33




(d, J=8.2 Hz, 2H), 7.60(d, J=15.4 Hz, 1H), 7.47(d, J=





7.6 Hz, 2H), 7.41(m, 1H), 7.01-6.90(m, 4H), 6.75(d, J=





7.6 Hz, 1H), 6.67-6.59(m, 3H), 6.27(bs, 1H), 4.95(bs,





2H), 4.27(s, 2H).




410

1H NMR(300 MHz,CD3OD) 8(ppm): 7.64(d, J=15.9

3, 33




Hz, 1H), 7.47(d, J=7.5 Hz, 2H), 7.32(d, J=7.5 Hz, 2H),





7.19(d, J=7.5 Hz, 1H), 7.03(t, J=7.8 Hz, 1H), 6.82(d,





J=7.5 Hz, 1H), 6.77(d, J=7.8 Hz, 1H), 6.70(d, J=15.9





Hz, 1H), 6.56(d, J=7.8 Hz, 1H), 6.49(s, 1H), 6.37(d, J=





7.8 Hz, 1H), 4.29(s, 2H), 4.05(bs, 4H), 2.37(s, 3H).




411

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.36(s, 1H),

3, 33




7.57(d, J=7.5 Hz, 2H), 7.53(d, J=15.8 Hz, 1H), 7.40





(d, J=7.9 Hz, 2H), 7.34(d, J=7.9 Hz, 1H), 7.07(d, J=





8.3 Hz, 2H), 6.92(d, J=7.5 Hz, 1H), 6.87(d, J=15.8 Hz,





1H), 6.75(d, J=7.9 Hz, 1H), 6.60-6.54(m, 3H), 6.39(t, J=





5.7 Hz, 1H), 4.93(bs, 2H), 4.29(d, J=6.1 Hz, 2H),





2.32(s, 3H),.




412

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.36(s, 1H),

3, 33




8.02(d, J=1.7 Hz, 1H), 7.57-7.50(m, 4H), 7.38-7.32(m,





4H), 6.92(d, J=7.5 Hz, 1H), 6.86(d, J=16.3 Hz, 1H),





6.75(d, J=7.9 Hz, 1H), 6.59(d, J=7.5 Hz, 1H), 6.53(d,





J=9.2 Hz, 1H), 4.94(bs, 2H), 4.48(d, J=5.7 Hz, 2H).




413

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.37(s, 1H),

3, 33




8.25(m, 1H), 7.76(m, 1H), 7.57(m, 2H), 7.47(m, 4H),





7.33(d, J=7.0 Hz, 1H), 7.17(m, 1H), 7.07(d, J=8.2 Hz,





1H), 6.99(t, J=5.3 Hz, 1H), 6.92(d, J=7.0 Hz, 1H),





6.85(d, J=16.4 Hz, 1H), 6.74(d, J=7.6 Hz, 1H), 6.57(t,





J=7.6 Hz, 1H), 6.36(t, J=7.6 Hz, 1H), 4.90(s, 2H),





4.54(d, J=5.3 Hz, 2H).




414

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.39(s, 1H),

3, 33




7.57(d, J=7.0 Hz, 2H), 7.53(d, J=15.4 Hz, 1H), 7.40





(d, J=7.6 Hz, 2H), 7.36(d, J=7.6 Hz, 1H), 7.02(q, J=





7.6 Hz, 1H), 6.90(m, 2H), 6.76(d, J=8.2 Hz, 1H), 6.58





(m, 1H), 6.40(d, J=8.2 Hz, 1H), 6.29(m, 2H), 4.90(s,





1H), 4.29(bs, 2H), 4.02(s, 2H).




415

1H-NMR(CDCl3), δ(ppm): 7.73(bs, 1H),

60




7.63(d, J=14.9 Hz, 1H), 6.81(m, 3H), 6.70





(m, 2H), 6.68-6.56(m, 2H), 6.07(s, 2H), 4.35





(s 2H), 3.86(s, 6H), 3.81(s, 6H), 3.75(s,





3H).




416

1H NMR(300 MHz, CDCl3) δ(ppm): 9.22(s,

3, 33




1H), 9.11(s, 1H), 7.57(d, J=7.9 Hz, 2H),





7.64(d, J=15.8 Hz, 1H), 7.44(d, J=7.9 Hz,





2H), 6.96(d, J=15.8 Hz, 1H), 6.78(t, J=7.9





Hz, 1H), 6.23(t, J=7.9 Hz, 1H), 6.16(d, J=





7.9 Hz, 1H), 6.09(t, J=6.2 Hz, 1H), 5.89(s,





2H), 4.77(bs, 2H), 4.27(d, J=5.7 Hz, 2H),





5.89(s, 6H),5.76(s, 3H).




417

1H NMR(300 MHz, CDCl3) δ(ppm): 8.25(s,

3, 33




1H), 7.74(d, J=15.5 Hz, 1H), 7.44(d, J=





7.9 Hz, 2H), 7.37(d, J=7.9 Hz, 2H), 7.34-





7.29(m, 2H), 7.08(t, J=7.5 Hz, 1H), 6.82(t,





J=7.5 Hz, 1H), 6.79(m, 1H), 6.66(d, J=





15.5 Hz, 1H), 6.60(d, J=8.8 Hz, 1H), 6.31





(d, J=8.8 Hz, 1H), 4.36(s, 2H), 4.18(bs, 2H),





3.98(s, 3H), 3.96(s, 3H), 3.84(s, 3H).




418

1H NMR(300 MHz, CDCl3) δ(ppm): 8.58(s,

3, 33




1H), 7.66(d, J=15.4 Hz, 1H), 7.33-7.28(m,





3H), 7.23(d, J=7.0 Hz, 2H), 7.04(t, J=7.0





Hz, 1H), 6.77-6.70(m, 4H), 6.64(d, J=15.4





Hz, 1H), 6.53(d, J=7.5 Hz, 1H), 5.90(s, 2H),





4.27(s, 2H), 4.25(s, 2H), 4.08(bs, 4H), 3.82





(s, 6H), 3.77(s, 6H).




419

1H NMR(300 MHz, CDCl3) δ(ppm): 7.64(d,

3, 33




J=15.4 Hz, 1H), 7.48(d, J=7.5 Hz, 2H),





7.35(d, J=7.5 Hz, 2H), 7.31-7.24(m, 2H),





6.86(s, 1H), 6.73(d, J=15.4 Hz, 1H), 5.84





(s, 2H), 4.27(s, 2H), 4.00(bs, 6H), 3.71(s,





6H), 3.68(s, 3H).




420

1H-NMR(DMSO-d6), δ(ppm): 9.38(bs, 1H),

3, 33




7.58(d, J=7.5 Hz, 2H), 7.54(d, J=15.4 Hz,





1H), 7.40(d, J=7.9 Hz, 2H), 7.33(d, J=7.9





Hz, 1H), 7.14(t, J=8.3 Hz, 1H), 6.94-6.89(m,





2H), 6.81(d, J=15.7 Hz, 1H), 6.74(d, J=





8.3 Hz, 1H), 6.58(t, J=7.5 Hz, 1H), 6.43-





6.38(m, 2H), 4.94(bs, 2H), 4.30(d, J=5.7





Hz, 2H). 2.28(s, 3H).




421

1H-NMR(DMSO-d6), δ(ppm): 9.39(bs, 1H),

3, 33




7.59(d, J=7.9 Hz, 2H), 7.54(d, J=15.8 Hz,





1H), 7.41(d, J=7.9 Hz, 2H), 7.36(d, J=7.9





Hz, 1H), 7.33(d, J=6.2 Hz, 1H),6.96-6.90





(m, 4H), 6.82(d, J=15.8Hz, 1H), 6.79-6.74





(m, 1H), 6.58(t, J=7.5 Hz, 1H), 4.95(bs, 2H),





4.35(d, J=6.2 Hz, 2H). 2.35(s, 3H).




422

1H-NMR(DMSO-d6), δ(ppm): 9.50(s, 1H),

3, 33




8.09(s, 1H), 7.80(d, J=15.4 Hz, 1H), 7.81





(s, 2H), 7.34(d, J=7.9 Hz, 1H), 6.94(d, J=





7.5 Hz, 1H), 6.88(d, J=15.4 Hz, 1H), 6.76





(d, J=7.9 Hz, 1H), 6.58(t, J=7.5 Hz, 1H),





6.26(t, J=6.2 Hz, 1H), 5.90(s, 2H), 4.96(bs,





2H), 4.39(d, J=5.7 Hz, 2H), 3.66(s, 6H),





3.51(s, 3H).




423

1H-NMR(DMSO-d6), δ(ppm): 9.29(s, 1H),

3, 33




7.72(d, J=15.4 Hz, 1H), 7.33(m, 2H), 6.90





(1H); 6.71(2H) 6.62(3H) 5.97(1H) 5.87





(2H), 5.49(2H), 4.96(2H), 4.10(2H)





3.65(6H), 3.51(3H).




424
LRMS: calc: 375.4, found: 376.4
3, 15, 33



425

1H-NMR(DMSO-d6), δ(ppm): 9.64(bs, 1H),

3, 33




7.65(d, J=7.9 Hz, 2H), 7.60(d, J=14.0 Hz,
60




1H), 7.50(d, J=7.9 Hz, 2H), 6.90(d, J=15.8





Hz, 1H), 6.15(d, J=4.0 Hz, 1H), 5.95(s, 2H),





5.82(s, 1H),





4.89(bs, 2H), 4.33(d, J=5.7 Hz, 2H), 3.71





(s, 6H),





3.57(s, 3H).









Example 85
N-(2-Amino-phenyl)-4-(1H-benzimidazol-2-ylsulfanylmethyl)-benzamide (compound 126)
Step 1: 4-(1H-Benzimidazol-2-ylsulfanylmethyl)-benzoic acid methyl ester (compound 122)

Following the procedure described in Example 47, step 2, but using 119 and substituting 121 for 63, the title compound 122 was obtained in 95% yield. LRMS=299.1 (M+1).


Step 2: N-(2-Amino-Phenyl)-4-(1H-benzimidazol-2-ylsulfanylmethyl)-benzamide (126)

Following the procedure described in Example 1, steps 4 and 5, but substituting 122 for 6, the title compound 126 was obtained in 62% yield. 1H NMR: (DMSO-d6) δ (ppm): 9.57 (s, 1H), 7.89 (d, J=8.2 Hz, 2H), 7.55 (d, J=8.2 Hz, 2H), 7.53 (bs, 2H), 7.36 (bs, 2H), 7.14-7.08 (m, 3H), 6.94 (t, J=8.2 Hz, 1H), 6.74 (d, J=6.9 Hz, 1H), 6.56 (t, J=8.0 Hz, 1H), 4.87 (bs, 2H), 4.62 (s, 2H).


Example 87
N-(2-Amino-phenyl)-4-[6-(2-morpholin-4-yl-ethylamino)-benzothiazol-2-ylsulfanylmethyl]-benzamide (compound 128)
Step 1: 4-(6-Amino-benzothiazol-2-ylsulfanylmethyl)-benzoic acid methyl ester (122)

Following the procedure described in Example 47, step 2, but using 120 and substituting 121 for 63, the title compound 122 was obtained in 45% yield. LRMS=331.0 (M+1).


Step 2: 4-[6-(2-Morpholin-4-yl-ethylamino)-benzothiazol-2-ylsulfanylmethyl]-benzoic acid methyl ester (compound 124)

To a solution of 4-(6-Amino-benzothiazol-2-ylsulfanylmethyl)-benzoic acid methyl ester 122 (800 mg, 2.42 mmol), in DMF (24 mL), were added successively solid 4-(2-chloroethyl)morpholine hydrochloride (296 mg, 2.66 mmol), K2CO3 (611 mg, 5.08 mmol), NaI (363 mg, 2.42 mmol), Et3N (370 μL, 2.66 mmol) and tetrabutylammonium iodide (894 mg, 2.42 mmol), The mixture was stirred at 120° C. for 24 h and more 4-(2-chloroethyl)morpholine hydrochloride (296 mg, 2.66 mmol) was added. The mixture was stirred for 8 h at 120° C. and the solvent was removed in vacuo. The resulting black syrup was partitioned between H2O and EtOAc. The organic layer was successively washed with HCl 1N and saturated aqueous NaHCO3. The precipitate was extracted twice with EtOAc, dried over MgSO4 and concentrated. Purification by flash chromatography (MeOH/CHCl3. 5:95 to 10:90) afforded 48 mg (4% yield) of 124 as a light yellow oil. LRMS=444.1 (M+1).


Step 3: N-(2-Amino-phenyl)-4-[6-(2-morpholin-4-yl-ethylamino)-benzothiazol-2-ylsulfanylmethyl]-benzamide (compound 128)

Following the procedure described in Example 1, steps 4 and E., but substituting 124 for 6, the title compound 128 was obtained in 76% yield. 1H NMR: (Acetone-d6) δ (ppm): 9.06 (bs, 1H), 7.98 (d, J=8.2 Hz, 2H), 7.63 (d, J=8.5 Hz, 2H), 7.62 (d, J=8.8 Hz. 2H), 7.29 (d, J=8.0 Hz, 1H), 7.06 (d, J=2.2 Hz, 1H), 7.02-6.97 (m, 1H), 6.87-6.82 (m, 2H), 6.66 (dt, J=7.4 Hz, 1.4 Hz, 1H), 4.63 (s, 2H), 3.64-3.60 (m, 4H), 3.25 (t, J=6.3 Hz, 2H), 2.63 (t, J=6.3 Hz, 2H), 2.54-2.42 (m, 4H).




embedded image


Example 88
N-(2-Amino-phenyl)-4-(quinolin-2-ylsulfanylmethyl)-benzamide (compound 131)
Step 1: 2-(4-Bromo-benzylsulfanyl)-quinoline (compound 130)

Following the procedure described in Example 47, step 2, but substituting 129 for 63, the title compound 130 was obtained in 89% yield. LRMS=332.0 (M+1).


Step 2: N-(2-Amino-phenyl)-4-(quinolin-2-ylsulfanylmethyl)-benzamide (131)

Following the procedure deserted in Example 40, step 2, but substituting 129 for 42, the title compound 131 was obtained in 70% yield. 1H NMR: (DMSO-d6) δ (ppm): 9.62 (bs, 1H), 8.21 (d, J=8.8 Hz, 1H), 8.00-7.89 (m, 4H), 7.79 (dd, J=6.8 Hz, 1.3 Hz, 1H), 7.68 (d, J=6.3 Hz, 2H), 7.56 (t, J=6.8 Hz, 1H), 7.44 (d, J=8.7 Hz, 1H), 7.17 (d, J=8.2 Hz, 1H), 6.99 (dt, J=7.9 Hz, 7.4 Hz, 1H), 6.79 (d, J=6.9 Hz, 1H), 6.61 (dt, J=7.7 Hz, 7.4 Hz, 1H), 4.69 (s, 2H).




embedded image


Example 89
N-(2-Amino-phenyl)-4-(pyrimidin-2-ylaminomethyl)-benzamide (compound 134)
Step 1: 4-(Pyrimidin-2-ylaminomethyl)-benzoic acid methyl ester (compound 133)

Following the procedure described in Example 47, step 2, but substituting 132 for 63, the title compound 133 was obtained in 76% yield. LRMS=244.2 (M+1).


Step 2: N-(2-Amino-phenyl)-4-(pyrimidin-2-ylaminomethyl)-benzamide (134)

Following the procedure described in Example 1, steps 4 and 5, but substituting 129 for 6, the title compound 134 was obtained in 91% yield. 1H NMR: (DMSO-d6) δ (ppm): 9.6 (bs, 1H), 8.32 (d, J=4.9 Hz, 2H), 7.97 (dt, J=9.9 Hz, 7.9 Hz, 2H), 7.85-7.83 (m, 1H), 7.47, (d, J=8.2 Hz, 2H), 7.20 (d, J=7.9 Hz, 1H), 7.01 (dt, J=7.7 Hz, 7.4 Hz, 1H), 6.82 (d, J==7.9 Hz, 1H), 6.66-6.62 (m, 1H), 4.98 (bs, 2H), 4.61 (d, 2H).




embedded image


Example 90
N-(2-Amino-phenyl)-4-(1-methyl-1H-imidazol-2-ylsulfanylmethyl]-benzamide (compound 139)
Step 1: [2-(4-Iodo-benzoylamino)-phenyl]-carbamic acid tert-butyl ester (compound 135)

To a solution of di-tert-butyldicarbonate (39 g, 181 mmol) in THF (139 mL) placed in a water bath, was added 1,2-phenylenediamine (15 g, 139 mmol) and DMAP (1.7 g, 14 mmol). The mixture was stirred at r.t. for 16 h and the solvent was removed in vacuo. The crude material was partitioned between EtOAc and water. The organic layer was washed with HCl 1 N and then with aqueous saturated NaHCO3. The combined organic layers were washed with brine, dried over MgSO4 and concentrated affording the compound (18.9 g, 65% yield) as a light beige powder. LRMS=209.1 (M+1).


To a solution of 4-iodobenzoic acid (8.0 g, 32.3 mmol) in DMF (55 mL) at r.t., were successively added 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (8.0 g, 41.9 mmol) and 1-hydroxybenzotriazole (5.2 g, 38.7 mmol). The mixture was stirred for 1 h and a solution of (2-amino-phenyl)-carbamic acid tert-butyl ester (6.3 g, 30.2 mmol) in DMF 20 mL) was added to the mixture via cannula, followed by triethylamine (5.9 mL, 4.9 mmol). The mixture was stirred for 16 h and the solvent was removed in vacuo. The crude material was partitioned between chloroform and water. The organic layer was washed with aqueous saturated NaHCO3, dried over MgSO4 and concentrated to a light brown syrup which was crystallized in hot EtOAc or Et2O, yielding 135 (9.3 g, 70% yield) as a white solid. LRMS=461.0 (M+Na+).


Step 2: N-[2-tert-butoxycarbonylamino-phenyl)-terephthalamic acid methyl ester (compound 136)

Following the procedure described in Example 40, step 2, but substituting 135 for 42, the title compound 136 was obtained in 95% yield. LRMS=393.1 (M+Na+).


Step 3: [2(4-Hydroxymethyl-benzoylamino)-phenyl]-carbamic acid tert-butyl ester (137)

To a solution of 136 (7.5 g, 20.6 mmol) in THF (40 mL), cooled down to −20° C. under N2, was added a 1M solution of DIBAL-H (122 mL, 122 mmol) in toluene. After stirring for 18 h. at r.t., the mixture was cooled down to 0° C. and carefully quenched by a dropwise addition of H2O (10 mL) and of 2N NaOH (5 mL). The aluminum salts were allowed to decant and the supernatant was removed. The organic layer was washed with H2O, 1 N HCl (6 times), satd. aqueous NaHCO3, brine, dried over MgSO4 and concentrated (2.04 g, 43%). Purification of the crude material by flash chromatography (EtOAc/hexanes 50:50 to 70:30) afforded 137 (1.14 g, 16% yield) as a solid foam. LRMS=365.2 (M+Na+).


Step 4: {2-[4-(1-Methyl-imidazol-2-ylsulfanylmethyl]-benzoylamino-phenyl}-carbamic acid tert-butyl ester (compound 138)

To a solution of N-methyl-2-mercaptoimidazole (28 mg, 0.25 mmol) in THF (1 mL), at r.t. under N2 atmosphere were successively added 137 (70 mg, 0.20 mmol), triphenylphosphine (70 mg, 0.27 mmol) followed by dropwise addition of diethyl azodicarboxylate (48 μL, 0.31 mmol). The mixture was stirred for 2 h and the solvent was removed in vacuo. Purification by flash chromatography using MeOH/CHCl3 (5:95) as the eluent afforded the title compound 138 (81 mg), in 91% yield, which was found to contain some diethyl hydrazodicarboxylate residus. The compound was used as is without further purification.


Step 5: N-(2-Amino-phenyl)-4-(1-methyl-1H-imidazol-2-ylsulfanylmethyl]-benzamide (compound 139)

Following the procedure described in Example 42, step 3, but substituting 138 for 46, the title compound 139 was obtained in 62% yield. 1H NMR: (Acetone-d6) δ ppm): 9.07 (bs, 1H), 7.93 (d, J=8.2 Hz, 2H), 7.37 (d, J=8.2 Hz, 2H), 7.29 (d, J=8.0 Hz, 1H), 7.10 (d, J=1.1 Hz, 1H), 7.03-6.96 (m, 2H), 6.86 (dd, J=8.0 Hz, 1.4 Hz, 1H), 6.67 (dt, J=7.4 Hz, 1.1 Hz, 1H), 4.63 (bs, 2H), 4.29 (s, 2H), 3.42 (s, 3H).




embedded image


Example 91
N-(2-Amino-phenyl)-6-(3-methoxyphenyl)-nicotinamide (compound 141)

To a mixture of 3-methoxyphenyl boronic acid (152 mg, 1.0 mmol) and 140 (248 g, 1.0 mmol) were added benzene (8 mL) and ethanol (4 mL) followed by 2 M Na2CO3 aqueous solution (3.2 mL, 6.4 mmol). The reaction mixture was stirred under nitrogen for 30 min and then Pd(PPh3)4 (58 mg, 0.05 mmol) was quickly added. After 24 h of reflux, the mixture was cooled to room temperature, filtered through a pad of celite and rinsed with ethyl acetate (30 mL). The organic solution was washed with brine (5 mL), dried (MgSO4), and concentrated. Purification by flash silica gel chromatography (Hexane/Ethyl acetate: 1/1) afforded 141 (302 mg, 95% yield). 1H NMR (CDCl3) δ (ppm): 9.11 (d, J=1.8 Hz, 1H), 8.30 (dd, J=8.4 Hz, 1.8 Hz, 1H), 7.57 (d, J=8.4 Hz, 1H), 7.52-7.47 (m, 1H), 7.36 (m, 1H), 7.22 (m, 1H), 7.09-6.78 (m, 4H), 3.84 (s, 3H), 3.39 (br s, 2H).




embedded image


Example 92
N-(2-Amino-phenyl)-4-(1-oxo-1,3-dihydro-isoindol-2-ylmethyl)-benzamide (compound 144)
Step 1: 4-(1-Oxo-1,3-dihydro-isoindol-2-ylmethyl)-benzoic acid (compound 143)

To a solution of benzene-1,2-carbaldehyde 142 (1.0 g, 7.46 mmol) in 10 mL of acetic acid was added 4-aminomethylbenzoic acid (1.13 g, 7.46 mmol). The reaction mixture was refluxed 5 min and cooled to the room temperature. A crystalline precipitate was formed and triturated with CH2Cl2 to produce the title compound 143 (1.29 g, 49%).


Step 2: N-(2-Amino-phenyl)-4-(1-oxo-1,3-dihydro-isoindol-2-ylmethyl)-benzamide (compound 144)

To a solution of the carboxylic acid (0.32 g, 0.89 mmol) in DMF (8 mL) at rt, was added HOBt (0.16 g, 1.15 mmol) and EDC (0.25 g, 1.33 mmol) and the solution was stirred for 1.5 h. Lastly, phenylenediamine (0.12 g, 1.07 mmol) was added and the mixture was allowed to stir for 18-20 h. DMF was removed in vacuo and the crude was partitioned between ethyl acetate and H2O. The organic layer was dried over Na2SO4 and concentrated. Purification by column chromatography (CH2Cl2-MeOH (19:1)) afforded 14.4 in 46% yield. 1H NMR: (DMSO-d6) 9.71 (s, 1H), 7.46 (d, J=8.0 Hz, 2H), 7.80 (d, J=8.0 Hz, 2H), 7.55-7.70 (m, 3H), 7.46 (d, J=8.2 Hz, 2H), 7.20 (d, J=7.7 Hz, 1H), 7.02 (t, J=7.7 Hz, 1H), 6.83 (d, J=8.0 Hz, 1H), 6.65 (t, J=7.4 Hz, 1H), 4.93 (bs, 2H), 4.87 (s, 2H), 4.47 (s, 2H).




embedded image


Example 94
N-(2-Amino-phenyl)-4-(1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-benzamide (compound 149)

Phthalic anhydride 148 (1.3 g, 8.9 mmol) and 4-aminomethylbenzoic acid in 20 mL acetic acid were refluxing for 3 h, cooled to the room temperature and evaporated to yield a solid residue which was triturated with water, filtered off and dried to produce the intermediate carboxylic acid (1.7 g, 68%). LMRS=282.0 (M+1).


Following a procedure analogous to that described in Example 92, step 2, but substituting the acid for 143, the title compound 149 was obtained in 17% yield. 1H NMR: (DMSO d6) 9.59 (s, 1H), 7.82-7.91 (m, 6H), 7.40 (d, J=8.0 Hz, 2H), 7.11 (d, J=7.7 Hz, 1H), 6.93 (t, J=7.7 Hz, 1H), 6.73 (d, J=8.0 Hz, 1H), 6.55 (t, J=7.4 Hz, 1H), 4.83 (bs, 4H).


Example 95
N-(2-Amino-phenyl)-4-[2-(1,3-dioxo-1,3-dihydro-isoindol-2-yl)-ethyl]-benzamide (compound 152)
Step 1: 2-[2-(4-Hydroxy-phenyl)-ethyl]-isoindole-1,3-dione (compound 150)

Following a procedure analogous to that described in Example 94, step 1, but substituting 4-aminomethylbenzoic acid for tyramine the title compound 150 was obtained in 48% yield. LMRS=268.0 (M+1).


Step 2: 4-[2-(1,3-dioxo-1,3-dihydro-isoindol-2-yl)ethyl)-phenyl trifluoromethane-sulfonate (151)

To a solution of sodium hydride (90 mg, 25 mmol) in dry THF (20 mL) at 0° C., 150 (500 mg, 8.9 mmol) was added followed by the addition of dry DMF (2 mL). The reaction mixture was stirred for 20 min at 0° C., treated portionwise with PhN(Tf)2, stirred for additional 2 h and evaporated to produce a solid material which was purified by chromatography on a silica gel column, (CH2Cl2-MeOH (19:1)) to provide 151 (639 mg, 86% yield). LMRS=400.0 (M+1).


Step 3: N-(2-Amino-phenyl)-4-[2-(1,3-dioxo-1,3-dihydro-isoindol-2-yl)-ethyl]-benzamide (compound 152)

Following a procedure analogous to that described in Example 40, step 2, but substituting 151 for 42, the title compound 152 was obtained in 15% yield. 1H NMR: (DMSO d6) 9.57 (s, 1H), 7.78-7.87 (m, 6H), 7.31 (d, J=8.0 Hz, 2H), 7.12 (d, J=7.7 Hz, 1H), 6.93 (t, J=6.9 Hz, 1H), 6.74 (d, J=8.0 Hz, 1H), 6.56 (t, J=7.4 Hz, 1H), 4.83 (bs, 2H), 3.85 (t, J=7.1 Hz, 2H), 3.00 J=7.1 Hz, 2H).




embedded image


Example 96
N-(2-Amino-phenyl)-4-(4-oxo-4H-quinazolin-3-ylmethyl)-benzamide (compound 154)

A suspension of 4-aminomethyl benzoic acid (1.00 g, 6.60 mmol) in water (20 mL) was treated with Et3N (0.86 mL, 6.60 mmol) followed by the addition of isatoic anhydride 153 (980 mg, 6.00 mmol). The reaction mixture was heated 3 h at 40° C. and evaporated to form an oily residue, which was refluxing in formic acid (20 mL) for 7 h. Formic acid was removed in vacuum to produce a solid, which was triturated with water and filtered off to provide the carboxylic acid (1.61 g, 96%). LMRS=281.0 (M+1).


Following a procedure analogous to that described in Example 92, step 2, but substituting the carboxylic acid for 143, the title compound 154 was obtained was obtained in 43% yield. 1H NMR: (DMSO d6) 9.71 (s, 1H), 8.68 (s, 1H), 8.23 (d, J=8.0 Hz, 1H), 8.01 (d, J=8.0 Hz, 1H), 7.92 (t, J=8.0, 2H), 7.78 (d, J=8.0 Hz, 1H), 7.63 (t, J=7.4, 1H), 7.55 (d, J=7.7 Hz, 2H), 7.22 (d, J=7.4 Hz, 1H), 7.04 (t, J=7.1 Hz, 1H), 6.85 (d, J=8.0 Hz, 1H), 6.67 (t, J=7.4 Hz, 1H), 5.35 (s, 2H).


Example 97
N-(2-Amino-phenyl)-4-(4-oxo-4H-benzo[d][1,2,3]triazin-3-ylmethyl)-benzamide (compound 155)

A suspension of 4-aminomethyl benzoic acid (1.00 g, 6.60 mmol) in water (20 mL) was treated with Et3N (0.86 mL, 6.60 mmol) followed by the addition of isatoic anhydride (980 mg, 6.00 mmol). The reaction mixture was heated 3 h at 40° C. and cooled to 0° C. The cold reaction mixture was acidified with conc. HCl (5 mL) and treated drop wise with NaNO2 solution (520 mg, 7.5 mmol in 5 mL water) over 5 min period of time, then left overnight at room temperature. A precipitate formed which was collected, washed with water and dried to provide the carboxylic acid (1.62 g, 96%). LMRS=282.0 (M+1).


Following a procedure analogous to that described in Example 92, step 2, but substituting the carboxylic acid for 143, the title compound 155 was obtained in 27% yield. 1H NMR: (DMSO d6) 9.62 (s, 1H), 8.25 (t, J=6.7 Hz, 2H), 8.11 (ddd, J=7.1 Hz, 1.4 Hz, 1H), 7.93-7.98 (m, 3H), 7.49 (d, J=8.2 Hz, 2H), 7.13 (d, J=7.7 Hz, 1H), 6.94 (t, J=8.0 Hz, 1H), 6.75 (d, J=8.0 Hz, 1H), 6.57 (t, J=7.7 Hz, 1H), 5.66 (s, 2H), 4.87 (bs, 2H).


Example 98
N-(2-Amino-phenyl)-4-(2,4-dioxo-1,4-dihydro-2H-quinazolin-3-ylmethyl)-benzamide (compound 157)
Step 1: 4-[(2-Amino-benzoylamino)-methyl]-benzoic acid (compound 156)

To a suspension of 4-aminomethylbenzoic acid (5.09 g, 33.7 mmol) in H2O (50 mL), was added Et3N (4.7 mL, 33.7 mmol) followed by isatoic anhydride 153 (5.0 g, 30.6 mmol). The brown mixture was heated at 40° C. for 2 h until the mixture became homogeneous and then Et3N was removed in vacuo. The resulting aqueous solution was acidified (10% HCl/H2O) and the mixture was partitioned between H2O and ethyl acetate. The combined organic extracts were dried over Na2SO4, filtered and evaporated to give 156 as a white solid (6.0 g, 72%). LMRS=271.0 (M+1).


Step 2: N-(2-Amino-phenyl)-4-(2,4-dioxo-1,4-dihydro-2H-quinazolin-3-ylmethyl)-benzamide (compound 157)

The carboxylic acid 156 (1.72 g, 6.36 mmol) was suspended in a solution of NaOH (2.55 g, 63.6 mmol) in H2O (12 mL). To this solution was added dioxane (10 mL) until mixture became homogeneous. The solution was cooled to 0° C. in an ice-bath and methyl chloroformate (1.25 mL, 16.1 mmol) was added portionwise over 2 h. After completion of the reaction, the excess methyl chloroformate and dioxane were removed in vacuo and the mixture was diluted with methanol (80 mL) and H2O (20 mL). The solution was heated to 50° C. for 1 h. until the cyclization was complete. Methanol was removed in vacuo and then the aqueous layer was extracted with ethyl acetate. Subsequently, the aqueous phase was acidified (10% HCl/H2O) and extracted with ethyl acetate (2×300 mL). These organic extracts were combined, dried over Na2SO4, filtered and evaporated to dryness. The resulting crude was triturated with warm methanol to afford the carboxylic acid as a white solid (1.7 g, 90%). LMRS=319.0 (M+Na).


Following a procedure analogous to that described in Example 92, step 2, but substituting the quinazolinedione carboxylic acid for 143, the title compound 157 was obtained. 1H NMR: (DMSO-d6) 11.56 (brs, 1H), 9.59 (brs, 1H), 7.96-7.88 (m, 3H), 7.67 (dt, J=8.4, 1.4 Hz, 1H), 7.30 (d, J=7.8 Hz, 2H), 7.21 (t, J=7.5 Hz, 2H), 7.13 (d, J=6.9 Hz, 1H), 6.92 (dt, J=6.9, 1.2 Hz, 1H), 6.75 (d, J=6.9 Hz, 1H), 6.57 (t, J=6.9 Hz, 1H), 5.15 (brS, 2H), 4.86 (brs, 2H).


Example 99
N-(2-Amino-phenyl)-4-(1-methyl-2,4-dioxo-1,4-dihydro-2H-quinazolin-3-ylmethyl)-benzamide (compound 158)
Step 2: 4-(1-Methyl-2,4-dioxo-1,4-dihydro-2H-quinazolin-3-ylmethyl)-benzoic acid methyl ester

To a solution of the quinazolinedione carboxylic acid (1.0 g, 3.38 mmol) in DMF (7 mL), was added K2CO3 (1.4 g, 10.1 mmol) and the mixture was then cooled to 0° C. Subsequently, MeI (1.05 mL, 16.9 mmol) was added and the mixture was allowed to warm to rt in the ice bath overnight. Excess methyl iodide and DMF were removed in vacuo and the crude was partitioned between ethyl acetate and H2O. The aqueous phase was washed again with ethyl acetate, the combined organic extracts were dried over Na2SO4 and then concentrated in vacuo to yield the desired product as an off-white solid (0.93 g, 85%). LMRS=325.0 (M+1).


Step 3: 4-(1-Methyl-2,4-dioxo-1A-dihydro-2H-quinazolin-3-ylmethyl)-benzoic acid

To a suspension of the methyl ester (1.25 g, 3.85 mmol) in methanol (35 mL), was added 1N NaOH (30 mL, 38.5 mmol) and the mixture was heated to 45-50° C. for 3 h. until it became homogeneous. Methanol was removed in vacuo and the crude was partitioned between ethyl acetate and H2O. The aqueous phase was acidified (10% HCl/H2O) and extracted with ethyl acetate (2×300 mL). These organic extracts were dried over Na2SO4 and concentrated in vacuo to afford product 5 as a white solid (1.15 g, 96%). LMRS=311.0 (M+1).


Step 4: N-(2-Amino-phenyl)-4-(1-methyl-2,4-dioxo-1,4-dihydro-2H-quinazolin-3-ylmethyl)-benzamide (compound 158)

Following a procedure analogous to that described in Example 92, step 2, but substituting the carboxylic acid for 143, the title compound 158 was obtained in 10% yield. 1H NMR: (DMSO-d6) δ 9.59 (brs, 1H), 8.03 (d, J=7.8 Hz, 1H), 7.89 (d, J=7.8 Hz, 2H) 7.80 (dt, J=6.9, 1.5 Hz, 1H), 7.49 (d, J=8.7 Hz, 1H), 7.42 (d, J=8.1 Hz, 2H), 7.32 (t, J=7.7 Hz, 1H), 7.13 (d, J=7.8 Hz, 1H), 6.95 (t, J=7.6 Hz, 1H), 6.75 (d, J=7.8 Hz, 1H), 6.57 (t, J=7.5 Hz, 1H), 5.21 (brs, 2H), 4.86 (brs, 2H), 3.54 (s, 3H).


Example 100
N-(2-Amino-phenyl)-4-(2-methyl-4-oxo-4H-quinazolin-3-ylmethyl)-benzamide (compound 159)

A suspension of 156 (903 mg, 3.34 mmol) in acetic anhydride (15 mL) was heated at 50° C. for 1 h. Acetic anhydride was evaporated under vacuum and the solid material formed was dissolved in acetic acid (30 mL). This solution was refluxed 48 h and evaporated to form another solid material, which was recrystallized from a mixture AcOEt/CHCl3 to produce the intermediate carboxylic acid (420 mg, 43% yield). LMRS=385.0 (M+1).


Following a procedure analogous to that described in Example 92, step 2, but substituting the carboxylic acid for 143, the title compound 159 was obtained in 49% yield. 1H NMR: (DMSO) δ (ppm): 9.64 (bs, 1H), 8.17 (dd, J=8.0, 1.6 Hz, 1H), 7.95 (d, J=8.2 Hz, 2H), 7.95 (dd, J=8.8, 2.5 Hz, 1H), 7.84 (ddd, J=7.6, 7.0, 1.5 Hz, 1H), 7.64 (d, J=7.7 Hz, 1H), 7.53 (ddd, J=7.6, 7.6, 1.1 Hz, 1H), 7.33 (d, J=8.2 Hz, 2H), 7.14 (dd, J=7.7, 1.1 Hz, 1H), 6.96 (ddd, J=7.6, 7.6, 1.5 Hz, 1H), 6.77 (dd, J=8.0, 1.4 Hz, 1H), 6.58 (ddd, J=7.6, 7.6, 1.3 Hz, 1H), 5.46 (s, 2H), 4.89 (bs, 2H) 2.5 (s, 3H, overlaps with the DMSO signals).




embedded image


Example 101
N-(2-aminophenyl)-2-(4-Methoxy-benzylamino)-thiazol-5-yl-amide (compound 163)
Step 1: 4-Methoxybenzyl-thiourea (compound 161)

To a solution of thiocarbonyl diimidazole (1.23 g, 6.22 mmol, 1.5 equiv.) in dry dichloromethane (10 mL), neat alkylamine 160 (4.15 mmol, 1.0 equiv.) was added dropwise at 0° C., and the solution stirred from 0° C. to 15° C. during 16 h. A solution of concentrated ammonium hydroxide (3 mL, 45 mmol, 3.6 equiv.) in 1,4-dioxane (6 mL) was added at 0° C. and stirred at room temperature for 7 h. The solution was diluted with ethyl acetate (250 mL), washed with brine (2×50 mL), dried (MgSO4), filtered and concentrated. After purification by column chromatography (silica gel, elution 5% methanol in dichloromethane), 161 was obtained as yellow solid (700.2 mg, 3.6 mmol, 86% yield). 1H NMR: (Acetone-d6) δ (ppm): 7.53 (bs, 1H), 7.28 (d, J=8.8 Hz, 2H), 6.87 (d, J=8.8 Hz, 2H), 6.67 (bs, 2H), 4.67 (s, 2H), 3.77 (s, 3H). LMRS=197.1 (M+1).


Step 2: 2-(4-Methoxybenzylamino)thiazole-5-carboxylic acid methyl ester (compound 162)

A solution of trans methyl-2-methoxyacrylate (461 mg, 3.97 mmol, 1 equiv.) in 50% 1,4-dioxane in water (4 mL) stirred at −10° C., was treated with N-bromosuccinimide (792 mg, 4.46 mmol, 1.12 equiv.), stirred at the same temperature for 1 h, transferred to a flask containing the thiourea 161 (700.2 mg, 3.6 mmol) and the mixture was stirred at 80° C. for 2 h. After cooling down to room temperature, concentrated NH4OH (0.8 mL) was added, stirred for 10 min and the resulting precipitated filtered and washed with water, giving 363 mg (1.3 mmol, 36% yield) of 162, plus 454 mg additional (91% pure by HPLC) as residue from evaporation of the filtrated (ca. 77% overall yield). 1H NMR: (Acetone-d6) δ (ppm): 7.97 (bs, 1H), 7.72 (bs, 1H), 7.33 (d, J=8.1 Hz, 2H), 6.90 (d, J=8.1 Hz, 2H), 4.52 (s, 2H), 3.78 (s, 3H), 3.75 (s, 3H). LMRS=279.1 (M+1).


Step 3: N-(2-aminophenyl)-2-(4-Methoxy-benzylamino)-thiazol-5-yl-amide (compound 163)

Following the procedure deserted in Example 1, steps 4 and 5, but substituting 162 for 6, the title compound 163 was obtained in 50% yield. 1H-NMR (methanol-d4), δ (ppm): 7.86 (s, 1H), 7.29 (d, J=8.8 Hz, 2H), 7.11 (dd, J=8.0 Hz, 1.4 Hz, 1H), 7.04 (dt, J=8.0 Hz, 1.4 Hz, 1H), 6.90 (d, J=8.8 Hz, 2H), 6.86 (m, 1H), 6.74 (dt, J=7.4 Hz, 1.4 Hz, 1H), 4.85 (bs, 4H), 4.45 (s, 2H), 3.78 (s, 3H).


Examples 102-121

Examples 102 to 121 describe the preparation of compounds 164 to 183 using the same procedures as described for compounds 62 to 163 in Examples 47 to 101. Characterization data are presented in Tables 4a and 4b.









TABLE 4a





Characterization of Compounds Prepared in Examples 102-121




embedded image






















Ex.
Cpd
W
Y
Z
Name





102
164


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(3,4,5-trimethoxy- phenylamino)-methyl]- benzamide





103
165


embedded image


N
CH
N-(2-Amino-phenyl)-6-(3- hydoxymethyl-phenyl)- nicotinamide





104
166


embedded image


CH
CH
N-(2-Amino-phenyl)-4-(3- methoxy-phenyl)- benzamide





105
167


embedded image


CH
N
N-(2-amino-phenyl)-6-(4- methoxy-benzylamino)- nicotinamide





106
168


embedded image


CH
N
N-(2-amino-phenyl)-6-[2-(4- methoxy-phenyl)- ethylamino]-nicotinamide





107
169


embedded image


CH
CH
N-(2-Amino-phenyl)-4-[(4,6- dimethoxy-pyrimidin-2- ylamino)-methyl]- benzamide





108
170


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (quinolin-2- ylsulfanylmethyl)- benzamide





109
171


embedded image


N
CH
N-(2-Amino-phenyl)-6-(4- methoxy-benzylsulfanyl)- nicotinamide





110
172


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (benzothiazol-2- ylsulfanylmethyl]- benzamide





112
174


embedded image


CH
N
N-(2-amino-phenyl)-6-[2-(4- fluoro-phenyl)-ethylamino]- nicotinamide





113
175


embedded image


CH
N
N-(2-amino-phenyl)-6-(4- fluoro-benzylamino)- nicotinamide





114
176


embedded image


CH
N
N-(2-amino-phenyl)-6- (3,4,5-trimethoxy- benzylamino)-nicotinamide





115
177


embedded image


CH
CH
N-(2-Amino-phenyl)-4-(5- phenyl-[1,3,4]oxadiazol-2- ylsulfanylmethyl]- benzamide





116
178


embedded image


N
CH
N-(2-aminophenyl)-6-(2- phenylamino-ethylamino)- nicotinamide





117
179


embedded image


CH
CH
N-(2-Amino-phenyl)-4-(2,4- dioxo-4H- benzo[e][1,3]oxazin-3- ylmethyl)-benzamide





118
180


embedded image


CH
CH
N-(2-Amino-phenyl)-4-(4- ethyl-4-methyl-2,6-dioxo- piperidin-1-ylmethyl)- benzamide





119
181


embedded image


CH
CH
N-(2-Amino-phenyl)-4-(1- ethyl-2,4-dioxo-1,4- dihydro-2H-quinazolin-3- ylmethyl)-benzamide





120
182


embedded image


CH
CH
N-(2-Amino-phenyl)-4-(4,6- dimethyl-pyrimidin-2- ylsulfanylmethyl)- benzamide





121
182


embedded image


CH
CH
N-(2-Amino-phenyl)-4-(4- trifluoromethyl-pyrimidin-2- ylsulfanylmethyl)benzamide














Ex.
Characterization
Schm






102

1H NMR: (Acetone-d6) δ(ppm): 9.09(bs, 1H), 7.99(d, J=

11




8.2 Hz, 2H), 7.54(d, J=8.0 Hz, 2H), 7.29(d, J=7.7 Hz





1H), 7.00(t, J=6.6 Hz, 1H), 6.86(dd, J=8.0 Hz, 1.1 Hz,





1H), 6.67(t, J=8.0 Hz, 1H), 5.99(s, 2H), 5.46(bs, 1H), 4.64





(bs, 2H), 4.43(s, 2H), 3.69(s, 6H), 3.60(s, 3H).




103

1H NMR(20% CD3OD in CDCl3) δ(ppm): 9.14(d, J=1.8 15

15




Hz, 1H), 8.33(dd, J=8.4 Hz, 1.8 Hz, 1H), 7.93(s, 1H), 7.82





(m, 2H), 7.50-7.40(m, 2H), 7.22-6.45(m, 4H), 4.69(s, 2H).




104

1H NMR(CD3OD) δ(ppm): 7.98(d, J=8.4 Hz, 2H), 7.65(d, J=

15




8.4 Hz, 2H), 7.31-7.04(m, 5H), 6.92-6.80(m, 3H), 3.84(s,





3H).




105

1H NMR(DMSO-d6) δ(ppm): 9.33(s, 1H), 8.61(d, J=2.5

 6




Hz, 1H), 7.89(dd, J=8.8 Hz, 2.2 Hz, 1H), 7.57(t, J=5.8 Hz,





1H), 7.24(d, J=8.52 Hz, 2 H), 7.11(d, J=7.69 Hz, 1H),





6.90(m, 3H), 6.73(d, J=8.0 Hz, 1H), 6.50-6.58(m, 2H),





4.83(s, 2H), 4.45(d, J=5.8 Hz, 2H), 3.70(s, 3H).




106

1H NMR(DMSO-d6) δ(ppm): 9.42(s, 1H), 8.72(d, J=2.5

 6




Hz, 1H), 7.97(dd, J=8.8 Hz, 2.5 Hz, 1H), 7.23(m, 4H), 6.81-





7.03(m, 4H), 6.64(m, 1H), 6.56(d, J=9.1 Hz, 1H), 4.92(s,





2H), 3.78(s, 3H), 3.55(m, 2H), 2.85(t, J=7.3 Hz, 2H).




107

1H NMR: (DMSO-d6) δ(ppm): 9.63(bs, 1H), 7.95(d, J=7.9

11




Hz, 2H), 7.85-7.82(m, 1H), 7.48(d, J=7.9 Hz, 2H), 7.20(d,





J=7.1 Hz, 1H), 7.03(dt, J=7.6 Hz, 7.4 Hz, 1H), 6.81(d, J=





7.9 Hz, 1H), 6.63(dt, J=7.9 Hz, 7.7 Hz, 1H), 4.94(bs, 2H),





4.54(d, J=6.0 Hz, 2H), 3.79(bs, 6H).




