This invention relates to an ink cartridge for supplying ink to a head of a record apparatus and a method of ink injection thereinto.
An ink jet record apparatus generally comprises a record head mounted on a carriage and moving in the width direction of record paper, and paper feed means for moving the record paper relatively in a direction orthogonal to the move direction of the record head.
Such an ink jet record apparatus prints on record paper by ejecting ink droplets from a record head based on print data.
A record head capable of ejecting black ink, yellow ink, cyan ink, and magenta ink, for example, is mounted on a carriage and in addition to text print in black ink, full-color print is made possible by changing the ink ejection percentage.
Thus, ink cartridges for supplying black ink, yellow ink, cyan ink, and magenta ink to the record head are placed in the main unit of the apparatus.
In the ordinary ink jet record apparatus, the ink cartridges for supplying black ink, yellow ink, cyan ink, and magenta ink are mounted on a carriage and are moved together with the carriage.
In the recent record apparatus, the carriage has been moved at high speed for the purpose of increasing the record speed.
In such a record apparatus, pressure fluctuation occurs in internal ink as an ink supply tube is extended and bent with acceleration and deceleration of the carriage, making unstable ejecting of ink droplets from the record head.
Thus, such an ink cartridge is proposed, that comprises a lower ink storage chamber (ink tank chamber) opened to the atmosphere side, an upper ink storage chamber (ink end chamber) for head connection, connected via an ink flow passage to the lower ink storage chamber, and a differential pressure regulating valve placed at midpoint in a passage connecting the upper ink storage chamber and a head supply port.
According to the ink cartridge, a negative pressure is generated on the head side by negative pressure generation means and the differential pressure regulating valve is opened accordingly for supplying ink to the record head, so that the adverse effect on ink produced by pressure fluctuation mentioned above is lessened and ink can be supplied to the record head at the optimum water head difference.
In the ink cartridge, an opening portion for ink injection is constructed by a single opening, and thus ink cannot be injected under ink injection conditions respectively required for the ink tank chamber and the ink end chamber.
That is, the ink end chamber must contain no atmosphere and have a proper ink amount. On the other hand, the ink tank chamber must have a proper ink amount.
Therefore, ink needs to be injected into the separate chambers under different conditions.
Particularly, if ink is injected into the ink end chamber in the cartridge under the ink injection (atmosphere injection) conditions required for the ink tank chamber, air is mixed into not only the ink tank chamber, but also the ink end chamber. Consequently, bubbles are mixed into ink supplied to the head when ink is used, and stability on printing cannot be ensured; this is a problem.
It is therefore an object of the invention to provide an ink cartridge and a method of ink injection into the ink cartridge, for making it possible to prevent bubbles from being mixed into ink supplied to a head when ink is used, and ensure stability on printing.
To the end, according to the invention, there is provided an ink cartridge being detachably connected to a head of a record apparatus, and comprising a case having an ink tank chamber opened to the atmosphere in a state in which the head and the cartridge are connected, and an ink end chamber communicating with the ink tank chamber and leading to the head, wherein the case is formed with a first opening communicating with the ink tank chamber and a second opening communicating with the ink end chamber.
Since the ink cartridge is thus configured, ink can be injected into the ink tank chamber through the first opening under atmosphere injection condition, and ink can be injected into the ink end chamber through the second opening under vacuum injection condition.
Therefore, bubbles can be prevented from being mixed into ink supplied to the head when ink is used, and stability on printing can be ensured.
Here, it is desirable that the case is formed with an atmospheric communication port for discharging the atmosphere in the ink tank chamber, and a suction port for conducting vacuum suction of the ink end chamber.
Since the ink cartridge is thus configured, ink is injected into the ink tank chamber while the atmosphere is discharged through the atmospheric communication port, and ink is injected into the ink end chamber while vacuum suction is conducted through the suction port.
It is desirable that the suction port is an ink supply port for supplying ink to the head.
Since the ink cartridge is thus configured, the ink supply port for supplying ink to the head of the record apparatus can be used as the suction port for conducting vacuum suction of the ink end chamber at the ink injection time.
On the other hand, a method of injecting ink into an ink cartridge according to the invention is applicable to an ink cartridge being detachably connected to a head of a record apparatus and comprising a case having an ink tank chamber opened to the atmosphere in a state in which the head and the cartridge are connected and an ink end chamber communicating with the ink tank chamber and leading to the head, and is directed to an ink injection method for injecting ink into the ink tank chamber and the ink end chamber in the case. In the method, ink is injected into the ink tank chamber under a predetermined ink injection condition, and ink is injected into the ink end chamber under an ink injection condition different from the predetermined ink injection condition.
Because of such a method, there can be provided an ink cartridge wherein ink can be injected under the ink injection conditions respectively required for the ink tank chamber and the ink end chamber.
Here, it is desirable that, in injecting ink into the ink end chamber, vacuum suction of the ink end chamber is conducted.
According to such a method, there can be provided an ink cartridge wherein bubbles can be prevented from occurring in ink in the ink end chamber when ink is used, and stability on printing can be ensured.
It is desirable that vacuum suction of the ink end chamber is conducted through an ink supply port of the ink cartridge.
Further, it is desirable that, in injecting ink into the ink tank chamber, the ink tank chamber communicates with the atmosphere.
According to such a method, there can be provided an ink cartridge wherein ink can be injected into the ink tank chamber under atmosphere injection condition.
The present disclosure relates to the subject matter contained in Japanese patent application No. 2001-147418 (filed on May 17, 2001), 2001-149315 (filed on May 18, 2001), and 2001-262036 (filed on Aug. 30, 2001), which are expressly incorporated herein by reference in their entireties.
In the