108

1H NMR: (DMSO-d6) δ(ppm): 9.62(bs, 1H), 8.21(d, J=8.8

11




Hz, 1H), 8.00-7.89(m, 4H), 7.79(dd, J=6.8 Hz, 1.3 Hz, 1H),





7.68(d, J=6.3 Hz, 2H), 7.56(t, J=6.8 Hz, 1H), 7.44(d, J=





8.7 Hz, 1H), 7.17(d, J=8.2 Hz, 1H), 6.99(dt, J=7.9 Hz,





7.4 Hz, 1H), 6.79(d, J=6.9 Hz, 1H), 6.61(dt, J=7.7 Hz,





7.4 Hz, 1H), 4.69(s, 2H).




109

1H NMR: (DMSO-d6) δ(ppm): 9.06(bs, 1H), 8.17(dt, J=

12




10.9 Hz, 9.0 Hz, 1H), 7.46(d, J=8.5 Hz, 1H), 7.39(d, J=





8.2 Hz, 2H), 7.21-7.13(m, 2H), 7.01(dt, J=7.6 Hz, 7.4 Hz,





1H), 6.91(d, J=8.5 Hz, 2H), 6.80(d, J=7.9 Hz, 1H), 6.62





(t, J=7.4 Hz, 1H), 5.01(bs, 2H), 4.47(s, 2H), 3.76(s, 3H).




110

1H NMR: (DMSO-d6) δ(ppm): 8.01(d, J=8.0 Hz, 1H), 7.93

11




(d, J=8.2 Hz, 2H), 7.90(dd, J=4.4 Hz, 0.6 Hz, 1H), 7.63(d,





J=8.2 Hz, 2H), 7.48(dt, J=8.0 Hz, 0.8 Hz, 1H), 7.37(td, J=





7.1 Hz, 1.1 Hz, 1H), 7.14(d, J=7.1 Hz, 1H), 6.96(t, J=





6.3 Hz, 1H), 6.76(d, J=7.7 Hz, 1H), 6.58(t, J=6.6 Hz, 1H),





4.88(s, 2H), 4.73(s, 2H).




112

1H NMR(DMSO-d6) δ(ppm): 9.34(s, 1H), 8.64(d, J=2.5

 6




Hz, 1H), 7.89(dd, J=9 Hz, 2 Hz, 1H), 7.16-7.22(m , 3H),





7.06-7.20(m, 3H), 6.90-6.96(m, 1H), 6.72-6.78(m, 1H),





6.46-6.60(m, 2H), 4.92(s, 2H), 3.50(m, 2H), 2.92(m, 2H).




113

1H NMR(DMSO-d6) δ(ppm): 9.34(s, 1H), 8.61(d, J=2.2

 6




Hz, 1H), 7.91(dd, J=8.8 Hz, 2.2 Hz, 1H), 7.66(t, J=6 Hz,





1H), 7.32-7.37(m, 2H), 7.08-7.38(m, 3H), 6.93(m, 1H),





6.74(m, 1H), 6.52-6.58(m, 2H), 4.84(s, 2H), 4.51(d, J=





6.0 Hz)




114

1H NMR(DMSO-d6) δ(ppm): 9.34(s, 1H), 8.63(d, J=2.2

 6




Hz, 1H), 7.92(dd, J=8.8 Hz, 2.2 Hz, 1H), 7.57(t, J=6 Hz,





1H), 7.10(m, 1H), 6.93(m, 1H), 6.74(m, 1H), 6.66(s, 2H),





6.56(m, 2H), 4.84(s, 2H), 4.45(d, J=6 Hz, 2H), 3.73(s,





6H), 3.31(s, 3H).




115

1H NMR: (Acetone-d6) δ(ppm): 9.08(bs, 1H), 8.02(dd, J=

14




7.1 Hz, 1.9 Hz, 4H), 7.69(d, J=8.5 Hz, 2H), 7.62-7.57(m,





3H), 7.28(d, J=7.7 Hz, 1H), 7.03-6.97(m, 1H), 6.86(d, J=





6.6 Hz, 1H), 6.67(t, J=7.7 Hz, 1H), 4.70(s, 2H), 4.63(bs,





2H).




116

1H-NMR(CD3OD-d4), δ(ppm): 8.67(d, J=2.2 Hz, 1H), 7.97

11




(dd, J=8.9 Hz, 2.5 Hz, 1H), 7.58(m, 1H), 7.51(m, 1H), 7.15





(dd, J=7.7 Hz, 1.1 Hz, 1H), 7.08(m, 2H), 6.89(dd, J=8.0





Hz, 1.4 Hz, 1H), 6.76(dt, J=7.7 Hz, 4.4 Hz, 1H), 6.67(t, J=





7.7 Hz, 2H), 6.60(m, 2H), 4.87(bs, 4H), 3.60(t, J=6.3 Hz,





2H), 3.35(t, J=6.3 Hz, 2H).




117

1H NMR: (DMSO-d6) δ(ppm): 9.62(s, 1H), 8.00(dd, J=8.2

11




Hz, 1.9 Hz, 1H), 7.80-7.92(m, 3H), 7.42-7.50(m, 4H), 7.13





(d, J=7.1 Hz, 1H), 6.95(ddd, J=8.0 Hz, 1.6 Hz, 1H), 6.75





(dd, J=8.0 Hz, 1.4 Hz, 1H), 6.57(t, J=7.7 Hz, 1H), 5.13(s,





2H), 4.87(bs, 2H).




118

1H NMR: (DMSO-d6) δ(ppm): 9.59(s, 1H), 7.88(d, J=8.2

11




Hz, 2H), 7.31(d, J=8.2 Hz, 2H), 7.13(d, J=7.4 Hz, 1H),





6.95(t, J=8.0 Hz, 1H), 6.75(d, J=8.0 Hz, 1H), 6.57(t, J=





7.4 Hz, 1H), 4.87(s, 2H), 4.86(bs, 2H), 2.61(s, 2H), 2.55(s,





2H), 1.31(q, J=7.7 Hz, 2H), 0.91(s, 3H), 0.80(t, J=7.4





Hz, 3H).




119

1H NMR: (CDCl3) δ(ppm): 8.23(dd, J=7.8 Hz, 1.5 Hz, 1H),

19




8.01(bs, 1H), 7.80(d, J=8.0 Hz, 2H), 7.71-7.65(m, 1H),





7.55(d, J=8.2 Hz, 2H), 7.27-7.20(m, 3H), 7.05(dt, J=7.7,





1.5 Hz, 1H), 6.81-6.77(m, 2H), 5.29(bs, 2H), 4.18(q, J=7.3





Hz, 2H), 3.86(bs, 2H), 1.33(t, J=7.1 Hz, 3H).




120

1H NMR: (DMSO-d6) δ(ppm): 9.66(bs, 1H), 7.96(d, J=7.9

11




Hz, 2H), 7.61(d, J=7.9 Hz, 2H), 7.21(d, J=7.9 Hz, 1H),





7.04-6.99(m, 2H), 6.82(d, J=7.9 Hz, 1H), 6.64(t, J=7.4





Hz, 1H), 4.49(s, 2H), 2.42(s, 6H).




121

1H NMR: (DMSO-d6) δ(ppm): 9.66(bs, 1H), 9.07(d, J=5.2

11




Hz, 1H), 7.97(d, J=7.4 Hz, 2H), 7.78(d, J=4.7 Hz, 1H),





7.63(d, J=7.4 Hz, 2H), 7.19(d, J=7.7 Hz, 1H), 7.01(dt, J=





7.7 Hz, 7.4 Hz, 1H), 6.81(d, J=8.2 Hz, 1H), 6.64(dt, J=





7.4 Hz, 7.1 Hz, 1H), 4.94(bs, 2H), 4.57(s, 2H).
















TABLE 4b







embedded image
























Ex.
Cpd
W
Y
Z
Name






123
187


embedded image


CH
CH
N-(2-Aminophenyl)-4- [3-(pyridin-2ylmethyl- aminomethyl)phenyl)]- benzamide






124
188


embedded image


CH
CH
Biphenyl-4,4′- dicarboxylic acid bis-[(2-amino-phenyl)- amide]






125
189


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [4-{(3,4,5- trimethoxy- phenylamino)- methyl}-phenyl]- benzamide






126
190


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [4-{(4-methoxy- phenylamino)- methyl}-phenyl]- benzamide






128
193


embedded image


CH
CH
2-Aminophenyl)-4- (3-methyl-but-3-en-1- ynyl)-benzamide






129
194


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (1-hydroxy- cyclohexylethynyl)- benzamide






130
195


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (3-hydroxy-3-methy- but-1-ynyl)- benzamide






131
196


embedded image


CH
CH
N-(2-Amino-phenyl)-4- phenylethynyl- benzamide






180
320


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(5-chloro- benzooxazol-2- ylamino)-methyl]- benzamide






181
321


embedded image


CH
CH
N-(2-Amino-phenyl)-4- {[4-(4-chloro-phenyl)- thiazol-2-ylamino]- methyl}-benzamide






182
322


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(5-bromo- benzothiazol-2-ylamino)-methyl]- benzamide






183
323


embedded image


CH
CH
N-(2-Amino-phenyl)-4- {5-[(3,4,5- trimethoxy- phenylamino)- methyl]-thiophen-2- ylmethyl}-benzamide






184
325


embedded image


CH
CH
N-(2-Amino-phenyl)-4- {6-[(pyridin-3- ylmethyl)-amino]- benzothiazol-2- ylsulfanylmethyl}- benzamide






185
326


embedded image


CH
CH
N-(2-Amino-phenyl)-4- {6-[(pyridin-2- ylmethyl)-amino]- benzothiazol-2- ylsulfanylmethyl}- benzamide






186
327


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (1H-imidazol-2- ylsulfanylmethyl)- benzamide






187
328


embedded image


CH
CH
N-{2-Amino-phenyl)-4- morpholin-4- ylmethy[benzamide






188
329


embedded image


CH
CH
3′,4′,5′-Trimethoxy- biphenyl-4-carboxylic acid(2-amino- phenyl)-amide






189
330


embedded image


CH
CH
4-[(2-Amino-9-butyl- 9H-purin-6-ylamino)- methyl]-N-(2-amino- phenyl)-benzamide






190
331


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(2-amino-9H-purin-6- ylamino)-methyl]- benzamide






191
332


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(2-chloro-9H-purin-6- ylamino)-methyl]- benzamide






192
333


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(9-butyl-2-chloro-9H- purin-6-ylamino)- methyl]-benzamide






193
334


embedded image


CH
CH
N-(2-Amino-pheny)-4- [(1H-benzolmidazol- 2-ylmethyl)-amino]- benzamide






194
335


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(1-ethyl-2,4-dioxo- 1,4-dihydro-2H- 1,4-dihydro-2H- quinazolin-3- ylmethyl)-benzamide






195
336


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (6-chloro-2-methyl-4- oxo-4H-quinazolin-3- ylmethyl)-benzamide






196
337


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (2-methyl-4-oxo-4H- quinazolin-3- ylmethyl)-benzamide






197
338


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (6,7-dimethoxy-4- oxo-4H-quinazolin-3- ylmethyl)-benzamide






198
339


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (6,7-difluoro-4-oxo- 4H-quinazolin-3- ylmethyl)-benzamide






199
340


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [1-(2-dimethylamino- ethyl)-2,4-dioxo-1,4- dihydro-2H- quinazolin-3- ylmethyl]-benzamide






200
341


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [1-(2-morpholin-4-yl- ethyl)-2,4-diox-1,4- dihydro-2H- quinazolin-3- ylmethyl]-benzamide






201
342


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (6-bromo-2-methyl-4- oxo-4H-quinazolin-3- ylmethyl)-benzamide






202
343


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (2,4-dioxo-1,4- dihydro-2H- thieno[3,2- d]pyrimidin-3- ylmethyl)-benzamide






203
344


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (6-bromo-1-ethyl-2,4- dioxo-1,4-dihydro- 2H-quinazolin-3- ylmethyl)-benzamide






204
345


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [1-(4-methoxy- benzyl)-2,4-dioxo- 1,4-dihydro-2H- quinazolin-3- ylmethyl]-benzamide






205
346


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (6-bromo-4-oxo-4H- quinazolin-3- ylmethyl)-benzamide






206
347


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (6-bromo-4-oxo-4H- benzo[d][1,2,3]triazin- 3-ylmethyl)- benzamide






207
348


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (6-chloro-4-oxo-4H- benzo[d][1,2,3]triazin- 3-ylmethyl)- benzamide






208
349


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(3-fluoro-2-pyridinyl- amino)-methyl]- benzamide






209
350


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(3,4,5-trifluoro-2- pyridinyl-amino)- methyl]-benzamide






210
351


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (2,4-dioxo-1,4- dihydro-2H- thieno[3,2- d]pyrimidin-3- ylmethyl)-benzamide






211
352


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (5-phenyl- [1,2,4]oxadiazol-3- yl)-benzamide






212
353


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (5-methyl- [1,2,4]oxadiazol-3- yl)-benzamide






213
354


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (5-piperidin-1- ylmethyl- [1,2,4]oxadiazol-3- yl)-benzamide






214
355


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (5-morpholin-4- ylmethyl- [1,2,4]oxadiazol-3- yl)-benzamide






215
356


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (5-pyridin-3-yl- [1,2,4]oxadiazol-3- ylmethyl)-benzamide






216
357


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (5-pyridin-3-yl- [1,2,4]oxadiazol-3- ylmethyl)-benzamide






217
358


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (5-pyridin-4-yl- [1,2,4]oxadiazol-3- ylmethyl)-benzamide






218
359


embedded image


CH
CH
4-(5-Acetylamino-4- cyano-thiophen-2- ylmethyl)-N-(2-amino- phenyl)-benzamide






219
360


embedded image


CH
CH
4-(5-Benzoylamino-4- cyano-3-methyl- thiophen-2-ylmethyl)- N-(2-amino-phenyl)- benzamide






220
361


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [4-cyano-3-methyl-5- (3-phenyl-ureido)- thiophen-2-ylmethyl]- benzamide






221
362


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (3-oxo-2,3-dihydro- benzo[1,4]oxazin-4- ylmethyl)-benzamide






222
363


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (3-oxo-2,3-dihydro- benzo[1,4]thiazin-4- ylmethyl)-benzamide






223
364


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (3-oxo-2,3-dihydro- pyrido[3,2- b][1,4]oxazin-4- ylmethyl)-benzamide






224
365


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (1-hydroxy-3-oxo- indan-2-ylmethyl)- benzamide






225
366


embedded image


CH
CH
N-(2-Amino-phenyl)-4- phenoxy-benzamide






226
367


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [5-(4-methoxy- phenyl)-2,5-dihydro- furan-2-yl]- benzamide






230
371


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [1,3-bis-(3,4- dimethoxy-phenyl)- ureidomethyl]- benzamide






231
372


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [3-(4-chloro-phenyl)- 1-(3,4-dimethoxy- phenyl)- ureidomethyl]- benzamide






232
373


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [1-(3,4-dimethoxy- phenyl)-3-phenyl- ureidomethyl]- benzamide






233
374


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [1-(3,4-dimethoxy- phenyl)-3-(4-phenoxy- phenyl)- ureidomethyl]- benzamide






234
375


embedded image


CH
CH
Biphenyl-4,4′- dicarboxylic acid bis-[(2-amino-phenyl)- amide]






236
377


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (pyrimidin-2- ylaminoinethyl)- benzamide






237
378


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (4,6-dimethyl- pyrimidin-2- ylsulfanylmethyl)- benzamide






238
379


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (4-trifluoromethyl- pyrimidin-2- ylsulfanylmethyl)- benzamide






239
380


embedded image


N
CH
Pyridine-2,5- dicarboxylic acid bis-[(2-amino-phenyl)- amide]






240
381


embedded image


CH
CH
N-(2-Amino-penyl)-4- (pyridin-2- ylsulfanylmethyl)- benzamide






241
382


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(4,6-dimethyl- pyrimidin-2-ylamino)- methyl]-benzamide






242
383


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(4,6-dimethyl- pyridin-2-ylamino)- methyl]-benzamide






243
384


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (4,6-dimethyl- pyrimidin-2- yloxymethyl)- benzamide






244
385


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(6-methoxy- pyrimidin-4-yamino methyl]-benzamide






245
386


embedded image


CH
CH
4-[(6-Acetyl- benzo[1,3]dioxol-5- ylamino)-methyl]-N- (2-amino-phenyl)- benzamide






246
387


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(4-chloro-6-methoxy- pyrimidin-2-ylamino)- methyl]-benzamide






247
388


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(2,6-dimethoxy- pyridin-3-ylamino)- methyl]-benzamide






248
389


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(1H-benzolmidazol- 2-ylamino)-methyl]- benzamide






249
390


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(6-methoxy-pyridin- 2-ylamino)-methyl]- benzamide






250
391


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (quinolin-8- ylsulfanylmethyl)- benzamide






251
392


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(2,6-dimethoxy- pyrimidin-4-ylamino)- methyl]-benzamide






252
393


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (3,5-dimethoxy- benzylamino)- benzamide






253
394


embedded image


CH
CH
N-2-(Amino-phenyl)-4- (3-methoxy- phenylsulfanylmethyl)- benzamide






254
395


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (3,5-dimethoxy- phenoxymethyl)- benzamide






255
396


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (quinolin-2- yloxymethyl)- benzamide






256
397


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(3,5-dimethoxy- phenylamino)- methyl]-benzamide






257
398


embedded image


CH
N
bis(N-(2-Amino- phenyl)- nicotinamide)-6- disulfide






258
399


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (isoquinolin-1- ylaminomethyl)- benzamide






259
400


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(2,3-dihydro- benzo[1,4]dioxin-6- ylamino)-methyl]- benzamide






260
401


embedded image


CH
CH
4-[(4-Acetylamino- phenylamino) methyl]-N-(2-amino- phenyl)-benzamide






261
402


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(4-morpholin-4-yl- phenylamino)- methyl]-benzamide






262
403


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(4-methoxy-2- methyl-phenylamino)- methyl]-benzamide






263
404


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(2-cyano-4-methoxy- phenylamino)- methyl]-benzamide






264
405


embedded image


CH
CH
N-(2-Amino-phenyl)-4- }[4-methoxy-3- (pyridin-3-ylmethoxy)- phenylamino]- methyl}-benzamide






265
406


embedded image


CH
CH
2-[4-(2-Amino- phenylcarbamoyl)- benzylamino]-4,5- dimethoxy-benzoic acid






266
407


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(3,5-dimethyl- phenylamino)- methyl]-benzamide






267
408


embedded image


CH
CH
N-(2-Amino-phenyl)-4- {[4-(pyridin-3- ylmethoxy)- phenylamino]- methyl}-benzamide






268
409


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(2,4-dimethyl- phenylamino)- methyl]-benzamide






269
410


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(2,4,6-trimethyl- phenylamino)- methyl]-benzamide






270
411


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(4-chloro-6- morpholin-4-yl- pyrimidin-2-ylamino)- methyl]-benzamide






271
412


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (3,4,5trimethoxy benzylamino)- benzamide






272
413


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (4-fluoro- benzylamino)- benzamide






273
414


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (4-methoxy- benzylamino)- benzamide






274
415


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(4-fluoro- phenylamino)- methyl]-benzamide






275
416


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (3-fluoro- benzylamino)- benzamide






276
417


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(3-fluoro- phenylamino)- methyl]-benzamide






277
418


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(4-chloro-6-methyl- pyrimidin-2-ylamino)- methyl]-benzamide






278
419


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(4,6-dichloro- pyrimidin-2-ylamino)- methyl]-benzamide






279
420


embedded image


CH
CH
N-(2-Amino-phenyl)-4- ({4-chloro-6-[(pyridin- 3-ylmethyl)-amino]- pyrimidin-2-ylamino]- methyl)-benzamide






280
421


embedded image


CH
CH
N-(2-Amino-penyl-4- [(6-methoxy-pyridin- 3-ylamino)-methyl]- benzamide






281
422


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(4-trifluoromethoxy- phenylamino)- methyl]-benzamide






282
423


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(3-trifluoromethoxy- phenylamino)- methyl]-benzamide






283a
424b


embedded image


CH
CH
N-(2-Amino-phenvl)-4- [(3,4-dimethoxy- phenylamino)- methyl]-benzamide






284
425


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (3-trifluoromethoxy- benzylamino)- benzamide






285
426


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (4-trifluoromethoxy- benzylamino)- benzamide






286
427


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(4-methoxy- phenylamino)- methyl]-benzamide






287
428


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (benzo[1,3]dioxol-5- ylaminomethyl)- benzamide






288
429


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(2-methoxy- phenylamino)- methyl]-benzamide






289
430


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(3-methoxy- phenylamino)- methyl]-benzamide






290
431


embedded image


CH
CH
N-(2-Aminophenyl)-4- (2,2,2-trifluoro- acetylamino)- benzamide






291
432


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [4-chloro-6-(3,4,5- trimethoxy- benzylamino)- pyrimidin-2-ylamino]- methyl}-benzamide






292
433


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [4-chloro-6-(3,4,5- trimethoxy- phenylamino)- pyrimidin-2-ylamino]- methyl}-benzamide






293
434


embedded image


CH
CH
N-(2-Amino-phenyl)-4- (3,4-dimethoxy- benzylamino)- benzamide






294
435


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(4-morpholin-4-yl- pyrimidin-2-ylamino)- methyl]-benzamide






295
436


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [2-(1H-indol-3-yl)- ethylamino]-methyl}- benzamide






296
437


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(4-methylsulfanyl- phenylamino methyl]-benzamide






297
438


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(3-methylsulfanyl- phenylamino)- methyl]-benzamide






298
439


embedded image


CH
CH
N-(2-Amino-phenyl)-4- {[4-chloro-6-(3,4- dimethoxy-pheny)- pyrimidin-2-ylamino]- methyl)-benzamide






299
440


embedded image


CH
CH
N-(2-Amino-phenyl)-4- {[4-(3,4-dimethoxy- phenyl)-pyrimidin-2- ylamino]-methyl}- benzamide






300
441


embedded image


CH
CH
4-[(2-Acetyl-4,5- dimethoxy- phenylamino)- methyl]-N-(2-amino- phenyl)-benzamide






301
442


embedded image


CH
CH
N-(2-Amino-phenyl)-4- {[4-(3,4-dimethoxy- phenylamino)- pyrimidin-2-ylamino]- methyl}-benzamide






302
443


embedded image


CH
CH
N-(2-Amino-phenyl)-4- {[[2-(tert-butyl- dimethyl-silanyloxy)- ethyl]-(3,4- dimethoxy-phenyl)- amino]-methyl}-benzamide






303
444


embedded image


CH
CH
N-(2-Amino-phenyl)-4- {[(3,4-dimethoxy- phenyl)-(2-hydroxy- ethyl)-amino]- methyl}-benzamide






304
445


embedded image


CH
N
N-(2-Amino-phenyl)-6- [(3,4,5-trimethoxy- phenylamino)- methyl]-nicotinamide






305
446


embedded image


CH
N
N-(2-Amino-phenyl)-6- [2-(4-oxo-4H- quinazolin-3-yl)- ethylamino]- nicotinamide






306
447


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [bis-(3- trifluoromethoxy- benzyl)-amino]- benzamide






307
448


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(2-dimethylamino- benzothiazol-5- ylamino)-methyl]- benzamide






308
449


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(2-oxo-2,3-dihydro- 1H-benzoimidazol-5- ylamino)-methyl]- benzamide






309
450


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(4- trifluoromethylsulfan yl-phenylamino)- methyl]-benzamide






310
451


embedded image


CH
CH
N-(2-Amino-phenyl)-4- {[2-(pyridin-3- ylmethylsulfanyl)-1H- benzolmidazol-5- ylamino]-methyl}- benzamide






311
452


embedded image


CH
CH
N-(2-Amino-phenyl)-4- {[2-(pyridin-3- ylmethylsulfanyl)- benzooxazol-5- ylamino]-methyl}- benzamide






312
453


embedded image




N-(2-Amino-5- trifluoromethyl- phenyl)-4-[(3,4- dimethoxy- phenylamino)- methyl]-benzamide






313
454


embedded image




N-(2-Amino-4,5- difluoro-phenyl)-4- [(3,4-dimethoxy- phenylamino)- methyl]-benzamide






314
455


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(2-oxo-2,3-dihydro- benzooxazol-5- ylamino)-methyl]- benzamide






315
456


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(2-methylamino- benzothiazol-5- ylamino)-methyl]- benzamide






316
457


embedded image




N-(2,6-Diamino- phenyl)-4-[(3,4- dimethoxy- phenylamino)- methyl]-benzamide






317
458


embedded image


CH
CH
N-(2-Amino-phenyl)-4- ([2-(2-methoxy-ethyl)- 1,3-dioxo-2,3- dihydro-1H-isoindol- 5-ylamino]-methyl}- benzamide






318
459


embedded image


CH
CH
N-(2-Amino-phenyl)-4- {(3- spiro[1′,2′]idioxolane- 1-methyl-2-oxo-2,3- dihydro-1H-indol-5- ylamino)-methyl}- benzamide






319
460


embedded image


CH
N
N-(2-Amino-phenyl)-6- (2-phenylamino- ethylamino)- nicotinamide






320
461


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(1,3-dimethyl-2,4- dioxo-1,2,3,4- tetrahydro- quinazolin-6- ylamino)-methyl]- benzamide






321
462


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(6-methyl-6H- indolo[2,3- b]quinoxalin-9- ylamino)-methyl]- (benzamide






322
463


embedded image


N
CH
N-(2-Amino-phenyl)-6- (1-hydroxy- cyclohexylethynyl)- nicotinamide






323
464


embedded image


N
CH
N-(2-Amino-phenyl)-6- p-tolylsulfanyl- nicotinamide






324
465


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [5-(indan-2- ylaminomethyl)- thiophen-2-ylmethyl]- benzamide






325
466


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [5-(pyridin-2- ylaminomethyl)- thiophen-2-ylmethyl]- benzamide






326
467


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(5-bromo-thiazol-2- ylamino)-methyl]- benzamide






327
468


embedded image


CH
CH
N-(2-Amino-phenyl)-4- [(5-phenyl-1H- pyrazol-3-ylamino)- methyl]-benzamide














Ex.
Characterization
Schm






123

1H NMR(20% CD3OD in CDCl3) δ(ppm): 8.46(m, 1H),

21




7.95(d, J=8.4 Hz, 2H), 7.64-6.70(m, 14H), 3.80(br s,





4H)




124

1H NMR(CD3OD) δ(ppm): 9.80(bs, 2H), 8.16(d, J=7.9

 1




Hz, 4H), 7.96(d, J=7.9 Hz, 4H), 7.23(d, J=7.4 Hz, 2H),





7.03(dd, J=6.9, 7.4 Hz, 2H), 6.84(d, J=8.2 Hz, 2H), 6.66





(dd, J=6.9, 7.7 Hz, 2H), 5.06(bs, 4H).




125

1H NMR(DMSO-d6) δ(ppm): 10.15(1H, brs), 8.17(2H, d,

21




J=8.0), 7.90(2H, d, J=8.2), 7.87(1H, brs), 7.72(1H, d,





J=6.6), 7.54(2H, m), 7.40(1H, d, J=8.5), 7.25(1H, in), 21





7.16(1H, d, J=7.4), 7.07(1H, in), 6.08(2H, s), 4.42(2H,





s), 3.73(6H, s), 3.58(3H, d, J=0.8)




126

1H NMR(DMSO-d6) δ(ppm): 10.03(1H, brs), 8.17(2H, d,

21




J=7.7), 7.88(3H, m), 7.76(1H, d, J=7.1), 7.52(2H, m),





7.35(1H, d, J=8.0), 7.17(1H, m), 7.08-6.93(6H, m), 4.50





(3H, s), 3.75(2H, s)




128
LRMS calc: 276.03, found: 277.2(MH)+
22



129
LRMS calc: 334.4, found: 335(MH)+
22



130
LRMS calc: 294.35, found: 295.1(MH)+
22



131
LRMS calc: 312.37, found: 313.2(MH)+
22



180

1H NMR: (Acetone-d6) δ(ppm): 9.67(s, 1H), 8.85(s, 1H),

35




8.01(d, J=8.2 Hz, 2H), 7.55(d, J=8.2 Hz, 2H), 7.45(d,





J=8.8 Hz, 1H), 7.36(d, J=2.3 Hz, 1H), 7.22(d, J=7.6





Hz, 1H), 7.07(dd, J=8.8, 2.3 Hz, 1H), 7.02(d, J=7.0 Hz,





1H), 6.84(d, J=7.6 Hz, 1H), 6.65(t, 7.0 Hz, 1H), 4.94(s,





2H), 4.67(d, J=5.3 Hz, 2H).




181

1H NMR: (DMSO-d6) δ(ppm): 9.67(bs, 1H), 8.36(t, J=

35




5.8 Hz, 1H), 8.00(d, J=8.2 Hz, 2H), 7.89(d, J=8.2 Hz,





2H), 7.57(d, J=8.2 Hz, 2H), 7.48(d, J=8.2 Hz, 2H), 7.20





(s, 1H), 7.02(t, J=8.5 Hz, 1H), 6.83(d, J=7.7 Hz, 1H),





6.65(t, J=7.1 Hz, 1H), 4.92(bs, 2H), 4.65(d, J=5.8 Hz,





2H).




182

1H NMR: (DMSO-d6) δ(ppm): 6.97(s, 1H), 8.78(bs, 1H),

33, 34




8.01(d, J=8.8 Hz, 2H), 8.00(s, 1H), 7.55(d, J=8.2 Hz,





2H), 7.43-7.35(m, 2H), 7.22(d, J=7.6 Hz, 1H), 7.03(t, J=





7.0 Hz, 1H), 6.83(d, J=7.6 Hz, 1H), 6.65(t, J=7.6 Hz,





1H), 4.94(s, 2H), 7.74(d, J=5.9 Hz, 2H).




183
LRMS calc: 489.58, found: 490(MH)+
21



184

1H NMR: (Acetone-d6) δ(ppm): 8.65(d, J=1.4 Hz, 1H),

11




8.44(dd, J=4.7, 3.0 Hz, 1H), 7.97(d, J=8.2 Hz, 2H),





7.81-7.77(m, 1H), 7.63(m, 3H), 7.33-7.26(m, 2H), 7.09





(d, J=2.5 Hz, 1H), 7.02-6.97(m, 1H), 6.91(dd, J=8.8, 2.5





Hz, 1H), 6.86(dd, J=8.0, 1.4 Hz, 1H), 6.69-6.64(m, 1H),





4.64(s, 2H), 4.47(s, 2H).




185

1H NMR: (DMSO-d6) δ(ppm): 9.59(s, 1H), 8.52-8.51(m,

11, 34




1H), 7.89(d, J=8.24 Hz, 2H), 7.71(td, J=7.7,1.9 Hz, 1H),





7.59-7.53(m, 3H), 7.34(d, J=8.0 Hz, 1H), 7.25-7.21(m,





1H, 7.12(d, J=6.9, Hz, 1H), 6.98-6.96(m, 1H), 6.93(d, J=





7.4 Hz, 1H), 6.81(dd, J=9.1, 2.5 Hz, 1H), 6.76-6.73(m,





1H), 6.67(t, J=5.8 Hz, 1H), 6.56(t, J=7.4 Hz, 1H), 4.87





(s, 1H), 4.58(s, 2H), 4.38(d, J=6.3 Hz, 2H).




186

1H NMR: (DMSO-d6) δ(ppm): 12.23(bs, 1H), 9.59(s, 1H),

14




7.86(d, J=8.2 Hz, 2H), 7.34(d, J=8.5 Hz, 2H), 7.14-





7.12(m, 2H), 6.94-6.92(m, 2H), 6.76(d, J=6.6 Hz, 1H), 14





6.57(t, J=7.4 Hz, 1H), 4.87(s, 2H), 4.29(s, 2H).




187

1H NMR: (CD3OD) δ(ppm): 8.03(d, J=8.4 Hz, 2H), 7.58

37




(d, J=7.9 Hz, 2H), 7.26(d, J=7.0 Hz, 1H), 7.16(t, J=





6.6 Hz, 1H), 6.98(d, J=7.0 Hz, 1H), 6.85(t, J=7.5 Hz,





1H), 3.78(t, J=4.4 Hz, 4H), 3.68(s, 2H), 2.57-2.54(m,





4H).




188

1H NMR: (CD3OD) δ(ppm): 8.14(d, J=7.9 Hz, 2H), 7.85

37




(d, J=8.4 Hz, 2H), 7.29(d, J=7.9 Hz, 2H), 7.17(t, J=





7.0 Hz, 1H), 7.04(s, 2H), 7.00(d, J=8.4 Hz, 1H), 6.87(t,





J=7.5 Hz, 1H), 4.95(s, 6H), 4.01(s, 3H).




189

1H NMR: (DMSO-d6) δ(ppm): 9.65(s, 1H), 7.96(d, J=7.7

39




Hz, 2H), 7.95(bs, 2H) 7.78(s, 1H), 7.52(d, J=7.9 Hz,





2H), 7.22(d, J=7.7 Hz, 1H), 7.02(dd, J=7.3, 8.0 Hz,





1H), 6.8(d, J 8.0 Hz, 1H), 6.65(dd, J=7.3, 7.7 Hz, 1H),





5.91(s, 2H), 4.94(bs, 2H), 4.77(bs, 2H), 4.01(t, J=7.1





Hz, 1H), 1.78(m, 2H), 1.3(m, 2H), 0.95(t, J=7.4, Hz, 1H)




190

1H NMR(DMSO-d6) δ(ppm): 10.16(s, 1H), 9.60(br, 1H),

39




8.24(s, 1H), 8.08(d, J=8.0 Hz, 2H), 7.62(m, 1H), 7.60





(d, J=8.0 Hz, 2H), 7.40(m, 1H), 7.20(m, 2H), 7.08(m,





1H), 4.90(m, 2H), 4.6(br, 4H)




191

1H NMR(DMSO-d6) δ(ppm): 9.67(m, 1H), 8.80(m, 1H),

39




8.24(s, 1H), 7.99(d, J=7.8 Hz, 2H), 7.52(d, J=7.8 Hz,





2H), 7.21(d, J=7.8 Hz, 1H), 7,02(dd, J=6.3, 7.8 Hz,





1H), 6.82(d, J=8.1 Hz, 1H), 6.70(d6, J=6.3, 8.1 Hz,





1H), 4.94(br, 2H), 4.77(br, 2H)




192

1H NMR(DMSO-d6) δ(ppm): 9.60(s, 1H), 8.72(br, 1H),

39




8.21(s, 1H), 7.92(d, J=8.0 Hz, 2H), 7.45(d, J=8.0 Hz,





2H), 7.15(d, J=8.0 Hz, 1H), 6.96(dd, J=6.7, 8.0 Hz,





1H), 6.77(d, J=8.0 Hz, 1H), 6.58(dd, J=6.7, 8.0 Hz,





2H), 4.88(s, 1H), 4.71(m, 2H), 4.11(m, 2H), 1.76(m, 2H),





1.25(m, 2H), 0.89(t, J=7.1 Hz, 3H)




193

1H NMR: (DMSO-d6) δ(ppm): 12.39(bs, 1H), 9.32(s, 1H),

11




7.81 IA J=8.2 Hz, 7.56(bs, 1H), 7.21-7.17(m, 3H),





6.99-6.97(m, 2H), 6.81(d, J=8.2 Hz, 1H), 6.77(d, J=8.8





Hz, 2H), 6.63(t, J=7.0 Hz, 1H), 4.85(s, 2H), 4.62(d, J=5.3





Hz, 2H).




194

1H NMR: (CDCl3) δ(ppm): 8.23(dd, J=7.8, 1.5 Hz, 1H),

19




8.01(bs, 1H), 7.80(d, J=8.0 Hz, 2H), 7.71-7.65(m, 1H),





7.55(d, J=8.2 Hz, 2H), 7.27-7.20(m, 3H), 7.05(td, J=





7.7, 1.5 Hz, 1H), 6.81-6.77(m, 2H), 5.29(bs, 2H), 4.18 19





J=7.3 Hz, 2H), 3.86(bs, 2H), 1.33(t, J=7.1 Hz, 3H).





MS: (calc.) 414.2; (obt.) 415.3(MH)+




195

1H NMR: (DMSO) δ(ppm): 9.69(bs, 1H, NH), 8.71(s, 1H),

19




8.16(d, J=2.5 Hz, 1H), 8.01(d, J=8.2 Hz, 2H), 7.95(dd,





J=8.8, 2.5 Hz, 1H), 7.81(d, J=8.8 Hz, 1H), 7.74(d, J=





8.2 Hz, 2H), 7.20(d, J=7.1 Hz, 1H), 7.02(td, J=7.6, 1.5





Hz, 1H), 6.82(dd, J=8.0, 1.4 Hz, 1H), 6.64(td, J=7.6,





1.4 Hz, 1H), 5.34(s, 2H), 4.94(bs, 2H). MS: (calc.) 404.1;





(obt.) 405.0(MH)+




196

1H NMR: (DMSO) δ(ppm): 9.64(bs, 1H), 8.17(dd, J=

19




8.0, 1.6 Hz, 1H), 7.95(d, J=8.2 Hz, 2H), 7.95(dd, J=





8.8, 2.5 Hz, 1H), 7.84(ddd, J=7.6, 7.0, 1.5 Hz, 1H), 7.64





(d, J=7.7 Hz, 1H), 7.53(ddd, J=7.6, 7.6, 1.1 Hz, 1H),





7.33(d, J=8.2 Hz, 2H), 7.14(dd, J=7.7, 1.1 Hz, 1H),





6.96(ddd, J=7.6, 7.6, 1.5 Hz, 1H), 6.77(dd, J=8.0, 1.4





Hz, 1H), 6.58(ddd, J=7.6, 7.6, 1.3 Hz, 1H), 5.46(s, 2H),





4.89(bs, 2H) 2.5(s, 3H). MS: (calc.) 384.2; (obt.) 385.0





(MH)+




197

1H NMR: (DMSO) δ(ppm): 9.62(bs, 1H), 8.50(s, 1H),

19




8.41(d, J=8.2 Hz, 2H), 7.47(s, 1H), 7.46(d, J=7.7 Hz,





2H), 7.17(s, 1H), 7.15(d, =8.5 Hz, 1H), 6.96(ddd, J=





7.7, 7.7, 1.1 Hz, 1H), 6.76(d, J=6.9 Hz, 1H), 6.58(dd, J=





6.9, 6.9 Hz, 1H), 5.26(s, 2H), 4.88(bs, 2H), 3.91(s,





3H), 3.87(s, 3H). MS: (calc.) 430.2; (obt.) 431.1(MH)+




198

1H NMR: (DMSO) δ(ppm): 9.66(bs, 1H), 8.69(s, 1H),

19




8.07(dd, J=8.8, 10.4 Hz, 1H), 7.96(d, J=8.2 Hz, 2H),





7.82(dd, J=14.3,11.3Hz, 1H), 7.48(d, J=8.2 Hz, 2H),





7.15(d, J=6.9 Hz, 1H), 6.96(ddd, J=7.6, 7.6, 1.5 Hz,





1H), 6.76(dd, J=8.1, 1.2 Hz, 1), 6.58(ddd, J 7.5, 7.5,





1.2 Hz, 1H), 5.28(s, 2H), 4.89(bs, 2H). MS: (calc.) 406.1;





(obt.) 407.0(MH)+




199

1H NMR: (DMSO) δ(ppm): 9.61(bs, 1H), 8.09(dd, J=

19




7.8, 1.5 Hz, 1H), 7.91(d, J=8.2 Hz, 2H), 7.81(ddd, J=





7.8, 7.8, 1.6 Hz, 1H), 7.52(d, J=8.2 Hz, 1H), 7.42(d, J=





8.2 Hz, 2H), 7.32(dd, J=7.6, 7.6 Hz, 1H), 7.14(d, J=6.9





Hz, 1H), 6.96(ddd, J=7.6, 7.6, 1.5 Hz, 1H), 6.77(dd, J=





7.8, 1.2 Hz, 1H), 6.59(ddd, J=7.5, 7.5, 1.2 Hz, 1H), 5.22





(s, 2H), 4.88(bs, 2H), 4.24(t, J=7.1 Hz, 2H), 2.5(m, 2H)





2.22(s, 6H). MS: (calc.) 457.2; (obt.) 458.1(MH)+




200

1H NMR: (DMSO) δ(ppm): 9.61(bs, 1H), 8.09(dd, J=

19




8.0, 1.6 Hz, 1H), 7.92(d, J=8.2 Hz, 2H), 7.81(ddd, J=





7.8, 7.8, 1.6 Hz, 1H), 7.54(d, J=8.5 Hz, 1H), 7.43(d, J=





8.2 Hz, 2H), 7.32(dd, J=7.4, 7.4 Hz, 1H), 7.14(d, J=7.4





Hz, 1H), 6.96(ddd, J=7.6, 7.6, 1.5 Hz, 1H), 6.77(dd, J=





8.0, 1.4 Hz, 1H), 6.59(ddd, J=7.6, 7.6, 1.4 Hz, 1H), 5.22





(s 2H), 4.87(bs, 2H), 4.28(t, J=6.7 Hz, 2H), 3.50(t, J=





4.5 Hz, 4H), 2.58(t, J=6.7 Hz, 2H), 2.47-2.44(m, 4H).





MS: (calc.) 499.2; (obt.) 500.3(MH).




201

1H NMR: (DMSO) δ(ppm): 9.65(bs, 1H), 8.25(d, J=2.5

19




Hz, 1H), 7.99(ddd, J=8.5, 2.5, 0.8 Hz, 1H), 7.95(d, J=





8.8 Hz, 2H), 7.60(d, J=8.8 Hz, 1H), 7.34(d, J=8.2 Hz,





2H), 7.14(d, J=7.4 Hz, 1H), 6.96(dd, J=7.4, 7.4 Hz,





1H), 6.76(d, J=8.0 Hz, 1H), 6.59(dd, J=7.4, 7.4 Hz,





1H), 5.45(s, 2H), 4.88(bs, 2H). MS: (calc.) 462.1; (obt.)





463.1(MH).




202

1H NMR: (DMSO) δ(ppm): 9.61(bs, 1H), 8.10(dd, J=

43




5.2, 0.5 Hz, 1H), 7.91(d, J=8.2 Hz, 2H), 7.40(d, J=8.2





Hz, 2H), 7.15(d, J=7.1 Hz, 1H), 6.98-6.94(m, 2H), 6.77





(dd, J=8.0, 1.1 Hz, 1H), 6.58(dd, J=7.1, 7.1 Hz, 1H),





5.12(s, 2H), 4.88(bs, 2H). MS: (calc.) 392.1; (obt.) 393.0





(MH)+.




203

1H NMR: (DMSO) δ(ppm): 9.61(bs, 1H), 8.15(d, J=2.5

19




Hz, 1H), 7.95(dd, J=9.1, 4.9 Hz, 1H), 7.91(d, J=8.2 Hz,





2H), 7.53(d, J=9.3 Hz, 1H), 7.42(d, J=8.2 Hz, 2H), 7.15





(d, J=6.9 Hz, 1H), 6.96(ddd, J=7.6, 7.6, 1.5 Hz, 1H),





6.77(dd, J=8.1, 1.5 Hz, 1H), 6.59(ddd, J=7.6, 7.6, 1.4





Hz, 1H), 5.20(s, 2H), 4.88(bs, 2H) 4.14(q, J=7.0, 2H),





1.21(t, J=7.0, 3H). MS: (calc.) 492.1; (obt.) 493.0(MH)+.




204

1H NMR: (DMSO) δ(ppm): 9.62(bs, 1H), 8.10(dd, J=

19




7.7,1.6 Hz, 1H), 7.93(d, J=8.2 Hz, 2H), 7.71(ddd, J=





7.9, 7.9, 1.5 Hz, 1H), 7.46(d, J=8.2 Hz, 2H), 7.38(d, J=





8.2 Hz, 2H), 7.31(d, J=7.4 Hz, 1H), 7.26(d, J=8.8 Hz,





2H), 7.15(d, J=6.6 Hz, 1H), 6.96(ddd, J=7.6, 7.6, 1.2





Hz, 1H), 6.89(d, J=8.8 Hz, 2H), 6.77(dd, J=8.0, 1.4 Hz,





1H), 6.59(ddd, J=7.5, 7.5, 1.2 Hz, 1H), 5.33(s, 2H), 5.28





(s, 2H), 4.89(bs, 2H), 3.71(s, 3H). MS: (calc.) 506.2;





(obt.) 507.1(MH)+.




205

1H NMR: (DMSO) δ(ppm): 9.61(bs, 1H), 8.66(s, 1H),

19




8.24(d, J=2.5 Hz, 1H), 8.00(dd, J=8.7, 2.3 Hz, 1H),





7.95(d, J=8.2 Hz, 2H), 7.68(d, J=8.8 Hz, 1H), 7.48(d,





J=8.2 Hz, 2H), 7.15(d, J=8.0 Hz, 1H), 7.96(ddd, J=





7.6, 7.6, 1.5 Hz, 1H), 6.77(dd, J=8.0, 1.1 Hz, 1H), 6.59





(dd, J=7.4, 7.4 Hz, 1H), 5.28(s, 2H), 4.87(bs, 2H). MS:





(calc.) 448.0; (obt.) 449.0(MH)+.




206

1H NMR: (DMSO) δ(ppm): 9.63(bs, 1H), 8.38(d, J=1.9

19




Hz, 1H), 8.28(dd, J=8.8, 2.2 Hz, 1H), 8.19(d, J=8.8 Hz,





1H), 7.95(d, J=8.0 Hz, 2H), 7.50(d, J=8.2 Hz, 2H), 7.15





(d, J=6.9 Hz, 1H), 7.96(ddd, J=7.6, 7.6, 1.5 Hz, 1H),





6.77(dd, 8.0, 1.4 Hz, 1H), 6.59(ddd, J=7.6, 7.6, 1.4





Hz, 1H), 5.67(s, 2H), 4.87(bs, 2H). MS: (calc.) 449.0;





(obt.) 450.0(MH)+.




207

1H NMR: (DMSO) δ(ppm): 9.63(bs, 1H), 8.30-8.24(m,

19




2H), 8.15(ddd, J=8.6, 2.5, 0.8 Hz, 1H), 7.95(d, J=8.0





Hz, 2H), 7.50(d, J=8.2 Hz, 2HH), 7.15(d, J=8.0 Hz, 1H),





7.96(dd, J=7.4, 7.4 Hz, 1H), 6.77(d, J=8.0 Hz, 1H),





6.59(dd, J=7.4, 7.4 Hz, 1H), 5.67(s, 2H), 4.88(bs, 2H).





MS: (calc.) 405.1; (obt.) 406.0(MH).




208

1H NMR(acetone-d6) δ(ppm): 9.07(bs, 1H), 8.02(d, J=

11




8.2 Hz, 2H), 7.64-7.44(m, 3H), 7.33(dd, J=7.8, 1.5 Hz,





1H), 7.03(td, J =7.6, 1.5 Hz, 1H), 6.90(dd, J=8.0, 1.4





Hz, 1H), 6.78(bs, 1H), 6.71(td, J=7.6, 1.4 Hz, 1H), 6.48





(dd, J=8.1, 2.6 Hz, 1H), 6.16(dd, J=7.7, 2.5 Hz, 1H),





4.76-4.55(m, 4H). HRMS(calc.): 336.1386,(found):





336.1389.




209

1H NMR(acetone-d6) δ(ppm): 9.06(bs, 1H), AB system

11




δA =8.02, δB=7.56, J=8.3 Hz, 4H), 7.74-7.65(m, 1H),





7.33(d, J=8.0, 1H), 7.03(td, J=7.6, 1.5 Hz, 1H), 6.96-





6.83(m, 2H), 6.71(td, J=7.6, 1.4 Hz, 1H), 4.74(d, J=





6.3 Hz, 2H), 4.65(bs, 2H).




210

1H NMR: (DMSO) δ(ppm): 9.61(bs, 1H), 8.10(dd, J=

43




5.2, 0.5 Hz, 1H), 7.91(d, J=8.2 Hz, 2H), 7.40(d, J=8.2





Hz, 2H), 7.15(d, J=7.1 Hz, 1H), 6.9&6.94(m, 2H), 6.77





(dd, J=8.0, 1.1 Hz, 1H), 6.58(dd, J=7.1, 7.1 Hz, 1H),





5.12(s, 2H), 4.88(bs, 2H). MS: (calc.) 392.1; (obt.) 393.0





(MH)+.




211

1H NMR: (DMSO) δ(ppm): 9.85(bs, 1H), 8.24-8.19(m,

50




6H), 7.79-7.66(m, 3H), 7.20(d, J=7.5 Hz, 1H), 7.00(dd,





J=7.3, 7.3 Hz, 1H), 6.80(d, J=7.9 Hz, 1H), 6.61(dd, J=





7.3, 7.3 Hz, 1H), 4.96(bs, 2H). MS: (calc.) 356.1; (obt.)





357.0(MH)+.




212

1H NMR: (DMSO) δ(ppm): 9.81(bs, 1H), 8.17-8.11(m,

50




4H), 7.18(d, J=7.9 Hz, 1H), 6.99(dd, J=7.7, 7.7 Hz,





1H), 6.79(d, J=7.9 Hz, 1H), 6.61(dd, J=7.5, 7.5 Hz,





1H), 4.94(bs, 2H), 2.70(s, 3H). MS: (calc.) 294.1; (obt.)





295.0(MH)+.




213
1H NMR: (acetone) δ(ppm): 9.29(bs, 1H), 8.21(m, 4H),
50




7.31(d, J=8.0Hz, 1H), 7.03(dd, J=7.0, 7.0 Hz, 1H), 6.88





(d, J=7.3Hz, 1H), 6.69(dd, J=7.3, 7.3 Hz, LH), 4.68(bs,





2H), 3.94(s, 2H), 2.58(t, J=5.1 Hz), 1.63-1.55(m, 4H),





1.47-1.43(m, 2H). MS(Calc) 377.2; (Obt.) 378.3(MH)+




214
1H NMR: (acetone) δ(ppm): 9.28(bs, 1H), 8.21(m, 4H),
50




7.31(d, J=8.1 Hz, 1H), 7.03(dd, J=7.0, 7.0 Hz, 1H),





6.88(d, J=7.3 Hz, 1H), 6.69(dd, J=7.3, 7.3 Hz, 1H),





4.67(bs, 2H), 4.01(s, 2H), 3.66(t, J=4.8Hz), 2.65(t, J=





4.4 Hz). MS: (Calc.) 379.2; (Obt.): 380.2(MH)+




215

1H NMR: (DMSO) δ(ppm): 9.62(s, 1H), 7.93(d, J=7.9

50




Hz, 2H), 7.42(d, J 7.9 Hz, 1H), 7.16(d, J=7.5 Hz, 1H),





6.97(t, J=7.0 Hz, 1H), 6.77(d, J=7.9 Hz, 1H), 6.59(t, J=





7.5 Hz, 1H), 4.88(s, 2H), 4.16(s, 2H), 2.87(t, 7.0, 2H),





1.72(q, J=7.5 Hz, 2H), 0.92(t, J=7.0 Hz, 3H). (MH)+:





337.2.




216

1H NMR: (DM50) δ(ppm): 9.64(s, 1H), 9.24 d, J=1.8

50




Hz, 1H); 8.86(dd, J=1.3 Hz, J=4.8 Hz, 1H), 8.45(dd, J=





1.8 Hz, J=6.2 Hz, 1H), 7.96(d, J=7.9 Hz, 2H), 7.66





(dd, J=4.8 Hz, J=7.9 Hz, 1H), 7.50(d, J=8.4 Hz, 2H),





7.16(d, J=7.5 Hz, 1H), 6.96(t, J=7.0 Hz, 1H), 6.77(d, J=





7.5 Hz, 1H), 6.59(t, J=7.5 Hz, 1H), 4.89(s, 2H), 4.31





(s, 2H). (MH)+.372.3




217

1H NMR: (DM50) δ(ppm): 9.63(s, 1H), 8.87(d, J=6.2

50




Hz, 2H); 7.95-8.02(m, 3H), 7.50(d, J=7.9 Hz, 2H), 7.16





(d, J=7.5 Hz, 2H), 6.97(t, J=7.0 Hz, 1H), 6.77(d, J=





7.0 Hz, 1H), 6.59(t, J=7.9 Hz, 1H), 4.89(s, 2H), 4.33(s,





2H). (MH)+: 372.3.




218
1H NMR(DMSO) δ(ppm): 11.62(s, 1H), 9.60(bs, 1H),
49




7.93(d, J=8.1 Hz, 2H), 7.39(d, J=8.1 Hz, 2H), 6.97(d,





J=7.3 Hz, 1H), 7.15(d, J=7.3 Hz, 1H), 6.98-6.94(m,





2H), 6.77(d, J=7.3 Hz, 1H), 6.591(dd, J=7.7, 7.7 Hz,





1H), 4.89(bs, 2H), 4.13(s, 2H), 2.17(s, 3H). LRMS: 390.1





(calc) 391.2(found).




219
1H NMR(DMSO) δ(ppm): 11.77(s, 1H), 9.61(s, 1H);
49




7.93(d, J=7.0 Hz, 4H), 7.52-7.63(m, 3H), 7.38(d, J=





7.6 Hz, 2H), 7.16(d, J=7.6 Hz, 1H), 6.96(t, J=7.6 Hz,





1H), 6.77(d, J=7.6 Hz, 1H), 6.59(t, J=7.6 Hz, 1H), 4.89





(s, 2H), 4.15(s, 2H), 2.24(s, 3H).(MH)+: 467.0




220
1H NMR(DMSO) δ(ppm): 10.12(s, 1H), 9.61(s, 1H),
49




9.21(s, 1H); 7.93(d, J=7.6 Hz, 2H), 7.27-7.43(m, 6H),





7.16(d, J=7.6 Hz, 1H), 6.93-7.05(m, 2H), 6.77(d, J=





8.2 Hz, 1H), 6.59(t, J=7.6 Hz, 1H), 4.88 (s, 2H), 4.08(s,





2H), 2.19(s, 3H). (MH)+: 482.4




221

1H NMR: (DMSO) δ(ppm): 9.60(s, 1H), 7.92(d, J=8.2

11




Hz, 2H), 7.40(d, J=8.0 Hz, 2H), 7.13(d, J=6.9 Hz, 1H),





6.92-7.04(m, 5H), 6.75(dd, J=8.1 Hz, 1.1 Hz, 1H), 6.57





(td, J=7.4 Hz, 1.4 Hz, 1H), 5.24(s, 2H), 4.88(bs, 2H);





4.82(s, 2H).(MH): 374.1




222

1H NMR: (DMSO) δ(ppm): 9.58(s, 1H), 7.90(d, J=8.2

11




Hz, 2H), 7.42(dd, J 8.0 Hz, J=1.4 Hz, 1H), 7.32(d, J=





8.2 Hz, 2H), 7.19-7.11(m, 3H), 7.04-6.92(m, 2H), 6.75





(dd, J=8.0 Hz, 1.4 Hz, 1H), 6.57(td, J=8.0 Hz, 1.6 Hz,





1H), 5.31(s, 2H); 4.88(bs, 2H); 3.70(s, 2H). (MH)+: 390.1




223

1H NMR: (DMSO) δ(ppm): 9.57(bs, 1H), 7.98(d, J=4.7

11




Hz, 1H), 7.89(d, J=8.2 Hz, 2H), 7.45-7.40(m, 3H), 7.15





(d, J=8.2 Hz, 1H), 7.09-7.05(m, 1H), 6.96(dd, J=7.6,





7.6 Hz, 1H), 6.76(d, J=8.2 Hz, 1H), 6.58(dd, J=7.6, 7.6





Hz, 1H), 5.31(s, 2H), 4.90(bs, 2H), 4.87(s, 2H).(MH)+:





375.1




224

1H NMR: (DMSO) δ(ppm): 9.67(s, 1H); 7.98(d, J=8.2

46




Hz, 2H), 7.73-7.84(m, 3H), 7.53-7.62(m, 3H), 7.24(d, J=





7.6 Hz, 1H), 7.04(t, J=7.6 Hz, 1H), 6.85(d, J=8.2 Hz,





1H), 6.67(t, J=7.6 Hz, 1H), 5.68(d, J=7.0 Hz, 1H), 5.27





(t, J=6.4 Hz, 1H), 4.95(s, 2H), 3.21-3.30(m, 1H), 3.11-





3.13(m, 2H). (MH)+: 373.1




225

1H NMR: (DMSO) δ(ppm): 9.61(s, 1H); 8.01(d, J=8.8

 1




Hz, 2H), 7.45(t, J=7.6 Hz, 2H), 7.06-7.24(m, 6H), 6.97(t,





J=7.6 Hz, 1H), 6.78(d, J=7.4 Hz, 1H), 6.59(t, J=7.6





Hz, 1H), 4.88(s, 2H).(MH)+: 305.0




226

1H NMR(CDCl3) δ(ppm): 8.77(s,1H), 7.93(d, J=8.1 Hz,

52




2H), 7.42(d, J=8.4 Hz, 2H), 7.3-6.98(m, 6H), 6.91(d, J=





8.4Hz, 2H), 6.09-5.98(m, 4H), 3.81(s, 3H).




230

1H NMR(DMSO-d6): δ 10.08(brs, 1H), 7.99(d, J=7.9

57




Hz, 2H), 7.70(s, 1H), 7.49(d, J=8.35 Hz, 4H), 7.39-7.33





(m, 1H), 7.30-6.90(m, 7H), 6.87(dd, J=2.2, 8.35 Hz, 1H),





6.78(dd, J=2.2, 8.35 Hz, 1H), 5.01(s, 2H), 3.80(s, 3H),





3.77(s, 3H), 3.75(s, 6H).




231

1H NMR(CDCl3): δ 8.02(brs, 1H), 7.90(d, J=7.9 Hz,

57




2H), 7.46(d, J=7.5 Hz, 2H), 7.42-7.24(m, 6H), 7.16(t, J=





7.5 Hz, 1H), 6.91(brd, J=5.71 Hz, 3H), 6.75(brd, J=57





8.3 Hz, 1H), 6.70(d, J=1.8 Hz, 1H), 4.99(s, 1H), 3.97(s,





3H), 3.86(s, 3H).




232

1H NMR(DMSO-d6): δ 10.10(brs, 1H), 7.99(d, J=7.9

57




Hz, 2H), 7.88(s, 1H), 7.80-7.72(m, 1H), 7.50(dd, J=7.0,





5.7 Hz, 4H), 7.37(d, J=7.9 Hz, 1H), 7.30-6.94(m, 7H),





6.78(d, J=6.6 Hz, 1H), 5.03(s, 2H), 3.80(s, 3H), 3.78(s,





3H).




233

1H NMR(CDCl3): δ 8.02(brs, 1H), 7.92(d, J=7.9 Hz,

57




2H), 7.49(d, J=8.35 Hz, 2H), 7.43-7.32(m, 5H), 7.10-





7.30(2m, 5H), 7.19-7.10(m, 2H), 7.01(dd, J=8.35, 2.2





Hz, 3H), 6.94(d, J=7.5 Hz, 1H), 6.92(d, J=8.8 Hz, 1H),





6.77(dd, J=8.8, 2.2 Hz, 1H), 6.72(d, J=2.2 Hz, 1H),





6.34(s, 2H), 5.02(s, 2H), 3.98(s, 3H), 3.87(s, 3H).




234

1H NMR(CD3OD) δ(ppm): 9.80(bs, 2H), 8.16(d, J=7.9

15




Hz, 4H), 7.96(d, J=7.9 Hz, 4H), 7.23(d, J=7.4 Hz, 2H),





7.03(dd, J=6.9, 7.4 Hz, 2H), 6.84(d, J=8.2 Hz, 2H), 6.66





(dd, J=6.9, 7.7 Hz, 2H), 5.06(bs, 4H).




236

1H-NMR(DMSO-d6), δ(ppm): 9.6(bs, 1H), 8.32(d,

13




J=4.9 Hz, 2H) 7.97(dt J=7.9, 9.9 Hz, 2H), 7.85-7.83(m





1H), 7.47,(d, J=8.2 Hz, 2H), 7.20(d, J=7.9 Hz, 1H), 7.01





(dt, J=7.4, 7.7 Hz, 1H), 6.82(d, J=7.9 Hz, 1H), 6.66-6.62





(m, 1H), 4.98(bs, 2H), 4.61(d, 2H).




237

1H-NMR(DMSO-d6), δ(ppm): 9.66(bs, 1H), 7.96(d,

11




J=7.9 Hz, 2H), 7.61(d, J=7.9 Hz, 2H), 7.21(d, J=7.9 Hz,





1H), 7.04-6.99(m, 2H), 6.82(d, J=7.9 Hz, 1H), 6.64(t,





J=7.4 Hz, 1H), 4.49(s, 2H), 2.42(s, 6H).




238

1H-NMR(DMSO-d6), δ(ppm): 9.66(bs, 1H), 9.07(d,

11




J=5.2 Hz, 1H), 7.97(d, J=7.4 Hz, 2H), 7.78(d, J=4.7 Hz,





1H), 7.63(d, J=7.4 Hz, 2H), 7.19(d, J=7.7 Hz, 1H), 7.01





(dt, J=7.4, 7.7 Hz, 1H), 6.81(d, J=8.2 Hz, 1H), 6.64(dt,





J=7.1, 7.4 Hz, 1H), 4.94(bs, 2H), 4.57(s, 2H).




239

1H-NMR(DMSO-d6), δ(ppm): 10.23(bs, 1H), 10.04(bs,

1




1H), 9.30(s, 1H), 8.62(dd, J=1.8, 8.0 Hz, 1H), 8.30(d,





J=8.1 Hz, 1H), 7.55(d, J=7.4 Hz, 1H), 7.24(d, J=7.4 Hz,





1H), 7.04(dd, J=7.0, 14.0 Hz, 2H), 6.90-6.83(m, 2H),





6.74-6.63(m, 2H), 5.11(bs, 4H).




240

1H-NMR(DMSO-d6), δ(ppm): 9.66(bs, 1H), 8.52(bs, 1H),

11




7.96(d, J=7.4 Hz, 2H), 7.69(d, J=5.8 Hz, 1H), 7.59(d,





J=7.4 Hz, 2H), 7.38(d, J=7.7 Hz, 1H), 7.19(bs, 2H), 7.00





(d, J=6.9 Hz, 1H), 6.83(d, J=6.9 Hz, 1H), 6.64(dd, J=6.7,





7.2 Hz, 1H), 4.94(bs, 2H), 4.55(b+s, 2H).




241

1H-NMR(DMSO-d6), δ(ppm): 9.65(bs, 1H), 7.96(d,

33




7.9 Hz, 2H),7.57(d, J=6.3 Hz, 1H), 7.47(d, J=7.7 Hz,





2H), 7.21(d, J=7.4 Hz, 1H), 7.00(d, J=5.8 Hz, 1H), 6.59





(d, J=6.6 Hz, 1H), 6.64(dd, J=6.0, 7.4 Hz, 1H), 5.01(s,





2H), 4.61(d, J=6.0 Hz, 2H), 2.24(s, 6H).




242

1H-NMR(DMSO-d6), δ(ppm): 9.66(bs, 1H), 7.98(d,

33




J=7.9 Hz, 2H),7.50(d, J=8.2 Hz, 2H), 7.96(d, J=7.9 Hz,





1H), 7.01(dd, J=7.7, 7.4 Hz, 1H), 6.82(d, J=7.9 Hz, 1H),





6.64(t, J=7.4 Hz, 1H), 6.33(s, 1H), 6.25(s, 1H), 4.58(d,





J=4.4 Hz, 2H), 2.28(s, 3H), 2.17(s, 3H).




243

1H-NMR(DMSO-d6), δ(ppm): 9.58(bs, LH), 7.88(d,

11




J=5.8 Hz, 2H),7.46(d, J=8.2 Hz, 2H), 6.90-6.81(m, 1H),





6.68(d, J=7.9 Hz, 1H), 6.50(t, J=7.4 Hz, 1H), 6.40-6.38





(m, 1H), 6.29-6.26(m, 1H), 5.33(s, 2H), 2.25(s, 6H).




244

1H-NMR(DMSO-d6), δ(ppm): 9.64(bs, 1H), 8.21(bs, 1H),

33




7.95(d, J=7.96 Hz, 2H),7.83(d, J=5.8 Hz, 1H), 7.44(d,





J=7.9 Hz, 2H), 7.19(d, J=7.7 Hz, 1H), 7.00(dd, J=7.4, 7.7





Hz, 1H), 6.80(d, J=7.9 Hz, 1H), 6.64(d, J=7.1 Hz, 1H),





4.96(bs, 2H), 4.58(bs, 2H), 3.81(s, 3H).




245

1H-NMR(DMSO-d6), δ(ppm): 9.79(bs, 1H), 7.99(d,

33




J=8.5 Hz, 2H), 7.48(d, J=7.96 Hz, 2H), 7.39(bs, 1H),





7.21(d, J=7.4Hz, 1H), 7.02(dd, J=7.1, 7.7 Hz, 1H), 6.83





(d, J=7.7 Hz, 1H), 6.64(t, J=7.4 Hz, 1H), 6.36(bs, 1H),





6.00(d, J=2.2 Hz, 2H), 4.59(bs, 2H), 2.52(bs, 3H).




246

1H-NMR(DMSO-d6), δ(ppm): 9.66(bs, 1H), 7.96(d,

33




J=7.9 Hz, 2H), 7.47(bs, 2H), 7.39(bs, 1H), 7.19(d,





J=7.4Hz, 1H), 7.00(dd, J=6.9, 7.4 Hz, 1H), 6.81(d, J=7.1





Hz, 1H), 6.63(dd, J=7.7, 6.8 Hz, 1H), 6.10(bs, 1H), 4.56





(d, J=6.0 Hz,, 2H), 3.83(s, 3H).




247

1H-NMR(DMSO-d6), δ(ppm): 9.63(bs, 1H), 7.94(d,

33




J=6.9 Hz, 2H), 7.47(d, J=6.59 Hz, 2H), 7.15(d, J=7.9 Hz,





1H), 6.99(dd, J=5.7, 7.4Hz, 1H), 6.80(d, J=7.8 Hz, 1H),





6.71(d, J=6.6 Hz, 1H), 6.62(dd, J=7.7, 7.1 Hz, 1H), 6.15





(d, J=8.2 Hz, 1H), 4.96(bs, 2H), 4.38(bs, 2H), 3.94(s,





3H), 3.75(s, 3H).




248

1H-NMR(DMSO-d6), δ(ppm): 10.9(bs, 1H), 9.64(bs, 1H),

33




7.99(bs, 2H), 7.55(bs, 2H), 7.21-7.17(m, 3H), 7.14-6.81





(m, 4H), 6.64(d, J=6.0 Hz, 1H), 4.92(bs, 2H), 4.65(bs,





2H).




249

1H-NMR(DMSO-d6), δ(ppm): 9.60(bs, 1H), 7.96(d,

37




J=7.9 Hz, 1H), 7.52-7.50(m, 2H), 7.37-7.30(m, 1H), 7.25-





7.21(m, 2H), 7.19-6.99(m, 1H), 6.84-6.81(m, 1H), 6.67-





6.64(m, 1H), 6.11-6.07(m, 1H), 5.93-5.89(m, 1H), 4.93





(bs, 2H), 4.56(d, J=5.8 Hz, 2H), 3.80(s, 3H).




250

1H-NMR(DMSO-d6), δ(ppm): 9.68(bs, 1H), 8.95(bs, 2H),

11




8.43-8.38(m, 1H), 7.90(bs, 2H), 7.80-7.55(m, 6H), 7.22





(d, J=7.7 Hz, 1H), 7.03(d, J=7.7 Hz, 1H), 6.63(d, J=7.4





Hz, 1H), 5.05(bs, 2H), 4.48(d, J=7.7, 2H).




251

1H-NMR(DMSO-d6), δ(ppm): 9.66(bs, 1H), 7.97(d,

37




J=7.9 Hz, 2H), 7.84(t, J=5.9 Hz, 1H), 7.46(d, J=7.46 Hz,





2H), 7.20(d, J=7.9 Hz, 1H), 7.04(d, J=6.6 Hz, 1H), 6.83





(d, J=7.9 Hz, 1H), 6.64(dd, J=7.7, 7.4 Hz, 1H), 5.51(bs,





1H), 4.57(bs,, 2H), 3.82(s, 3H), 3.84(s, 3H).




252

1H-NMR(DMSO-d6), δ(ppm): 9.63(bs, 1H), 7.79(d,

37




8.5 Hz, 2H), 7.19(d, J=6.6 Hz, 1H), 7.00(dd, J=7.9, 7.1





Hz, 1H), 6.62(t, J=6.0 Hz, 1H), 6.82(dd, J=1.4, 7.9 Hz,





1H), 6.67(d, J=8.8 Hz, 2H), 6.58(bs, 2H), 6.42(bs, 1H),





4.87(bs, 2H), 4.34(d, J=6.0 Hz, 2H), 3.77(s, 6H).




253

1H-NMR(DMSO-d6), δ(ppm): 9.66(bs, 1H), 7.96(d,

11




J=7.9 Hz, 2H), 7.55(d, J=8.2 Hz, 2H), 7.29-7.20(m, 2H),





7.02-6.95(m, 2H), 6.84-6.79(m, 1H), 6.67-6.62(m, 1H),





6.57-6.54(m, 1H), 6.44-6.41(m, 1H), 4.93(bs, 2H), 4.41





(bs, 2H), 3.79(s, 3H).




254

1H-NMR(DMSO-d6), δ(ppm): 9.72(bs, 1H), 8.05(d,

11




8.2 Hz, 2H), 7.61(d, J=7.9 Hz, 2H), 7.24(d, J=7.4 Hz,





1H), 7.04(dd, J=6.9, 7.1 Hz, 1H), 6.85(d, J=6.9 Hz, 1H),





6.66(dd, J=7.4, 7.7 Hz, 1H), 6.27(s, 2H), 6.26(s, 1H),





5.23(s, 2H), 5.21(bs, 2H), 3.77(s, 6H).




255

1H-NMR(DMSO-d6), δ(ppm): 9.70(bs, 1H), 8.35(d,

11




J=9.1 Hz, 2H), 8.05(d, J=7.9 Hz, 2H), 7.96(d, J=7.9 Hz,





1H), 7.85(d, J=8.2 Hz, 1H), 7.76-7.69(m, 2H), 7.51(dd,





J=6.9, 7.1 Hz, 1H), 7.24-7.16(m, 2H), 7.02(dd, J=6.9, 7.4





Hz, 1H), 6.83(d, J=8.2 Hz, 1H), 6.66(d, J=7.4 Hz, 1H),





5.66(s, 2H), 4.94(bs, 2H).




256

1H-NMR(DMSO-d6), δ(ppm): 9.62(bs, 1H), 7.96(d,

33




J=7.9 Hz, 2H), 7.49(d, J=7.9 Hz, 2H), 7.19(d, J=7.9 Hz,





1H), 7.00(dd, J=7.5, 7.9 Hz, 1H), 6.81(d, J=7.9 Hz, 1H),





6.63(dd, J=7.0, 8.0 Hz, 1H), 5.78(s, 2H), 5.76(s, 1H),





4.92(bs,, 2H), 4.35(d, J=5.7, 2H), 3.65(s, 6H).




257

1H-NMR(DMSO-d6), δ(ppm): 9.82(bs, 2H), 9.08(bs, 2H),

 1




8.34(d, J=8.3 Hz, 2H), 7.83(d, J=8.3 Hz, 2H), 7.18(d,





J=7.5 Hz, 2H), 7.01(dd, J=6.3, 7.0 Hz, 2H), 6.80(d, J=7.9





Hz, 2H), 6.61(t, J=7.03 Hz, 2H), 5.05(bs, 4H).




258

1H-NMR(DMSO-d6), δ(ppm): 9.90(bs, 1H), 8.16(bs, 2H),

33




7.65(d, J=4.8 Hz, 2H), 7.54(bs, 2H), 7.25(d, J=7.0 Hz,





2H), 7.11(bs, 2H), 7.07-7.02(m, 2H), 6.84(d, J=7.9 Hz,





1H), 6.67(bs, 1H), 5.01(bs, 2H), 4.88(bs, 2H).




259

1H-NMR(DMSO-d6), δ(ppm): 9.66(bs, 1H), 7.97(d,

33




J=7.0 Hz, 2H), 7.51(d, J=7.0 Hz, 2H), 7.22(d, J=7.5 Hz,





1H), 7.02-6.97(m, 1H), 6.84(bs, 1H), 6.82-6.71(m, 2H),





6.16(d, J=6.6 Hz, 1H), 6.08(s, 1H), 4.32(bs, 2H), 4.16-





4.13(m, 4H).




260

1H-NMR(DMSO-d6), δ(ppm): 9.66(bs, 1H), 9.56(bs, 1H),

33




7.97(d, J=7.9 Hz, 2H), 7.53(d, J=7.9 Hz, 2H), 7.28(d,





J=8.8 Hz, 2H), 7.22(d, J=7.9 Hz, 1H), 7.02(t, J=7.5 Hz,)





1H), 6.83(d, J=7.9 Hz, 1H), 6.65(t, J=7.5 Hz, 1H), 6.55(d,





J=8.3 Hz, 2H), 4.98(bs, 2H), 4.38(bs, 2H), 2.00(s, 3H).




261

1H-NMR(DMSO-d6), δ(ppm): 9.65(bs, 1H), 7.98(d,

33




J=7.9 Hz, 2H), 7.52(d, J=7.9 Hz, 2H), 7.21(d, J=7.5 Hz,





1H), 7.02(dd, J=7.0, 7.9 Hz, 1H), 6.83(d, J=7.9 Hz, 1H),





6.78(d, J=8.8 Hz, 2H), 6.64(t, J=7.5 Hz, 1H), 6.55(d,





J=8.8 Hz, 2H), 4.94(bs, 2H), 4.35(d, J=5.7 Hz, 2H), 3.74





(t, J=4.4 Hz, 4H), 2.92(t, J=4.4 Hz, 4H).




262

1H-NMR(DMSO-d6), δ(ppm): 9.64(bs, 1H), 7.96(d,

33




J=7.6 Hz, 2H), 7.52(d, J=7.6 Hz, 2H), 7.21(d, J=8.2 Hz,





1H), 7.02(t, J=8.2, 7.0 Hz, 1H), 6.83(d, J=8.2 Hz, 1H),





6.71-6.53(m, 3H), 6.32-6.30(m, 1H), 4.94(bs, 2H), 4.45





(d, J=5.9 Hz, 2H), 3.65(s, 3H), 2.23(s, 3H).




263

1H-NMR(DMSO-d6), δ(ppm): 9.65(bs, 1H), 7.98(d,

33




J=7.4 Hz, 2H), 7.56(d, J=7.5 Hz, 2H), 7.19(d, J=7.9 Hz,





1H), 6.99(d, J=7.5 Hz, 1H), 6.82(d, J=7.9 Hz, 1H), 6.63





(t, J=6.6 Hz, 2H), 6.27(s, 1H), 4.93(bs, 2H), 4.55(d,





J=5.3 Hz, 2H), 3.69(s, 6H).




264

1H-NMR(DMSO-d6), δ(ppm): 9.62(s, 1H), 8.72(s, 1H),

33




8.49(d, J=10.1 Hz, 1H), 7.93(d, J=7.9 Hz, 2H), 7.68(d,





J=6.6 Hz, 1H), 7.37(d, J=7.5 Hz, 2H), 7.16 (d, J=7.5





Hz, 1H), 6.97(t, J=7.5 Hz, 1H), 6.78(d, J=7.9 Hz, 1H),





6.69(d, J=8.8 Hz, 1H), 6.62(d, J=7.5 Hz, 1H), 6.23(d, J=





2.6 Hz, 1H), 6.09(J=8.8 Hz, 1H), 5.76(s, 1H), 4.64(bs,





4H), 3.62(s, 3H).




265

1H-NMR(DMSO-d6), δ(ppm): 9.67(bs, 1H), 8.00(d,

33




J=7.9 Hz, 2H), 7.54(d, J=7.9 Hz, 2H), 7.34(s, 1H), 7.20





(d, J=7.9 Hz, 2H), 7.0(t, J=7.9 Hz, LH), 6.82(d, J=7.9 Hz,





1H), 6.62(t, J=7.9 Hz, 1H), 6.31(s, 1H), 4.95(bs, 2H),





4.62(bs, 2H), 3.75(s, 3H), 3.70(s, 3H).




266

1H-NMR(DMSO-d6), δ(ppm): 9.60(s, 1H), 7.93(d, J=7.9

33




Hz, 2H), 7.45(d, J=7.9 Hz, 2 H), 7.16(d, J=7.5 Hz, 1H), (H





6.97(t, J=7.5 Hz, 1H), 6.78(d, J=7.9 Hz, 1H), 6.58(t, J=





7.0 Hz, 1H), 6.19-6.17(m, 3H), 4.88(s, 2H), 4.32(d, J=5.7





Hz, 2H), 2.10(s, 6H).




267

1H-NMR(DMSO-d6), δ(ppm): 9.65(s, 1H), 8.72(s, 1H),

33




8.54(s, 1H), 8.49(d, J=10.9 Hz, 1H), 7.97(d, J=7.9 Hz,





2H), 7.71(d, J=7.9Hz,1H), 7.44(d, J=82 Hz, 2H), 7.41-





1H), 6.83(d, J=7.0 Hz, 1H), 6.70-6.60(m, 4H), 4.62(s,





4H).




268

1H-NMR(DMSO-d6), δ(ppm): 9.58(s, 1H), 7.90(d, J=7.9

33




Hz, 2H), 7.45(d, J=7.5 Hz, 2H), 7.15(d, J=7.5 Hz, 1H),





6.96(t, J=7.5 Hz, 1H), 6.79(s, 1H), 6.76(d, J=9.6 Hz,





1H), 6.68(d, J=7.9 Hz, 1H), 6.59(t, J=7.0 Hz, 1H), 6.22(d,





J=7.9 Hz, 1H), 4.89(bs, 2H), 4.39(d, J=5.7 Hz, 2H), 2.15





(s, 3H), 2.10(s, 3H).




269

1H-NMR(CD3OD), δ(ppm): 7.91(d, J=7.9 Hz, 2H), 7.43

33




(d, J=8.5 Hz, 2H), 7.18(d, J=7.5 Hz, 1H), 7.08(t, J=7.5





Hz, 1H), 6.92(d, J=7.9 Hz, 1H), 6.77(s, 3H), 4.15(bs, 2H),





2.19(s, 9H).




270

1H NMR(300 MHz, DMSO-D6) δ ***(ππμ): 9.66(s, 1H),

24, 33




7.97(d, J=8.0 Hz, 2H), 7.82(m, 1H), 7.47(d, J=7.7 Hz,





2H), 7.21(d, J=8.2 Hz, 1H), 7.03(dd, J=7.1, 7.1 Hz, 1H





6.84(d, J=7.7 Hz, 1H) 6.65(dd J=7.4, 7.4 Hz, 1H)





6.17(bs, 1H), 4.94(s, 2H, NH2), 4.53(d, J=5.8 Hz, 2H),





3.58(m, 4H), 3.62(m, 4H).




271

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.33(s, 1H), 7.81

33




(d, J=8.8 Hz, 2H), 7.19(d, J=7.7 Hz, 1H), 6.99(m, 1H),





6.87(dd, J=6.0, 5.8Hz, 1H), 6.82(m, 1H), 6.77(s, 2H),





6.71(d, J=8.8 Hz, 2H), 6.64(m, 1H), 4.87(s, 2H, NH2),





4.32(d, J=5.5 Hz, 2H), 3.81(s, 6H), 3.79(s, 3H).




272

1H NMR(300 MHz, DMSO-d6) 6 δ(ppm): 9.31(s, 1H), 7.79

33




(d, J=8.7 Hz, 2H), 7.45(dd, J=5.8, 8.5 Hz, 2H), 7.21(m,





3H), 6.91(m, 2H), 6.81(dd, J=1.1, 8.0Hz, 1H), 6.67(d, J=33





8.8 Hz, 2H), 6.62(dd, J=1.0, 7.2 Hz, 1H), 4.86(s, 2H,





NH2), 4.39(d, J=6.0 Hz, 2H).




273

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.31(s, 1H), 7.79

33




(dd, J=1.1, 8.5 Hz, 2H), 7.33(d, J=7.1 Hz, 2H), 7.19(d,





J=7.7 Hz, 1H), 6.97(m, 3H), 6.84(m, 2H), 6.65(m, 3H),





4.86(s, 2H, NH2), 4.33(d, J=5.5 Hz, 2H), 3.58(d, J=1.6





Hz, 3H).




274

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.66(s, 1H), 7.99

33




(d, J=7.9 Hz, 2H), 7.53(d, J=8.0 Hz, 2H), 7.21(d, J=





8.0 Hz, 1H), 7.02(ddd J=1.6, 7.1, 8.2 Hz, 1H), 6.93(dd J=





8.8, 9 Hz, 2H), 6.83(dd, J=1.1, 8.0 Hz, 1H), 6.63(m,





3H), 6.35(t, J=6.2 Hz, 1H), 4.94(s, 2H, NH2), 4.38(d, J=





6.3 Hz, 2H).




275

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.32(s, 1H), 7.79

33




(d, J=8.8 Hz, 2H), 7.44(m, 1H), 7.26(m, 1H), 7.18(dd, J=





1.4, 8.0 Hz, 2H), 7.12(ddd, J=1.7, 8.0, 8.2 Hz, 1H),





6.99(m, 2H), 6.81(dd, J=1.4, 8.0 Hz, 1H), 6.67(dd, J=





1.6, 8.8 Hz, 2H), 6.62(dd, J=1.4, 7.4 Hz, 1H), 4.87(s, 2H,





NH2), 4.45(d, J=6.0 Hz, 2H).




276

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.66(s, 1H), 7.99

33




(d, J=8.2 Hz, 2H), 7.52(d, J=8.0 Hz, 2H), 7.21(d, J=





7.7 Hz, 1H), 6.99-7.14(m,2H), 6.83(d, J=8.0 Hz, 1H),





6.76(m, 1H), 6.64(dd, J=7.4, 7.4 Hz, 1H), 6.46(d, J=





8.2 Hz, 1H), 6.34(m, 2H), 4.94(s, 2H, NH2), 4.41(d, J=





6.0 Hz, 2H).




277

1H NMR(300 MHz, DMSO-D6) δ(ppm): 9.66(s, 1H), 8.23

33




(m, 1H), 7.98(d, J=8.2 Hz, 2H), 7.47(d, J 8.5 Hz, 2H),





7.21(d, J=7.7 Hz, 1H), 7.03(ddd, J=1.5, 7.1, 8.0 Hz,





1H), 6.83(dd, J=1.5, 8.1 Hz, 1H), 6.65(m, 2H), 4.94(s,





2H, NH2), 4.61(m, 2H), 2.3 2(s, 3H).




278

1H NMR(300 MHz, DMSO-D6) δ(ppm): 9.69(s, 1H), 8.82

33




(m, 1H), 7.99(d, J=8.2 Hz, 2H), 7.48(d, J=8.0 Hz, 2H),





7.27(d, J=7.7 Hz, 1H), 7.04(d, J=7.7 Hz, 1H), 7.0(d, J=





1.6 Hz, 1H), 6.84(d, J=8.2Hz, 1H), 6.67(m, 1H), 5.0





(bs, 2H, NH2), 4.60(d, J=6.3 Hz, 2H).




279

1H NMR(300 MHz, DMSO-D6) δ(ppm): 9.87(s, 1H), 8.49

24, 33




(bs, 2H), 7.26-8.02(bm, 8H), 7.22(d, J=8.0 Hz, 1H), 7.03





(dd, J=7.4, 7.4 Hz, 1H), 6.84(d, J=8.2 Hz, 1H ), 6.66





(dd, J=7.1, 8.0 Hz, 1H), 5.86(bs, 1H), 4.95(s, 2H, NH2),





4.51(m, 2H).




280

1H NMR(300 MHz, DMSO-D6) δ(ppm): 9.66(s, 1H), 7.99

33




(d, J=8.4 Hz, 2H), 7.54(d, J=7.9 Hz, 2H), 7.50(d, J=





2.6 Hz, 1H), 7.21(d J=7.5 Hz, 7.9 Hz, 1H) 7.12(dd J=





3.08 Hz, 8.79 Hz, 1H), 7.02(dd, J=7.0 Hz, 7.5 Hz, 1H),





6.83(d, J=7.0 Hz, 1H), 6.65(m, 2H), 6.15(t, J=6.16 Hz,





1H), 4.94(s, 2H, NH2), 4.39(d, J=6.15 Hz, 2H), 3.75(s,





3H).




281

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.66(s, 1H), 7.99

33




(d, J=8.0 Hz, 2H), 7.53(d, J=8.2 Hz, 2H), 7.21(d, J=





7.7 Hz, 1H), 7.09(d, J=9.1 Hz, 2H), 7.03(dd, J=7.1, 8.2





Hz, 1H), 6.83(d, J=8.0 Hz, 1H), 6.71(t, J=6.0 Hz, 1H),





6.63-6.67(m, 3H), 4.94(s, 2H, NH2), 4.42(d, J=6.0 Hz,





2H).




282

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.67(s, 1H), 8.00

33




(d J=8.2 Hz, 2H), 7.53(d, J=8.2 Hz, 2H), 7.19(m, 2H),





7.03(ddd, J=1.5, 8.0, 8.8 Hz, 1H), 6.85(m, 2H), 6.63(m,





2H), 6.55(s, 1H), 6.50(m, 1H), 4.94(s, 2H, NH2), 4.44(d,





J=6.0 Hz, 2H).




283a

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.65(s, 1H), 7.98

33




(d, J=7.9 Hz, 2H), 7.54(d, J=7.9 Hz, 2H), 7.22(d, J=





7.9 Hz, 1H), 7.02(dd, J=7.9 Hz, 7.9 Hz, 1H), 6.83(d, J=





7.9 Hz, 1H), 6.72(d, J=8.79 Hz, 1H), 6.45(dd, J=7.49 33





Hz, 7.49 Hz, 1H), 6.39(d, J=2.2 Hz, 1H), 6.01-6.08(m,





2H), 4.94(s, 2H, NH2), 4.36(d, J=6.16 Hz, 2H), 3.72(s,





3H), 3.65(s, 3H).




284

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.31(s, 1H), 7.80

33




(d, J=8.8 Hz, 2H), 7.45-7.56(m, 2H), 7.39(s, 1H), 7.29





(d, J=7.7 Hz, 1H), 7.18(d, J=6.6 Hz, 1H), 6.96-7.03(m,





2H), 6.81(d, J=6.9 Hz, 1H), 6.68(d, J=8.8 Hz, 2H), 6.64





(d, J=7.7 Hz, 1H), 4.86(s, 2H, NH2), 4.48(d, J=5.8 Hz,





2H).




285

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.31(s, 1H), 7.79

33




(d, J=8.8 Hz, 2H), 7.54(d, J=8.8 Hz, 2H), 7.39(d, J=





8.0 Hz, 2H), 7.18(dd, J=1.4, 7.7 Hz, 1H), 6.99(ddd, J=





1.4, 8.0, 8.5 Hz, 2H), 6.81(dd, J=1.4, 8.0, 1H), 6.68(d, J=





8.8 Hz, 2H), 4.85(s, 2H, NH2), 4.45(d, J=6.0 Hz, 2H).




286

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.64(s, 1H), 7.97

33




(d, J=8.2 Hz, 2H), 7.53(d, J 8.5 Hz, 2H), 7.21(d, J=





1.4, 8.0 Hz, 1H), 7.02(ddd, J=1.4, 7.4, 8.0 Hz, 1H), 6.83





(dd, J=1.4, 8.0 Hz, 1H), 6.74(m, 2H), 6.65(ddd, J=1.4,





7.7, 8.8 Hz, 1H), 6.58(m, 2H), 5.99(t, J=6.3 Hz, 1H),





4.93(s, 2H, NH2), 4.36(d, J=6.0 Hz, 2H), 3.68(s, 3H).




287

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.65(s, 1H), 7.98

33




(d, J=7.9 Hz, 2H), 7.52(d, J=7.9 Hz, 2H), 7.21(d, J=





7.5 Hz, 1H), 7.02(dd, J=7.0, 7.0 Hz, 1H), 6.83(d, J=7.5





Hz, 1H), 6.63-6.69(m, 2H), 6.33(d, J=2.2 Hz, 1H), 6.15





(t, J=6.16 Hz, 1H), 6.04(dd, J=2.2, 8.4 Hz, 1H), 5.86





(s, 2H), 4.94(s, 2H, NH2), 4.35(d, J=6.16 Hz, 2H).




288

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.63(s, 1H), 7.90

33




(d, J=8.2 Hz, 2H), 7.52(d, J=8.2 Hz, 2H), 7.22(d, J=





7.7 Hz, 1H), 7.02(ddd, J=1.4, 7.1, 8.0 Hz, 1H), 6.86(m,





2H), 6.56-6.75(m, 3H), 6.43(dd, J=1.6, 7.7 Hz, 1H), 5.75





(t, J=6.3 Hz, 1H), 4.93(s, 2H, NH2), 4.47(d, J=6.3 Hz,





2H), 3.88(s, 3H).




289

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.61(s, 1H), 7.98

33




(d, J=8.0 Hz, 2H), 7.53(d, J=8.2 Hz, 2H), 7.21(dd, J=





1.1, 7.7 Hz, 1H), 6.97-7.05(m, 2H), 6.82(dd, J=1.2, 8.1





Hz, 1H), 6.46(ddd, J=1.4, 7.7, 8.0 Hz, 1H), 6.41(t, J=





6.3 Hz, 1H), 6.16-6.25(m, 3H), 4.93(s, 2H, NH2), 4.39(d,





J=6.0 Hz, 2H), 3.69(s, 3H).




290

1H NMR(300 MHz, DMSO-d6) δ(ppm): 11.53(s, 1H),

14




9.71(s, 1H), 8.08(d, J=8.2 Hz, 2H), 7.86(d, J=8.8 Hz,





2H), 7.23(d, J=7.6 Hz, 1H), 7.03(dd, J=7.0, 7.6 Hz, 14





1H), 6.84(d, J=8.2 Hz, 1H), 6.66(dd, J=7.0, 7.6 Hz,





1H), 4.96(s, 2H, NH2).




291

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.64(s, 1H), 7.95

24, 33




(d, J=7.5 Hz, 2H), 7.70(bs, 2H), 7.45(d, J=8.4 Hz, 2H),





7.22(d, J=7.9 Hz, 1H), 7.03(dd, J 7.0, 7.5 Hz, 1H),





6.84(d, J=7.9, Hz, 1H), 6.60-6.72(m, 3H), 5.87(s, 1H),





4.93(s, 2H, NH2), 4.54(d, J=6.2 Hz, 2H), 4.43(bs, 2H),





3.78(s, 6H), 3.68(s, 3H).




292

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.65(s, 1H), 9.43

24, 33




(s, 1H), 7.97(m, 3H), 7.46(bs, 2H), 7.21(d, J=7.5 Hz,





1H), 7.02(m, 3H), 6.83(d, J=7.0 Hz, 1H), 6.65(dd, J=





7.5, 7.5 Hz, 1H), 6.08(s, 1H), 4.93(s, 2H, NH2), 4.69(bs,





2H), 3.65(s, 9H).




293

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.31(s, 1H), 7.79

33




(d, J=8.8 Hz, 2H), 7.19(d, J=7.9 Hz, 2H), 7.04(s, 1H),





6.92-7.01(m, 3H), 6.80-6.87(m, 2H), 6.69(d, J=8.8 Hz,





2H), 6.62(m, 1H), 4.87(s, 2H, NH2), 4.32(d, J=5.7 Hz,





2H), 3.80(s, 3H), 3.78(s, 3H).




294

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.64(s, 1H), 7.95

24, 1,




(d, J=8.4 Hz, 2H), 7.87(d, J=7.9 Hz, 1H), 7.47(d, J=
33




7.9 Hz, 2H), 7.31(bs, 1H), 7.21(d, J=7.5, 1H), 7.02(dd,





J=7.9 Hz, 1H), 6.83(d, J=7.9 Hz, 1H), 6.65(dd, J=7.0,





7.0 Hz,1H), 6.09(d, J=6.2 Hz, 1H), 4.94(s, 2H, NH2),





4.54(d, J=5.7 Hz, 2H), 3.67(s, 4H), 3.53(s, 4H).




295

1H NMR(300 MHz, DMSO-d6) δ(ppm): 10.82(s, 1H), 9.65

57




(s, 1H), 7.98(d, J=8.4 Hz, 2H), 7.56(d, J=7.9 Hz, 1H),





7.51(d, J=8.4 Hz, 2H), 7.38(d, J=7.9 Hz, 2H), 7.18-





7.23(m, 2H), 7.11(dd, J=7.0, 8.0 Hz, 1H), 7.01(m, 2H),





6.83(d, J=7.9 Hz, 1H), 6.51(dd, J=7.5, 6.6 Hz, 1H),





4.93(s, 2H, NH2), 3.89(s, 2H), 2.89(m, 4H).




296

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.67(s, 1H), 7.99

33




(d, J=7.5 Hz, 2H), 7.52(d, J=7.5 Hz, 2H), 7.21(d, J=





7.5 Hz, 1H), 7.13(d, J=7.5 Hz, 2 H), 7.03(dd, J=7.5,





7.5 Hz, 1H), 6.83(d, J=7.9 Hz, 1H), 6.53(m, 4H), 4.95(s,





2H, NH2), 4.41(d, J=5.7 Hz, 2H), 2.37(s, 3H).




297

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.66(s, 1H), 7.99

33




(d, J=7.5 Hz, 2H), 7.53(d, J=7.5 Hz, 2H), 7.21(d, J=





7.5 Hz, 1H), 7.03(m, 2H), 6.83(d, J=7.9 Hz, 1H), 6.65





(dd, J=7.5, 7.5 Hz, 1H), 6.39-6.51(m, 4H), 4.94(s, 2H,





NH2), 4.41(d. J=5.7 Hz, 2H), 2.42(s, 3H).




298

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.66(s,

15, 33




(s, 1H), 7.99(d, J=7.5 Hz, 2H), 7.68-7.79(m, 2H), 7.55





(bs 2H), 7.37(s, 1H) 7.20(d, J=7.1 Hz, 1H) 7.11(bs,





1H), 7.02(dd, J=7.5, 7.5 Hz, 1H), 6.82(d, J=7.9 Hz,





1H), 6.64(dd, J=7.5, 7.5 Hz, 1H), 4.93(s, 2H, NH2), 4.86





(s, 2H), 3.88(s, 6H).




299

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.64(s, 1H), 8.35

15, 1




(d, J=4.8 Hz, 1H), 7.97(d, J=7.9 Hz, 2H), 7.89(m, 1H),





7.72(m, 2H), 7.55(d, J=7.5 Hz, 2H), 7.2(d, J=5.3 Hz,





2H), 7.10(d, J=8.4 Hz, 1H), 7.01(m, 1H), 6.82(d, J=7.0





Hz, 1H), 6.41(t, J=7.5 Hz, 1H), 4.92(s, 2H, NH2), 4.86





(d, J=6.2 Hz, 2H), 3.82(s, 6H).




300

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.68(s, 1H), 9.45

33




(t, J=5.7 Hz, 1H), 8.01(d, J=7.9 Hz, 2H), 7.54(d, J=





8.4 Hz, 2H), 7.32(s, 1H), 7.21(d, J=7.5 Hz, 1H), 7.02





(dd, J=6.6, 7.5 Hz, 1H), 6.83(d, J=7.5 Hz, 1H), 6.65





(dd, J=7.0, 7.5 Hz, 1H), 6.31(s, 1H), 4.95(s, 2H, NH2),





4.63(d, J=5.7 Hz, 2H), 3.78(s, 3H), 3.76(s, 3H).




301

1H NMR(300 MHz,CD3OD+CDCl3) δ(ppm): 7.99(d, J=

1, 33




7.9 Hz, 2H), 7.80(d, J 6.2 Hz, 1H), 7.76(s, 1H), 7.52(d,





J=8.4 Hz, 2H), 7.27(m, 1H), 7.14(m, 1H), 7.05(dd, J=





2.2, 8.8 Hz, 1H), 6.95(d, J=7.9 Hz, 1H), 6.88(d, J=8.8





Hz, 1H), 6.83(d, J=7.9 Hz, 1H), 6.08(d, J=6.2 Hz, 1H),





4.75(s, 2H), 3.79(s, 3H), 3.42(s, 3H).




302

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.66(s, 1H), 7.96

33




(d, J=8.4 Hz, 2H), 7.42(d, J=7.9 Hz, 2H), 7.20(d, J=





7.5 Hz, 1H), 7.02((dd, J=6.6, 8.4 Hz, 1H), 6.83(d, J=





7.0 Hz, 1H), 6.77(d, J=8.8 Hz, 1H), 6.65(dd, J=7.0, 7.0





Hz, 1H), 6.44(d, J=2.6 Hz, 1H), 6.19(dd, J=2.6, 8.8 Hz,





1H), 4.93(s, 2H), 4.67(s, 2H), 3.88(t, J=5.7 Hz, 2H),





3.71(s, 3H), 3.67(s, 3H), 3.60(t, J=5.5 Hz), 0.96(s, 9H),





0.06(s, 6H).




303

1H NMR(300 MHz, DMSO-d6) δ(ppm)δ(ppm): 9.65(s,

33, 23




1H), 7.96(d, J=7.5 Hz, 2H), 7.42(d, J=7.5 Hz, 2H), 7.21





(d, J=7.5 Hz, 1H), 7.02((dd, J=7.0, 7.5 Hz, 1H), 6.83(d,





J=7.9 Hz, 1H), 6.78(d, J=8.8 Hz, 1H), 6.65(dd, J=7.0,





7.5 Hz, 1H), 6.44(s, 1H), 6.19(d, J=8.8 Hz, 1H), 4.94(s,





2H), 4.79(m, 1H), 4.66(s, 2H), 3.67 and 3.71(2s and





broading underneath, 8H), 3.55(m, 2H).




304

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.82(S, 1H), 9.13

33




(s, 1H), 8.33(d, J=8.0 Hz, 1H), 7.56(d, J=8.5 Hz, 1H),





7.21(d, J=7.7 Hz, 1H), 7.03((dd, J=7.4, 7.7 Hz, 1H)





6.82(d, J=8.0 Hz, 1H), 6.40(dd, J=7.4, 7.7 Hz, 1H),





6.31(t, J=5.8 Hz, 1H), 5.96(s, 2H), 5.01(s, 2H), 4.48(d,





J=5.8 Hz, 2H), 3.70(s, 6H), 3.56(s, 3H).




305

1H NMR(300 MHz, DMSO-d6) δ(ppm): 8.69(d, J=2.2

 3




Hz, 1H), 8.46(s, 1H), 8.40(d, J=8.8 Hz, 1H), 8.32-8.36





(m, 1H), 7.91-7.96(m, 1H), 7.77(m, 1H), 7.67(m, 1H) 7.5





(m, 4H), 7.2 (s, 1H), 4.46(t, J=5.9 Hz, 1H), 4.09(t, J=





5.9 Hz, 2H).




306

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.37(s, 1H), 7.84

33




(d J=8.8 Hz, 2H), 7.54(dd, J=7.9, 7.9 Hz, 2H), 7.18-





7.37(m, 6H), 7.17(d, J=7.0 Hz, 1H), 6.99(dd, J=7.0,





7.9 Hz, 1H), 6.82(m, 3H), 6.63(dd, J=7.5, 7.5 Hz, 1H),





4.94(s, 4H), 4.86(s, 2H).




307

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.58(s, 1H), 7.92

33




(d, J=7.9 Hz, 2H), 7.49(d, J=7.9 Hz, 2H), 7.34(d, J=





8.8 Hz, 1H), 7.15(d, J=7.5 Hz, 1H), 6.96(t, J=7.9 Hz,





1H), 6.76(d, J=7.9 Hz, 1H), 6.59(d, J=7.5 Hz, 1H), 6.55





(s, 1H), 6.44(d, J=8.4 Hz, 1H), 6.34(t, J=5.7 Hz, 1H),





4.88(bs, 2H), 4.37(d, J=5.7 Hz, 2H), 3.06(s, 6H).




308

1H NMR(300 MHz, DMSO-d6) δ(ppm): 10.2(s, 1H), 10.1

33




(s, 1H), 9.62(s, 1H), 7.94(d, J=7.9 Hz, 2H), 7.41(d, J=





7.9 Hz, 2H), 7.15(d, J=7.5 Hz, 1H), 6.96(t, J=7.5 Hz,





1H), 6.77(d, J=7.9 Hz, 1H), 6.69(d, J=8.4 Hz, 1H), 6.59





(t, J=7.5 Hz, 1H), 6.34(d, J=8.4 Hz, 1H), 6.34(t, J=8.4





Hz, 1H), 6.30(s, 1H), 4.89(bs, 2H), 4.72(s, 2H).




309

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.60(s, 1H), 7.94

33




(d, J 7.9 Hz, 2H), 7.46(d, J 7.9 Hz, 2H), 7.35(d, J=





8.4 Hz, 2H), 7.15(d, J=7.9 Hz, 1H), 7.11(d, J=6.2 Hz,





1H), 6.97(t, J=7.0 Hz, 1H), 6.77(d, J=7.5 Hz, 1H), 6.66





(d, J=8.4 Hz, 2H), 6.60(t, J=7.9 Hz, 1H), 4.88(bs, 2H),





4.72(d, J=6.2 Hz, 2H).




310

1H NMR(300 MHz,(D3OD) δ(ppm): 8.67(d, J=1.8 Hz,

33




1H), 8.47(dd, J=1.3, 4.4 Hz, 1H), 8.08(s, 1H), 8.03(d, J=





7.9 Hz, 2H), 7.92(d, J=8.4 Hz, 1H), 7.87(d, J=7.9





Hz, 2H), 7.58(d, J=8.4 Hz, 1H), 7.36-7.30(m, 3H); 7.20-





7.15(m, 1H); 7.08(dt, J=1.3, 8.4 Hz, 1H), 6.94(dd, J=





1.3, 7.9 Hz, 1H), 6.77(d, J=2.2 Hz, 1H), 6.74(d, J=2.2





Hz, 1H), 6.65(d, J=1.8 Hz, 1H), 4.55(s, 2H); 4.20(bs,





2H); 3.36(s, 2H).




311

1H NMR(300 MHz,CD3OD) δ(ppm): 8.60(s, 1H), 8.36

33




(d, J=4.4 Hz, 1H), 7.89(d, J=7.9 Hz, 2H), 7.87(m, 1H);





7.47(d, J=7.9 Hz, 2H), 7.30(t, J=6.6 Hz, 1H), 7.20-





7.15(m, 2H); 7.04(t, J=7.5 Hz, 1H), 6.87(d, J=7.9 Hz,





1H), 6.73(t, J=7.5 Hz, 1H), 6.66(s, 1H); 6.61(d, J=8.8





Hz, 1H), 4.87(s, 2H); 4.45(s, 2H); 4.37(s, 2H); 3.35(s,





2H).




312

1H NMR(300 MHz, CDCl3) δ(ppm): 8.21(s, 1H); 7.90(d, J=

33




8.4 Hz, 2H); 7.54(m, 1H); 7.50(d, J=8.4 Hz, 2H); 7.41-





7.34 m, 2H); 6.87(d, J=8.4 Hz, 1H); 7.77(d, J=8.4 Hz,





1H); 6.35(d, J=2.2 Hz, 1H); 6.20(dd, J=2.2, 8.8 Hz,





1H); 4.43(s, 2H); 4.29(s, 2H); 3.84(s, 6H).




313

1H NMR(300 MHz, CDCl3) δ(ppm): 8.21(s, 1H); 7.84(d, J=

33




7.9 Hz, 2H); 7.45(d, J=7.9 Hz, 2H); 7.20(dd, J=2.6,





8.4 Hz, 1H); 6.76(d, J=8.8 Hz, 1H); 6.57(dd, J=3.9, 7.9





Hz, 1H); 6.32(d, J=2.6 Hz, 1H); 6.16(dd, J=2.6, 8.4 Hz,





1H); 4.40(s, 2H); 3.82(s, 9H).




314

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.60(s, 1H); 7.93

33




(d, J=7.9 Hz, 2H); 7.47(d, J=7.9 Hz, 2H); 7.16(d, J=





7.5 Hz, 1H); 6.97(m, 2H); 6.78(d, J=7.5 Hz, 1H); 6.59(t,





J=7.5 Hz, 1H); 6.35(t, J=5.7 Hz, 1H); 6.27(m, 2H);





4.88(bs, 2H); 4.34(d, J=6.2 Hz, 2H).




315

1H NMR(300 MHz, DMSO-d6) δ(ppm): 7.92(d, J=7.9

33




Hz, 2H), 7.66(d, J=4.4 Hz, 1H), 7.49(d, J=7.9 Hz, 2H),





7.26(d, J=8.4 Hz, 1H), 7.15(d, J=7.9 Hz, 1H), 6.96(d,





J=8.4 Hz, 1H), 6.59(t, J=7.9 Hz, 1H), 6.53(s, 1H),);





6.40(dd, J=1.3, 8.4 Hz, 1H); 6.28(t, J=5.7 Hz, 1H),





4.88(bs, 2H), 4.36(d, J=5.7 Hz, 2H), 2.85(d, J=4.4 Hz,





3H).




316

1NMR(300 MHz, CDCl3) δ(ppm): 8.09(s, 1H); 7.88(d, J=

33




7.5 Hz, 2H); 7.48(d, J=7.5 Hz, 2H); 6.97(d, J=7.9 Hz,





1H); 6.73(d, J 8.4 Hz, 2H); 6.64(d, J 7.9 Hz, 1H); 6.29





(s, 1H); 6.14(d, J=8.4 Hz, 1H); 4.39(s, 2H); 3.81(s, 3H);





3.80(s, 3H); 3.70(bs, 5H).




317

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.61(s, 1H); 7.95

33




(d, J=7.9 Hz, 2H); 7.73(t, J=5.7 Hz, 1H); 7.52(d, J=





8.4 Hz, 1H); 7.47(d, J=7.9 Hz, 2H); 7.15(d, J=7.9 Hz,





1H); 6.97(d, J=7.5 Hz, 1H); 6.92(bs, 1H); 6.86(d, J=





8.4 Hz, 1H); 6.77(d, J=7.9 Hz, 1H); 6.59(t, J=7.5 Hz,





1H); 4.89(bs, 2H); 4.54(d, J=5.7 Hz, 2H); 3.65(t, J=





5.3 Hz, 2H); 3.47(t, J=5.3 Hz, 2H); 3.20(s, 3H);




318

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.59(s, 1H); 7.92

33




(d, J=8.3 Hz, 2H); 7.46(d, J=8.3 Hz, 2H); 7.15(d, J=





7.5 Hz, 1H); 6.96(t, J=7.0 Hz, 1H); 6.78-6.71(m, 3H);





6.62-6.54(m, 2H); 6.26(t, J=7.5 Hz, 1H); 4.87(S, 2H);





4.36-4.32(m, 4H); 4.23-4.19(m, 2H); 2.98(s, 3H).




319

1H NMR(300 MHz,(D3OD) δ(ppm): 8.67(d, J=2.2 Hz,

33




1H), 7.97(dd, J=2.5, 8.9 Hz, 1H), 7.58(m, 1H); 7.51(m,





1H); 7.15(dd, J=1.1, 7.7 Hz, 1H), 7.08(m, 2H); 6.89(dd,





J=1.4, 8.0 Hz, 1H), 6.76(dt, J=4.4, 7.7 Hz, 1H), 6.67





(d, J=7.7 Hz, 2H), 6.60(m, 2H); 4.87(bs, 2H); 3.60(t, J=





6.3 Hz, 2H), 3.35(t, J=6.3 Hz, 2H).




320

1H NMR(300 MHz, DMSO-d6) δ(ppm): 9.59(s, 1H); 7.92

33




(d, J=7.9 Hz, 2H); 7.47(d, J=7.9 Hz, 2H); 7.22(d, J=





8.8 Hz, 1H); 7.16-7.09(m, 3H); 6.96(t, J=7.5 Hz, 1H);





6.76(d, J=7.9 Hz, 1H); 6.65-6.56(m, 2H); 4.87(s, 2H);





4.42(d, J=5.3 Hz, 2H); 3.44(s, 3H); 3.26(s, 3H).




321

1H NMR(300 MHz, DMSO-d6) 3(ppm): 9.60(s, 1H); 8.19

33




(d, J=8.4 Hz, 1H); 8.05(d, J=8.4 Hz, 1H); 7.95(d, J=





7.9 Hz, 2H); 7.76(t, J=7.0 Hz, 1H); 7.65(t, J=7.9 Hz,





1H); 7.57(d, J=7.9 Hz, 2H); 7.54(d, J=8.8 Hz, 1H);





7.41(d, J=1.3 Hz, 1H); 7.22(dd, J=1.8, 8.8 Hz, 1H);





7.14(d, J=7.9 Hz, 1H); 6.95(t, J=7.5 Hz, 1H); 6.76(t, J=





7.9 Hz, 1H); 6.57(t, J=7.5 Hz, 1H); 6.51(bs, 1H); 4.86





(bs, 2H); 4.54(d, J=4.8 Hz, 2H); 3.85(s, 3H).




322
LRMS calc: 335.40, found: 336.1(MH)+
14, 3



323
LRMS calc: 335.42, found: 336.1(MH)+
14, 3



324
LRMS calc: 453.6, found: 454.2(MH)+
21



325
LRMS calc: 414.52, found: 415(MH)+
21



326
LRMS calc: 403.3, found: 404(MH)+
21



327
LRMS calc: 483.45, found: 484.1(MH)+
21
















TABLE 4c







Characterization of Additional Compounds












Ex.
Cpd
Compound
Name
Characterization
Schm





426
571


embedded image


N-(2-Hydroxy- phenyl)-4-[(3, 4,5-trimethoxy- phenylamino)- methyl]- benzamide

1H NMR (DMSO-d6): δ 9.57 (brs, 1H), 7.98 (d, J=8.3 Hz, 2H), 7.75 (d, J=7.5 Hz, 1H), 7.57 (d, J=8.3 Hz, 2H), 7.07 (t, J=8.3 Hz, 1H), 6.95 (d, J=7.0 Hz, 1H), 6.85 (t, J=7.9 Hz, 1H), 6.21 (t, J=6.1 Hz, 1H), 5.95 (s, 2H), 4.38 (d, J=5.7 Hz, 2H), 3.70 (s, 6H), 3.56 (s, 3H).

33, 55





427
572


embedded image


N-(2-hydroxy- phenyl)-4-[(3, 4-Dimethoxy- phenylamino)- methyl]- benzamide

1H NMR (300 MHz, DMSO-D6) δ (ppm): 9.9 (bs, 1H), 9.53 (s, 1H), 7.97 (d, J=7.9 Hz, 2H), 7.73 (d, J=7.5 Hz, 1H), 7.55 (d, J=7.9 Hz, 2H), 7.08 (dd, J=7.5, 7.5 Hz 1H), 6.96 (d, J= 7.9, Hz, 1H), 6.88 (dd, J=7.5, 7.5 Hz, 1H), 6.72 (d, J=8.8 Hz,1H), 6.38 (s, 1H), 6.05 (m, 2H), 4.36 (d, J=5.7 Hz, 2H), 3.72 (s, 3H), 3.65 (s, 3H).

33, 55





428
573


embedded image


N-(4-Amino- thiophen-3-yl)- 4-{[6-(2- morpholin-4- yl-ethoxy)- benzothiazol- 2-ylamino]- methyl}- benzamide

1H NMR: (Acetone-d6) δ (ppm): 9.09 (bs, 1H), 8.03 (d, J=7.9 Hz, 2H), 7.96 (d, J=7.5 Hz, 1H), 7.65 (d, J=7.9 Hz, 2H), 7.61 (d, J=3.5 Hz, 1H), 7.51 (bs, 2H), 7.41 (d, J=8.8 Hz, 1H), 7.36 (s, 1H), 6.95 (d, J=6.2 Hz, 1H), 6.35 (d, J=3.5 Hz, 1H), 4.85 (s, 2H), 4.20 (t, J=5.7 Hz, 2H), 3.69) t, J=4.4 Hz, 4H), 2.87-2.81 (m, 2H), 2.62-2.57 (m, 4H).

33, 60





429
574


embedded image


N-(4-Amino- thiophen-3-yl)- 4-[(3,4,5- trimethoxy- phenylamino)- methyl]- benzamide

1H NMR (DMSO-d6): δ 9.66 (brs, 1H), 7.94 (d, J=7.5 Hz, 2H), 7.56 (d, J=7.9 Hz, 2H), 6.22- 6.16 (m, 1H), 5.94 (s, 2H), 4.91 (s, 2H), 4.38 (d, J=5.7 Hz, 4H), 3.70 (s, 6H), 3.55 (s, 3H).

33, 60





430
575


embedded image


N-(4-Amino- thiophen-3-yl)- 4-(5-methoxy- 1H- benzoimidazol- 2-ylsulfanyl- methyl)- benzamide
(DMSO) δ (ppm): 12.43 (bs, 1H), 9.59 (bs, 1H), 7.84 (d, J=8.1 Hz, 2H), 7.56 (d, J=8.1 Hz, 2H), 7.48 (d, J=3.7 Hz, 1H), 7.32 (bs, 1H, SCH), 6.96 (bs, 1H, SCH), 6.74 (dd, J=8.8, 2.2 Hz, 1H), 6.11 (d, J=3.7 Hz, 1H), 4.84 (s, 2H), 4.59 (s, 2H), 3.76 (s,3H).LRMS: 410.1 (calc) (M); 411.2 (found)(M+H)+
36, 60





431
576


embedded image


2-[4-(4- Methoxy- benzylamino)- phenyl]- cyclopropane- carboxylic acid (2-amino- phenyl)-amide

1H-NMR (DMSO-d6), δ (ppm): 9.22 (bs, 1H), 8.19 (bs, 1H), 7.63 (d, J=7.1 Hz, 1H), 7.53 (t, J=4.2 Hz, 1H), 7.41 (dd, J=9.2, 1.5 Hz, 1H), 7.25 (d, J=8.3 Hz, 2H), 7.06 (d, J=7.1 Hz, 1H), 6.85 (d, J=8.3 Hz, 2H), 6.62-6.59 (m, 3H), 4.51 (d, J=4.2 Hz, 2H), 3.78 (s, 3H), 2.77 (d, J=3.1 Hz, 1H), 2.45 (d, J=1.1 Hz, 1H), 1.22 (m, 1H), 1.05 (m, 1H).







432
577


embedded image


N-(2-Amino- phenyl)-4-(3- cyano-6- methyl- pyridin-2- yloxymethyl)- benzamide

1H NMR (DMSO-d6) δ (ppm): 9.72 (brs, 1H), 8.23 (d, J=7.5 Hz, 1H), 8.06 (d, J=7.9 Hz, 2H), 7.67 (d, J=7.9 Hz, 2H), 7.23 (d, J=7.9 Hz, 1H), 7.15 (d, J=7.9 Hz, 1H), 7.03 (t, J=7.5 Hz, 1H), 6.84 (d, J=7.9 Hz, 1H), 6.65 (t, J=7.5 hz, 1H), 5.62 (brs, 2H), 4.97 (brs, 2H)

11





433
578


embedded image


N-(2-Amino- phenyl)-4-{[4- (6-methoxy- pyridin-3-yl)- pyrimidin-2- ylamino]- methyl}- benzamide

1H NMR (300 MHz, DMSO-D6) δ (ppm): 9.63 (s, 1H), 8.95 (d, J= 2.2 Hz, 1H), 8.40 (d, J= 5.3 Hz, 2H), 7.96 (m, 3H), 7.54 (d, J=7.5 Hz, 2H), 7.22 (dd, J=5.3, 7.8 Hz, 2H), 7.01 (m, 2H), 6.83 (d, J=7.5 Hz, 1H), 6.64 (dd, J=7.0, 7.9 Hz, 1H), 4.92 (s, 2H), 4.70 (d, J=6.2 Hz, 2H), 3.98 (s, 3H).

15, 33





434
579


embedded image


2-Acetylamino- 5-[4-(2-amino- phenyl- carbamoyl)- benzyl]- thiophene-3- carboxamide

1H NMR: (DMSO) δ (ppm): 11.98 (bs, 1H), 9.61 (bs, 1H), 7.93 (d, J=8.1 Hz, 2H), 7.81 (s, 1H), 7.45 (s, 1H), 7.38 (d, J=8.1 Hz, 1H), 7.19 (s, 1H), 7.16 (d, J=7.3 Hz, 1H), 6.97 (dd, J= 7.0, 7.0 Hz, 1H), 6.77 (d, J=7.3 Hz, 1H), 6.59 (dd, J=7.3, 7.3 Hz, 1H), 4.88 (bs, 2H), 4.10 (s, 2H), 2.15 (s, 3H).

49





435
580


embedded image


N-(2-Amino- phenyl)-4-[(3- methyl-2- methylamino- 3H- benzoimidazol- 5-ylamino)- methyl[- benzamide

1H NMR (DMSO) δ (ppm): 9.56 (s, 1H), 7.90 (d, J=7.9 Hz, 2H), 7.49 (d, J=7.9 Hz, 2H), 7.15 (d, J=7.5 Hz, 1H), 6.95 (t, J=7.5 Hz, 1H), 6.78 (dd, J=13.2, 8.35 Hz, 2H), 6.58 (t, J=7.5 Hz, 1H), 6.39 (s, 1H), 6.31 (m, 2H), 5.75 (t, J= 6.15 Hz, 1H), 4.87 (s, 2H), 4.32 (d, J=5.7 Hz, 2H), 3.34 (s, 3H), 2.82 (d, J=8.5 Hz, 3H).

61





438
591


embedded image


5-(5-Methoxy- 1H- benzoimidazol- 2-ylsulfanyl- methyl)- benzofuran-2- carboxylic acid (2-amino- phenyl)amide

1H NMR (DMSO) δ (ppm): 9.84 (s, 1H), 7.84 (s, 1H), 7.67 (s, 1H), 7.63 (d, J=8.5 Hz, 1H), 7.55 (d, J=9.0 Hz, 1H), 7.17 (d, J=8.0 Hz, 1H), 6.97 (t, J=7.5 Hz, 1H), 6.78 (d, J=8.0 Hz, 1H), 6.78-6.74 (m, 3H), 6.59 (t, J=7.5 Hz, 1H), 5.71 (s, 2H), 4.94 (s, 1H), 4.65 (s, 2H), 3.76 (s, 3H).

64





439
592


embedded image


5-(3,4,5- Trimethoxy- benzylamino)- benzofuran-2- carboxylic acid (2-amino- phenyl)-amide

1H NMR (DMSO) δ (ppm): 9.69 (s, 1H), 7.47 (s, 1H), 7.41 (d, J=8.8 Hz, 1H), 7.19 (d, J=6.6 Hz, 1H), 6.97 (dd, J= 7.5, 7.5 Hz, 1H), 6.89 (dd, J=8.8, 2.2 Hz, 1H), 6.79-6.78 (m, 2H), 6.74 (s, 2H), 6.60 (dd, J= 7.5, 7.5 Hz 1H), 6.14 (t, J=5.7 Hz, 1H), 4.92 (s, 2H), 4.21 (d, J=5.7 Hz, 1H), 3.75 (s, 6H), 3.31 (s, 3H).

64











embedded image


Example 122
Step 1: {2-[(3′-Formyl-biphenyl-4-carbonyl)-amino]-phenyl}-carbamic acid tert-butyl ester (185)

Following the procedure described in Example 15, step 1, but substituting 184 for 140, the title compound 185 was obtained in 74% yield. 1H NMR (CDCl3): δ10.10 (s, 1H), 9.41 (s, 1H), 8.13 (m, 1H), 8.07 (d, J=8.4 Hz, 2H), 7.89 (m, 2H), 7.77 (m, 1H), 7.70 (d, J=8.4 Hz, 2H), 7.64 (m, 1H), 7.27-7.09 (m, 3H), 7.03 (s, 1H), 1.52 (s, 9H).


Step 2: N-(2-Aminophenyl)-4-[3-(indan-2-ylaminomethyl)phenyl)]-benzamide (186)

To a stirred solution of biphenyl aldehyde (104 mg, 0.25 mmol) and 2-aminoindane (33.3 mg, 0.25 mmol) in dichloroethane (1 mL) was added sodium triacetoxyborohydride (80 mg, 0.375 mmol) followed by a glacial acetic acid (15 ul, 0.25 mmol), and then the mixture was stirred at room temperature for 3 h. After a removal of the volatiles, the residue was partitioned between ethyl acetate and 10% aqueous sodium bicarbonate solution. The combined organic layers were washed with water, dried and concentrated. Purification by flash chromatography (10% methanol in chloroform) gave the desired Boc-monoprotected product (112 mg, 84% yield) as a white solid. 1H NMR (CDCl3): 9.21 (s, 1H), 8.03 (d, J=8.7 Hz, 2H), 7.83 (m, 1H), 7.69 (d, J=8.7 Hz, 2H), 7.65 (s, 1H), 7.54-7.38 (m, 3H), 7.28 (m, 7H), 6.82 (s, 1H), 3.95 (s, 2H), 3.74 (m, 1H), 3.22 (dd, J=15.6, 6.9 Hz, 2H), 2.89 (dd, J=15.6, 6.6 Hz, 2H), 1.53 (s, 9H). Following the procedure described in Example 42, step 3, but substituting the previous compound for 46, the title compound 186 was obtained in 98% yield. 1H NMR (20% CD3OD in CDCl3): δ 7.95 (d, J=8.4 Hz, 2H), 7.65 (d, J=8.4 Hz, 2H), 7.57 (m, 1H), 7.54-6.79 (m, 11H), 3.95 (s, 2H), 3.66 (m, 1H), 3.16 (dd, J=15.6, 6.9 Hz, 2H), 2.81 (dd, J=15.6, 6.6 Hz, 2H).


Examples 123-126
Examples 123 to 126 (compounds 187-190) were prepared using the same procedure as described for compound 186 in Example 122 (scheme 21)



embedded image


Example 127
Step 1: {2-[4-(1-Amino-cyclohexylethynyl)-benzoylamino]-phenyl}-carbamic acid tert-butyl ester (191)

A mixture of iodide 184 (438 mg, 1.0 mmol), Pd(PPh3)2Cl2 (35 mg, 0.05 mmol), triphenylphosphine (7.6 mg, 0.025 mmol), and 1-ethynylcyclohexylamine (185 mg, 1.5 mmol) was stirred at room temperature in THF (4 mL) containing triethylamine (0.56 mL, 4.0 mmol) for 20 min. To this CuI (3.8 mg, 0.02 mmol) was added and stirring continued for 2 h. The reaction mixture was then diluted with ethyl acetate (30 mL), washed with water, and the organic layer was dried and concentrated. Purification by flash chromatography (10% methanol in chloroform) gave the desired product 191 (420 mg, 97% yield). 1H NMR (CDCl3): δ 9.36 (s, 1H), 7.94 (d, J=8.4 Hz, 2H), 7.77 (d, J=7.5 Hz, 1H), 7.47 (d, J=8.4 Hz, 2H), 7.25-6.85 (m, 3H), 2.10-1.30 (m, 10H), 1.51 (s, 9H).


Step 2: N-(2-Aminophenyl)-4-[1-(4-methoxy-benzylamino)-cyclohexylethynyl]-benzamide (192)

Following the procedure described in Example 122, step 2, but substituting p-anisaldehyde for 2-aminoindane, the title compound 192 was obtained in 74% yield. 1H NMR (CDCl3): δ 8.44 (s, 1H), 7.82 (d, J=8.1 Hz, 2H), 7.47 (d, J=8.1 Hz, 2H), 7.31 (d, J=8.4 Hz, 2H), 7.23 (m, 1H), 7.05 (m, 1H), 6.84 (d, J=8.7 Hz, 2H), 6.78 (m, 2H), 3.97 (s, 2H), 3.76 (s, 2H), 2.10-1.30 (m, 10H).




embedded image


Example 133
Step 1: N-[2-(t-Butyloxycarbonyl)-amino-phenyl]-4-(trimethylsilylethynyl)benzamide (197)

To a stirred solution of 184 (5.00 g, 11.41 mmol) in anhydrous THF (100 ml) under nitrogen at 0° C. were added Pd(PPh3)2Cl2 (240 mg, 0.34 mmol), CuI (130 mg, 0.69 mmol), and trimethylsilylacetylene (2.10 ml, 14.84 mmol), respectively. Then, anhydrous Et3N (6.36 ml, 45.66 mmol) was added dropwise. The temperature was slowly warmed up to room temperature over 4 h. The reaction mixture was poured into a saturated aqueous solution of NH4Cl, and diluted with ethyl acetate. After separation, the organic layer was successively washed with sat. NH4Cl, H2O and brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (AcOEt/hexane: 20/80→50/50) to afford the title compound 197 (4.42 g, 10.83 mmol, 94% yield) as a yellow powder. 1H NMR (300 MHz, CDCl3) δ (ppm): 9.26 (bs, 1H), AB system (δA=7.91, δB=7.55, J=8.3 Hz, 4H), 7.85 (d, J=7.9 Hz, 1H), 7.32-7.13 (m, 3H), 6.70 (bs, 1H), 1.53 (s, 9H), 0.28 (s, 9H).


Step 2: N-(2-Amino-phenyl)-4-(trimethylsilylethynyl)benzamide (198)

Following the procedure described in Example 42, step 3, but substituting the previous compound for 46, the title compound 198 (70 mg, 0.23 mmol) was obtained as a white solid with a major fraction composed of a mixture of 198 and 199. 1H NMR (300 MHz, acetone-d6) δ (ppm): 9.20 (bs, 1H), AB system (δA=8.07, δB=7.62, J=8.2 Hz, 4H), 7.32 (d, J=7.6 Hz, 1H), 7.05 (td, J=7.6, 1.2 Hz, 1H), 6.90 (d, J=7.6 Hz, 1H), 6.72 (t, J=7.3 Hz, 1H), 4.66 (bs, 2H), 0.30 (s, 9H).


Step 3: N-(2-Amino-phenyl)-4-ethynylbenzamide (199)

To a stirred solution at −20° C. of a mixture of 198 and 199 in anhydrous THF (15 ml) under nitrogen was added a solution of TBAF (1 ml, 1.0 M in THF). The reaction mixture was allowed to warm up to room temperature over 2 h and stirred at room temperature for 18 h. Then, the reaction mixture was poured into a saturated aqueous solution of NH4Cl and diluted with ethyl acetate. After separation, the organic layer was successively washed with sat. NH4Cl, H2O and brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (AcOEt/hexane: 30/70) to afford the title compound 199 (215 mg, 0.91 mmol, 46% yield over 2 steps) as a pale yellow powder. 1H NMR (300 MHz acetone-d6) (ppm): 9.19 (bs, 1H), AB system (δA=8.08, δB==7.66, J=8.5 Hz, 4H), 7.33 (d, J=7.6 Hz, 1H), 7.05 (t, J=7.3 Hz, 1H), 6.91 (d, J=7.6 Hz, 1H), 6.72 (t, J=7.6 Hz, 1H), 4.67 (bs, 2H), 3.88 (s, 1H).


Example 134
Step 1: N-[2-(t-Butyloxycarbonyl)-amino-phenyl]-4-ethynylbenzamide (200)

To a stirred solution at −20° C. of a mixture of 199 (3.48 g, 8.53 mmol) in anhydrous THF (50 ml) under nitrogen was slowly added a solution of TBAF (9.4 ml, 9.38 mmol, 1.0 M in THF). The reaction mixture was allowed to warm up to room temperature over 2 h and stirred at room temperature for 4 h. Then, the reaction mixture was concentrated, diluted with ethyl acetate, and successively washed with a saturated aqueous solution of NH4Cl, H2O and brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (AcOEt/hexane: 25/75→30/70) to afford the title compound 200 (2.53 g, 7.53 mmol, 88% yield) as a pale yellow foam. 1H NMR (300 MHz, CDCl3; δ (ppm): 9.31 (bs, 1H), AB system (δA=7.94, δB=7.59, J=8.5 Hz, 4H), 7.83 (d, J=7.6 Hz, 1H), 7.30-7.10 (m, 3H), 6.75 (bs, 1H), 3.23 (s, 1H), 1.53 (s, 9H).


Step 2: N-(2-amino-phenyl)-4-[3-(4-chlorophenyl)-3-morpholin-4-yl-1-propyn-1-yl]-benzamide (201)

To a stirred solution at room temperature of 200 (200 mg, 0.60 mmol) in anhydrous 1,4-dioxane (5 ml) under nitrogen were added 4-chlorobenzaldehyde (100 mg, 0.71 mmol), morpholine (60 μl, 0.68 mmol), and CuI (6 mg, 0.03 mmol), respectively. The reaction mixture was bubbled with nitrogen for min and warmed up to 105° C. After 18 h, the reaction mixture was allowed to cool to room temperature, diluted with ethyl acetate, and successively washed with a saturated aqueous solution of NH4Cl, H2O and brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (AcOEt/hexane: 40/60) to afford the desired compound (193 mg, 0.35 mmol, 59% yield) as a pale yellow foam. 1H NMR (300 MHz, CDCl3) δ (ppm): 9.40 (bs, 1H), AB system (δA=7.96, δB=7.36, J=8.5 Hz, 4H), 7.79 (d, J=7.9 Hz, 1H), 7.59 (d, J=8.4 Hz, 4H), 7.25-7.10 (m, 3H), 6.91 (s, 1H), 4.80 (s, 1H), 3.82-3.68 (m, 4H), 2.69-2.58 (m, 4H), 1.53 (s, 9H).


Following the procedure described in Example 42, step 3, but substituting the previous compound for 46, the title compound 201 was obtained in 67% yield. 1H NMR (300 MHz, DMSO-d6) δ (ppm): 9.80 (bs, 1H), AB system (δA=8.06, δB=7.71, J=8.1 Hz, 4H), AB system (δA=7.65, δB=7.52, J=8.3 Hz, 4H), 7.20 (d, J=7.9 Hz, 1H), 7.02 (t, J=7.3 Hz, 1H), 6.82 (d, J=7.0 Hz, 1H), 6.64 (t, J=7.5 Hz, 1H), 5.10 (s, 1H), 4.97 (bs, 2H), 3.72-3.58 (m, 4H), 2.67-2.46 (m, 4H).




embedded image


Example 135
Step 1: Methyl 4-(4-chloro-6-(2-indanyl-amino)-[1,3,5]triazin-2-yl-amino)-benzoic ester (203)

To a stirred solution at room temperature of 202 (2.00 g, 7.11 mmol) in anhydrous THF (50 ml) under nitrogen were added i-Pr2NEt (1.86 ml, 10.66 mmol) and methyl 4-aminobenzoate (1.29 g, 8.53 mmol) or ArNH2 (1.2 equiv), respectively. The reaction mixture was then refluxed for 24 h. After cooling, the reaction mixture was poured into a saturated aqueous solution of NH4Cl, and diluted with AcOEt. After separation, the organic layer was successively washed with sat. NH4Cl, H2O and brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (AcOEt/CH2Cl2: 2/98→5/95) to afford the title compound 203 (1.70 g, 4.30 mmol, 60% yield) as a beige powder. 1H NMR (300 MHz, CDCl3) δ (ppm): mixture of rotamers, 2 AB system (δA=8.03, δA′=8.00, δB=7.70, δB′=7.61, JAB=JA′B′=8.8 Hz, 4H), 7.43 and 7.31 (2 bs, 1H), 7.29-7.19 (m, 4H), 5.84 and 5.78 (2 d, J=7.2 and 7.7 Hz, 1H), 4.98-4.77 (2 m, 1H), 3.91 and 3.90 (2 s, 3H), 3.41 (dd, J=16.1, 7.0 Hz, 2H), 2.94 and 2.89 (2 dd, J=15.9, 4.9 Hz, 2H).


Step 2: 4-[4-amino-6-(2-indanyl-amino)-[1,3,5]-triazin-2-ylamino]-N-(2-amino-phenyl)-benzamide (204)

The title compound 204 was obtained from 203 in 3 steps following the same procedure as Example 1, Pathway B steps 3-5. 1H NMR (300 MHz, acetone-d6) δ (ppm): mixture of rotamers, 8.98 (m, 1H), 8.49 and 8.28 (2m, 1H), 8.10-7.92 (m, 4H), 7.35-7.14 (m, 5H), 7.03 (td, J=7.6, 1.5 Hz, 1H), 6.90 (dd, J=6.6, 1.3 Hz, 1H), 6.71 (td, J=7.6, 1.3 Hz, 1H), 6.57 and 6.42 (2m, 1H), 6.04 and 5.86 (2m, 2H), 4.92-4.76 (m, 1H), 4.70-4.58 (m, 1H), 3.44-3.26 (m, 2H), 3.08-2.92 (m, 2H). HRMS (calc.): 452.2073, (found): 452.2062.




embedded image


Example 136
Step 1: Methyl 4-[(4-chloro-6-(2-indanyl-amino)-[1,3,5]triazin-2-yloxy)-methyl]-benzoic ester (206)

To a stirred solution at 0° C. of 205 (2.00 g, 7.11 mmol) in anhydrous THF (50 ml) under nitrogen were added i-Pr2NEt (1.86 ml, 10.66 mmol) and methyl 4-(hydroxymethyl)benzoate (1.30 g, 7.82 mmol). After few minutes, NaH (95%, 186 mg, 7.11 mmol) was added portionwise. Then, the reaction mixture was allowed to warm to room temperature. After 24 h, the reaction mixture was poured into a saturated aqueous solution of NH4Cl, and diluted with AcOEt. After separation, the organic layer was successively washed with sat. NH4Cl, H2O and brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (AcOEt/CH2Cl2: 2/98) to afford the title compound 206 (2.00 g, 4.88 mmol, 69% yield) as a colorless sticky foam. 1H NMR (300 MHz, CDCl3) δ (ppm): mixture of rotamers, 2 AB system (δA=8.06, δA′=8.03, δB=7.52, δB′=7.46, JAB=JA′B′=8.5 Hz, 4H), 7.26-7.17 (m, 4H), 5.94 and 5.85 (2 bd, J=7.8 Hz, 1H), 5.48 and 5.39 (2 s, 2H), 4.92-4.76 (2 m, 1H), 3.94 and 3.92 (2 s, 3H), 3.39 and 3.33 (2 dd, J=16.0, 7.0 Hz, 2H), 2.89 and 2.84 (2 dd, J=16.0, 4.9 Hz, 2H).


Step 2: 4-{[4-amino-6-(2-indanyl-amino)-[1,3,5]-triazin-2-yloxy]-methyl}-N-(2-amino-phenyl)-benzamide (207)

The title compound 207 was obtained from 206 in 3 steps following the same procedure as Example 1, Pathway B steps 3-5. 1H NMR (300 MHz, acetone-d6+DMSO-d6) δ (ppm): 9.49 (m, 1H), 8.12-8.03 (m, 2H), 7.60 (t, J=7.7 Hz, 2H), 7.35 (d, J=7.1 Hz, 1H), 7.28-7.13 (m, 4H), 7.07-6.94 (m, 2H), 6.90 (dd, J=7.3, 1.4 Hz, 1H), 6.70 (td, J=7.3, 1.1 Hz, 1H), 6.44 (bs, 1H), 6.25 (bs, 1H), 5.47 and 5.41 (2s, 2H), 4.87-4.68 (m, 3H), 3.35-3.20 (m, 2H), 3.02-2.88 (m, 2H). HRMS (calc.): 467.2070, (found): 467.2063.




embedded image


Example 210
Methyl 4-[(4-chloro-6-phenethyl-amino-[1,3,5]triazin-2-yl-amino)-methyl]-benzoic ester (208)

The title compound 208 was obtained from 2 following the same procedure as in Example 1, pathway B steps 2 (R1R2NH=phenethylamine).


Step 1: Methyl 4-[(4-phenethylamino-[1,3,5]triazin-2-yl-amino)-methyl]-benzoic ester (209)

To a degazed solution of 208 (300 mg, 0.75 mmol) in MeOH (35 mL) was added 10% Pd/C (24 mg, 0.023 mmol). The reaction mixture was stirred under a 1 atm pressure of H2 at room temperature for 20 h then it was purged with N2. The palladium was removed by filtration through celite and the reaction mixture was concentrated. The crude residue was purified by flash chromatography on silica gel (MeOH/CH2Cl2: 4/96) to afford the title compound 209 (135 mg, 0.37 mmol, 50% yield). 1H NMR (300 MHz, CDCl3) δ (ppm): 8.08 (d, J=8.1 Hz, 2H), 7.46 (d, J=8.1 Hz, 2H), 7.50-7.15 (m, 6H), 4.85-4.65 (m, 2H), 3.98 (s, 3H), 3.82-3.62 (m, 2H), 3.05-2.85 (m, 2H).


Step 2: N-(2-Amino-phenyl)-4-[(4-phenethylamino-[1,3,5]triazin-2-yl-amino)-methyl]-benzamide (210)

The title compound 210 was obtained from 209 in 2 steps following the same procedure as in Example 1, steps 4 and 5. 1H NMR: (300 MHz, acetone-d6) δ (ppm): 9.03 (s, 1H), 8.17-7.87 (m, 3H), 7.49 (dd, J=19.2, 8.2 Hz, 2H), 7.32-7.03 (m, 6H), 6.99 (t, J=7.6 Hz, 1H), 6.86 (d, J=8.0 Hz, 1H), 6.67 (t, J=7.4 Hz, 1H), 6.60-6.30 (m, 2H), 4.72 (t, J=6.3 Hz, 1H), 4.65-4.56 (m, 1H), 3.67-3.51 (m, 2H), 2.95-2.80 (m, 2H).




embedded image


Example 138
Step 1: Methyl 4-[(4,6-dimethoxy-[1,3,5]triazin-2-yl-amino)-methyl]-benzoic ester (211)

In a 75 ml sealed flask, a stirred suspension of 2-chloro-4,6-dimethoxy-1,3,5-triazine (540 mg, 3.08 mmol), methyl 4-(aminomethyl)benzoate.HCl 2 (689 mg, 3.42 mmol), i-Pr2NEt (1.49 ml, 8.54 mmol) in anhydrous THF (30 ml) was warmed at 80° C. for 5 h. Then, the reaction mixture was allowed to cool to room temperature, poured into a saturated aqueous solution of NH4Cl, and diluted with AcOEt. After separation, the organic layer was successively washed with sat. NH4Cl, H2O and brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (AcOEt/CH2Cl2: 10/90→30/70) to afford the title compound 211 (870 mg, 2.86 mmol, 93% yield) as a white solid. 1H NMR (300 MHz, CDCl2) δ (ppm): AB system (δA=8.01, δB=7.39, JAB=8.5 Hz, 4H), 6.08-6.00 (m, 1H), 4.73 (d, J=6.3 Hz, 2H), 3.95 (s, 6H), 3.92 (s, 3H).


The title compound 212 was obtained from 211 in 2 steps following the same procedure as Example 1, steps 4 and 5. 1H NMR (300 MHz, acetone-d6+Σ DMSO-d6) δ (ppm): 9.58 (bs, 1H), 8.27 (t, J=6.3 Hz, 1H), AB system (δA=8.04, δB=7.53, JAB=8.4 Hz, 4H), 7.31 (d, J=6.9 Hz, 1H), 7.02 (td, J=7.6, 1.6 Hz, 1H), 6.88 (dd, J=7.9, 1.4 Hz, 1H), 6.68 (td, J=7.6, 1.4 Hz, 1H), 4.86-4.78 (m, 2H), 4.69 (d, J=6.3 Hz, 2H), 3.90 and 3.89 (2s, 6H). HRMS (calc.): 380.1597, (found): 380.1601.


Step 2: N-(2-Amino-phenyl)-4-[(4,6-dimethoxy-[1,3,5]triazin-2-yl-amino)-methyl]-benzamide (212)



embedded image


Example 139
Step 1: 4-[(6-(2-Indanyl-amino)-4-methoxy-[1,3,5]triazin-2-yl-amino)-methyl]-benzoic acid (213)

To a stirred solution at room temperature of 5 (300 mg, 0.73 mmol) in a mixture of MeOH/THF (10 ml/5 ml) was added an aqueous solution of KOH (10%, 5 ml). After 3 days, the reaction mixture was concentrated on the rotavap, diluted in water and acidified with 1N HCl until pH 5-6 in order to get a white precipitate. After 15 min, the suspension was filtered off and the cake was abundantly washed with water, and dried to afford the title compound 213 (282 mg, 0.72 mmol, 98% yield) as a white solid. MS: m/z=392.1 [MH]+.


Step 2: N-(2-amino-phenyl)-4-{[6-(2-indanyl-amino)-4-methoxy-[1,3,5]-triazin-2-yl-amino]-methyl}-benzamide (214)

The title compound 214 was obtained from 213 in one step following the same procedure as Example 1, step 5. 1H NMR (300 MHz, acetone-d6+DMSO-d6) δ (ppm): mixture of rotamers, 9.69-9.53 (m, 1H), AB system (δA=8.04, δB=7.52, JAB=7.8 Hz, 4H), 7.80-7.60 (m, 1H), 7.45-7.10 (m, 6H), 7.01 (t, J=7.6 Hz, 1H), 6.88 (d, J=8.2 Hz, 1H), 6.68 ft, J=7.6 Hz, 1H), 4.92-4.60 (m, 5H), 3.90-3.78 (m, 3H), 3.35-3.22 (m, 2H), 3.02-2.83 (m, 2H). HRMS (calc.): 481.2226, (found): 481.2231.




embedded image


Example 29
Step 1: Methyl 4-[(4,6-dichloro-[1,3,5]-triazin-2-yl-N-methyl-amino)-methyl]-benzoic ester (216)

To a stirred suspension at room temperature of NaH (95%, 81 mg, 3.19 mmol) in anhydrous THF (10 ml) under nitrogen were successively added a solution of 3 (500 mg, 1.60 mmol) in anhydrous THF (10 ml) and MeI (298 μl, 4.79 mmol). After 16 h, the reaction mixture was poured into a saturated aqueous solution of NH4Cl, and diluted with AcOEt. After separation, the organic layer was successively washed with sat. NH4Cl, H2O and brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (AcOEt/hexane: 10/90→320/80) to afford the title compound 215 (200 mg, 0.61 mmol, 38% yield) as a white crystalline solid. 1H NMR (300 MHz, CDCl3) δ (ppm): AB system (δA=3.04, δB=7.31, JAB=8.2 Hz, 4H), 4.93 (s, 2H), 3.93 (s, 3H), 3.18 (s, 3H).


Step 2: 4-{[4-amino-6-(2-indanyl-amino)-[1,3,5]-triazin-2-yl-N-methyl-amino]-methyl}-N-(2-amino-phenyl)-benzamide (216)

The title compound 216 from 215 in 4 steps was obtained following the same procedure as Example 1, Pathway B steps 2-5. 1H NMR (300 MHz, acetone-d6) δ (ppm): 9.11 (bs, 1H), 8.03 (d, J=8.0 Hz, 2H), 7.43 (bs, 2H), 7.33 (d, J=7.7 Hz, 1H), 7.28-7.09 (m, 4H), 7.34 (td, J=7.6, 1.5 Hz, 1H), 6.90 (dd, J=8.0, 1.4 Hz, 1H), 6.71 (td, J=7.5, 1.3 Hz, 1H), 6.25-6.05 (m, 1H), 5.82 and 5.64 (2bs, 2H), 5.00-4.56 (m, 5H), 3.42-2.76 (m, 7H). HRMS (calc.): 480.2386, (found): 480.2377.




embedded image


Example 141
Step 1: Methyl 4-[(4-chloro-6-methyl-[1,3,5]-triazin-2-yl-amino)-methyl]-benzoic ester (217)

To a stirred solution at −30° C. of cyanuric chloride 1 (2.00 g, 10.85 mmol) in anhydrous THF (100 ml) under nitrogen was slowly added a solution of MeMgBr (17 ml, 23.86 mmol, 1.4 M in anhydrous THF/toluene). After 1 h, the reaction mixture was allowed to warm to room temperature over 3 h. Then, methyl 4-(aminomethyl)benzoate.HCl 2 (2.08 g, 10.30 mmol) and i-Pr2NEt (3.78 ml, 21.69 mmol) were added, respectively. After 18 h, the reaction mixture was poured into a saturated aqueous solution of NH4Cl, and diluted with AcOEt. After separation, the organic layer was successively washed with sat. NH4Cl, H2O and brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (AcOEt/CH2Cl2: 10/90→15/85) to afford the title compound 217 (780 mg, 2.67 mmol, 25% yield) as a yellow powder. 1H NMR (300 MHz, CDCl3) δ (ppm): mixture of rotamers, 2 AB system (δA=8.03, δA′=8.02, δB=7.39, δB′=7.38, J=8.5 Hz, 4H), 6.28-6.08 (2 m, 1H), 4.76 and 4.74 (2d, J=6.3 Hz, 2H), 3.92 (s, 3H), 2.46 and 2.42 (2s, 3H).


Step 2: N-(2-amino-phenyl)-4-{[6-(2-indanyl-amino)-4-methyl-[1,3,5]-triazin-2-yl-amino]-methyl}-benzamide (218)

The title compound 218 was obtained from 217 in 3 steps following the same procedure as Example 1, steps 3-5. 1H NMR (300 MHz, acetone-d6+Σ DMSO-d6) δ (ppm): mixture of rotamers, 9.62-9.50 (m, 1H), 8.04 (d, J=8.0 Hz, 2H), 7.68-7.37 (m, 3H), 7.33 (d, J=7.7 Hz, 1H), 7.28-7.07 (m, 5H), 7.02 (t, J=7.4 Hz, 1H), 6.89 (d, J=7.9 Hz, 1H), 6.69 (t, J=7.4 Hz, 1H), 4.92-4.60 (m, 5H), 3.35-3.10 (m, 2H), 3.02-2.82 (m, 2H), 2.25-2.12 (m, 3H).




embedded image


Example 142
Step 1: (2-{4-[2-(4,6-Diamino-[1,3,5]-triazin-2-yl)-vinyl]-benzoylamino}-phenyl)-carbamic tert-butyl ester (219)

To a degazed solution of 184 (40 mg, 0.091 mmol) and 2-vinyl-4,6-diamino-1,3,5-triazine (11 mg, 0.083 mmol) in dry DMF (1 mL) was added tri-o-tolylphosphine (POT) (1.5 mg, 0.005 mmol) followed by Et3N (46 μL, 0.33 mmol) and tris(dibenzylideneacetone)dipalladium(0) (2 mg, 0.0025 mmol). The solution was heated at 100° C. for 16 h. Then, DMF was removed under reduced pressure. The reaction mixture was partitioned between AcOEt and a solution of sat. NH4Cl. After separation, the organic layer was washed with brine, dried over anhydrous Na2SO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (MeOH/CH2Cl2: 5/95) to afford the title compound 219 (25 mg, 0.056 mmol, 67% yield). 1H NMR (300 MHz, Acetone-d6) δ (ppm): 8.27 (s, 1H), 8.06 (d, J=8.1 Hz, 2H), 7.96 (d, J=15.9 Hz, 1H), 7.79 (d, J=8.1 Hz, 2H), 7.76-7.69 (m, 1H), 7.62-7.55 (m, 1H), 7.26-7.15 (m, 2H), 6.90 (d, J=15.9 Hz), 6.21 (s, 4H), 1.50 (s, 9H).


Step 2: N-(2-Amino-phenyl)-4-[2-(4,6-diamino-[1,3,5]triazin-2-yl)-vinyl]-benzamide (220)

To a stirred solution at room temperature of 219 (25 mg, 0.056 mmol) in CH2Cl2 (1.5 mL) was added TFA (0.3 mL, 4.3 mmol). After 30 min, a solution of sat. NaHCO3 was slowly added until pH 8 is reached, CH2Cl2 was removed under reduced pressure, AcOEt was added, and the phases were separated. The organic layer was washed with brine, dried over anhydrous Na2SO4, filtered and concentrated. The crude residue was purified by flash chromatography by on silica gel (MeOH/CH2Cl2: 10/90) to afford the title compound 220 (19 mg, 0.054 mmol, 98% yield). 1H NMR: (300 MHz, acetone-d6) δ (ppm): 8.33, 8.13 (2d, J=7.5 Hz, 1H), 8.22 (d, J=15.9 Hz, 1H), 8.01 (d, J=8.1 Hz, 2H), 7.84 (d, J=8.1 Hz, 2H), 7.3-6.96 (m, 2H), 7.03 (d, J=15.9 Hz, 1H), 6.94-6.62 (m, 2H).




embedded image


Example 143a
Step 1: 2-Amino-4-chloro-6-piperidin-1-yl-[1,3,5]triazin (221)

Ammonia was bubbled for 5 min in a solution of 2,4-dichloro-6-piperidin-1-yl-[1,3,5]triazine (500 mg, 2.15 mmol) in dry 1,4-dioxane (20 mL). The solution was heated at 70° C. for 16 h in a sealed tube. The reaction mixture was allowed to cool to room temperature, and partitioned between AcOEt and a solution of sat. NH4Cl. After separation, the organic layer was washed with water and brine, dried over anhydrous Na2SO4, filtered and concentrated to afford the title compound 221 (453 mg, 2.12 mmol, 98% yield). LRMS: [MH]=214.1.


Step 2: 2-Amino 4-piperidin-1-yl-6-vinyl-[1,3,5]triazin (222)

To a solution of 221 (358 mg, 1.68 mmol) in dry toluene (7 mL) was added tributyl(vinyl)tin (514 μL, 1.76 mmol) followed by Pd(PPh3)4 (97 mg, 0.084 mmol) and the reaction mixture was heated at 100° C. for 16 h in a sealed tube. Then, the reaction mixture was allowed to cool to room temperature, concentrated, and purified directly by flash chromatography on silica gel (AcOEt/hexane: 10/90→430/70) to afford the title compound 222 (containing tributyltin chloride).


Steps 3: N-(2-Amino-phenyl)-4-[2-(4-amino-6-piperidin-1-yl-[1,3,5]triazin-2-yl)-vinyl]-benzamide (223)

The title compound 223 was obtained from 222 in 2 steps following the same procedure as in scheme 31, steps 1 and 2. 1H NMR: (300 MHz, DMSO-d6) δ (ppm): 9.69 (s, 1H), 8.01 (d, J=7.5 Hz, 2H), 7.87 (d, J=16.0 Hz, 1H), 7.80 (d, J=7.5 Hz, 2H), 7.18 (d, J=7.3 Hz, 1H), 7.04-6.92 (m, 1H), 6.91 (d, J=16 Hz, 1H), 6.85-6.68 (m, 3H), 6.60 (t, J=7.2 Hz, 1H), 4.93 (s, 2H), 3.77 (s, 4H), 1.63 (s, 2H), 1.52 (s, 4H).


Example 143b
Step 4: N-(2-Amino-phenyl)-4-[2-(4-amino-6-piperidin-1-yl-[1,3,5]triazin-2-yl)-ethyl]-benzamide (224)

To a solution of 223 (18 mg, 0.043 mmol) in MeOH (5 mL) was added 10% Pd/C (10 mg, 0.021 mmol). The reaction mixture was shaked under a pressure of H2 (40 psi) at room temperature for 16 h using an hydrogenation apparatus. Then, the reaction mixture was purged with N2, filtered through celite, and concentrated. The crude residue was then purified by flash chromatography on silica gel (MeOH/CH2Cl2: 2/98→4/96) to afford the title compound 224 (10 mg, 0.024 mmol, 56% yield). 1H NMR (300 MHz, CDCl3—CD3OD) δ (ppm): 7.82 (d, J=8.1 Hz, 2H), 7.35 (d, J=8.1 Hz, 2H), 7.08 (t, J=7.0 Hz, 1H), 6.89-6.79 (m, 2H), 7.80-6.90 (m, 1H), 3.76 (s, 4H), 3.13 (t, J=8.1 Hz, 2H), 2.88 (t, J=8.1 Hz, 2H), 1.90-1.40 (m, 10H).




embedded image


Example 144
Step 1: 2-Amino-benzothiazol-6-ol (225)

A suspension of 2-amino-6-methoxybenzothiazole (5.00 g, 27.8 mmol) in dichloromethane (70 mL) was cooled to 0° C. under nitrogen and boron tribromide (3.93 mL, 41.6 mmol) was added dropwise. The light yellow mixture was stirred for 3 h, allowing to warm-up slowly from 0° C. to 10° C. The reaction was slowly quenched by dropwise addition of methanol and tafter stirring overnight at room temperature, the white solid was collected by filtration (6.04 g, 88% yield). This hydrobromic salt was dissolved in water, washed with ethyl acetate, and neutralized with a saturated aqueous solution of NaHCO3. The resulting crystals were collected by filtration and dried in the oven at 135° C. for 1 h to afford the title compound 225 as colorless crystals (3.63 g, 79% yield). 1H NMR: (CD3OD) δ (ppm): 7.27 (d, J=8.8 Hz, 1H), 7.08 (d, J=2.2 Hz, 1H), 6.80 (dd, J=8.4, 2.2 Hz, 1H).


Step 2: 6-(2-Morpholin-4-yl-ethoxy)-benzothiazol-2-ylamine (226)

To a solution of benzothiazole 225 (3.62 g, 21.8 mmol) in THF at room temperature under nitrogen, were successively added 4-(2-hydroxyethyl)morpholine (3.17 mL, 26.1 mmol), triphenylphosphine (7.43 g, 28.3 mmol) followed by a dropwise addition of diethyl azodicarboxylate (4.46 mL, 28.3 mmol). The solution was stirred for 3.5 h and THF was partially removed in vacuo. The mixture was partitioned between ethyl acetate and H2O. The combined organic layers were extracted with 1N HCl. The combined acidic extracts were neutralized using a saturated aqueous solution of NaHCO3 and the precipitate was dissolved with ethyl acetate. These combined organic layers were washed with brine, dried over MgSO4, and concentrated. The filtrate was concentrated to afford the title compound 226 (5.83 g, 96% yield) as a light yellow oil. 1H NMR: (Acetone-d6) δ (ppm): 7.37 (d, J=8.8 Hz, 1H), 7.34 (d, J=2.6 Hz, 1H), 6.94 (dd, J=8.8, 2.6 Hz, 1H), 6.60 (bs, 2H), 4.19 (t, J=6.2 Hz, 2H), 3.70-3.67 (m, 4H), 2.90 (s, 2H), 2.81 (t, J=6.2 Hz, 2H), 2.62-2.58 (m, 4H).


Step 3: 4-{[6-(2-Morpholin-4-yl-ethoxy)-benzothiazol-2-ylamino]-methyl}-benzoic acid methyl ester (227)

To a round-bottom flask containing benzothiazole 226 (5.80 g, 20.8 mmol) was added methyl 4-formylbenzoate (5.11 g, 31.1 mmol), followed by THF (8 mL), dibutyltin dichloride (315 mg, 1.04 mmol) and dropwise addition of phenylsilane (3.24 mL, 31.1 mmol). The resulting mixture was stirred overnight at room temperature under nitrogen. The mixture was diluted in ethyl acetate and filtered. The filtrate was partitioned between ethyl acetate and water and the combined organic layers were washed with 1N HCl. The combined acidic layers were neutralized using a saturated aqueous solution of NaHCO3 and the precipitate was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO4, and concentrated. The resulting crude was purified by flash chromatography using MeOH/CHCl3 (10:90) to afford 227 (3.69 g, 42% yield). 1H NMR: (Acetone-d6) δ (ppm): 8.04 (d, J=8.5 Hz, 2H), 7.65 (d, J=8.8 Hz, 2H), 7.41 (d, J=8.8 Hz, 1H), 7.34 (d, J=2.5 Hz, 1H), 6.94 (dd, J=8.5, 2.7 Hz, 1H), 4.50 (t, J=5.5 Hz, 2H), 3.86 (s, 3H).


Step 4: N-(2-Amino-phenyl)-4-{[6-(2-morpholin-4-yl-ethoxy)-benzothiazol-2-ylamino]-methyl}-benzamide (228)

Following the procedure described in Example 1, step 4, 5 but substituting the previous compound for 6, the title compound 228 was obtained (958 mg, 46%) as a colorless solid. 1H NMR: (CD3OD) δ (ppm): 8.04 (d, J=8.2 Hz, 2H), 7.62 (d, J=8.5 Hz, 2H), 7.40 (d, J=8.8 Hz, 1H), 7.31 (d, J=2.5 Hz, 1H), 7.25 (d, J=7.4 Hz, 1H), 7.15 (t, J=7.4 Hz, 1H), 6.97 (dd, J=8.8, 2.5 Hz, 2H), 6.84 (t, J=7.4 Hz, 1H), 4.78 (s, 2H), 4.21 (t, J=5.2 Hz, 2H), 3.81-3.77 (m, 4H), 2.87 (t, J=5.5, 2H), 2.69-3.66 (m, 4H).




embedded image


Example 145
Step 1: 4-[(5-Bromo-benzothiazol-2-ylamino)-met yl]-benzoic acid methyl ester (229)

Following the procedure described in Example 144, step 3, but substituting the 2-amino-6-bromobenzothiazole for 226, the title compound 229 was obtained in 56% yield. 1H NMR: (DMSO-d6) δ (ppm): 8.78 (t, J=5.9 Hz, 1H), 8.01 (d, J=8.2 Hz, 2H), 7.99 (s, 1H), 7.56 (d, J=8.2 Hz, 2H), 7.43-7.34 (m, 2H), 4.74 (d, J=5.9 Hz, 2H), 3.90 (s, 3H).


Step 2: 4-{[5-(3,4,5-Trimethoxy-phenyl)-benzothiazol-2-ylamino]methyl}-benzoic acid methyl ester (230)

Following the procedure described in Example 15, step 1, but substituting 229 for 140, the title compound 230 was obtained in 44% yield as colorless crystals. 1H NMR: (DMSO-d6) δ (ppm): 8.73 (t, J=5.7 Hz, 1H), 8.11 (d, J=1.8 Hz, 1H), 8.02 (d, J=8.4 Hz, 2H), 7.63-7.57 (m, 3H), 7.48 (d, J=8.4 Hz, 1H), 6.97 (s, 2H), 4.77 (d, J=5.7 Hz, 2H), 3.92 (m, 6H), 3.90 (s, 3H), 3.74 (s, 3H).


Step 3: N-(2-Amino-phenyl)-4-{[5-(3,4,5-trimethoxy-phenyl)-benzothiazol-2-ylamino]methyl}-benzamide (231)

Following the procedure described in Example 1, step 4, 5 but substituting the previous compound for 6, the title compound 231 was obtained in 69% yield. 1H NMR: (Acetone-d6) δ (ppm): 8.31 (d, J=7.9 Hz, 2H), 8.20 (d, J=7.5 Hz, 1H), 8.13 (s, 1H), 7.73-7.58 (m, 3H), 7.63 (d, J=7.5 Hz, 2H), 7.48-7.43 (m, 2H), 7.05 (s, 2H), 4.98 (s, 2H), 4.00 (s, 6H), 3.84 (s, 3H).




embedded image


Example 146
Step 1: 4-[(6-Methoxy-benzothiazol-2-ylamino)-methyl]-benzoic acid methyl ester (232)

To a solution of 2-amino-6-methoxybenzothiazole (2.00 g, 11.1 mmol) in a mixture of dichloroethane (20 mL) and THF (20 mL), were successively added methyl 4-formylbenzoate (1.82 g, 11.1 mmol), sodium triacetoxyborohydride (3.53 g, 16.7 mmol) and acetic acid (1.27 mL, 22.2 mmol). The mixture was stirred over 2 days and was quenched by adding aqueous saturated solution of NaHCO3. The mixture was poured in a separating funnel containing water and was extracted with dichloromethane. The combined organic extracts were washed with brine, dried over MgSO4 and concentrated in vacuo. The crude material was purified by flash chromatography using EtOAc/hexane (20:80 to 30:70) to afford the title compound 232 (1.85 g, 51% yield). 1H NMR: (Acetone-d6) δ (ppm): 8.04 (d, J=8.5 Hz, 2H), 7.65 (d, J=8.8 Hz, 2H), 7.41 (d, 0.1=8.8 Hz, 1H), 7.34 (d, J=2.5 Hz, 1H), 6.94 (dd, J=8.5, 2.7 Hz, 1H), 4.50 (t, J=5.5 Hz, 2H), 3.86 (s, 3H).


Step 2: N-(2-Amino-phenyl)-4-[(6-methoxy-benzothiazol-2-ylamino)-methyl]-benzamide (233)

Following the procedure described in Example 1, step 4, 5 but substituting the previous compound for 6, the title compound 233 was obtained in 19% yield as a light beige solid. 1H NMR: (DMSO-d6) δ (ppm): 9.68 (s, 1H), 8.44 (t, J=5.8 Hz, 1H), 8.00 (d, J=8.2 Hz, 2H), 7.55 (d, J=8.2 Hz, 2H), 7.39 (d, J=2.7 Hz, 1H), 7.34 (d, J=8.8 Hz, 1H), 7.21 (d, J=6.6 Hz, 1H), 7.05 (t, J=6.3 Hz, 1H), 7.00 (d, J=1.4 Hz, 1H), 6.88 (dd, J=8.8, 2.7 Hz, 1H), 6.86 (dd, J=8.0, 1.4 Hz, 1H), 6.65 (td, J=7.4, 1.4 Hz, 1H), 4.95 (s, 2H), 4.70 (d, J=5.8 Hz, 2H), 3.79 (s, 3H).




embedded image


Example 147
Step 1: 4-(6-Methoxy-1H-benzoimidazol-2-ylsulfanylmethyl)-benzoic acid methyl ester hydrobromide (234)

To a solution of methyl 4-(bromomethyl)benzoate (2.51 g, 11.0 mmol) in DMF (50 mL) was added 5-methoxy-2-benzimidazolethiol (1.98 g, 11.0 mmol). The mixture was stirred at room temperature for 24 h and the solvent was evaporated in vacuo. The residue was suspended in ethyl acetate and the hydrobromide salt was collected by filtration to afford the title compound 234 (4.10 g, 91% yield) as a colorless solid. 1H NMR (DMSO-d6) δ (ppm): 7.90 (d, J=8.2 Hz, 2H), 7.55 (d, J=8.2 Hz, 2H), 7.45 (d, J=8.2 Hz, 1H), 7.03 (s, 1H), 6.94 (d, J=8.2 Hz, 1H), 4.65 (s, 2H), 3.82 (s, 3H), 3.79 (s, 3H).


Step 2: 4-[6-(2-Morpholin-4-yl-ethoxy)-1H-benzoimidazol-2-ylsulfanylmethyl]-benzoic acid methyl ester (235)

Following the procedure described in Example 144, step 1, 2 but substituting the previous compound for 2-amino-6-methoxybenzothiazole, the title compound 235 was obtained in 37% yield. 1H NMR: (CDCl3) δ (ppm): 8.04-8.00 (m, 2H), 7.77-7.72 (m, 1H), 7.69-7.59 (m, 1H), 7.56-7.49 (m, 2H), 6.96-6.90 (m, 1H), 4.68 (s, 2H), 4.31-4.16 (m, 4H), 3.97 (s, 3H), 3.98-3.91 (m, 2H), 3.82-3.72 (m, 2H), 2.75-2.47 (m, 4H).


Step 3: N-(2-Amino-phenyl)-4-[6-(2-morpholin-4-yl-ethoxy)-1H-benzoimidazol-2-ylsulfanylmethyl]-benzamide (236)

Following the procedure described in Example 1, step 4, 5 but substituting the previous compound for 6, the title compound 236 was obtained in 11% yield. 1H NMR: (CD3OD) δ (ppm): 7.89 (d, J=8.2 Hz, 2H), 7.45 (d, J=8.2 Hz, 2H), 7.28 (d, J=8.5 Hz, 1H), 7.19-7.06 (m, 3H), 6.93-6.79 (m, 3H), 4.55 (s, 2H), 4.18 (t, J=6.3 Hz, 2H), 3.65-3.62 (m, 4H), 2.51 (t, J=6.6 Hz, 2H), 2.46-2.42 (m, 4H).




embedded image


Example 148
Step 1: 4-Morpholin-4-yl-benzoic acid methyl ester (237)

A flame-dried pressure vessel was charged with cesium carbonate (912 mg, 2.80 mmol) and toluene (8 mL) and the flasked was purged with nitrogen. Palladium acetate (9.0 mg, 0.004 mmol) and rac-2,2′-Bis(diphenylphosphino)-1,1′-binaphthyl (37 mg, 0.06 mmol). The mixture was degassed and heated at 100° C. for 18 h. It was allowed to cool to room temperature and was filtered through celite, rinsed with ethyl acetate and partitioned between ethyl acetate and water. The organic layer was washed with a saturated solution of NaHCO3, brine, dried over MgSO4 and concentrated in vacuo to afford the title compound 237 (443 mg, 100% yield). 1H NMR: (CDCl3) δ (ppm): 8.02 (d, J=9.2 Hz, 2H), 6.95 (d, J=8.8 Hz, 2H), 3.95 (s, 4H), 3.92 (s, 3H), 3.38-3.35 (m, 4H).


Step 2: N-(2-Amino-phenyl)-4-morpholin-4-yl-benzamide (238)

Following the procedure described in Example 1, step 4, 5 but substituting the previous compound for 6, the title compound 238 was obtained in 33% yield. 1H NMR: (DMSO-d6) δ (ppm): 7.20 (d, J=7.9 Hz, 1H), 7.07 (d, J=8.8 Hz, 2H), 7.01 (t, J=7.0 Hz, 1H), 6.83 (d, J=7.9 Hz, 1H), 6.65 (t, J=7.5 Hz, 1H), 4.90 (s, 2H), 3.81-3.79 (m, 4H), 3.32-3.28 (m, 4H).




embedded image


Example 149
Step 1: 3-Methylsulfanyl-3-(pyridin-4-ylamino)-acrylonitrile (239)

To a solution of pyridin-4-ylamine (1.0 g, 11.0 mmol) and 3,3-Bis-methylsulfanyl-acrylonitrile (2.05 g, 12.6 mmol) in DMF at room temperature, was added powdered 4 A molecular sieves. The mixture was stirred for 1 hr. Subsequently the mixture was cooled to 0° C., 60% NaH dispersion in oil (0.92 g, 23.0 mmol) was added portionwise over 1 hr. and it was stirred at 0° C. for an additional 2 hrs. The cold bath was removed and the mixture was stirred at room temperature for 20 hrs. DMF was removed in vacuo and the crude was purified by column chromatography (gradient of EtOAc to 25% MeOH/EtOAc) to afford the desired product as an off-white solid (1.9 g, 89%).


Step 2: N-(2-Amino-phenyl)-4-{[2-cyano-1-(pyridin-4-ylamino)-vinylamino]-methyl}-benzamide (240)

To a mixture of 3-methylsulfanyl-3-(pyridin-4-ylamino)-acrylonitrile (0.2 g, 1.0 mmol), 4-aminomethyl-benzoic acid (0.173 g, 1.14 mmol), DMAP (1 mg) and Et3N (0.14 ml, 1.0 mmol) was added dry pyridine (0.5 ml). The resulting stirring mixture was heated to 55° C. for 4.5 hrs., additional Et3N (0.14 ml) was added and mixture was heated from 75° C. to 90° C. over a period of −30 hrs. When the reaction was complete, pyridine was partially removed in vacuo and the crude was purified by column chromatography (gradient of EtOAc to 20% MeOH/EtOAc) to afford the desired product as an off-white solid (130 mg, 44%).


Following the procedure described in Example 1, step 4, 5 but substituting the previous compound for 6, the title compound 240 was obtained in 33% yield. 1H NMR: 1H NMR: (300 MHz, DMSO-d6) δ (ppm): 9.69 (br, 2H), 8.48 (br, 3H), 8.03 (d, J=7.9 Hz, 2H), 7.51 (d, J=8.4 Hz, 2H), 7.29 (br, 2H), 7.23 (d, J=7.9 Hz, 1H), 7.03 (t, J=7.0 Hz, 1H), 6.84 (d, J=7.9 Hz, 1H), 6.65 (t, J=7.3 Hz, 1H), 4.96 (br, 2H), 4.62 (d, J=5.7 Hz, 2H).




embedded image


Example 150
Step 1: 4-[(2-Chloro-9H-purin-6-ylamino)-methyl]-benzoic acid methyl ester (241)

A suspension of 2,6-dichloro-9H-purine (1 g, 5.29 mmol), 4-aminomethyl-benzoic acid methyl ester hydrochloride (1.2 equiv., 1.28 g) and NaHCO3 (2.1 equiv., 935 mg, in water was heated at 100° C. The homogeneous solution thus formed was refluxed 30 min. The resulting white precipitate was filtered, washed with cold water and dried under vacuum giving the title compound 241 (1 g, 3.14 mmol, 60%). LRMS calc: 317.7. found: 318.3 (MH)+.


Step 2: 4-{[2-Chloro-9-(2-methoxy-ethyl)-9H-purin-6-ylamino]-methyl}-benzoic acid methyl ester (242)

Following the procedure described in Example 144, step 2 but substituting the previous compound for 2-amino-6-methoxybenzothiazole, the title compound 242 was obtained in 41% yield.


Step 3: N-(2-Amino-phenyl)-4-{[2-chloro-9-(2-methoxy-ethyl)-9H-purin-6-ylamino]-methyl}-benzamide (243)

Following the procedure described in Example 1, step 4, 5 but substituting the previous compound for 6, the title compound 243 was obtained in 85% yield. 1H NMR (CDCl3) δ (ppm): 9.64 (s, 1H), 8.94 (bs, 1H), 8.18 (s, 1H), 7.96 (d, J=7.8 Hz, 2H), 7.52 (d, J=7.8 Hz, 2H), 7.21 (d, J=7.7 Hz, 1H), 7.01 (dd, J=7.3, 8.0 Hz, 1H), 6.81 (d, J=8.0 Hz, 1H), 6.62 (dd, J=7.3, 7.7 Hz, 1H), 4.91 (bs, 2H), 4.78 (bs, 2H), 4.18 (m, 2H), 3.70 (m, 2H), 3.26 (s, 3H)




embedded image


Example 151
Step 1: Methyl-4-{[3-(2-chloro-6-fluoro-phenyl)-5-methyl-isoxazole-4-carbonyl]-amino-methyl}-benzoic acid ester (244)

To a stirred suspension at 0° C. of methyl 4-(aminomethyl)benzoate.HCl 2 (809 mg, 4.01 mmol) in anhydrous CH2Cl2 (25 ml) under nitrogen were successively added i-Pr2NEt (1.91 ml, 10.95 mmol) and 3-(2-chloro-6-fluorophenyl)-5-methylisoxazole-4-carbonyl chloride (1.00 g, 3.65 mmol). After 45 min, the reaction mixture was allowed to warm up to room temperature for 3 h. Then, the reaction mixture was concentrated, diluted with AcOEt, and successively washed with sat. NH4Cl, H2O, sat. NaHCO3, H2O and brine, dried over anhydrous MgSO4, filtered and concentrated to afford the title compound 244 (1.50 g, quantitative yield) as a colorless sticky foam. 1H-NMR (300 MHz, CDCl3) δ (ppm): 7.93 (d, J=7.9 Hz, 2H), 7.46-7.35 (m, 1H), 7.29 (d, J=8.4 Hz, 1H), 7.15-7.05 (m, 3H), 5.49 (bs, 1H), 4.46 (d, J=5.7 Hz, 2H), 3.92 (s, 3H), 2.80 (s, 3H).


Step 2: 4-{[3-(2-Chloro-6-fluoro-phenyl)-5-methyl-isoxazole-4-carbonyl]-amino-methyl}-benzoic acid (245)

To a stirred solution at room temperature of 244 (1.45 g, 3.60 mmol) in THF (20 ml) was added a solution of LiOH.H2O (453 mg, 10.80 mmol) in water (20 ml). After 20 h, the reaction mixture was concentrated, diluted with water and acidified with 1N HCl until pH 6 in order to get a white precipitate. After 10 min, the suspension was filtered off and the cake was abundantly washed with water, and dried to afford the title compound 245 (1.23 g, 3.15 mmol, 88% yield) as a white solid. 1H NMR (300 MHz, DMSO-d6) δ (ppm): 8.69 (t, J=5.9 Hz, 1H), 7.91 (d, J=7.9 Hz, 2H), 7.70-7.58 (m, 1H), 7.51 (d, J=7.9 Hz, 1H), 7.45-7.30 (m, 3H), 4.44 (d, J=5.7 Hz, 2H), 2.72 (s, 3H).


Step 3: 4-(9-Chloro-3-methyl-4-oxo-4H-isoxazolo[4,3-c]quinolin-5-ylmethyl)-benzoic acid (246)

To a stirred suspension at room temperature of 245 (795 mg, 2.05 mmol) in anhydrous DMF (10 ml) was added a solution of NaOH (409 mg, 10.22 mmol) in anhydrous MeOH (5.1 ml). Then, the reaction mixture was warmed up to 40° C. After 3 days, the reaction mixture was concentrated, diluted with water and acidified with 1N HCl until pH 5 in order to get a pale pinky precipitate. After 30 min, the suspension was filtered off and the cake was abundantly washed with water, and dried to afford the title compound 246 (679 mg, 1.84 mmol, 90% yield) as a pale pinky solid. 1H NMR (300 MHz, DMSO-d6) δ (ppm): AB system (δA=7.92, δB=7.40, J=8.4 Hz, 4H), 7.56 (t, J=8.1 Hz, 1H), 7.47 (d, J=7.5 Hz, 1H), 7.31 (d, J=8.3 Hz, 1H), 5.59 (bs, 2H), 2.95 (s, 3H).


Step 4: N-(2-Amino-phenyl)-4-(9-chloro-3-methyl-4-oxo-4H-isoxazolo[4,3-c]quinolin-5-ylmethyl)-benzamide (247)

The title compound 247 was obtained from 246 in one step following the same procedure as Example 1, steps 5. 1H NMR (300 MHz, DMSO-d6) δ (ppm): 9.65 (s, 1H), AB system (δA=7.95, δB=7.42, J=8.1 Hz, 4H), 7.58 (t, J=8.1 Hz, 1H), 7.48 (d, J=7.5 Hz, 1H), 7.35 (d, J=8.3 Hz, 1H), 7.17 (d, J=7.5 Hz, 1H), 7.00 (t, J=7.3 Hz, 1H), 6.80 (d, J=7.5 Hz, 1H), 6.62 (t, J=7.3 Hz, 1H), 5.61 (bs, 2H), 4.91 (s, 2H), 2.97 (s, 3H).




embedded image


Example 152
Step 1: 4-(1H-Imidazol-2-yl)-benzoic acid (248)

To a stirred solution of 4-formylbenzoic acid (2.00 g, 12.3 mmol) in ammonium hydroxide (9 ml) was added glyoxal (2.86 ml, 20.0 mmol). The reaction mixture was stirred 16 h at room temperature. 1N HCl was added to the reaction mixture to acidify to pH 5. The solvent was evaporated and the residue was triturated 30 min. in water (20 ml) and filtered to obtain the title compound 248 (2.08 g, 83%) as a white solid. LRMS: 188.1 (Calc.); 189.1 (found).


Step 2: N-(2-Amino-phenyl)-4-(1H-imidazol-2-yl)-benzamide (249)

The title compound 249 was obtained following the same procedure as Example 1, step 5. 1H NMR (CDCl3) δ (ppm): 1H NMR: (DMSO) δ (ppm): 9.72 (bs, 1H), 8.07 (s, 4H), 7.26 (s, 2H), 7.18 (d, J=7.9 Hz, 1H), 6.98 (dd, J=7.5, 7.5 Hz, 1H), 6.79 (d, J=7.9 Hz, 1H), 6.60 (dd, J=7.5, 7.5 Hz, 1H). MS: (calc.) 278.1; (obt.) 279.1 (MH)+.




embedded image


Example 153
Step 1: 4-Thiocarbamoylmethyl-benzoic acid (250)

To a stirred suspension of 4-cyanomethyl-benzoic acid (1.65 g, 10.24 mmol) and Et3N (5 ml) in pyridine, H2S was bubbled during 3 h. The reaction mixture was stirred 16 h at room temperature. Water was then added to the reaction mixture which was agitated for 1 h before acidifying to pH 6 with 1M HCl. The solvent was evaporated and the residue was triturated 30 min. in water (20 ml) and filtered to obtain the title compound 250 (2.08 g, 83%) as a white solid. 1H NMR (DMSO) δ (ppm): 12.85 (bs, 1H), 9.53 (bs, 1H), 9.43 (bs, 1H), 7.88 (d, J=8.1 Hz, 2H), 7.44 (d, J=8.1 Hz, 2H), 3.88 (s, 2H).


Step 2: 4-(4-Chloromethyl-thiazol-2-ylmethyl)-benzoic acid (251)

A solution of 250 (729 mg, 3.73 mmol) and 1,3-dichloroacetone (474 mg, 3.73 mmol) in THF (30 ml) was stirred at 40° C. during 48 h. The solvent was evaporated then the residue was dissolved in ethyl acetate, washed with brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was purified by flash chromatography on silica gel (2-4% MeOH/CH2Cl2) to afford the title compound (827 mg, 83% yield) as a white solid. 1H NMR (DMSO) δ (ppm): 12.93 (bs, 1H), 7.91 (d, J=8.1 Hz, 2H), 7.63 (s, 1H), 7.46 (d, J=8.1 Hz, 2H), 4.78 (s, 2H), 4.42 (s, 2H).


Step 3: N-(2-Amino-phenyl)-4-(4-morpholin-4-ylmethyl-thiazol-2-ylmethyl)-benzamide (252)

K2CO3 (599 mg, 4.33 mmol) was added to a solution of 251 (527 mg, 1.97 mmol) and morpholine (189 l, 2.17 mmol) in THF (15 ml) was refluxed during 48 h. The solvent was evaporated. The crude residue was purified by flash chromatography on silica gel (3-50% MeOH/CH2Cl2) to afford the title compound 252 (238 mg, 38% yield) as a pale yellow solid. LRMS: 318.2 (calc) 319.2 (found).


The title compound 252 was obtained following the same procedure as Example 1, step 5. 1H NMR (DMSO) δ (ppm): 9.63 (bs, 1H), 7.94 (d, J=8.1 Hz, 2H), 7.45 (d, J=8.1 Hz, 2H), 7.33 (s, 1H), 7.15 (d, J=8.1 Hz, 1H), 6.97 (dd, J=7.7, 7.7 Hz, 1H), 6.77 (d, J=7.3 Hz, 1H), 6.59 (dd, J=8.1, 8.1 Hz, 1H), 4.90 (bs, 2H), 4.40 (s, 2H), 3.59-3.56 (m, 6H), 2.44-2.38 (m, 4H). LRMS: 408.2 (calc) 409.2 (found).




embedded image


Example 154
Step 1: Methyl 3-[3-(4-methoxycarbonyl-benzyl)-ureido]-thiophene-2-carboxylate (253)

The procedure described by Nakao (K. Nakao, R. Shimizu, H. Kubota. M. Yasuhara, Y. Hashimura, T. Suzuki, T. Fujita and H. Ohmizu; Bioorg. Med. Chem. 1998, 6, 843-868.) was followed to afford the title compound 253 (1.01 g, 91%) as a yellow solid. 1H NMR (CDCl3) δ (ppm): 9.55 (bs, 1H), 8.00-7.97 (m, 3H), 7.42-7.37 (m, 3H), 5.45 (t, J=5.8 Hz, 1H), 4.52 (d, J=6.0 Hz, 2H), 3.91 (s, 3H), 3.82 (s, 3H).


Step 2: 4-(2,4-Dioxo-1,4-dihydro-2H-thieno[3,2-d]pyrimidin-3-ylmethyl)-benzoic acid (254)

To a suspension of 253 (422 mg, 1.21 mmol) in MeOH (15 ml) was added NaOH (145 mg, 3.63 mmol). The reaction mixture was heated at 60° C. during 16 h. Water (1 ml) was then added and the reaction mixture was stirred for 1 more hour. The solvent was evaporated and the residue was dissolved in water and acidified to pH 5 with HCl 1M. The precipitate was filtered to afford the desired compound 254 (348 mg, 95%) as a white solid. LRMS: 302.0 (Calc.); 303.0 (found).


Steps 3: N-(2-Amino-phenyl)-4-(1-ethyl-2,4-dioxo-1,4-dihydro-2H-thieno[3,2-d]pyrimidin-3-ylmethyl)-benzamide (255)

The title compound 255 was obtained as a yellow solid (73%) following the same procedure as Example 99, step 2, 3, then followed by Example 1, step 5. 1H NMR: (DMSO) δ (ppm): 9.61 (bs, 1H, NH), 8.22 (d, J=5.5 Hz, 1H, CH), 7.91 (d, J=8.2 Hz, 2H, CH), 7.43-7.40 (m, 3H, CH), 7.15 (d, J=7.4 Hz, 1H, CH), 6.96 (dd, J=7.6, 7.6 Hz, 1H, CH), 6.77 (d, J=7.1 Hz, 1H, CH), 6.59 (dd, J=7.4, 7.4 Hz, 1H, CH), 5.17 (s, 2H, NCH2), 4.88 (bs, 2H, NH2) 4.09 (q, J=7.0, 2H, CH2), 1.22 (t, J=7.0, 3H, CH3). LRMS: 420.1 (talc.); 421.0 (found).




embedded image


Example 155
Step 1: 3H-Thieno[3,2-d]pyrimidin-4-one (256)

Methyl-3-amino-2-thiophene carboxylate (510 mg, 3.24 mmol) was dissolved in formamide (20 ml) and heated at 170° C. 16 h. The solvent was evaporated. The crude residue was then purified by flash chromatography on silica gel (2-4% MeOH/CH2Cl2) to afford the title compound 256 (157 mg, 32% yield). LRMS: 152.0 (Calc.); 152.9 (found).


Step 2: N-(2-Aminophenyl)-4-(4-oxo-4H-thieno[3,2-d]pyrimidin-3-ylmethyl)-benzamide (257)

Following the procedure described in Example 85, step 1 but substituting the previous compound for 119, followed by Example 1, step 4, 5, the title compound 257 was obtained in 41% yield. 1H NMR: (DMSO) δ (ppm): 9.61 (bs, 1H), 8.70 (s, 1H), 8.22 (dd, J=5.2, 0.5 Hz, 1H), 7.95 (d, J=8.2 Hz, 2H), 7.47 (d, J=8.5 Hz, 2H), 7.44 (dd, J=5.2, 0.6 Hz, 1H), 7.15 (d, J=7.7 Hz, 1H), 6.96 (dd, J=6.9, 6.9 Hz, 1H), 6.77 (d, J=7.1 Hz, 1H), 6.58 (dd, J=7.0, 7.0 Hz, 1H), 5.31 (s, 2H), 4.87 (bs, 2H). MS: 376.1 (calc.); 377.1 (found).




embedded image


Example 156
Step 1: Methyl 2-amino-4,5-dimethyl-thiophene-3-carboxylate (258)

The procedure described by Hozien (Z. A. Hozien, F. M. Atta, Kh. M. Hassan, A. A. Abdel-Wahab and S. A. Ahmed; Synth. Commun. 1996, 26(20), 3733-3755.) was followed to afford the title compound 258 (1.44 g, 17%) as a yellow solid. LRMS: 197.1 (Calc.); 200.1 (found).


Steps 2: N-(2-Amino-phenyl)-4-(5,6-dimethyl-4-oxo-4H-thieno[2,3-d]pyrimidin-3-ylmethyl)-benzamide (259)

Following the procedure described in Example 155, step 1, 2 but substituting 258 for 256, the title compound 259 was obtained as a white solid (55%). 1H NMR: (DMSO) δ (ppm): 9.61 (bs, 1H), 8.57 (s, 1H), 7.94 (d, J=8.0 Hz, 2H), 7.45 (d, J=7.7 Hz, 2H), 7.16 (d, J=7.7 Hz, 1H), 6.96 (dd, J=7.6, 7.6 Hz, 1H), 6.77 (d, J=8.0 Hz, 1H), 6.59 (dd, J=7.4, 7.4 Hz, 1H), 5.25 (s, 2H), 4.87 (bs, 2H), 2.39 (s, 3H), 2.37 (s, 3H). LRMS: 404.1 (calc); 405.0 (found).




embedded image


Example 157
Step 1: Methyl 4-(4-oxo-chroman-3-ylidenemethyl)-benzoate (260)

Concentrated H2SO4 (2 ml) was slowly added to a solution of 4-chromanone (2.00 g, 13.50 mmol) and methyl-4-formylbenzoate (2.11 g, 12.86 mmol) in glacial acetic acid. The reaction mixture was stirred 16 h at room temperature. The solvent was concentrated to half volume the resulting precipitate was filtered and rinsed with ethyl acetate to afford the title compound 260 (3.11 g, 82%) as a purple solid. 1H NMR: (DMSO) δ (ppm): 8.05 (d, J=8.2 Hz, 2H), 7.90 (d, J=7.6 Hz, 1H), 7.79 (s, 1H), 7.64-7.59 (m, 3H), 7.15 (dd, J=7.6, 7.6 Hz, 1H), 7.07 (d, J=8.2 Hz, 1H), 5.43 (s, 2H), 3.89 (s, 3H).


Step 2: Methyl-4-(4-oxo-4H-chromen-3-ylmethyl)-benzoate (261)

Water (0.2 ml) and RhCl3.H2O (7 mg, 0.034 mmol) was added to a suspension of compound 260 (200 mg, 0.680 mmol) in EtOH (2 ml) and CHCL3 (2 ml). The reaction mixture was stirred 16 h at 70° C. The reaction mixture was cooled down and diluted in ethyl acetate, washed with brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (0.5-1% MeOH/CH2Cl2) to afford the title compound 261 (118 mg, 59%) as a white solid. 1H NMR: (DMSO) δ (ppm): 8.45 (s, 1H), 8.03 (dd, J=7.9, 1.8 Hz, 1H), 7.87 (d, J=8.4 Hz, 2H), 7.83-7.77 (m, 1H), 7.65 (d, J=8.3 Hz, 1H), 7.50-7.43 (m3, 1H), 3.82 (s, 3H), 3.80 (s, 2H).


Step 3: N-(2-Amino-phenyl)-4-(4-oxo-4H-chromen-3-ylmethyl)-benzamide (262)

The title compound 262 was obtained following the same procedure as Example 1, step 4, 5. 1H NMR: (DMSO) δ (ppm): 9.56 (bs, 1H), 8.45 (s, 1H), 8.04 (d, J=7.9 Hz, 1H), 7.88 (d, J=8.4 Hz, 2H), 7.80 (dd, J=7.5, 7.5 Hz, 1H), 7.65 (d, J=8.4 Hz, 1H), 7.51-7.42 (m, 3H), 7.14 (d, J=7.9 Hz, 1H), 6.96 (dd, J=7.3, 7.3 Hz, 1H), 6.76 (d, J=7.9 Hz, 1H), 6.58 (dd, J=7.3, 7.3 Hz, 1H), 4.86 (bs, 2H), 3.80 (s, 2H). LRMS: 370.1 (calc.); 371.1 (found).


Example 158
Step 2: Methyl 4-chroman-3-ylmethyl-benzoate (263)

Pd/C 10% was added to a suspension of 260 (200 mg, 0.68 mmol) in MeOH (40 ml) and DMA (10 ml) which was previously purged under vacuum. The reaction mixture was stirred during 4 h at room temperature. After evaporation of the MeOH, water was added to the oily residue and the precipitate obtained was filtered. The crude residue was then purified by flash chromatography on silica gel (5-8% AcOEt/Hex) to afford the title compound 263 (114 mg, 59%) as a white solid. LRMS: 282.1 (Calc.); 283.0 (found).


Step 3: N-(2-Amino-phenyl)-4-chroman-3-ylmethyl-benzamide (265)

The title compound 265 was obtained following the same procedure as Example 1, steps 4 and 5. 1H NMR: (acetone) δ (ppm): 9.06 (bs, 1H), 8.01 (d, J=7.9 Hz, 2H), 7.42 (d, J=8.4 Hz, 2H), 7.31 (d, J=7.9 Hz, 1H), 7.08-6.98 (m, 3H), 6.87 (d, J=7.5 Hz, 1H), 6.82-6.66 (m, 3H), 4.62 (s, 2H), 4.22-4.17 (m, 1H), 4.88-3.81 (m, 1H), 2.88-2.71 (m, 3H), 2.61-2.53 (m, 1H), 2.41-2.33 (m, 1H). LRMS: 358.2 (calc.); 359.1 (found).


Example 159
Step 2: Methyl 4-(4-oxo-chroman-3-ylmethyl)-benzoate (264)

A suspension of 260 (400 mg, 1.36 mmol) and benzenesulfonyl hydrazine (702 mg, 4.08 mmol) in DMF (7 ml) was stirred at 100° C. during 48 h. The solvent was evaporated and the residue was diluted in AcOEt, washed with NH4Cl sat., brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (5% AcOEt/HEx) to afford the title compound 264 (170 mg, 42%) as a white solid. LRMS: 296.1 (Calc.); 297.0 (found).


Step 3: N-(2-Amino-phenyl)-4-(4-oxo-chroman-3-ylmethyl)-benzamide (266)

The title compound 266 was obtained following the same procedure as Example 1, steps 4 and 5. 1H NMR: (acetone) δ (ppm): 9.62 (bs, 1H), 7.93 (d, J=7.9 Hz, 2H), 779 (d, J=7.9 Hz, 1H), 7.58 (dd, J=7.0, 7.0 Hz, 1H), 7.39 (d, J=7.9 Hz, 2H), 7.17-7.04 (m, 3H), 6.97 (dd, J=7.0, 7.0 Hz, 1H), 6.78 (d, J=7.9 Hz, 1H), 6.60 (dd, J=7.5, 7.5 Hz, 1H), 4.88 (s, 2H), 4.44-4.39 (m, 1H), 4.28-4.21 (m, 1H), 2.26-3.21 (m, 2H), 2.83-2.74 (m, 1H). LRMS: 372.1 (calc.); 372.1 (found).




embedded image


Example 160
Step 1: Methyl 4-(3-oxo-3,4-dihydro-2H-benzo[1,4]oxazin-2-ylmethyl)-benzoate (266)

Et3N (3.18 ml, 22.8 mmol) was added to a stirring solution of 2-H-1,4-benzoxazin-3-(4H)one (2.50 g, 16.8 mmol) and methyl 4-formylbenzoate (4.59 g, 27.5 mmol) in Ac2O (20 ml). The reaction mixture was refluxed 16 h. After this mixture was cooled for 3 days, the solid was filtered and rinsed with ethyl acetate to afford the title compound 266 (657 mg, 13%) as a yellow solid. LRMS: 295.1 (Calc.); 296.0 (found).


Step 2: Methyl 4-(3-oxo-3,4-dihydro-benzo[1,4]oxazin-2-ylidenemethyl)-benzoate (267)

The title compound 267 was obtained following the same procedure as Example 158, step 2. LRMS: 297.1 (Calc.); 298.1 (found).


Step 3: N-(2-Amino-phenyl)-4-(4-ethyl-3-oxo-3,4-dihydro-2H-benzo[1,4]oxazin-2-ylmethyl)-benzamide (269)

The title compound 269 was obtained from 267 following the same procedure as Example 99, step 2, 3, then followed by Example 1, step 4, 5. 1H NMR: (DMSO) δ (ppm): 9.61 (bs, 1H), 7.91 (d, J=7.9 Hz, 2H), 7.39 (d, J=7.9 Hz, 2H), 7.22 (d, J=7.9 Hz, 1H), 7.17 (d, J=7.5 Hz, 1H), 7.11-6.91 (m, 4H), 6.77 (d, J=7.0 Hz, 1H), 6.60 (dd, J=7.0, 7.0 Hz, 1H), 4.95-4.91 (m, 1H), 4.89 (bs, 2H), 3.95 (q, J=7.0 Hz, 2H), 3.28-3.22 (m, 1H), 3.17-2.89 (m, 1H), 1.16 (t, J=7.0 Hz, 3H). LRMS: 401.2 (calc.); 402.1 (obt.).


Example 161
Step 1: N-(2-Amino-phenyl)-4-(3-oxo-3,4-dihydro-2H-benzo[1,4]oxazin-2-ylmethyl)-benzamide (270)

The title compound 270 was obtained from 267 following the same procedure as Example 1, step 4, 5. 1H NMR: (DMSO) δ (ppm): 10.74 (bs, 1H), 9.61 (bs, 1H), 7.91 (d, J=8.4 Hz, 2H), 7.41 (d, J=7.9 Hz, 2H), 7.17 (d, J=7.5 Hz, 1H), 6.99-6.85 (m, 5H), 6.78 (d, J=7.5 Hz, 1H), 6.60 (dd, J=7.0, 7.0 Hz, 1H), 4.92-4.89 (m, 3H), 3.29-3.23 (m, 1H), 3.15-3.07 (m, 1H). MS: (calc.) 373.1; (obt.) 374.1 (MH)+.




embedded image


Example 162
Step 1: Methyl 4-(1-oxo-indan-2-ylmethyl)-benzoate (271)

A 2M LDA solution in THF (4.16 ml, 8.32 mmol) was added to a solution of indanone (1.00 g, 7.57 mmol) in THF (10 ml) at −60° C. The solution was slowly warmed to 0° C. during a period of 15 min. and was agitated for 15 more min. The reaction was then cooled to −78° C. and a solution of methyl-4-bromobenzoate (1.73 g, 7.57 mmol) was slowly added. The solution was slowly warmed to −20° C. and stirred during 4 hours. The reaction mixture was quenched with HCL 1M and the solvent was evaporated. The residue was diluted in ethyl acetate, washed with brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (5-20% AcOEt/HEx) to afford the title compound 271 (245 mg, 17%) as a white solid. LRMS: 280.1 (Calc.); 281.1 (found).


Step 2: N-(2-Amino-phenyl)-4-(1-oxo-indan-2-ylmethyl)-benzamide (272)

The title compound 272 was obtained following the same procedure as Example 1, step 4, 5. 1H NMR: (DMSO) δ (ppm): 9.59 (bs, 1H), 7.91 (d, J=7.6 Hz, 2H), 7.69-7.54 (m, 2H), 7.54 (d, J=7.6 Hz, 1H), 7.45-7.40 (m, 3H), 7.16 (d, J=8.2 Hz, 1H), 6.96 (dd, J=7.3, 7.3 Hz, 1H), 6.77 (d, J=8.2 Hz, 1H), 6.59 (dd, J=7.3, 7.3 Hz, 1H), 4.87 (bs, 2H), 3.23-3.14 (m, 3H), 2.85-2.81 (m, 2H). LRMS: 356.1 (calc.); 357.2 (found).


Example 163
Step 1: 4-(1-Oxo-indan-2-ylidenemethyl)-benzoic acid (273)

To a suspension of indanone (2.00 g, 15.1 mmol) and 4-carboxybenzaldehyde (1.89 g, 12.6 mmol) in EtOH (10 ml) was added KOH (1.77 g, 31.5 mmol) at 0° C. The reaction mixture was stirred 30 min at 0° C. then at room temperature for 16 h. The solvent was evaporated and the residue was dissolved in water, acidified to pH 5 with HCl 1 M. The precipitate was filtered and rinsed with water to afford the title compound 273 (2.27 g, 57%) as a yellow solid. LRMS: 264.1 (Calc.); 265.0 (found).


Step 2: N-(2-Amino-phenyl)-4-(1-oxo-indan-2-ylidenemethyl)-benzamide (274)

The title compound 274 was obtained following the same procedure as Example 1, step 5. LRMS: 354.1 (Calc.); 355.0 (found).


Step 3: N-(2-Amino-phenyl)-4-(1-hydroxy-indan-2-ylmethyl)-benzamide (275)

To a suspension of 274 (300 mg, 0.85 mmol) in MeOH (8 ml) and water (1 ml) was added NaBH4 (75 mg, 1.95 mmol). The reaction mixture was stirred at 50° C. 16 h and cooled down. Water was added to the solution and the precipitated was filtered and rinsed with cold water to afford the title compound 275 (224 mg, 74%) as a white solid. 1H NMR: (acetone) δ (ppm): 9.05 (bs, 1H), 8.00 (dd, J=8.2, 2.7 Hz, 2H), 7.47 (d, J=8.5 Hz, 1H), 7.43 (d, J=8.2 Hz, 1H), 7.38-7.30 (m, 2H), 7.22-7.12 (m, 3H), 7.01 (ddd, J=7.6, 7.6, 1.5 Hz, 1H), 6.87 (dd, J=8.0, 1.1 Hz, 1H), 6.68 (dd, J=7.6, 7.6 Hz, 1H), 4.98 (t, J=5.8 Hz, 0.4H), 4.89 (t, J=6.7 Hz, 0.6H), 4.63 (bs, 2H), 4.45 (d, J=6.9 Hz, 0.6H), 4.06 (d, J=6.0 Hz, 0.4H), 3.30-3.19 (m, 1H), 2.88-2.48 (m, 3H, CH2). LRMS: 358.2 (calc.); 359.1 (found).




embedded image


Example 164
Step 1: 4-(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-ylmethyl)-benzoic acid (276)

To a solution of NaH (60% in mineral oil, 250 mg, 6.3 mmol) at 0° C. acetyl acetone (0.646 ml, 6.3 mmol) was added followed by 4-bromomethyl-benzoic acid methyl ester 2 (1.2 g, 5.2 mmol). The reaction mixture stirred 1 hour at room temperature and refluxed for 2 hours. Phenyl hydrazine (0.51 ml, 5.2 mmol) was added and the reaction mixture refluxed for an additional hour. THF was removed in vacuum and the oily residue was partitioned between water and ethyl acetate. Organic layer was separated, dried, evaporated and purify by chromatography on a silica gel column, eluent EtOAc-hexane (1:1) to produce an oily material (800 mg) which was treated with a solution of NaOH (0.8 g, 20 mmol) in 20 ml water for 1 hour at room temperature. The following steps, acidification with HCl (pH 6), extraction of the resultant emulsion with ethyl acetate, drying the extract with sodium sulfate, evaporation and column chromatography (eluent EtOAc-hexane, 1:1) afforded 390 mg of a mixture of 276 (the title compound) and 278 (molar ratio 1:2). [M−1]+ 307.0 and 191.1. This mixture was taken for the next step as is.


Step 2. N-(2-Amino-phenyl)-4-(3,5-dimethyl-1-phenyl-1H-pyrazol-4-ylmethyl)-benzamide (277)

Following a procedure analogous to that described in Example 92, step 2, but substituting 276 for 143, the title compound 277 was obtained in 25% yield (purified by chromatography using as eluent EtOAc-hexane, 1:1). 1H NMR: (300 MHz, DMSO-d6, δ (ppm): 9.64 (s, 1H); 7.97 (d, J=7.6 Hz, 2H), 7.42-7.56 (m, 5H), 7.37 (d, J=8.2 Hz, 2H), 7.22 (d, J=7.6 Hz, 1H), 7.03 (t, J=7.6 Hz, 1H), 6.84 (d, J=8.2 Hz, 1H), 6.66 (t, J=7.6 Hz, 1H), 4.93 (s, 2H), 3.92 (s, 2H), 2.34 (s, 3H), 2.18 (s, 3H).


Example 165
Step 1: 4-(3-Oxo-butyl)-benzoic acid (278)

To a solution of acetyl acetone (5.0 ml, 49 mmol) at room temperature NaOMe (25% wt, 10.8 ml, 47.3 mmol) was added followed by 4-bromomethyl-benzoic acid methyl ester 2 (9.0 g, 39.3 mmol). The reaction mixture refluxed 3 hours, cooled to the room temperature aid acidified with HCl (pH 1-2). Evaporation of the resultant solution yielded a residue, which was refluxed in a mixture of glacial AcOH (50 ml) and conc. HCl (25 ml) for 4 hours. Acids were removed in vacuum and the residue was triturated with water to form a crystalline material, which was collected by filtration and dried to afford 278 (6.72 g, 80% yield). [M−1] 191.1.


Step 2. 4-(5-Amino-4-cyano-3-methyl-thiophen-2-ylmethyl)-benzoic acid 279

To a refluxing suspension of 4-(3-oxo-butyl)-benzoic acid 278 (700 mg, 3.65 mmol), malonodinitrile (241 mg, 3.65 mmol) and sulfur (130 mg, 3.65 mmol) in 20 ml EtOH, diethylamine (0.5 ml, 4.8 mmol) was added. The reaction mixture refluxed 1 hour, cooled to the room temperature, acidified with conc. HCl (pH 4-5) and evaporated to yield a solid residue. This material was partitioned between water and ethyl acetate, organic layer was separated, dried, evaporated and chromatographed on a silica gel column, eluent EtOAc-hexane, 1:1, to afford the title compound 279 (300 mg, 30% yield). 1H NMR: (300 MHz, DMSO-d6, δ (ppm)): 7.87 (d, J=8.4 Hz, 2H), 7.29 (d, J=7.9 Hz, 2H), 6.98 (s, 2H), 3.92 (s, 2H), 2.03 (s, 3H).


Step 3. 4-(5-Acetylamino-4-cyano-3-methyl-thiophen-2-ylmethyl)-benzoic acid 280

To a solution of 4-(5-amino-4-cyano-3-methyl-thiophen-2-ylmethyl)-benzoic acid 279 (230 mg, 0.86 mmol) in a solvent mixture acetone (5 ml)-dichloromethane (5 ml) at room temperature acetyl chloride (0.305 ml, 4.3 mmol) was added. After 2 hours of stirring at the same conditions a precipitate of the title compound 280 formed which was collected and dried (200 mg, 75% yield). [M−1] 313.1.


Step 4: N-(2-Amino-phenyl)-4-(5-acetylamino-4-cyano-3-methyl-thiophen-2-ylmethyl)-benzamide (281)

Following a procedure analogous to that described in Example 92, step 2, but substituting 280 for 143, the title compound 281 was obtained in 25% yield. 1H NMR (DMSO) δ (ppm): 9.61 (s, 1H); 7.91 (d, J=7.9 Hz, 2H), 7.34 (d, J=8.4 Hz, 2H), 7.15 (d, J=7.5 Hz, 1H), 6.96 (t, J=6.6 Hz, 1H), 6.77 (d, J=7.0 Hz, 1H), 6.59 (t, J=7.9 Hz, 1H), 4.89 (s, 2H), 4.10 (s, 2H), 2.19 (s, 3H), 2.16 (s, 3H). [M+1] 405.0.




embedded image


Example 166
Step 1. 4-(N-Hydroxycarbamimidoylmethyl)-benzoic acid (282)

A suspension of 4-cyanomethyl benzoic acid (2.07 g, 12.86 mmol), NH2OH.HCl (1.79 g, 25.71 mmol) and potassium hydroxide (2.16 g, 38.57 mmol) in 70 ml ethanol refluxed for 36 hours, poured into 100 ml water and acidified with conc. HCl (pH 5-6). EtOH was removed in vacuum and the remaining suspension was treated with another 100 ml water. A precipitate formed which was collected and dried to afford the title compound 282. [M+1]195.1.


Step 2. 4-(5-Methyl-[1,2,4]oxadiazol-3-ylmethyl)-benzoic acid (283)

A solution of 4-(N-hydroxycarbamimidoylmethyl)-benzoic acid 282 (388 mg, 2.0 mmol) in pyridine (8 ml) was treated with acetic anhydride (0.283 ml, 3.0 mmol). The resultant solution refluxed 6 hours, evaporated in vacuum and the remaining solid was triturated with water, collected by filtration, dried and purified by chromatography on a silica gel column, eluent EtOAc, EtOAc-MeOH (10:1) and finally EtOAc-MeOH (1:1), to produce 283 (164 mg, 38% yield). [M−1]217.1


Step 3. N-(2-Amino-phenyl)-4-(5-methyl-[1,2,4]oxadiazol-3-ylmethyl)-benzamide (284)

For the preparation of the title compound 284, a procedure analogous to that described in Example 92, step 2, but substituting 283 for 143, the title compound 284 was obtained. 1H NMR: (DMSO) δ (ppm): 9.62 (s, 1H), 7.93 (d, J=7.9 Hz, 2H), 7.42 (d, J=8.4 Hz, 1H) 7.16 (d, J=7.5 Hz, 1H), 6.97 (t, J=7.9 Hz, 1H), 6.78 (d, J=7.5 Hz, 1H), 6.60 (t, J=7.9 Hz, 1H), 4.92 (s, 2H), 4.14 (s, 2H), 2.55 (s, 3H). [M+1]+ 309.2




embedded image


Example 167
Step 1: 4-(3,5-Dimethyl-pyrazol-1-yl)-benzoic acid (285)

A solution of 4-hydrazino-benzoic acid (0.60 g, 3.95 mmol) and acetyl acetone (0.405 ml, 3.95 mmol) in ethanol (20 ml) refluxed for 1 hour. Ethanol was removed in vacuum and the remaining solid was triturated with water and collected by filtration to produce 285 (0.71 mg, 83% yield). [M−1] 215.1


Step 2. N-(2-Amino-phenyl)-4-(3,5-dimethyl-pyrazol-1-yl)-benzamide (286)

For the preparation of the title compound 286, a procedure analogous to that described in Example 92, step 2, but substituting 285 for 143, the title compound 286 was obtained in 34% yield (purified by chromatography using as eluent CH2Cl2-methanol, 19:1). 1H NMR: (DMSO) δ (ppm): 9.73 (s, 1H); 8.09 (d, J=8.4 Hz, 2H), 7.64 (d, J=8.4 Hz, 2H), 7.17 (d, J=7.5 Hz, 1H), 6.98 (t, J=7.0 Hz, 1H), 6.78 (d, J=7.9 Hz, 1H), 6.60 (t, J=7.5 Hz, 1H), 6.13 (s, 1H), 4.92 (s, 2H), 2.37 (s, 3H), 2.20 (s, 3H). [M+1]+ 303.3




embedded image


Example 168
Step 1: 2-(3,4,5-Trimethoxy-phenyl)-2,3-dihydro-furan (287)

To a solution of 5-iodo-1,2,3-trimethoxybenzene (900 mg, 3.06 mmol) and 2,3-dihydrofuran (1.16 mL, 15.3 mmol) in dry DMF (8 mL) were added PPh3 (20 mg, 0.077 mmol), KOAc (901 mg, 9.18 mmol), n-Bu4NCl (850 mg, 3.06 mmol) and Pd(OAc)2 (17 mg, 0.077 mmol). The reaction mixture was stirred 18 h at 80° C. The reaction mixture was diluted with AcOEt and water. After separation, the organic layer was washed with brine, dried over anhydrous Na2SO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (AcOEt/Hexane: 20/80) to afford the title compound 287 (311 mg, 1.32 mmol, 43% yield). 1H NMR: (300 MHz, CDCl3) δ (ppm): 6.59 (s, 2H), 6.45 (m, 1H), 5.45 (dd, J=10.5, 8.4 Hz, 1H), 4.97 (m, 1H), 3.87 (s, 6H), 3.84 (s, 3H), 3.06 (m, 1H), 2.62 (m, 1H).


Step 2: 4-[5-(3,4,5-Trimethoxy-phenyl)-2,5-dihydro-furan-2-yl]-benzoic acid ethyl ester (288)

To a solution of 287 (200 mg, 0.846 mmol) and 4-Iodo-benzoic acid ethyl ester (468 mg, 1.69 mmol) in dry acetonitrile (4 mL) were added PPh3 (20 mg, 0.076 mmol), Ag2CO3 (467 mg, 1.69 mmol) and Pd(OAc)2 (7 mg, 0.03 mmol). The reaction mixture was stirred 18 h at 80° C. The reaction mixture was filtered through celite and washed with AcOEt. Water was added and the phases were separated. The organic layer was washed with brine, dried over anhydrous Na2SO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (AcOEt/Hexane: 30/70) to afford the title compound 288 (280 mg, 0.728 mmol, 86% yield). 1H NMR (300 MHz, CDCl3) δ (ppm): 8.05 (d, J=7.5 Hz, 2H), 7.45 (d, J=7.5 Hz, 2H), 6.61 (s, 2H), 6.18-5.95 (m, 4H), 4.38 (q, J=7.0 Hz, 2H), 3.88 (s, 6H), 3.84 (s, 3H), 1.39 (t, J=7.0 Hz).


Step 3: N-(2-Amino-phenyl)-4-[5-(3,4,5-trimethoxy-phenyl)-2,5-dihydro-furan-2-yl]-benzamide (289)

Following a procedure analogous to that described in Example 1, step 4, 5, but substituting 288 for 6, the title compound 289 was obtained in 48% yield. 1H NMR (DMSO) δ (ppm): 8.00 (s, 1H), 7.91 (d, J=7.9 Hz, 2H), 7.48 (d, J=7.9 Hz, 2H), 7.33 (d, J=7.5 Hz, 1H), 7.09 (t, J=7.5 Hz, 1H), 6.92-6.82 (m, 2H), 6.61 (s, 2H), 6.14-5.99 (m, 4H), 3.89 (s, 6H), 3.84 (s, 3H).


Example 169
Step 1: N-(2-Amino-phenyl)-4-[5-(3,4,5-trimethoxy-phenyl)-tetrahydro-furan-2-yl]-benzamide. (290)

To a degazed solution of 289 (43 mg, 0.096 mmol) in AcOEt (4 mL) was added PtO2 (3 mg, 0.01 mmol) and the reaction mixture was stirred at room temperature under a 1 atm pressure of H2 for 16 h. The reaction flask was purged with N2 then the reaction mixture was filtered through celite, rinsed with MeOH and concentrated. The crude residue was purified three times by flash chromatography on silica gel (MeOH/DCM: 2/98, AcOEt/DCM: 30/70 and AcOEt/CHCl3: 30/70) to afford the title compound 290 (10 mg, 0.22 mmol, 23% yield). 1H NMR (CDCl3) δ (ppm): 8.10 (s, 1H), 7.91 (d, J=8.0 Hz, 2H), 7.50 (d, J=8.0 Hz, 2H), 7.34 (d, J=7.5 Hz, 1H), 7.10 (t, J=7.5 Hz, 1H), 6.96-6.85 (m, 2H), 6.64 (s, 2H), 5.33 (t, J=7.0 Hz, 1H), 5.21 (t, J=7.0 Hz, 1H), 3.89 (s, 6H), 3.85 (s, 3H), 2.59-2.40 (m, 2H), 2.09-1.88 (m, 2H).




embedded image


Example 169
Step 1: [2-(4-Vinyl-benzoylamino)-phenyl]-carbamic acid tert-butyl ester (291)

Following a procedure analogous to that described in Example 143, step 2, but substituting 184 for 221, the title compound 291 was obtained in 90% yield as a dark yellow oil. 1H NMR: (300 MHz, CDCl3) δ (ppm): 9.18 (s, 1H), 7.94 (d, J=8.5 Hz, 2H), 7.77 (d, J=7.5 Hz, 1H), 7.49 (d, J=8.5 Hz, 2H), 7.30-7.10 (m, 3H), 6.89 (s, 1H), 6.77 (dd, J=17.4, 11.0 Hz, 1H), 5.87 (d, J=17.4 Hz, 1H), 5.39 (d, J=11.0 Hz, 1H), 1.52 (s, 9H).


Step 2: 12-(4-Oxiranyl-benzoylamino)-phenyl′-carbamic acid tert-butyl ester (292)

To a solution of 291 (4.1 g, 12.1 mmol) in dry CHCl3 (60 mL) was aided m-CPBA 70% (3.6 g, 14.5 mmol). The reaction mixture was stirred at room temperature for 5 h then additional m-CPBA (0.6 g, 2.4 mmol) was added and the stirring continued for 1 h. A further amount of m-CPBA (0.6 g, 2.4 mmol) was added and the reaction mixture was stirred for 16 h. Chloroform and a 10% solution of NaHCO3 were added and the phases were separated. The organic layer was washed with water and brine, dried over anhydrous Na2SO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (AcOEt/Hexane: 1/3) to afford the title compound 292 (2.86 g, 8.07 mmol, 66% yield). 1H NMR (300 MHz, CDCl3) δ (ppm): 9.20 (s, 1H), 7.95 (d, J=8.1 Hz, 2H), 7.86-7.75 (m, 1H), 7.38 (d, J=8.1 Hz, 2H), 7.26-7.10 (m, 3H), 6.34-6.70 (m, 1H), 3.93 (t, J=3.0 Hz, 1H), 3.20 (t, J=5.0 Hz, 1H), 2.80 (dd, J=5.0, 3.0 Hz, 1H), 1.52 (s, 9H).


Step 3: (2-{4-[1-Hydroxy-2-(3,4,5-trimethoxy-phenylamino)-ethyl]-benzoylamino}-phenyl)-carbamic acid tert-butyl ester (295) and (2-{4-[2-Hydroxy-1-(3,4,5-trimethoxy-phenylamino)-ethyl]-benzoylamino}-phenyl)-carbamic acid tert-butyl ester (293)


To a stirred solution of CoCl2 (8 mg, 0.06 mmol) in dry acetonitrile (10 mL) was added 292 (1 g, 2.8 mmol) followed by 3,4,5-trimethoxyaniline (516 mg, 2.8 mmol) and the reaction mixture was allowed to react for 16 h at room temperature then it was heated at 60° C. for 5 h. The reaction mixture was partitioned between AcOEt and water and the phases were separated. The organic layer was washed with brine, dried over anhydrous Na2SO4, filtered and concentrated. The crude residue was purified by flash chromatography on silica gel (AcOEt/Hexane: 1/1) to afford compounds 293 and 295 (combined: 1.07 g, 1.99 mmol, 71% yield, ratio 292/295=5/1) which can be separated by flash chromatography on silica gel (AcOEt/Hexane: 1/1). 1H NMR (300 MHz, CDCl3) δ (ppm): Compound 292: 9.21 (s, 1H), 7.92 (d, J=8.1 Hz, 2H), 7.73 (d, J=6.6 Hz, 1H), 7.46 (d, J=8.1 Hz, 2H), 7.28-7.10 (m, 3H), 6.90 (s, 1H), 5.83 (s, 2H), 4.54-4.44 (m, 1H), 3.93 (dd, J=8.1, 3.9 Hz, 1H), 3.84-3.72 (m, 1H), 3.71 (s, 3H), 3.66 (s, 6H), 1.47 (s, 9H). Compound 295: 9.22 (s, 1H), 7.91 (d, J=8.1 Hz, 2H), 7.77 (d, J=7.2 Hz, 1H), 7.46 (d, J=8.1 Hz, 2H), 7.30-7.21 (m, 3H), 6.88 (s, 1H), 6.15 (s, 2H), 5.16-5.06 (m, 1H), 3.81 (s, 6H), 3.78 (s, 3H), 3.50-3.25 (m, 2H), 1.51 (s, 9H).


Step 4: N-(2-Amino-phenyl)-4-[2-hydroxy-1-(3,4,5-trimethoxy-phenylamino)-ethyl]-benzamide (294)

Following a procedure analogous to that described in Example 42, step 3, but substituting 293 for 46, the title compound 294 was obtained in 50% yield. 1H NMR (DMSO) (ppm): 8.36 (s, 1H), 7.74 (d, J=6.9 Hz, 2H), 7.30 (d, J=7.8 Hz, 2H), 7.18 (d, J=6.9 Hz, 1H), 7.00 (t, J=7.2 Hz, 1H), 6.72 (m, 2H), 5.69 (s, 2H), 4.34 (m, 1H), 4.02-3.52 (m, 2H), 3.66 (s, 3H), 3.57 (s, 6H).


Example 170
Step 1: N-(2-Amino-phenyl)-4-[2-oxo-3-(3,4,5-trimethoxy-phenyl)-oxazolidin-4-yl]-benzamide (296)

To a solution of 293 (200 mg, 0.372 mmol) in toluene (5 mL) and THF (1 mL) was added 1,1′-carbonyldiimidazole (72 mg, 0.45 mmol) followed by Et3N (156 μL, 1.12 mmol) and the mixture was stirred at room temperature for 5 h then at 90° C. for 48 h. The reaction mixture was diluted with AcOEt, a solution of sat. NH4Cl was added and the phases were separated. The organic layer was washed with brine, dried over anhydrous Na2SO4, filtered and concentrated. The crude residue was purified by flash chromatography on silica gel (DCM/AcOEt: 80/20) to afford the desired compound (120 mg, 0.21 mmol, 57% yield). 1H NMR (DMSO) δ (ppm): 9.37 (s, 1H), 7.98 (d, J=8.1 Hz, 2H), 7.76 (d, J=7.5 Hz, 1H), 7.41 (d, J=8.1 Hz, 2H), 7.25-15 (m, 3H), 6.88 (s, 1H), 6.61 (s, 2H), 5.40 (dd, J=8.7, 6.0 Hz, 1H), 4.79 (t, J=8.7 Hz, 1H), 4.19 (dd, J=8.7, 6.0 1H), 3.75 (s, 3H), 3.72 (s, 6H), 1.47 (s, 9H).


Following a procedure analogous to that described in Example 42, step 3, but substituting the previous compound for 46, the title compound 296 was obtained in 81% yield). 1H NMR (DMSO) δ (ppm): 8.03 (s, 1H), 7.91 (d, J=8.1 Hz, 2H), 7.41 (d, J=8.1 Hz, 2H), 7.30 (d, J=7.5 Hz, 1H), 7.07 (t, J=7.5 Hz, 1H), 6.82 (d, J=7.5 Hz, 2H), 6.61 (s, 2H), 5.40 (dd, J=8.7, 6.0 Hz, 1H), 4.78 (t, J=8.7 Hz, 1H), 4.18 (dd, J=8.7, 6.0 Hz, 1H), 3.75 (s, 3H), 3.71 (s, 6H).


Example 171
Step 1: N-(2-Amino-phenyl)-4-[2-oxo-3-(3,4,5-trimethoxy-phenyl)-oxazolidin-5-yl]-benzamide (297)

To a solution of 295 (130 mg, 0.242 mmol) in DCM (2 mL) was added 1,1′-carbonyldiimidazole (47 mg, 0.29 mmol) and the mixture was stirred at room temperature for 16 h. DCM was removed under reduced pressure, AcOEt and a solution of sat. NH4Cl were added and the phases were separated. The organic layer was washed with brine, dried over anhydrous Na2SO4, filtered and concentrated. The crude residue was purified by flash chromatography on silica gel (Hexane/AcOEt: 30/70) to afford the desired compound (80 mg, 0.14 mmol, 58% yield). 1H NMR (DMSO) δ (ppm): 9.39 (s, 1H), 8.04 (d, J=8.1 Hz, 2H), 7.84 (d, J=7.5 Hz, 1H), 7.52 (d, J=8.1 Hz, 2H), 7.26-7.12 (m, 3H), 6.86-6.74 (m, 3H), 5.70 (t, J=8.4 Hz, 1H), 4.24 (t, J=8.7 Hz, 1H), 3.97-3.87 (m, 1H), 3.87 (s, 6H), 3.82 (s, 3H), 1.52 (s, 9H).


Following a procedure analogous to that described in Example 42, step 3, but substituting the previous compound for 46, the title compound 297 was obtained in 94% yield). 1H NMR (DMSO) δ (ppm): 8.38 (s, 1H), 7.97 (d, J=7.5 Hz, 2H), 7.47 (d, J=8.1 Hz, 2H), 7.35 (d, J=7.0 Hz, 1H), 7.08 (t, J=7.0 Hz, 1H), 6.97-6.87 (m, 2H), 6.79 (s, 2H), 5.66 It, J=8.1 Hz, 1H), 4.41 (t, J=9.0 Hz, 1H), 3.91 (t, J=7.8 Hz, 1H), 3.86 (s, 6H), 3.82 (s, 3H).




embedded image




embedded image


Example 172
Step 1: {2-[4-(1-Azido-2-hydroxy-ethyl)-benzoylamino]-phenyl}-carbamic acid tert-butyl ester (298) and {2-[4-(2-Azido-1-hydroxy-ethyl)-benzoylamino]-phenyl}-carbamic acid tert-butyl ester (302)

To a solution of 292 (210 mg, 0.59 mmol) in acetonitrile (9 mL) and water (1 mL) was added CeCl3 heptahydrate (110 mg, 0.296 mmol) followed by NaN3 (42 mg, 0.65 mmol). The reaction mixture was refluxed for 3 h then acetonitrile was removed under reduced pressure. The residue was diluted with DCM, washed with brine, dried over anhydrous Na2SO4, filtered and concentrated. Purification by flash chromatography on silica gel (AcOEt/Hexane: 1/1) afforded a 1:1 mixture of title compounds 298 and 302 (combined: 187 mg, 0.47 mmol, 80% yield) which were separated by flash chromatography on silica gel (AcOEt/Hexane: 2/5). Compound 298: 1H NMR: (300 MHz, CDCl3/CD3OD) δ (ppm): 7.95 (d, J=8.1 Hz, 2H), 7.70-7.63 (m, 1H), 7.43 (d, J=8.1 Hz, 2H), 7.36-7.29 (m, 1H), 7.24-7.14 (m, 2H), 4.69 (dd, J=7.5, 4.8 Hz, 1H), 3.80-3.65 (m, 2H), 1.49 (s, 9H). Compound 302: 1H NMR: (300 MHz, CDCl3) δ (ppm): 9.28 (s, 1H), 7.86 (d, J=8.4 Hz, 2H), 7.71 (d, J=7.5 Hz, 1H), 7.38 (d, J=8.4 Hz, 2H), 7.25-7.08 (m, 3H), 7.01 (s, 1H), 4.87 (dd, J=6.9, 5.1 Hz, 1H), 3.47-3.38 (m, 2H), 3.32-3.21 (bs, 1H), 1.50 (s, 9H).


Step 2: {2-[4-(1-Amino-2-hydroxy-ethyl)-benzoylamino]-phenyl}-carbamic acid tert-butyl ester (299)

To a solution of 298 (156 mg, 0.39 mmol) in MeOH (2 mL) was added Pd/C 10% (20 mg, 0.02 mmol). The reaction mixture was stirred under a 1 atm pressure of H2 at room temperature for 16 h then it was purged with N2. The palladium was removed by filtration through celite and the MeOH was evaporated under reduced pressure to afford the title compound 299 (88 mg, 0.24 mmol, 60% yield), which was used without purification. 1H NMR (300 MHz, CDCl3) δ (ppm): 9.24 (s, 1H), 7.90 (d, J=7.8 Hz, 2H), 7.71 (d, J=6.6 Hz, 1H), 7.40 (d, J=7.8 Hz, 2H), 7.31-7.10 (m, 3H), 7.06-6.94 (m, 1H), 4.12 (dd, J=7.5, 4.5 Hz, 1H), 3.74 (dd, J=7.8, 5.4 Hz, 1H), 3.64-3.51 (m, 1H), 2.64 (s, 3H), 1.49 (s, 9H).


Step 3: (2-{4-[1-(3,4-Dimethoxy-benzoylamino)-2-hydroxy-ethyl]benzoylamino}-phenyl-carbamic acid tert-butyl ester (300)

To a stirred solution of 299 (88 mg, 0.24 mmol) in dry DCM (2 mL) at −20° C. was added 3,4-dimethoxybenzoyl chloride (50 mg, 0.25 mmol) followed by Et3N (37 μL, 126 mmol). The reaction mixture was allowed to warm up to room temperature then was stirred for 48 h. A solution of sat. NH4Cl was added, followed by DCM and the phases were separated. The organic layer was washed with brine, dried over anhydrous Na2SO4, filtered and concentrated. The crude residue was purified by flash chromatography on silica gel (MeOH/DCM: 4/96) to afford title compound 300 (91 mg, 0.17 mmol, 71% yield). 1H NMR (300 MHz, CDCl3) δ (ppm): 9.29 (s, 1H), 7.81 (d, J=8.1 Hz, 2H), 7.65-7.58 (m, 1H), 7.46 (m, 7H), 6.80 (d, J=8.1 Hz, 1H), 5.20-5.10 (m, 1H), 3.95-3.78 (m, 2H), 3.88 (s, 3H) 3.84 (s, 3H), 1.47 (s, 9H).


Step 4: N-(2-Amino-phenyl)-4-[2-(3,4-dimethoxy-phenyl)-4,5-dihydro-oxazol-4-yl]-benzamide (301)

To a solution of 300 (91 mg, 0.17 mmol) in dry THF (2 mL) was added the Burgess reagent (44 mg, 0.19 mmol) and the mixture was stirred at 70° C. for 2 h. The reaction mixture was partitioned between AcOEt and water and the phases were separated. The organic layer was washed with brine, dried over anhydrous Na2SO4, filtered and concentrated. The crude residue was purified by flash chromatography on silica gel (MeOH/DCM: 3/97) to afford the Boc-protected intermediate (75 mg, 0.14 mmol, 85% yield). 1H NMR (CDCl3) δ (ppm): 9.31 (s, 1H), 7.94 id, J=8.4 Hz, 2H), 7.72 (d, J=7.5 Hz, 1H), 7.66 (d, J=8.1 Hz, 1H), 7.61 (s, 1H), 7.39 (d, J=8.1 Hz, 2H), 7.27 (d, J=6.0 Hz, 1H), 7.23-7.08 (m, 3H), 6.93 (d, J=8.7 Hz, 1H), 5.43 (t, J=9.0 Hz, 1H), 4.84 (t, J=9.3 Hz, 1H), 4.26 (t, J=8.4 Hz, 1H), 3.95 (s, 3H), 3.94 (s, 3H), 1.50 (s, 9H).


Following a procedure analogous to that described in Example 42, step 3, but substituting the previous compound for 46, the title compound 301 was obtained in 82%. 1H NMR (CDCl3) δ (ppm): 8.01 (s, 1H), 7.89 (d, J=7.9 Hz, 2H), 7.65 (dd, J=8.4, 1.5 Hz, 1H), 7.60 (d, J=1.5 Hz, 1H), 7.41 (d, J=7.9 Hz, 2H), 7.32 d, J=7.9 Hz, 1H), 7.08 (t, J=6.6 Hz, 1H), 6.92 (d, J=8.4 Hz, 1H), 6.84 (d, J=7.9 Hz, 2H), 5.43 (dd, J=9.7, 8.4 Hz, 1H), 4.83 (ad, J=9.7, 8.4 Hz, 1H), 4.25 (t, J=8.1 Hz, 1H), 3.94 (s, 3H), 3.93 (s, 3H).


Example 173
Step 1: {2-[4-(2-Amino-1-hydroxy-ethyl)-benzoylamino]-phenyl}-carbamic acid tert-butyl ester (303)

The title compound 303 was obtained in 94% yield from 302 following the same procedure as in Example 172, step 2. The compound 303 was used directly for next step without purification.


Step 2: 2-{4-[2-(3,4-Dimethoxy-benzoylamino)-1-hydroxy-ethyl]-benzoylamino}-phenyl)-carbamic acid tert-butyl ester (304)

The title compound 304 was obtained in 40% yield from 303 and 3,4-dimethoxybenzoyl chloride following the same procedure as in Example 172, step 3. 1H NMR (CDCl3) δ (ppm): 9.31 (s, 1H), 7.78 (d, J=8.1 Hz, 2H), 7.68 (d, J=6.9 Hz, 1H), 7.38 (d, J=1.8 Hz, LH), 7.33 (d, J=8.1 Hz), 7.30-7.06 (m, 4H), 7.00-6.93 (m, 1H), 6.79 (d, J=8.4 Hz, 1H), 4.89-4.82 (m, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.85-3.73 (m, 1H), 3.44-3.32 (m, 1H), 1.46 (s, 9H).


Step 3: N-(2-Amino-phenyl)-4-[2-(3,4-dimethoxy-phenyl)-4,5-dihydro-oxazol-5-yl]-benzamide (305)

Following a procedure analogous to that described in Example 172, step 4, 5, but substituting 304 for 300, the title compound 305 was obtained in 63%. 1H NMR (CDCl3) δ (ppm): 8.02 (s, 1H), 7.93 (d, J=8.1 Hz, 2H), 7.63 (dd, J=8.4, 1.8 Hz, 1H), 7.60 (s, 1H), 7.44 (d, J=8.1 Hz, 2H), 7.33 (d, J=7.5 Hz, 1H), 7.09 (t, J=7.5 Hz, 1H), 6.91 (d, J=8.1 Hz, 1H), 6.85 (d, J=8.1 Hz, 2H), 5.74 (dd, J=10.0, 7.8 Hz, 1H), 4.51 (dd, J=14.5, 10.0 Hz, 1H), 4.00-3.90 (m, 7H).




embedded image


Example 178
Step 1: [2-(4-formyl-benzoylamino)-phenyl]-carbamic acid tert-butyl ester (315)

To a suspension of 4-carboxybenzaldehyde (6 g, 40 mmol) in dichloromethane (10 mL) was added thionyl chloride (4.1 mL, 56 mmol, 1.4 eq), followed by DMF (1 dropwise. The mixture was refluxed for 4 hours and excess of thionyl chloride and DMF were removed under reduced pressure. To a solution of (2-aminophenyl)-carbamic acid tert-butyl ester (8.32 g, 40 mmol, 1 eq) in dichloromethane (80 mL), stirred at 0° C., was added a suspension of 4-formyl benzoyl chloride in dichloromethane (20 mL), followed by diisopropyl ethylamine (3.61 mL, 20 mmol, 1 eq). The mixture was stirred for 30 minutes at 0° C. then at room temperature for 30 minutes. The crude residue was diluted with dichloromethane (300 mL) and washed with water. The combined organic layers were dried (MgSO4), filtered and concentrated under vacuo. The crude residue was purified by column chromatography on silica gel (elution 20% ethyl acetate in hexane) to give 6.1 g (45% yield) of anilide 315. 1H NMR (CDCl3): δ 10.18 (s, 1H), 9.64 (brs, 1H), 8.20 (d, J=7.9 Hz, 2H), 8.06 (d, J=7.9 Hz, 2H), 7.96 (d, J=7.9 Hz, 1H), 7.28-7.38 (m, 1H), 7.24 (d, J=4.4 Hz, 1H), 6.84 (s, 1H), 6.81 (d, J=8.8 Hz, 1H), 1.58 (s, 9H).


Step 2: (2-{4-[(3,4-Dimethoxyphenylamino)-Methyl]-Benzoylamino}-Phenyl)-Carbamic Acid Tert-Butyl Ester (316)

Following a procedure analogous to that described in Example 144, step 3, but substituting the previous compound for 226, the title compound 316 was obtained in quantitative yield. 1H NMR (CDCl3): δ 9.21 (brs, 1H), 8.01 (d, J=7.9 Hz, 2H), 7.86 (d, J=7.0 Hz, 1H), 7.55 (d, J=8.3 Hz, 2H), 7.20-7.34 (m, 3H), 6.89 (brs, 1H), 6.81 (d, J=8.8 Hz, 1H), 3.37 (d, J=2.2 Hz, 1H), 6.23 (dd, J=2.6, 8.3 Hz, 1H), 4.45 (s, 2H), 3.89 (s, 3H), 3.88 (s, 3H), 1.58 (s, 9H).


Step 3: N-(2-Aminophenyl)-4-[1-(3,4-dimethoxyphenyl)-3-(4-methylsulfanylphenyl)-ureidomethyl]-benzamide 317

To a solution of anilide 316 (500 mg, 1.047 mmol) in chloroform/THF (1:1, 10 mL) was added isocyanate (169 μL, 1.205 mmol, 1.15 eq). The mixture was stirred overnight at room temperature under nitrogen and the crude residue was concentrated and purified by column chromatography on silica gel (elution 40% ethyl acetate in hexane) to give 606 mg (90% yield) of the desired compound. 1H NMR (CDCl3): δ 9.25 (s, 1H), 7.96 (d, J=8.3 Hz, 2H), 7.85 (d, J=7.0 Hz, 1H), 7.44 (d, J=8.3 Hz, 2H), 7.20-7.36 (m, 6H), 6.93 (d, J=3.5 Hz, 1H), 6.90 (s, 1H), 6.75 (dd, J=2.2, 8.3 Hz, 1H), 6.68 (dd, J=2.6 Hz, 1H), 6.33 (s, 1H), 5.0 (s, 2H), 3.97 (s, 3H), 3.85 (s, 3H), 2.51 (s, 3H), 1.57 (s, 9H).


Following a procedure analogous to that described in Example 42. step 3, but substituting the previous compound for 46, the title compound 317 was obtained in 85% yield. 1H NMR (DMSO-d6): δ10.14 (brs, 1H), 7.99 (d, J=7.9 Hz, 2H), 7.93 (s, 1H), 7.49 (d, J=8.35 Hz, 4H), 7.39 (d, J=7.5 Hz, 1H), 7.10-7.30 (2m, 5H), 6.97 (dd, J=2.2, 8.35 Hz, 1H), 6.77 (dd, J=2.2, 8.35 Hz, 1H), 5.02 (s, 2H), 3.80 (s, 3H), 3.77 (s, 3H), 2.48 (s, 3H).




embedded image


Example 179
Step 1: N-(2-Amino-phenyl)-6-chloro-nicotinamide (318)

Following the procedure described in Example 42, step 2, the title compound 318 was obtained in 80% yield. LRMS=calc: 246.69. Found: 247.7.


Step 2: N-(2-Amino-phenyl)-6-(quinolin-2-ylsulfanyl)-nicotinamide (319)

Following the procedure described in Example 45, step 1 but substituting 318 for 3,4,5-trimethoxybenzylamine, the title compound 319 was obtained in 20% yield. 1H NMR: (CD3OD-d6) δ (ppm): 9.08 (d, J=1.9 Hz, 1H), 8.35-8.25 (m, 2H), 7.99-7.56 (m, 7H), 7.23 (ad, J=1.2, 7.9 Hz, 1H), 7.12 (dd J=1.4, 7.9, 14.0 Hz, 1H), 6.93 (dd, J=1.2, 8.0 Hz, 1H), 6.79 (add, J=1.4, 7.7, 13.7 Hz, 1H).




embedded image


Example 261
Step 1: 4-[(4-Morpholin-4-yl-phenylamino)-methyl]-benzoic acid (402a)

A suspension of 4-formylbenzoic acid (2.53 g; 16.8 mmol; 1 eq), 4-morpholinoaniline (3 g; 16.8 mmol; 1 eq) and Bu2SnCl2 (510 mg; 1.68 mmol; 0.1 eq) in dry THF (20 ml) was treated with PhSiH3 (3.31 ml; 16.8 mmol; 1 eq) at room temperature for 12 h. The reaction, was filtered and the solid product was washed with MeOH. The yield of the reaction was 5.25 g (99%). LRMS: calc 312.37. found: 313.2.


Step 2: N-(2-Amino-phenyl)-4-[(4-morpholin-4-yl-phenylamino)-methyl]-benzamide (402)

To a solution of acid 402a (2.61 g; 8.36 mmol; 1 eq), 1,2-phenylenediamine (903 mg; 8.36 mmol; 1 eq) and BOP (3.70 g; 8.36 mmol; 1 eq) in dry DMF (20 ml) was added Et3N (4.64 ml; 33.4 mmol; 4 eq). After stirring overnight most of the DMF was removed under reduced pressure and chromatographed (Hex:EtAcO: 1:2/EtAcO). The crystal 402 was obtained in 70% (2.35 g). 1H-NMR (300.07 MHz; DMSO-d6) δ (ppm): 9.65 (s, 1H), 7.97 (d, J=7.9, 2H), 7.53 (d, J=7.9, 2H), 7.22 (d, J=7.5, 1H), 7.03 (dd, J=7.0, 7.5, 1H), 6.83 (d, J=7.9, 1H), 6.77 (d, J=8.8, 2H), 6.65 (dd, J=7.5, 7.0, 1H), 6.57 (d, J=8.8, 2H), 4.93 (bs, 2H), 4.36 (d, J=5.7, 2H), 3.75 (m, 4H), 2.93 (m, 4H). LRMS: calc 402.49. found: 403.4.




embedded image


Example 283a
Step 1. 4-[(3,4-Dimethoxyphenylamino)-methyl]-benzoic acid (424a)

In a 50 ml flask, a mixture of 4-aminoveratrole (1.53 g, 10 mmol), 4-formyl-benzoic acid (1.50 g, 10 mmol), dibutyltin dichloride (304 mg, 1 mmol), phenylsilane (2.47 ml, 20 mmol) in anhydrous THF (10 mL) and DMA (10 ml) was stirred overnight. at room temperature. After solvents removal, the crude residue was dissolved in ethyl acetate (100 ml) and then washed with saturated aqueous solution of NaHCO3 (50 ml×3). The combined aqueous layers were acidified with 6% of NaHSO4 to pH=4. The resulting white suspension was filtrated and then the filter cake was washed with water (5 ml×3). The cake was dried over freeze dryer to afford acid (1.92 g, 67%) white solid product. LRMS=288 (MH)+.


Step 2. N-(2-Aminophenyl)-4-[(3,4-dimethoxyphenylamino)-methyl]-benzamide (424b)

In a 150 ml flask, a mixture of acid (1.92 g, 6.69 mmol), benzotriazol-1-yloxy-tris(dimethylamino)phosphonium hexafluorophosphate (BOP, 3.26 g, 7.37 mmol), triethylamine (1.87 ml, 13.4 mmol), o-phenylenediamine (1.30 g, 12.02 mmol) in methylenechloride (67 ml) was stirred at rt for 2 h. After solvents removal, the crude residue was dissolved in EtOAc (100 ml) and then washed with NaHCO3 saturated solution and brine 50 ml. The combined organic layers were dried over Na2SO4 and the filtrate was concentrated to dryness. The crude material was submitted to a chromatographic purification (column silica, 55%-70% EtOAc in 1% Et3N of hexanes) and then the all interested fractions were concentrated to dryness. The residue was suspended in minimum quantities of ethyl acetate and then filtered to afford final product (1.49 g, 59%). 1H NMR (300 MHz, DMSO-d5) δ (ppm): 9.65 (s, 1H), 7.98 (d, J=7.9 Hz, 2H), 7.54 (d, J=7.9 Hz, 2H), 7.22 (d, J=7.9 Hz, 1H), 7.02 (dd, J=7.9, 7.9 Hz, 1H), 6.83 (d, J=7.9 Hz, 1H), 6.72 (d, J=8.79 Hz, 1H), 6.45 (dd, J=7.5, 7.5 Hz, 1H), 6.39 (d, J=2.2 Hz, 1H), 6.01-6.08 (m, 2H), 4.94 (s, 2H, NH2), 4.36 (d, J=6.16 Hz, 2H), 3.72 (s, 3H), 3.65 (s, 3H).


Example 283b
Step 1: N-(4-Aminothiophen-3-yl)-4-[(3,4-dimethoxyphenylamino)-methyl]-benzamide

Acid 424a (1040 mg; 3.62 mmol); 3,4-diaminothiophene dihydrochloride (1017 mg; 5.44 mmol; 1.50 eq.) and BOP (1770 mg; 4.0 mmol; 1.1 eq.) were suspended in MeCN, treated with triethylamine (4 mL; 29 mmol) and stirred for 18 h at room temperature; concentrated and purified by chromatographic column on silica gel (elution 50% EtOAc in DCM) to render 527 mg (1.37 mmol; 38% yield) of compound 424c which was 90% pure. 1H-NMR (300.07 MHz; DMSO-d6) δ (ppm): 8.56 (s, 1H), 7.78 (d, J=7.9 Hz, 2H), 7.43 (d, J=3.5 Hz, 1H), 7.38 (d, J=7.9 Hz, 2H), 6.73 (d, J=8.8 Hz, 1H), 6.33 (d, J=3.5 Hz, 1H), 6.58 (d, J=2.6 Hz, 1H), 6.13 (dd, J=2.6, 8.3 Hz, 1H), 4.33 (s, 2H), 3.80 (s, 3H), 3.78 (s, 3H). LRMS: calc: 383.4642. found: 384.2 (M+H); 406.2 (M+Na) and 192.6 (M+2H)/2.




embedded image


Step 1: Methyl-(5-nitrobenzothiazol-2-yl)-amine (456a)

A mixture of 2-fluoro-5-nitroaniline (861 mg; 5.52 mmol; 1.02 eq); Im2CS (960.3 mg; 5.39 mmol) and dry K2CO3 (1.45 g) was suspended in dry DME (10 mL) and stirred under nitrogen for 90 min at room temperature. The yellow suspension was made fluid by diluting with DME (10 mL) followed by addition of 40% MeNH2 in water (4.0 mL; 46.5 mmol; 8.6 eq). The system was heated up to 65 C and stirred at this temperature for 3.5 h, cooled down, diluted with ethyl acetate and washed with saturated NaCl (×2). After conventional work-up procedures, the dark crude mixture was purified through chromatographic column on silica gel (elution 50% EtOAc in hexane, then 5% MeOH in DCM), to afford 836.8 mg (4.0 mmol; 72% yield) of compound 456a.


Step 2: N-Methyl-benzothiazole-2,5-diamine (456b)

A mixture of nitro compound 456a (593 mg; 2.83 mmol); SnCl2 (4.02 g; 20.8 mmol; 7.35 eq) and NH4OAc (4.5 g) was suspended in THF:MeOH:H2O=1:1:1 (60 mL) and stirred at 70° C. for 2 h, cooled down, diluted with ethyl acetate and successively washed with saturated NaHCO3 and brine; dried (MgSO4) filtered and concentrated. The residue (443 mg; 2.43 mmol; 87%) showed consistent spectrum and suitable purity degree for synthetic purposes, therefore was submitted to the next step without further purification.


Step 3: 4-[(2-Methylaminobenzothiazol-5-Ylamino)-Methyl]-Benzoic Acid (456c)

A solution of aniline 456b (509 mg; 2.8 mmol); 4-formylbenzoic acid (426 mg; 2.8 mmol) and Bu2SnCl2 (198 mg; 0.65 mmol; 23% mol) in DME (14 mL) was stirred at room temperature for 3 min and treated with neat PhSiH3 (0.6 mL; 4.7 mmol; 1.7 mmol) and allowed to react for 18 h. After quenching the excess of silane with MeOH, the mixture was concentrated and purified by chromatographic column on silica gel (elution 5% MeOH in DCM) to give 729 mg (2.54 mmol; 91% yield) of acid 456c.


Step 4: N-(2-Aminophenyl)-4-[(2-methylaminobenzothiazol-5-ylamino)-methyl]-benzamide (456)

A mixture of acid 456c (729 mg; 2.54 mmol), 1,2-phenylenediamine (376 mg; 3.47 mmol; 1.36 eq) and BOP (1.43 g; 3.23 mmol; 1.27 eq) was dissolved in acetonitrile (15 mL), treated with triethylamine (3 mL) and stirred overnight. The reaction mixture was quenched with methanol, concentrated and purified by chromatographic column on silica gel (40% EtOAc in DCM) and the obtained material crystallized from DCM to give 358 mg (0.88 mmol; 35% yield) of pure compound 456. 1H-NMR (300 MHz; DMSO-d6) δ (ppm): 9.57 (s, 1H), 7.92 (d, J=7.9 Hz, 2H), 7.66 (d, J=4.8 Hz, 1H), 7.48 (d, J=8.3 Hz, 2H), 7.26 (d, J=8.3 Hz, 1H), 7.15 (d, J=7.9 Hz, 1H), 6.95 (t, J=7.5 Hz, 1H), 6.76 4.87 (bs, 2H), 6.58 (t, J=7.5 Hz, 1H), 6.54 (d, J=1.8 Hz, 1H), 6.13 (dd, J=1.8, 8.3 Hz, 1H), 6.27 (t, J=5.7 Hz, 1H), 4.87 (bs, 2H), 4.36 (d, J=5.7 Hz, 2H), 2.85 (d, J=4.8 Hz, 3H). LRMS: calc: 403.5008. found: 404.2 (M+NH) and 202.6 (M+2H)/2.




embedded image


Example 235
Step 1: Methyl-4-(5-methoxy-1H-benzimidazol-2-yl-sulfanylmethyl)-benzoate (376a)

To a solution 5-methoxy-2-thiobenzimidazole (2.00 g, 11.1 mmol of in anhydrous DMF (40 ml) was added methyl-4-(bromomethyl)-benzoate (2.54 g, 11.1 mmol). The reaction mixture was stirred 16 h at room temperature. The DMF was evaporated and the residue was triturated in ethyl acetate during 30 min and then filtered and dried. The desired compound was isolated as the HBr salt: 98% yield, (4.44 g). 1H NMR: (DMSO) δ (ppm): 7.90 (d, J=8.8 Hz, 2H), 7.56-7.52 (m, 3H), 7.09 (d, J=2.2 Hz, 1H), 7.01 (dd, J=8.8, 2.2 Hz, 1H), 4.73 (s, 2H), 3.82 (s, 6H). MS: (calc.) 328.1, (obt.), 329.2 (MH)+.


Step 2: 4-(5-Methoxy-1H-benzimidazol-2-yl-sulfanylmethyl)-benzoic acid (376b)

A solution of LiOH.H2O (1.02 g, 24.4 mmol) in water (15 ml) was added to a suspension of 376a (3.99 g, 9.75 mmol of in THF (10 ml). The reaction mixture was stirred 16 h at room temperature. The reaction mixture was acidified with a solution of HCl 1 M to pH 4. The desired product was triturated 20 min. at 0° C. and then filtered and dried. Compound 376b was obtained as a white powder (100% yield, 3.05 g). 1H NMR: (DMSO) δ (ppm): 12.85 (bs, 1H), 7.86 (d, J=8.1 Hz, 2H), 7.53 (d, J=8.1 Hz, 2H), 7.35 (d, J=8.1 Hz, 1H), 6.97 (d, J=2.2 Hz, 1H), 6.76 (dd, J=8.8, 2.2 Hz, 1H), 4.60 (s, 2H), 3.82 (s, 3H), MS: (calc.) 314.1, (obt.), 315.1 (MH)+.


Step 3: N-(2-Amino-phenyl)-4-(5-methoxy-1H-benzimidazol-2-yl-sulfanylmethyl)-benzamide (376)

Following the procedure described in Example 1 step 5 but substituting 4-(5-methoxy-1H-benzimidazol-2-yl-sulfanylmethyl)-benzoic acid 2 for 7 the title compound 376 was obtained as a white powder: 36% yield (933 mg). 1H NMR: (DMSO) δ (ppm): 12.42 (bs, 1H), 9.57 (bs, 1H), 7.89 (d, J=8.1 Hz, 2H), 7.55 (d, J=8.1 Hz, 2H), 7.34 (d, J=8.8 Hz, 1H), 7.14 (d, J=7.3 Hz, 1H), 6.98-6.93 (m, 2H), 6.77-6.55 (m, 2H), 6.58 (dd, J=7.3, 7.3 Hz, 1H), 4.87 (s, 2H), 4.59 (s, 2H), 3.77 (s, 3H). MS: (calc.) 404.1, (obt.), 405.4 (MH)+.


Examples 180-328
Examples 180 to 327 (compounds 320-468) were prepared using the same procedure as described for compound 126 to 319 in Example 85 to 179 (scheme 11 to 58)
Examples 329-344
Examples 329 to 344 (compounds 470-485) were prepared using the same procedure as described for compound 8 to 224 in Example 1 to 143 (scheme 1 to 32)



embedded image


Example 345
Step 1: Methyl 3-(4-bromo-phenyl)-acrylic ester (486)

To a solution of anhydrous i-Pr2NH (758 μl, 5.40 mmol) in anhydrous THF (25 ml) stirred at 0° C. under nitrogen, was slowly added a solution of n-BuLi (2.22 ml, 5.54 mmol, 2.5 M in hexane). After 30 min, LDA was cooled to −78° C. and anhydrous methyl acetate (430 l, 5.40 mmol) was added dropewise. After 30 min, a solution of 4-bromobenzaldehyde (500 mg, 2.70 mmol) in anhydrous THF (10 ml) was slowly added. After 30 min, a solution of 2-chloro-4,6-dimethoxy-1,3,5-triazine (569 mg, 3.24 mmol) in anhydrous THF (15 ml) was added. Then, the temperature was allowed to warm up to room temperature overnight. A suspension appeared. The reaction mixture was poured into a saturated aqueous solution of NH4Cl, and diluted with AcOEt. After separation, the organic layer was successively washed with H2O and brine, dried over MgSO4, filtered and concentrated. The crude product was purified by flash chromatography on silica gel (AcOEt/hexane: 10/90) to give the title product 486 (394 mg, 1.9 mmol, 61% yield) as a colorless crystalline solid. 1H NMR (300 MHz, CDCl3) δ (ppm): 7.63 (d, J=16.2 Hz, 1H), AB system (δA 7.53, δB=7.39, J=8.4 Hz, 4H), 6.43 (d, J=15.8 Hz, 1H), 3.82 (s, 3H).


Step 2: Methyl 3-[4-(3,4,5-trimethoxy-phenylamino)-phenyl]-acrylic ester (487)

A mixture of Cs2CO3 (378 mg, 1.16 mmol), Pd(OAc)2 (6 mg, 0.025 mmol), (rac)-BINAP (23 mg, 0.037 mmol), was purged with nitrogen for 10 min. 486 (200 mg, 0.83 mmol), 3,4,5-trimethoxyaniline (182 mg, 0.99 mmol), and anhydrous toluene (5 ml) were added, respectively. The reaction mixture was heated to 100° C. under nitrogen for 24 h. Then, it was allowed to cool to room temperature, diluted with AcOEt, and successively washed with a saturated aqueous solution NaHCO3, H2O, sat. NH4Cl, H2O and brine, dried over anhydrous MgSO4, filtered and concentrated. The crude residue was then purified by flash chromatography on silica gel (AcOEt/hexane: 40/60) to afford the title compound 487 (280 mg, 0.82 mmol, 98% yield) as a yellow oil. 1H NMR (300 MHz, CDCl3) δ (ppm): 7.64 (d, J=16.2 Hz, 1H), 7.43 (bd, J=7.9 Hz, 2H), 7.12-6.86 (m, 2H), 6.60-6.20 (m, 3H, included at 6.29, d, J=15.8 Hz), 3.84 (s, 9H), 3.80 (s, 3H).


Step 3: N-(2-Amino-phenyl)-3-[4-(3,4,5-trimethoxy-phenylamino)-phenyl]-acrylamide (488)

The title compound 488 was obtained from 487 in 2 steps following the same procedure as Example 1, steps 4 and 5. 1H NMR (300 MHz, DMSO-d6) δ (ppm): 9.29 (s, 1H), 8.48 (s, 1H), 7.60-7.42 (m, 3H), 7.38 (d, J=7.5 Hz, 1H), 7.12 (d, J=8.4 Hz, 2H), 6.94 (t J=7.5 Hz, 1H), 6.78 (d, J=7.9 Hz, 1H), 6.71 (d, J=15.8 Hz, 1H), 6.61 (t, J=7.1 Hz, 1H), 6.47 (s, 2H), 4.97 (s, 2H), 3.79 (s, 6H), 3.66 (s, 3H).




embedded image


Example 346
Step 1: 3-(4-Formyl-3-methoxy-phenyl)-acrylic acid tert-butyl ester 489

Following the procedure described in Example 53, step 1, but substituting 4-hydroxy-2-methoxy-benzaldehyde for 84, followed by Example 42, step 2, but substituting the previous compound for 42, the title compound 489 was obtained in 29% yield. LRMS=calc: 262. found: 263.2 (M+H+).


Step 2: 3-{3-Methoxy-4-[(3,4,5-trimethoxy-phenylamino)-methyl]-phenyl}-acrylic acid tert-butyl ester 490

Following the procedure described in Example 144, step 3, but substituting 489 for 4-formylbenzaldehyde, the title compound 490 was obtained in 69% yield. LRMS=calc: 429. found: 430.5 (M+H+).


Step 3: N-(2-Amino-phenyl)-3-{3-methoxy-4-[(3,4,5-trimethoxy-phenylamino)-methyl]-phenyl}-acrylamide

Following the procedure described in Example 42, step 3, 4, but substituting 490 for 46, the title compound 491 was obtained in 67% yield. 1H NMR (CDCl3), δ (ppm): 8.08 (s, 1H), 7.74 (d, J=15.4 Hz, 1H), 7.30 (m, 1H), 7.06 (m, 3H); 6.80 (m, 3H), 6.70 (d, J=15.4 Hz, 1H), 5.98 (s, 2H), 4.40 (s, 2H); 4.12 (bs, 3H), 3.94 (s, 3H), 3.84 (s, 3H), 3.77 (s, 6H).




embedded image


Example 436
Step 1: Methyl-5-methyl-benzofuran-2-carboxylate (583)

A stirring suspension of 5-methylsalicylaldehyde (1.0 mg, 7.5 mmol), K2CO3 (1.55 g, 11.0 mmol), and Bu4NBr (322 mg, 1 mmol) in toluene (30 ml) was treated with dimethylbromomalo-nate (1.06 ml, 8.0 mmol). The suspension was heated to reflux with a Dean-Stark trap for 20 h. The brown suspension was cooled to 25° C. and concentrated in vacuo. The residue was taken in DCM and filtered. The filtrate was washed with H2O, 1N NaOH and brine. The organic layer was dried over magnesium sulfate, filtered and concentrated. The crude residue was purified by column chromatography (10% ethyl acetate/hexane) to afford the title compound 583 (600 mg, 42% yield). LRMS: 190.2 (Calc.); 191.1 (found).


Step 2: Methyl-5-bromomethyl-benzofuran-2-carboxylate (585)

A mixture of 583 (500 mg, 2.63 mmol), N-bromosuccinimide (561 mg, 3.15 mmol) and 1,1′-azobis(cyclohexanecarbonitrile) (Vazo) (63 mg, 0.26 mmol) in 15 ml of CCl4 was heated overnight under reflux. The mixture was cooled to room temperature, quenched by adding water and extracted with DCM. The organic layer was washed with brine and dried over MgSO4, filtered and concentrated. The crude residue was purified by column chromatography (30% ethyl acetate/hexane) to afford the title compound 585 (680 mg, 96% yield). 1H NMR: (CDCl3) δ (ppm): 7.79 (s, 1H), 7.70-7.52 (m, 3H), 4.69 (s, 2H), 4.06 (s, 3H), 3.72 (s, 2H). LRMS: 268.2 (Calc.); 269.1 (found).


Step 3: Methyl-5-[(3,4-dimethoxy-phenylamino)-methyl]-benzofuran-2-carboxylate (586)

Following the procedure described in Example 47, step 2, but substituting 585 for 63, the title compound 586 was obtained in 40% yield. LRMS: 341 (Calc.); 342.3 (found).


Step 4: 5-[(3,4-Dimethoxy-phenylamino)-methyl]-benzofuran-2-carboxylic acid (2-amino-phenyl)-amide (587)

Following the procedure described in Example 1, steps 4, 5, but substituting 585 for 6, the title compound 587 was obtained in 29% yield. 1H NMR: (DMSO) δ (ppm): 9.83 (s, 1H), 7.75 (s, 1H), 7.64 (s, 1H), 7.62 (d, J=8.0 Hz, 1H), 7.47 (d, J=9.0 Hz, 1H), 7.18 (d, J=8.0 Hz, 1H), 6.97 (t, J=7.5 Hz, 1H), 6.78 (d, J=8.0 Hz, 1H), 6.65 (d, J=8.5 Hz, 1H), 6.59 (t, J=7.5 Hz, 1H), 6.33 (s, 1H), 6.04 (d, J=8.0 Hz, 1H), 5.92 (d, J=5.5 Hz, 1H), 4.93 (s, 2H), 4.31 (d, J=5.5 Hz, 1H), 2.82 (s, 3H), 2.76 (s, 3H). LRMS: 417.46 (Calc.); 418.4 (found).


Example 437
Step 1: Methyl-5-nitro-benzo[b]thiophene-2-carboxylate (584)

A stirring suspension of 5-nitro-2-chloro-benzaldehyde (4.0 g, 21.6 mmol) in DMF (40 ml) at 5° C. was treated with K2CO3 (3.52 g, 25.5 mmol) followed by methylglycolate (1.93 ml, 21.6 mmol). The resulting solution was warmed to 25° C. and stirred for 20 h. The solution was then poured into 250 ml of ice H2O and the white precipitate that formed was collected by filtration. Crystallization from EtOAc afforded fine pale orange needles of 584 (3.54 g, 69%). LRMS: 237.0 (Calc.); 238.1 (found). 1H NMR: (DMSO) δ (ppm): 9.00 (d, J=2.2 Hz, 1H), 8.45 (s, 1H), 8.39-8.30 (m, 2H), 3.93 (s, 3H).


Step 2: Methyl-5-amino-benzo[b]thiophene-2-carboxylate (588)

A suspension of 584 (3.52 g, 14.8 mmol) in methanol (100 ml) was treated with Fe powder (6.63 g, 118.7 mmol). The resulting suspension was heated to reflux, and 12M HCl (8.5 ml) was slowly added over 15 min. The resulting green dark suspension was refluxed for an additional 3 h, then cooled and concentrated. The residue was taken up in EtOAc and washed with saturated aqueous NaHCO3, then brine, dried over MgSO4, filtered and concentrated to afford (2.57 g, 84%). 1H NMR: (DMSO) δ (ppm): 7.92 (s, 1H), 7.65 (d, J=8.8 Hz, 1H), 7.05 (d, J=1.5 Hz, 1H), 6.88 (dd, J=1.8, 8.4 Hz, 1H), 5.27 (s, 2H), 3.85 (s, 3H). LRMS: 207.0 (Calc.); 208.1 (found).


Step 3: Methyl-5-(3,4,5-trimethoxy-benzylamino)-benzo[b]thiophene-2-carboxylate (589)

Following the procedure described in Example 144, step 3, but substituting 588 for 226, the title compound 589 was obtained n 68% yield. (DMSO) δ (ppm): 7.94 (s, 1H), 7.69 (d, J=8.8 Hz, 1H), 7.02-6.99 (m, 2H), 6.73 (s, 2H), 6.41 (t, J=5.7 Hz, 1H), 4.21 (d, J=5.9 Hz, 2H), 3.84 (s, 3H), 3.75 (s, 6H), 3.62 (s, 3H). LRMS: 387.1 (Calc.); 388.3 (found).


Step 4: 5-(3,4,5-Trimethoxy-benzylamino)-benzo[b]thiophene-2-carboxylic acid (2-amino-phenyl)-amide (590)

Following the procedure described in Example 1, steps 4, 5, but substituting 589 for 6, the title compound 590 was obtained in % yield 1H NMR: (DMSO) δ (ppm): 7.79 (s, 1H), 7.60 (d, J=8.8 Hz, 1H), 7.00-6.95 (m, 2H), 6.74 (s, 2H), 4.32 (s, 2H), 3.80 (s, 6H), 3.7 (s, 3H).


Examples 347-425

Examples 347 to 425 (compounds 492-570) were prepared using the same procedure as described for compound 44 to 491 in Example 40 to 346 (scheme 3 to 64).


Example 426
Synthesis of N-(2-Amino-phenyl)-4-[(4-pyridin-3-yl-pyrimidin-2-ylamino)-methyl]-benzamide



embedded image


Step 1: Synthesis of 4-Guanidinomethyl-benzoic acid methyl ester Intermediate 1

The mixture of 4-Aminomethyl-benzoic acid methyl ester HCl (15.7 g, 77.8 mmol) in DMF (85.6 mL) and DIPEA (29.5 mL, 171.2 mmol; was stirred at rt for 10 min. Pyrazole-1-carboxamidine HCl (12.55 g, 85.6 mmol) was added to the reaction mixture and then stirred at rt for 4 h to give clear solution. The reaction mixture was evaporated to dryness under vacuum. Saturated NaHCO3 solution (35 mL) was added to give nice suspension. The suspension was filtered and the filter cake was washed with cold water. The mother liquid was evaporated to dryness and then filtered. The two solids were combined and re-suspended over distilled H2O (50 ml). The filter cake was then washed with minimum quantities of cold H2O and ether to give 12.32 g white crystallin a solid intermediate 1 (77% yield, M+1: 208 on MS).


Step 2: Synthesis of 3-Dimethylamino-1-pyridin-3-yl-propenone Intermediate 2

3-Acetyl-pyridine (30.0 g, 247.6 mmol) and DMF dimethyl acetal (65.8 mL, 495.2 mmol) were mixed together and then heated to reflux for 4 h. The reaction mixture was evaporated to dryness and then 50 mL diethyl ether was added to give brown suspension. The suspension was filtered to give 36.97 g orange color crystalline product (85% yield, M+1: 177 on MS).


Step 3: Synthesis of 4-[(4-Pyridin-3-yl-pyrimidin-2-ylamino)-methyl]-benzoic acid methyl ester Intermediate 3

Intermediate 1 (0.394 g, 1.9 mmol) and intermediate 2 (0.402 g, 2.3 mmol) and molecular sieves (0.2 g, 4A, powder, >5 micron) were mixed with isopropyl alcohol (3.8 mL). The reaction mixture was heated to reflux for 5 h. MeOH (50 mL) was added and then heated to reflux. The cloudy solution was filtrated over a pad of celite. The mother liquid was evaporated to dryness and the residue was triturated with 3 mL EtOAc. The suspension was filtrated to give 0.317 g white crystalline solid Intermediate 3 (52%, M+1: δ 321 on MS).


Step 4: Synthesis of N-(2-Amino-phenyl)-4-[(4-pyridin-3-yl-pyrimidin-2-ylamino)-methyl]-benzamide

Intermediate 3 (3.68 g, 11.5 mmol) was mixed with THF (23 mL), MeOH (23 mL) and H2O (11.5 mL) at rt. LiOH (1.06 g, 25.3 mmol) was added to reaction mixture. The resulting reaction mixture was warmed up to 40° C. overnight. HCl solution (12.8 mL, 2N) was added to adjust pH=3 when the mixture was cooled down to rt. The mixture was evaporated to dryness and then the solid was washed with minimum quantity of H2O upon filtration. The filter cake was dried over freeze dryer to give 3.44 g acid of the title compound (95%, M+1: 307 on MS).


Acid (3.39 g, 11.1 mmol) of the title compound, BOP (5.679 g, 12.84 mmol) and o-Ph(NH2)2 (2.314 g, 21.4 mmol) were dissolved in the mixture of DMF (107 mL) and Et3N (2.98 mL, 21.4 mmol). The reaction mixture was stirred at rt for 5 h and then evaporated to dryness. The residue was purified by flash column (pure EtOAc to 5% MeOH/EtOAc) and then interested fractions were concentrated. The final product was triturated with EtOAc to give 2.80 g of title product (66%, MS+1: 397 on MS). 1H NMR (400 MHz, DMSO-D6) δ (ppm): 9.57 (s, 1H), 9.22 (s, 1H), 8.66 (d, J=3.5 Hz, 1H), 8.39 (d, J=5.1 Hz, 2H), 8.00 (1, J=6.5 Hz, 1H), 7.90 (d, J=8.2 Hz, 2H), 7.50 (m, 3H), 7.25 (d, J=5.1 Hz, 1H), 7.12 (d, J=7.4 Hz, 1H), 6.94 (dd, J=7.0, 7.8 Hz, 1H), 6.75 (d, J=8.2 Hz, 1H), 6.57 (dd, J=7.0, 7.8 Hz, 1H), 4.86 (s, 2H), 4.64 (d, J=5.9 Hz, 2H).


Compounds in the following tables were prepared essentially according to the procedures described in the Schemes and Examples above.









TABLE 4e







Characterization of compounds 593-603.










Cpd
Structure
Name
Characterization





593


embedded image


N-(2-aminophenyl)- 4-((4-(2,4- dimethylthiazol-5- yl)pyrimidin-2- ylamino)methyl) benzamide

1H NMR (DMSO-d6) δ (ppm): 9.56 (s, 1H), 8.30 (d, J=5.1 Hz, 1H), 7.92 (s, 1H), 7.89 (d, J=8.2 Hz, 2H), 7.43 (d, J=7.4 Hz, 2H), 7.12 (d, J=7.6 Hz, 1H), 6.94 (td, J=7.8, 1.4 Hz, 1H), 6.82 (d, J=5.1 Hz, 1H), 6.75 (dd, J=8.0, 1.4 Hz, 1H), 6.57 (td, J= 7.6, 1.4 Hz, 1H), 4.87 (s, 2H), 4.56 (d, J=6.3 Hz, 2H), 2.61 (s, 3H), 2.56 (s, 3H).MS (m/z): 430.53 (calc) 431.1 (MH+)(found)






594


embedded image


4-((4-(1H-pyrazol-5- yl)pyrimidin-2- ylamino)methyl)-N- (2-aminophenyl) benzamide

1H NMR (DMSO-d6) δ (ppm): 13.16 (s, 1H), 9.56 (s, 1H), 8.26 (s, 1H), 7.89 (d, J=8.2 Hz, 2H), 7.80 (d, J=14.5 Hz, 2H), 7.47 (s, 2H), 7.13 (d, J=7.6 Hz, 1H), 7.08 (s, 0.5H), 6.94 (td, J=7.2, 1.6 Hz, 1H), 6.80 (s, 0.5H), 6.74 (dd, J=7.9, 1.6 Hz, 1H), 6.56 (td, J=6.9, 1.4 Hz, 1H), 4.86 (s, 2H), 4.60 (s, 2H).MS (m/z): 385.42 (calc) 386.2 (MH+)(found)






595


embedded image


N-(2-aminophenyl)- 4-((4-(2,4- dimethyloxazol-5- yl)pyrimidin-2- ylamino)methyl) benzamide

1H NMR (DMSO-d6) δ (ppm): 9.57 (s, 1H), 8.31 (d, J=4.5 Hz, 1H), 7.93- 7.89 (m, 3H), 7.41 (d, J= 8.2 Hz, 2H), 7.12 (d, J= 7.6 Hz, 1H), 6.94 (td, J= 7.2, 1.6 Hz, 1H), 6.76-6.73 (m, 2H), 6.56 (td, J=8.0, 1.2 Hz, 1H), 4.87 (s, 2H), 4.59 (d, J=6.5 Hz, 2H), 2.44 (s, 3H), 2.35 (s, 3H). MS (m/z): 414.46 (calc) 415.3 (MH+)(found)






596


embedded image


N-(2-aminophenyl)- 4-((4-(3- (hydroxymethyl) isoxazol-5- yl)pyrimidin-2- ylamino)methyl) benzamide

1H NMR (MeOD-d4) δ (ppm): 8.42 (d, J=5.1 Hz, 1H), 7.92 (d, J=8.0 Hz, 2H), 7.53 (d, J=8.8 Hz, 2H), 7.16 (d, J=8.4 Hz, 1H), 7.08 (d, J=4.9 Hz, 1H), 7.06-7.04 (m, 2H), 6.89 (d, J=8.0 Hz, 1H), 6.75 (t, J=7.6 Hz, 1H), 4.72 (s, 2H), 4.69 (s, 2H). MS (m/z): 416.43 (calc) 417.3 (MH+)(found)






597


embedded image


N-(2-aminophenyl)- 4-((4-(3- (hydroxymethyl)-5- methylisoxazol-4- yl)pyrimidin-2- ylamino)methyl) benzamide

1H NMR (DMSO-d6) δ (ppm): 9.54 (s, 1H), 8.34 (d, J=5.1 Hz, 1H), 7.94- 7.88 (m, 3H), 7.42 (d, J= 8.0 Hz, 2H), 7.13 (d, J= 7.6 Hz, 1H), 6.94 (t, J= 7.0 Hz, 2H), 6.75 (d, J= 7.8 Hz, 1H), 6.57 (t, J= 7.4 Hz, 1H), 5.53 (t, J= 5.9 Hz, 1H), 4.87 (s, 2H), 4.65-4.59 (m, 4H). (CH3 singlet is probably overlapped by DMSO signal)1H NMR (MeOD-d4) δ (ppm): 8.32 (d, J=5.3 Hz, 1H), 7.92 (d, J=8.2 Hz, 2H), 7.48 (d, J=8.2 Hz, 2H), 7.16 (d, J=7.6 Hz, 1H), 7.06 (t, J=7.2 Hz, 1H), 6.94 (d, J=5.3 Hz, 1H), 6.88 (d, J=8.2 Hz, 1H), 6.76 (t, J=6.3 Hz, 1H), 4.72 (s, 2H), 4.70 (s, 2H), 2.61 (s, 3H). MS (m/z): 430.46 (calc) 431.2 (MH+)(found)






598


embedded image


N-(2-aminophenyl)- 4-((4-(1-methyl-1H- 1,2,3-triazol-4- yl)pyrimidin-2- ylamino)methyl) benzamide

1H NMR CDMSO-d6) δ (ppm): 9.56 (s, 1H), 8.33 (d, J=4.9 Hz, 1H), 8.20 (s, 1H), 7.96 (t, J=6.3 Hz, 1H), 7.89 (d, J=8.2 Hz, 2H), 7.47 (s, 2H), 7.12 (d, J=7.8 Hz, 1H), 7.02 (d, J=4.7 Hz, 1H), 6.94 (td, J=7.2, 1.5 Hz, 1H), 6.75 (dd, J=7.9, 1.3 Hz, 1H), 6.57 (td, J=7.9, 1.4 Hz, 1H), 4.86 (s, 2H), 4.60 (d, J=6.3 Hz, 2H), 4.22 (s, 3H).MS (m/z): 400.44 (calc) 401.2 (MH+)(found)






599


embedded image


N-(2-aminophenyl)- 4-((4-(3-methyl-3H- 1,2,3-triazol-4- yl)pyrimidin-2- ylamino)methyl) benzamide

1H NMR CDMSO-d6) δ (ppm): 9.57 (s, 1H), 8.42 (s, 1H), 8.35 (s, 1H), 8.14 (s, 1H), 7.90 (d, J=8.2 Hz, 2H), 7.43 (d, J=8.2 Hz, 2H), 7.13 (d, J=7.2 Hz, 1H), 7.08 (d, J=5.1 Hz, 1H), 6.94 (td, J=8.2, 1.6 Hz, 1H), 6.75 (dd, J=7.8, 1.2 Hz, 1H), 6.57 (t, J= 8.2 Hz, 1H), 4.87 (s, 2H), 4.62 (d, J=6.3 Hz, 2H), 4.40 (s, 1H), 4.12 (s, 2H). MS (m/z): 400.44 (calc) 401.2 (MH+)(found)






600


embedded image


N-(2-aminophenyl)- 4-((4-(2-methylH- imidazo[1,2- a]pyridin-3- yl)pyrimidin-2- ylamino)methyl) benzamide

1H-NMR, DMSO-d6 δ (ppm): 9.60 (s, 1H); 8.97 (bs, 1H); 8.35 (bs, 1H); 8.03 (t, J=6.3 Hz, 1H); 7.94 (d, J=8.2 Hz, 2H); 7.56 (bs, 1H); 7.47 (d, J= 8.2 Hz, 2H); 7.33 (bs, 1H); 7.13 (d, J=7.3 Hz, 1H); 6.94 (dt, J=1.4, 7.3 Hz, 1H); 6.85 (d, J=4.3 Hz, 1H); 6.75 (dd, J=1.0, 8.0 Hz, 1H); 6.71 (bs, 1H); 6.57 (t, J=7.3 Hz, 1H); 4.87 (bs, 2H); 4.62 (d, J= 6.1 Hz, 2H); 2.59 (bs, 3H). MS (m/z): 449.51 (calc) 450.2 (MH+)(found)






601


embedded image


4-((4-(2-amino-4- methylthiazol-5- yl)pyrimidin-2- ylamino)methyl)-N- (2-aminophenyl) benzamide

1H NMR (MeOD-d4) δ (ppm): 8.16 (d, J=5.9 Hz, 1H), 8.00 (d, J=8.2 Hz, 2H), 7.54 (d, J=8.0 Hz, 2H), 7.35-7.26 (m, 4H), 6.92 (d, J=6.1 Hz, 1H), 4.73 (s, 2H), 2.55 (s, 3H). MS (m/z): 431.51 (calc) 432.2 (MH+)(found)






602


embedded image


N-(2-aminophenyl)- 4-((4-(5-(2- (dimethylamino) acetamido)-3- methylthiophen-2- yl)pyrimidin-2- ylamino)methyl) benzamide

1H NMR (MeOD-d4) δ (ppm): 8.23 (d, J=5.3 Hz, 1H), 7.92 (d, J=8.0 Hz, 2H), 7.54 (d, J=8.0 Hz, 2H), 7.16 (d, J=7.4 Hz, 1H), 7.06 (t, J=7.2 Hz, 1H), 6.89-6.86 (m, 2H), 6.75 (t, J=7.6 Hz, 1H), 4.68 (s, 2H), 3.60 (s, 2H), 2.59 (s, 6H), 2.56 (s, 3H). MS(m/z): 516.62 (calc) 517.3 (MH+)(found)






603


embedded image


N-(2-aminophenyl)- 4-(4-(pyridin-3- yl)pyrimidin-2- ylamino)benzamide

1H NMR (DMSO-d6) δ (ppm): 10.10 (s, 1H), 9.52 (s, 1H), 9.35 (d, J=1.9 Hz, 1H), 8.73 (dd, J=4.9, 1.8 Hz, 1H), 8.66 (d, J= 5.1 Hz, 1H), 8.52 (dt, J= 8.2, 2.2 Hz, 1H), 7.96 (d, J=2.0 Hz, 4H), 7.61 (d, J=4.9 Hz, 1H), 7.59 (d, J=5.1 Hz, 1H), 7.15 (d, J=7.3 Hz, 1H), 6.95 (td, J=8.0, 1.6 Hz, 1H), 6.77 (dd, J=7.8, 1.2 Hz, 1H), 6.59 (td, J=7.4, 1.4 Hz, 1H), 4.89 (s, 2H).MS (m/z): 382.42 (calc) 383.3 (MH+)(found)

















TABLE 4f







Characterization of compounds 604 to 620.




embedded image
















CPD
AR
Y
NAME
Characterization





604


embedded image


NH
(S)-N-(2-aminophenyl)-4-(3-(pyridin-3- ylamino)pyrrolidin-1-yl)benzamide

1H NMR: (CD3OD) δ(ppm): 7.97 (d, J=2.7 Hz, 1H), 7.86 (d, J=8.8 Hz, 2H), 7.78 (dd, J=4.7, 1.0 Hz, 1H), 7.18-7.10 (m, 3H), 7.05 (td, J=7.4, 0.6 Hz, 1H), 6.89 (dd, J=7.8, 1.2 Hz, 1H), 6.76 (td, J=7.4, 1.4 Hz, 1H), 6.64 (d, J=8.8 Hz, 2H), 4.25 (quint, J=4.9 Hz, 1H), 3.77 (dd, J=10.2, 6.1 Hz, 1H), 3.57 (dd, J=17.0, 7.0 Hz, 1H), 3.49 (td, J=8.0, 5.3 Hz, 1H), 3.29 (q, J=6.7 Hz, 1H), 2.41 (sext, J=7.2 Hz, 1H), 2.10 (sext, J=4.9 Hz, 1H).






605


embedded image


NH
(R)-N-(2-aminophenyl)-4-(3-(pyridin-3- ylamino)pyrrolidin-1-yl)benzamide

1H NMR: (DMSO-d6) δ(ppm): 9.34 (s, 1H), 8.00 (d, J=2.3 Hz, 1H), 7.84 (d, J=8.8 Hz, 2H), 7.77 (dd, J=4.7, 1.2 Hz, 1H), 7.12 (d, J=7.6 Hz, 1H), 7.08 (dd, J=8.0, 4.5 Hz, 1H), 6.99- 6.97 (m, 1H), 6.92 (t, J=7.8 Hz, 1H), 6.75 (d, J=7.8 Hz, 1H), 6.60-6.56 (m, 3H), 6.17 (d, J=6.8 Hz, 1H), 4.81 (s, 2H), 4.19-4.17 (m, 1H), 3.71 (dd, J=10.2, 6.5 Hz, 1H), 3.53-3.47 (m, 1H), 3.42-3.38 (m, 1H), 3.18 (dd, J=10.4, 4.1 Hz, 1H), 2.32 (sext, J=6.3 Hz, 1H), 1.99 (sext, J=4.7 Hz, 1H).






606


embedded image


O
(S)-N-(2-aminophenyl)-4-(3-(pyridin-3- yloxy)pyrrolidin-1-yl)benzamide

1H NMR: (Acetone-d6) δ(ppm): 8.88 (s, 1H), 8.31 (d, J=2.9 Hz, 1H), 8.19 (d, J=4.7 Hz, 1H), 7.93 (d, J=8.8 Hz, 2H), 7.41 (ddd, J=8.4, 2.9, 1.4 Hz, 1H), 7.31 (ddd, J=8.4, 4.5, 0.6 Hz, 1H), 7.26 (d, J=7.8 Hz, 1H), 6.97 (td, J=7.8, 1.4 Hz, 1H), 6.85 (dd, J=8.0, 1.4 Hz, 1H), 6.66 (d, J=9.0 Hz, 2H), 6.65 (td, J=8.0, 1.4 Hz, 1H), 5.34-5.32 (m, 1H), 4.62 (s, 2H), 3.84 (dd, J=11.3, 4.7 Hz, 1H), 3.61-3.56 (m, 3H), 2.50- 2.34 (m, 2H).






607


embedded image


O
(R)-N-(2-aminophenyl)-4-(3-(pyridin-3- yloxy)pyrrolidin-1-yl)benzamide

1H NMR: (Acetone-d6) δ(ppm): 8.85 (s, 1H), 8.31 (d, J=2.9 Hz, 1H), 8.19 (dd, J=4.5, 1.2 Hz, 1H), 7.93 (d, J=8.8 Hz, 2H), 7.42 (ddd, J=8.4, 2.9, 1.4 Hz, 1H), 7.31 (ddd, J=8.4, 4.7, 0.8 Hz, 1H), 7.26 (d, J=7.8, 1.6 Hz, 1H), 6.97 (td, J=7.2, 1.6 Hz, 1H), 6.85 (dd, J=7.8, 1.2 Hz, 1H), 6.68 (d, J=8.8 Hz, 6.66 (td, J=7.6, 1.4 Hz, 1H), 3.56-5.33 (m, 1H), 4.60 (bs, 2H), 3.86 (dd, J=11.3, 4.7 Hz, 1H), 3.62-3.57 (m, 3H), 2.50-2.35 (m, 2H).






608


embedded image


NH
(S)-N-(2-aminophenyl)-4-(3- (phenylamino)pyrrolidin-1- yl)benzamide

1H NMR: (Acetone-d6) δ(ppm): 8.84 (s, 1H), 7.91 (d, J=8.8 Hz, 2H), 7.25 (dd, J=7.8, 1.2 Hz, 1H), 7.12 (t, J=7.2 Hz, 2H), 6.96 (dt, J=8.0, 1.4 Hz, 1H), 6.85 (d, J=8.0 Hz, 1H), 6.71 (dd, J=8.8, 1.0 Hz, 2H), 6.66 (t, J=7.8 Hz, 1H), 6.62 (d, J=8.8 Hz, 2H), 5.26 (d, J=7.6 Hz, 1H), 4.60 (bs, 1H), 4.30 (quint, J=5.3 Hz, 1H), 3.79 (dd, J=10.0 Hz, 1H), 3.57 (q, J=9.6 Hz, 1H), 3.50-3.45 (m, 1H), 3.30 (dd, J=10.2, 3.9 Hz, 1H), 2.42 (sext, J=6.8 Hz, 1H).






609


embedded image


NH
(R)-N-(2-aminophenyl)-4-(3- (phenylamino)pyrrolidin-1- yl)benzamide

1H NMR (CDCl3) δ(ppm) 7.79 (m, 2H), 7.2-7.4 (m, 2H), 7.05 (s, 1H), 6.8 (m, 3H) 6.65 (m, 2H), 6.53(m, 2H), 4.24 (br.s., 1H), 3.9(m, 2H), 3.73 (m, 1H), 3.26 (m, 1H), 2.37 (m, 1H), 2.09 (m, 1H)






610


embedded image


O
(S)-N-(2-aminophenyl)-4-(3- phenoxypyrrolidin-1-yl)benzamide

1H NMR (CDCl3) δ(ppm) 7.79 ((m, 3H), 7.3 (m, 3H), 7.03 (m, 1H), 6.96 (m, 1H), 6.90 (d, 2H, J=8.8 Hz), 6.80 (m, 2H), 6.54 (d, J=8.8 Hz, 2H), 5.08 (br.s., 1H), 3.71 (dd, J=4.7 Hz, J=11.0 Hz, 1H), 3.6 (m, 3H), 2.41 (m, 1H), 2.31 (m, 1H)






611


embedded image


O
(S)-methyl-4-(1-(4-(2-aminophenyl carbamoyl)phenyl)pyrrolidin-3- yloxy)benzoate

1H NMR (CDCl3) δ(ppm): 8.0 (m, 2H), 7.81 (m, 2H), 7.72 (s, 1H), 7.25 (m, 1H), 7.06 (m, 1H), 6.91(m, 2H), 6.84 (m, 2H), 6.59 (m, 2H), 5.16 (br.s., 1H), 3.9(s, 3H), 3.78 (m, 1H), 3.60 (m, 3H), 2.4 (m, 2H)






612


embedded image


O
(S)-4-(1-(4-(2-aminophenyl carbamoyl)phenyl)pyrrolidin-3- yloxy)benzoic acid

1H NMR: (DMSO-d6) δ(ppm): 9.34 (s, 1H), 7.85 (m, 4H), 7.11 (d, 1H, J=7.8 Hz), 7.00 (d, J=8.4 Hz, 2H), 6.92 (d, 2H, J=7.7 Hz), 6.75 (d, J=8.0 Hz, 2H), 6.6 (m, 3H), 5.26 (br.s., 1H), 3.75 (m, 1H), [3.34 DMSO, 4H], 2.44 (m, 1H), 2.31 (m, 1H)






613


embedded image


O
(S)-N-(2-aminophenyl)-4-(3-(3,4,5- trimethoxyphenoxy)pyrrolidin-1- yl)benzamide

1H NMR (CDCl3) δ(ppm) 7.79 (d, 2H; , J=8.8 Hz), 7.73 (s, 1H), 7.26 (d, 1H, J=7.4 Hz), 7.05 (t, J=7.7 Hz, 1H), 6.81 (d, 2H, J=7.7 Hz), 6.57 (d, J=8.7 Hz, 2H), 6.14 (s, 2H), 5.04 (br.s., 1H), 3.88 (s, 6H), 3.80 (s, 3H), 3.71 (dd, J=4.7 Hz, J=11.0 Hz, 1H), 3.6 (m, 3H), 2.41 (m, 1H), 2.31 (m, 1H)






614


embedded image


O
(S)-N-(2-aminophenyl)-4-(3- (benzo[d][1,3]dioxol-5-yloxy) pyrrolidin-1-yl)benzamide

1H NMR (CDCl3) δ(ppm) 8.95 (s, 1H), 7.87 (d, 2H, J=8.0 Hz), 7.80 (d, J=8.7 Hz, 1H), 7.67 (s, 1H), 7.48 (s, .5H) 7.04 (m, 1H), 6.83(m, 1H), 6.71 (m, 1H), 6.57 (d, 2H), 6.48 (s, 1H), 6.33 (m, 1H), 5.93 (s, 2H), 4.96 (br.s., 1H), 3.67(m, 1H), 3.57 (m, 3H), 2.36 (m, 1H), 2.26 (m, 1H)






615


embedded image


O
(S)-N-(2-aminophenyl)-4-(3-(4- phenoxyphenoxy)pyrrolidin-1- yl)benzamide

1H NMR (CDCl3) δ(ppm) 7.81 (m, 2H), 7.70 (s, 1H), 7.67 (s, .5H), 7.2-7.4 (m, 4 H) 6.8-7.2 (m, 10H), 6.6(m, 2H), 5.05 (br.s., 1H), 3.6(m, 1H), 3.5 (m, 3H), 2.41 (m, 1H), 2.32 (m, 1H)






616


embedded image


O
(S)-N-(2-aminophenyl)-4-(3-(4- nitrophenoxy)pyrrolidin-1-yl)benzamide

1H NMR (CDCl3) δ(ppm) 8.12 (d, 2H, J=9.1 Hz), 7.72 (d, J=8.8 Hz, 2H), 7.18 (d, J=7.3 Hz, 1H), 6.97 (t, 1H, J=7.7 Hz), 6.87 (d, J=9.1 Hz, 2H), 6.50 (d, 2H, J=8.6 Hz), 5.09 (br.s., 1H), 3.71 (dd, J=4.5 Hz, J=11.3 Hz, 1H), 3.6 (m, 3H2.3 (m, 2H)






617


embedded image


S
(S)-N-(2-aminophenyl)-4-(3-(pyridin-2- ylthio)pyrrolidin-1-yl)benzamide

1H NMR (CDCl3) δ(ppm) 8.44 (m, 1H), 7.78 (d, J=8.8 Hz, 2H), 7.69 (s, 1H), 7.49 (t, 1H, J=7.4 Hz), 7.27 (m, 1H), 7.18 (d, 1H, J=8.0 Hz), 7.0-7.1 (m, 2H), 6.82 (d, 7.8 Hz, 2H), 6.55 (d, J=9.0 Hz, 2H), 4.55 (m, 1H), 3.9-4.0 (m, 3H), 3.4-3.6 (m, 4H) 2.6 (m, 1H), 2.2 (m, 1H)

















TABLE 4g







Characterization of compounds 621 to 627










Cpd.
Structure
Name
Characterization





621


embedded image


N-(2-Aminophenyl)-5- ((4-(pyridin-2- yl)pyrimidin-2- ylamino)methyl) thiophene-2- carboxamide

1H NMR (MeOH-d4) δ 9.31 (s, 1H), 8.68 (s, 1H), 8.66 (s, 1H), 8.43 (d, J=5.1 Hz, 1H), 7.77 (d, J=3.9 Hz, 1H), 7.68 (m, 1H), 7.1-7.5 (m, 6H). LRMS: (calc) 402.2; (found) 403.3 (M+H1).






622


embedded image


N-(2-Aminophenyl)-4- ((3-(6-methoxypyridin- 3-yl)-1H-pyrazol-5- ylamino)methyl) benzamide

1H NMR (DMSO-d6) δ 9.65 (s, 1H), 8.43 (s, 1H), 7.92 (m, 3H), 7.48 (d, J=8.0 Hz, 2H), 7.16 (d, J=7.4 Hz, 1H), 6.97 (t, J=7.6 Hz, 1H), 6.81 (t, J=8.2 Hz, 2H), 6.63 (t, J=7.4 Hz, 1H), 5.85 (s, 1H), 4.34 (s, 2H), 3.85 (s, 3H). LRMS: (calc) 414.2; (found) 415.3 (M+H1)






623


embedded image


N-(2-aminophenyl)-4- ((3-(pyridin-3-yl)-1H- pyrazol-5-ylamino) methyl)benzamide

1H NMR (MeOH-d4) δ 8.80 (s, 1H), 8.43 (d, J=3.9 Hz, 1H), 8.04 (m, 2H), 7.94 (d, J=8.2 Hz, 2H), 7.53 (d, J=8.2 Hz, 1H), 7.43 (m, 1H), 7.15 (d, J=7.6 Hz, 1H), 7.05 (t, J=7.2 Hz, 2H), 6.88 (d, J=8.0 Hz, 1H), 6.75 (t, J=7.4 Hz, 1H), 5.94 (s, 1H), 4.45 (s, 2H). LRMS: (calc) 384.2; (found) 385.2 (M+H1)






624


embedded image


N-(2-Aminophenyl)-4- ((3-(3,4,5- trimethoxyphenyl)-1H- pyrazol-5-ylamino) methyl) benzamide

1H NMR (MeOH-d4) δ 7.92 (d, J=8.4 Hz, 2H), 7.53 (d, J=8.0 Hz, 2H), 7.16 (d, J=7.9 Hz, 1H), 7.06 (t, J=7.8 Hz, 1H), 6.93 (s, 2H), 6.88 (d, J=8.0 Hz, 1H), 6.75 (t, J=7.6 Hz, 1H), 5.89 (s, 1H), 4.45 (s, 2H), 3.87 (s, 6H), 3.77 (s, 3H). LRMS: (calc) 473.3; (found) 474.4 (M+H1)






625


embedded image


N-(2-Aminophenyl)-4- ((4-chloro-3-(3,4,5- trimethoxyphenyl)-1H- pyrazol-5-ylamino) methyl)benzamide

1H NMR (MeOH-d4) δ 7.92 (d, J=8.3 Hz, 2H), 7.52 (d, J=8.2 Hz, 2H), 7.17 (d, J=7.6 Hz, 1H), 7.06 (m, 3H), 6.89 (d, J=7.8 Hz, 1H), 6.75 (t, J=7.2 Hz, 1H), 4.55 (s, 2H), 3.89 (s, 6H), 3.80 (s, 3H). LRMS: (calc) 507.2; (found) 508.3 (M+H1)






626


embedded image


N-(2-Aminophenyl)-4- ((8-methyl-7-oxo-7,8- dihydropyrido[2,3- d]pyrimidin-2- ylamino)methyl) benzamide

1H NMR (CDCl3) δ 3.62 (s, 3H), 4.80 (m, 2H), 6.42 (d, J=10 Hz, 1H), 6.85 (d, J=8 Hz, 2H), 7.10 (m, 1H), 7.30 (m, 1H), 7.50 (m, 2H), 7.87 (s, 1H), 7.897 (m, 2H), 8.43 (s, 1H). LRMS: (calc) 400.0; (found) 401.0 (M+H1)






627


embedded image


N-(2-Aminophenyl)-4- ((7-oxo-7,8- dihydropyrido[2,3- d]pyrimidin-2- ylamino)methyl) benzamide

1H NMR (DMSO) δ 4.60 (s, 2H), 4.90 (s, 2H), 6.10 (d, J=10 Hz, 1H), 6.55 (t, J=7 Hz, 2H), 6.75 (m, 1H), 6.90 (t, J=7 Hz, 2H), 7.10 (m, 2H), 7.40 (m, 2H), 7.65 (m, 1H), 7.90 (m, 1H), 8.55 (s, 1H), 9.69 (s, 1H). LRMS: (calc) 386.0; (found) 387.0 (M+H1)






628


embedded image


(S)-N-(1-(4-(2- Aminophenyl- carbamoyl)phenyl) pyrrolidin-3-yl) nicotinamide

1H NMR (CDCl3) δ 8.97 (s, 1H), 8.66 (d, J=4.9 Hz, 1H), 8.21 (d, J=3.9 Hz, 1H), 7.87 (d, 2H, J= 8.8 Hz), 7.52 (dd, J=5.1 Hz, J= 8.0 Hz, 1H), 7.15 (d, 1H, J=7.9 Hz), 7.05 (t, J=8.1 Hz, 1H), 6.89 (d, J=7.6 Hz, 1H), 6.76 (t, J=7.3 Hz, 1H), 6.66 (d, J=9.0 Hz, 2H), 4.78 (m, 1H), 3.80 (dd, J= 6.7 Hz, J=10.2 Hz, 1H), 3.61 (m, 1H), 3.49 (m, 1H), 3.41 (m, 1H), 2.4 (m, 1H), 2.2 (m, 1H). LRMS: (calc) 401.2; (found) 402.2 (M+H1)






629


embedded image


N-(2-Aminophenyl)-4- ((S)-3-((S)-pyridin-2- ylsulfinyl)pyrrolidin- 1-yl)benzamide

1H NMR (CDCl3) δ 1H NMR (CDCl3) δ 8.63 (m, 1H), 8.58 (m, 1H), 7.6-8.0 (m, 10H), 7.40 (m, 2H), 7.25 (m, 1H), 7.05 (m, 2H), 6.85 (m, 3H), 6.58 (d, J=8.8 Hz, 2H), 6.50 (d, J=11.1 Hz, 2H), 3.7-4.0 (m, 6H), 3.2-3.5 (m, 4H), 2.4-2.8 (m, 3H), 2.95 (m, 1H). LRMS: (calc) 406.1; (found) 407.1 (M+H1)










Assay Example 1
Inhibition of Histone Deacetylase Enzymatic Activity

1. Human HDAC-1


Assay 1. HDAC inhibitors were screened against a cloned recombinant human HDAC-1 enzyme expressed and purified from a Baculovirus insect cell expression system. For deacetylase assays, 20,000 cpm of the [3H]-metabolically labeled acetylated histone substrate (M. Yoshida et al., J. Biol. Chem. 265(28): 17174-17179 (1990)) was incubated with 30 μg of the cloned recombinant hHDAC-1 for 10 minutes at 37° C. The reaction was stopped by adding acetic acid (0.04 M, final concentration) and HCl (250 mM, final concentration). The mixture was extracted with ethyl acetate and the released [3H]-acetic acid was quantified by scintillation counting. For inhibition studies, the enzyme was preincubated with compounds at 4° C. for 30 minutes prior to initiation of the enzymatic assay. IC50 values for HDAC enzyme inhibitors were determined by performing dose response curves with individual compounds and determining the concentration of inhibitor producing fifty percent of the maximal inhibition. IC50 values for representative compounds are presented in the third column of Table 5.


Assay 2. The following protocol was also used to assay the compounds of the invention. In the assay, the buffer used was 25 mM HEPES, pH 8.0, 137 mM NaCl, 2.7 mM HCl, 1 mM MgCl2 and the substrate was Boc-Lys(Ac)-AMC in a 50 mM stock solution in DMSO. The enzyme stock solution was 4.08 μg/mL in buffer. The compounds were pre-incubated (2 μl in DMSO diluted to 13 μl in buffer for transfer to assay plate) with enzyme (20 μl of 4.08 μg/ml) for 10 minutes at room temperature (35 μl pre-incubation volume). The mixture was pre-incubated for 5 minutes at room temperature. The reaction was started by bringing the temperature to 37° C. and adding 16 μl substrate. Total reaction volume was 50 μl. The reaction was stopped after 20 minutes by addition of 50 μl developer, prepared as directed by Biomol (Fluor-de-Lys developer, Cat. It KI-105). A plate was incubated in the dark for 10 minutes at room temperature before reading (λEx=360 nm, λEm=470 nm, Cutoff filter at 435 nm). Assay 2 was used to measure HDAC activity of compounds 604-617 (Table 5). HDAC activity of the remaining compounds was measured by assay 1.


2. MTT Assay


HCT116 cells (2000/well) were plated into 96-well tissue culture plates one day before compound treatment. Compounds at various concentrations were added to the cells. The cells were incubated for 72 hours at 37° C. in 5% CO2 incubator. MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide, Sigma) was added at a final concentration of 0.5 mg/ml and incubated with the cells for 4 hours before one volume of solubilization buffer (50% N,N-dimethylformamide, 20% SDS, pH 4.7) was added onto the cultured cells. After overnight incubation, solubilized dye was quantified by colorimetric reading at 570 nM using a reference at 630 nM using an MR700 plate reader (Dynatech Laboratories Inc.). OD values were converted to cell numbers according to a standard growth curve of the relevant cell line. The concentration which reduces cell numbers to 50% of that of solvent treated cells is determined as MTT IC50. IC50 values for representative compounds are presented in the fourth column of Table 5.


3. Histone H4 Acetylation in Whole Cells by Immunoblots


T24 human bladder cancer cells growing in culture were incubated with HDAC inhibitors for 16 h. Histones were extracted from the cells after the culture period as described by M. Yoshida et al. (J. Biol. Chem. 265(28): 17174-17179 (1990)). 20 g of total histone protein was loaded onto SDS/PAGE and transferred to nitrocellulose membranes. Membranes were probed with polyclonal antibodies specific for acetylated histone H-4 (Upstate Biotech Inc.), followed by horse radish peroxidase conjugated secondary antibodies (Sigma). Enhanced Chemiluminescence (ECL) (Amersham) detection was performed using Kodak films (Eastman Kodak). Acetylated H-4 signal was quantified by densitometry. Representative data are presented in the fifth column of Table 5. Data are presented as the concentration effective for reducing the acetylated H-4 signal by 50% (EC50).


4. Histone H3 Acetylation Assay


T24 human bladder cancer cells growing in culture are incubated with HDAC inhibitors for 16 h. Cell viability is determined by adding 10 μl Alamar Blue (BioSource, DAL1100). Cells are washed once with PBS and fixed with methanol precooled to −20° C. for 10 min. The cells are then washed twice in PBS. The fixed cells are blocked with 50 μl of PBS+0.1% Triton X-100. Cells are probed with rabbit-anti-acetyl-H3 (Upstate #06-599) as the primary antibody and then with goat-anti-rabbit-HRP (Sigma #A-0545) as the secondary antibody. Fluorescence is read by fluorometer at Ex: 550, Em: 610, Cutoff: 590 (Auto PMT, 15 reads/well) after addition of Amplex-Red. Fluorescence signal is normalized against cell viability derived from Alamar Blue. Data is presented in Table 5 as EC50. Maximum acetylation signal of MS-275 (fluorescence unit) is measured as Emax.









TABLE 5a







Inhibition of Histone Deacetylase













HumanHDAC-1
MTT(HCT116)
H4Ac(T24)


Cpd
Structure
IC50(μM)
IC50(μM)
EC50(μM)














8


embedded image


0.4
0.5
1





9


embedded image


2
0.7
5





10


embedded image


2
0.6
1





11


embedded image


2
0.6
2





12


embedded image


2
2
5





14


embedded image


0.3
1
5





15


embedded image


0.5
0.2
3





16


embedded image


1
0.4
1





17


embedded image


0.9
1
2





18


embedded image


0.8
0.6
3





18b


embedded image


0.6
5
10





19


embedded image


0.9
1
1





20


embedded image


0.5
0.3
1





21


embedded image


4
4
25





22


embedded image


3
0.8
1





23


embedded image


2
0.7
1





24


embedded image


3
0.6
1





25


embedded image


0.8
0.3
5





26


embedded image


0.5
2
na





27


embedded image


0.4
2
na





28


embedded image


2
0.5
1





29


embedded image


2
2
1





30


embedded image


1
3
1





83


embedded image


3
5
5





(na=not available; 99=> 25 μM)













TABLE 5b












embedded image




















Human
MTT






HDAC-1
(HCT116)
H4Ac(T24)


Ex
Cpd
Structure
IC50(μM)
IC50(μM)
EC50(μM)















135
204


embedded image


4
na
5





136
207


embedded image


0.4
0.6
2





137
210


embedded image


3
0.9
1





138
212


embedded image


3
1
1





139
214


embedded image


3
0.9
1





140
216


embedded image


0.5
0.4
2





141
218


embedded image


0.1
0.5
na





142
220


embedded image


7
6
na





143a
223


embedded image


11
2
na





143b
224


embedded image


5
3
na





329
470


embedded image


2
0.7
3





330
471


embedded image


0.4
1
3





331
472


embedded image


3
1
1





332
473


embedded image


4
3
na





333
474


embedded image


3
1
1





334
475


embedded image


0.6
2
na





335
476


embedded image


2
1
2





336
477


embedded image


1
0.7
na





337
478


embedded image


3
0.7
na





338
479


embedded image


0.4
0.6
na





339
480


embedded image


0.8
0.5
na





340
481


embedded image


6
0.7
na





341
482


embedded image


0.1
0.7
na





342
483


embedded image


4
na
na





343
484


embedded image


2
0.3
na





344
485


embedded image


0.4
3
na





(na=nonavailable)

















TABLE 5c







HumanHDAC-1
MTT(HCT116)
H4Ac(T24)


Cpd
Structure
IC50(μM)
IC50(μM)
EC50(μM)



















51


embedded image


22
4
na





55b


embedded image


3
8
3





59


embedded image


12
22
na





61b


embedded image


7
12
na





65


embedded image


4
37
na





71


embedded image


10
44
na





72


embedded image


16
21
na





88


embedded image


na
>39
na





90


embedded image


10
5
5





91


embedded image


4
7
5





92


embedded image


5
2
3





93


embedded image


3
1
5





94


embedded image


3
2
5





95


embedded image


3
2
10





96


embedded image


4
3
25





97


embedded image


10
12
na





98


embedded image


0.4
2
15





99


embedded image


2
5
10





100


embedded image


4
3
5





101


embedded image


3
0.9
5





102


embedded image


20
6
na





104


embedded image


10
9
5





105


embedded image


16
14
na





106


embedded image


2
2
1





107


embedded image


15
17
na





108


embedded image


3
5
5





109


embedded image


5
8
15





110


embedded image


3
999
na





111


embedded image


10
2
99





112


embedded image


2
5
5





113


embedded image



0.3
5





114


embedded image


25
0.5
99





115


embedded image


15
9
na





116


embedded image


4
2
5





117


embedded image


7
3
na





118


embedded image


11
8
na





















TABLE 5d








HDAC-1
MTT(HCT116)
H4Ac(T24)


Ex.
Cpd
Structure
IC50(μM)
IC50(μM)
EC50(μM)







338
481


embedded image


22
10






339
484


embedded image


20
12






347
492


embedded image


4
9
10





348
493


embedded image


4
5






349
494


embedded image


3
4






350
495


embedded image


4
7






351
496


embedded image


8
13






352
497


embedded image


15
6






353
498


embedded image


>25







354
499


embedded image


>25
2
>25





355
500


embedded image


23
37






356
501


embedded image


4
10






357
502


embedded image


3
>25






358
503


embedded image


5
>25






359
504


embedded image


5
>25






360
505


embedded image


3
6






361
506


embedded image


15
11






362
507


embedded image


17
10






363
508


embedded image


22
11






364
509


embedded image


17
11






365
510


embedded image


6
5






366
511


embedded image


4
>25






367
512


embedded image


3
3
5





371
516


embedded image


15
15






372
517


embedded image


6
5






373
518


embedded image


4
2
5





374
519


embedded image


99
6






375
520


embedded image


5
3






376
521


embedded image


5
2
10





377
522


embedded image


17
30






378
523


embedded image


8
6
10





379
524


embedded image


3
2
3





380
525


embedded image


3
4
5





381
526


embedded image


2
0.8
1





382
527


embedded image


4
3






383
528


embedded image


20
32






384
529


embedded image


5
17






385
530


embedded image


8
9






386
531


embedded image


3
2
20





387
532


embedded image


3
5






388
533


embedded image


5
11






389
534


embedded image


3
5






390
535


embedded image


4
6






391
536


embedded image


18
9






392
537


embedded image


11
2
>25





393
538


embedded image


4
12






394
539


embedded image


2
10






395
540


embedded image


10
10






396
541


embedded image


4
12






397
542


embedded image


2
5
4





398
543


embedded image


15
>25






399
544


embedded image


17
45






400
545


embedded image


2
12






401
546


embedded image


3
10






402
547


embedded image


4
8






403
548


embedded image


3
9






404
549


embedded image


4
19






405
550


embedded image


4
15






406
551


embedded image


24
9






407
552


embedded image


4
22






408
553


embedded image


4
12






409
554


embedded image


15
12






410
555


embedded image


14
7






411
556


embedded image


1
0.4
15





412
557


embedded image


4
6






413
558


embedded image


7
10






414
559


embedded image


4
11






415
560


embedded image


21
6






416
561


embedded image


>25
>25






417
562


embedded image


5
5






418
563


embedded image


24
6






419
564


embedded image


>25
>25






420
565


embedded image


5
17






421
566


embedded image


3
16






422
567


embedded image


13
3






423
568


embedded image


>25
39






424
569


embedded image


18
6






425
570


embedded image


6
0.6
2




















TABLE 5E







Human






HDAC-1
MTT(HCT116)
H4 Ac (T24)


Cpd
Structure
IC50 (μM)
IC50 (μM)
EC50 (μM)



















87


embedded image


2
1
5





126


embedded image


0.3
0.2
1





128


embedded image


1
0.3
5





131


embedded image


0.3
0.9
2





139


embedded image


3
3
5





141


embedded image


7
10
na





149


embedded image


1
5
5





152


embedded image


0.3
11
na





154


embedded image


0.3
0.4
<1





155


embedded image


0.4
0.4
1





157


embedded image


2
0.6
1





158


embedded image


0.4
0.2
1





164


embedded image


3
2
3





165


embedded image


9
4
25





166


embedded image


2
5
5





167


embedded image


4
0.5
2





168


embedded image


3
0.8
2





169


embedded image


0.3
0.7
1





171


embedded image


8
3
25





172


embedded image


0.4
1
3





174


embedded image


4
0.4
5





175


embedded image


4
0.5
3





176


embedded image


5
1
3





177


embedded image


1
0.4
1





















TABLE 5F










H4 Ac





Human
MTT
(T24)





HDAC-1
(HCT116)
EC50


Ex
Cpd
Structure
IC50 (μM)
IC50 (μM)
(μM)




















117
179


embedded image


1
0.3
1





118
180


embedded image


3
2
5





119
181


embedded image


0.5
0.4
1





122
186


embedded image


2
2
2





123
187


embedded image


2
5
2





125
189


embedded image


3
2
5





126
190


embedded image


3
1
>5





127
192


embedded image


2
1
3





128
193


embedded image


4
16






129
194


embedded image


3
11






130
195


embedded image


7
9






131
196


embedded image


4
3






132
198


embedded image


24
14






133
199


embedded image


7
9






134
201


embedded image


11
5






144
228


embedded image


3
0.3
1





145
231


embedded image


4
1
3





146
233


embedded image


0.9
0.3
1





147
236


embedded image


5
6






148
238


embedded image


3
6






149
240


embedded image


1.8
10






150
243


embedded image


2
0.8
1





151
247


embedded image


3
0.6
2





152
249


embedded image


4
1
2





153
252


embedded image


8
1
2





154
255


embedded image


2
0.8
1





155
257


embedded image


0.4
0.4
1





156
259


embedded image


3
0.3
1





157
262


embedded image


0.5
0.3
1





158
265


embedded image


2
2
3





159
266


embedded image


0.4
0.9
2





160
269


embedded image


9
4






161
270


embedded image


4
1
5





162
272


embedded image


2
0.6
<1





163
275


embedded image


4
0.9
2





164
277


embedded image


4
0.3
1





165
281


embedded image


0.5
0.6
1





166
284


embedded image


3
5






167
286


embedded image


5
2






168
289


embedded image


17
5






169
290


embedded image


11
3






170
296


embedded image


20
7






171
297


embedded image


7
0.4
1





172
301


embedded image


3
3






173
305


embedded image


4
2






174
311


embedded image


0.9
0.7
1





178
317


embedded image


2
0.3
1





179
319


embedded image


4
8






180
320


embedded image


2

1





181
321


embedded image


0.5
0.3
5





182
322


embedded image


0.7
0.4
2





183
323


embedded image


1
0.6
1





184
325


embedded image


0.3
1
2





185
326


embedded image


1
1
3





186
327


embedded image


2
5
3





187
328


embedded image


17
10






189
330


embedded image


3
2
1





190
331


embedded image


4
10






191
332


embedded image


0.4
1
5





192
333


embedded image


2
0.1
1





193
334


embedded image


8
0.2
1





195
336


embedded image


1
0.4
<1





196
337


embedded image


3
0.6
1





197
338


embedded image


2
0.5
3





198
339


embedded image


4
3






199
340


embedded image


2
1
1





200
341


embedded image


4
1
3





201
342


embedded image


3
0.4
1





202
343


embedded image


0.5
0.3
1





203
344


embedded image


0.5
0.2
1





204
345


embedded image


0.4
0.8
1





205
346


embedded image


3
0.5
<1





206
347


embedded image


2
0.6
2





207
348


embedded image


2
0.3
1





208
349


embedded image


13
1
3





209
350


embedded image


2
1
5





211
352


embedded image


16
9






212
353


embedded image


3
10






213
354


embedded image


15
5






214
355


embedded image


25
10






215
356


embedded image


5
2






216
357


embedded image


4
0.4
2





217
358


embedded image


3
1
2





218
359


embedded image


2
0.3
1





219
360


embedded image


5
0.2
1





220
361


embedded image


2
0.5
1





221
362


embedded image


2
0.7
1





222
363


embedded image


1
0.3
3





223
364


embedded image


4
0.6






224
365


embedded image


3
0.6
3





225
366


embedded image


14
10






226
367


embedded image


6
2
5





230
371


embedded image


4
0.5
2





231
372


embedded image


2
0.2
1





232
373


embedded image


4
0.4
1





233
374


embedded image


2.5
0.3
1





234
375


embedded image


3
4
25





235
376


embedded image


3
0.1
1





236
377


embedded image


4
2
3





237
378


embedded image


2
0.7
2





238
379


embedded image


2
0.6
15





239
380


embedded image


6
8






240
381


embedded image


2
1
2





241
382


embedded image


3
1
3





242
383


embedded image


2
0.5
2





243
384


embedded image


3
2
5





244
385


embedded image


3
1
2





245
386


embedded image


3
1
1





246
387


embedded image


2
1
1





247
388


embedded image


3
0.4
5





248
389


embedded image


3
0.2
1





249
390


embedded image


2
0.8
5





250
391


embedded image


1
0.9
3





251
392


embedded image


4
1
1





252
393


embedded image


4
0.6
1





253
394


embedded image


4
2
25





254
395


embedded image


2
1
5





255
396


embedded image


2
0.7
5





256
397


embedded image


1
0.6
4





258
399


embedded image


14
9






259
400


embedded image


8
0.3
2





260
401


embedded image


6
0.3
2





261
402


embedded image


14
0.4
1





262
403


embedded image


1
0.2
1





263
404


embedded image


3
0.6
5





264
405


embedded image


5
1
5





265
406


embedded image


3
11






266
407


embedded image


3
2






267
408


embedded image


4
2






268
409


embedded image


3
1
9999





269
410


embedded image


0.9
0.1
>5





270
411


embedded image


2

1





271
412


embedded image


3
2
3





272
413


embedded image


2
2
3





273
414


embedded image


3
1
1





274
415


embedded image


3
1
3





275
416


embedded image


3
0.6
1





276
417


embedded image


3
1
1





277
418


embedded image


3
0.9
2





278
419


embedded image


2
1
5





279
420


embedded image


3
0.7
1





280
421


embedded image


4
0.6
1





281
422


embedded image


<0.05
0.9
5





282
423


embedded image


0.5
1
3





283a
424b


embedded image


2
0.4
1





283b
424c


embedded image


3
0.8
3





284
425


embedded image


2
0.6
5





285
426


embedded image


2
1
10





286
427


embedded image


0.6
2
1





287
428


embedded image


0.7
0.7
1





288
429


embedded image


4
0.9
1





289
430


embedded image


5
0.7
1





290
431


embedded image


5
5






291
432


embedded image


2
1
3





292
432


embedded image


2
0.6
1





293
434


embedded image


4
0.6
2





294
435


embedded image


3
0.6
1





295
436


embedded image


5
0.8
5





296
437


embedded image


3
0.4
1





297
438


embedded image


5
0.6
1





298
439


embedded image


3
0.4
1





299
440


embedded image


4
0.1
2





300
441


embedded image


2
0.8
2





301
442


embedded image


17
0.4
1





302
443


embedded image










303
444


embedded image










304
445


embedded image


16
6






305
446


embedded image


21
7






307
448


embedded image


3
0.2
2





308
449


embedded image


1
6






309
450


embedded image


3
2






310
451


embedded image


4
0.2
3





311
452


embedded image


3
0.3
2





312
453


embedded image


9999
37






313
454


embedded image


4
2
5





314
455


embedded image


4
0.7
1





315
456


embedded image


3
0.4
8888





316
457


embedded image


9999
9999






317
458


embedded image


3
0.3
2





318
459


embedded image


4
0.3
1





319
460


embedded image


3
1
1





320
461


embedded image


1.4
0.3
1





321
462


embedded image


4
0.3
1





322
463


embedded image


12
6






323
464


embedded image


4
11






324
465


embedded image


2
9999
9999





325
466


embedded image


3
2
1





326
467


embedded image


4
0.4
2





327
468


embedded image


2
8
<1





426
571


embedded image


4
11






427
572


embedded image


1.5
5
5





428
573


embedded image


7
0.4
1





429
574


embedded image


13
0.7
3





430
575


embedded image


2
0.2
1





431
576


embedded image


5
6






432
577


embedded image


2
0.5
2





433
578


embedded image


0.6
0.1
1





434
579


embedded image


2
0.5
1





435
580


embedded image


4
0.3
<1





436
587


embedded image


5
0.8
2





437
590


embedded image


2
2
3





438
591


embedded image


4
0.3
<1





439
592


embedded image


5
0.4
<1


























MTT HCT116
H3


Cpd
Structure
HDAC1 IC50 uM
IC50 (mM)
Ac t24 (uM)



















604


embedded image


0.06
0.8
8





605


embedded image


0.3
3
12





606


embedded image


0.4
0.7
7





607


embedded image


0.6392
1





608


embedded image


0.2
0.3
0.2





609


embedded image


1.2182
2





610


embedded image


0.266
0.75





611


embedded image


0.0976
0.6





612


embedded image


0.8152
39





613


embedded image


0.09
0.3
1





614


embedded image


0.1
8
1





615


embedded image


1.3775
4





616


embedded image


0.1067
0.7





617


embedded image


0.23
0.7
2









Assay Example 2
Antineoplastic Effects of Histone Deacetylase Inhibitors on Human Tumor Xenografts In Vivo

Eight to ten week old female BALB/c nude mice (Taconic Labs, Great Barrington, N.Y.) were injected subcutaneously in the flank area with 2×106 preconditioned HCT116 human colorectal carcinoma cells. Preconditioning of these cells was done by a minimum of three consecutive tumor transplantations in the same strain of nude mice. Subsequently, tumor fragments of approximately 30 mgs were excised and implanted subcutaneously in mice, in the left flank area, under Forene anesthesia (Abbott Labs, Geneve, Switzerland). When the tumors reached a mean volume of 100 mm3, the mice were treated intravenously, subcutaneously, or intraperitoneally by daily injection, with a solution of the histone deacetylase inhibitor in an appropriate vehicle, such as PBS, DMSO/water, or Tween 80/water, at a starting dose of 10 mg/kg. The optimal dose of the HDAC inhibitor was established by dose response experiments according to standard protocols. Tumor volume was calculated every second day post infusion according to standard methods (e.g., Meyer et al., Int. J. Cancer 43: 851-856 (1989)). Treatment with the HDAC inhibitors according to the invention caused a significant reduction in tumor weight and volume relative to controls treated with vehicle only (i.e., no HDAC inhibitor). In addition, the level of histone acetylation when measured was significantly elevated relative to controls. Data for selected compounds are presented in Table 6. FIG. 1 shows the full experimental results for compound 106, which inhibits tumor growth by 80%. FIGS. 2-10 show the results of additional compounds tested.









TABLE 6







Antitumor Activity in HCT 116 Colorectal Tumor Model In Vivo










Compound
% Inhibition of Tumor Growth














106
80a



126
62b



9
51b



87
30b



157
66a



167
58a



15
26b



168
26b



16
50b



154
23a



98
52a








a20 mg/kg i.p.





b40 mg/kg i.p.














TABLE 7







Antineoplastic Effects Of Histone Deacetylase Inhibitors On Nude Mice Xenograft Models









% Inhibition Of Tumor Growth












cpd
A 549 (p.o.)
SW48 (p.o.)
A 549 (i.p.)
HCT 116 (i.p.)
SW 48 (i.p.)





106 
40% (70 mg/kg)
16% (60 mg/kg)





164 
42% (70 mg/kg)
62% (60 mg/kg)

37% (20 mg/kg)
99% (25 mg/kg)


228 
45% (70 mg/kg)
25% (60 mg/kg)
64% (20 mg/kg)
45% (20 mg/kg)
68% (20 mg/kg)


424b
67% (50 mg/kg)
78% (30 mg/kg)
60% (50 mg/kg)
77% (75 mg/kg)
68% (25 mg/kg)









Assay Example 3
Combined Antineoplastic Effect of Histone Deacetylase Inhibitors and Histone Deacetylase Antisense Oligonucleotides on Tumor Cells in Vivo

The purpose of this example is to illustrate the ability of the combined use of a histone deacetylase inhibitor of the invention and a histone deacetylase antisense oligonucleotide to enhance inhibition of tumor growth in a mammal. Preferably, the antisense oligonucleotide and the HDAC inhibitor inhibit the expression and activity of the same histone deacetylase.


As described in Example 126, mice bearing implanted HCT116 tumors (mean volume 100 mm3) are treated daily with saline preparations containing from about 0.1 mg to about 30 mg per kg body weight of histone deacetylase antisense oligonucleotide. A second group of mice is treated daily with pharmaceutically acceptable preparations containing from about 0.01 mg to about 5 mg per kg body weight of HDAC inhibitor.


Some mice receive both the antisense oligonucleotide and the HDAC inhibitor. Of these mice, one group may receive the antisense oligonucleotide and the HDAC inhibitor simultaneously intravenously via the tail vein. Another group may receive the antisense oligonucleotide via the tail vein, and the HDAC inhibitor subcutaneously. Yet another group may receive both the antisense oligonucleotide and the HDAC inhibitor subcutaneously. Control groups of mice are similarly established which receive no treatment (e.g., saline only), a mismatch antisense oligonucleotide only, a control compound that does not inhibit histone deacetylase activity, and a mismatch antisense oligonucleotide with a control compound.


Tumor volume is measured with calipers. Treatment with the antisense oligonucleotide plus the histone deacetylase protein inhibitor according to the invention causes a significant reduction in tumor weight and volume relative to controls.

Claims
  • 1. A histone deacetylase inhibitor of formula (2):
  • 2. The compound according to claim 1 wherein Ay2 is phenyl or thienyl, each substituted with —OH or —NH2.
  • 3. The compound according to claim 1 wherein the amino or hydroxy substituent is ortho to the nitrogen to which Ay2 is attached.
  • 4. The compound according to claim 1 wherein Ay2 is ortho aniline, ortho phenol, 3-amino-2-thienyl, or 3-hydroxy-2-thienyl.
  • 5. The compound according to claim 1 wherein Ar2 has the formula
  • 6. The compound according to claim 5 wherein Ar2 has the formula
  • 7. The compound according to claim 1 wherein Ar2 is phenylene.
  • 8. The compound according to claim 1 wherein Cy2 optionally substituted phenyl.
  • 9. The compound according to claim 1 wherein Cy2 has from one and three substituents independently selected from the group consisting of alkyl, alkoxy, amino, nitro, halo, haloalkyl, and haloalkoxy.
  • 10. The compound according to claim 1 wherein the Cy2 substituents are selected from methyl, methoxy, fluoro, trifluoromethyl, trifluoromethoxy, nitro, amino, aminomethyl, and hydroxymethyl.
  • 11. A compound of the formula (2b):
  • 12. The compound according to claim 11 wherein Ay2 is selected from:
  • 13. The compound according to claim 11 wherein Cy2 is phenyl, optionally substituted with one to three CH3O—.
  • 14. The compound according to claim 11 wherein Cy2 is phenyl substituted with one to three CH3O—.
  • 15. A composition comprising a compound according to claim 1 and a pharmaceutically acceptable carrier.
  • 16. A method of inhibiting histone deacetylase in a cell in vitro, the method comprising contacting a cell with a compound according to claim 1.
  • 17. A composition comprising a compound according to claim 1 and a pharmaceutically acceptable carrier.
  • 18. A method of inhibiting histone deacetylase in a cell in vitro, the method comprising contacting a cell with a compound according to claim 11.
  • 19. A method of treating colon or lung cancer in a human patient, the method comprising administering an effective amount of a compound according to claim 1 to the patient.
  • 20. A method of treating colon or lung cancer in a human patient, the method comprising administering an effective amount of a compound according to claim 11 to the patient.
  • 21. A histone deacetylase inhibitor selected from the compounds listed in Tables 4b, and 5e-5f, or a pharmaceutically acceptable salt thereof:
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part of U.S. application Ser. No. 10/358,556, filed Feb. 4, 2003, now U.S. Pat. No. 6,897,220 which is a continuation-in-part of U.S. application Ser. No. 10/242,304, filed Sep. 12, 2002, which claims the benefit of U.S. Provisional Application 60/391,728, filed Jun. 26, 2002, and U.S. Provisional Application 60/322,402, filed Sep. 14, 2001.

US Referenced Citations (36)
Number Name Date Kind
2754286 Louis Oct 1956 A
3576869 Schellenbaum et al. Apr 1971 A
4994479 Mase et al. Feb 1991 A
5137918 Weisershausen et al. Aug 1992 A
5332750 Mederski et al. Jul 1994 A
5366878 Pederson et al. Nov 1994 A
5635377 Pederson et al. Jun 1997 A
5652355 Metelev et al. Jul 1997 A
5945450 Takeenouchi et al. Aug 1999 A
6034251 Aslanian et al. Mar 2000 A
6174905 Suzuki et al. Jan 2001 B1
6376515 Zhu et al. Apr 2002 B2
6541661 Delorme et al. Apr 2003 B1
6632815 Zhu et al. Oct 2003 B2
6653309 Saunders et al. Nov 2003 B1
6777217 Schreiber et al. Aug 2004 B1
6897220 Delorme et al. May 2005 B2
7253204 Delorme et al. Aug 2007 B2
RE39850 Delorme et al. Sep 2007 E
7282608 Raeppel et al. Oct 2007 B2
20020061860 Li et al. May 2002 A1
20030096844 Kozlowski et al. May 2003 A1
20030232859 Kozlowski et al. Dec 2003 A1
20040010013 Friary et al. Jan 2004 A1
20040044051 Kozlowski et al. Mar 2004 A1
20040087798 Yamada May 2004 A1
20040106599 Delorme et al. Jun 2004 A1
20040132804 Tong et al. Jul 2004 A1
20040142953 Delorme et al. Jul 2004 A1
20040147569 Suzuki et al. Jul 2004 A1
20040186148 Shankar et al. Sep 2004 A1
20050096222 Hidaka et al. May 2005 A1
20050245518 Delorme et al. Nov 2005 A1
20060058298 Delorme et al. Mar 2006 A1
20070213330 Delorme et al. Sep 2007 A1
20080132503 Moradei et al. Jun 2008 A1
Foreign Referenced Citations (53)
Number Date Country
2136288 Nov 1994 CA
2480356 Oct 2003 CA
2484065 Nov 2003 CA
2490579 Jan 2004 CA
2615105 Jan 2007 CA
14 70 097 Jun 1969 DE
0 657 454 Nov 1994 EP
0 847 992 Sep 1997 EP
0 847 992 Jun 1998 EP
1 256 341 Nov 2002 EP
25886396 Sep 1996 JP
11269146 Oct 1999 JP
1999269146 Oct 1999 JP
1999302173 Nov 1999 JP
2001131130 May 2001 JP
2003137866 May 2003 JP
2003221380 Aug 2003 JP
9842672 Jan 1998 WO
WO 9845252 Oct 1998 WO
WO 0003704 Jan 2000 WO
WO 0116106 Mar 2001 WO
0138322 May 2001 WO
WO 0138322 May 2001 WO
WO 0138322 May 2001 WO
WO 0160354 Aug 2001 WO
0164643 Sep 2001 WO
0170675 Sep 2001 WO
WO 0168585 Sep 2001 WO
WO 0168585 Sep 2001 WO
WO 02069947 Sep 2002 WO
03024448 Mar 2003 WO
WO 03075929 Sep 2003 WO
WO 03076395 Sep 2003 WO
WO 03076400 Sep 2003 WO
WO 03076401 Sep 2003 WO
WO 03076421 Sep 2003 WO
WO 03076422 Sep 2003 WO
WO 03076430 Sep 2003 WO
WO 03076438 Sep 2003 WO
WO 03078390 Sep 2003 WO
WO 03087057 Oct 2003 WO
WO 03087057 Oct 2003 WO
WO 03092686 Nov 2003 WO
WO 03092686 Nov 2003 WO
WO 2004005513 Jan 2004 WO
WO 2004058234 Jul 2004 WO
2004069133 Aug 2004 WO
2004069823 Aug 2004 WO
WO 2004071400 Aug 2004 WO
2005030705 Apr 2005 WO
2005092899 Oct 2005 WO
2006122319 Nov 2006 WO
2007118137 Oct 2007 WO
Related Publications (1)
Number Date Country
20050288282 A1 Dec 2005 US
Provisional Applications (2)
Number Date Country
60391728 Jun 2002 US
60322402 Sep 2001 US
Continuation in Parts (2)
Number Date Country
Parent 10358556 Feb 2003 US
Child 11091025 US
Parent 10242304 Sep 2002 US
Child 10358556 US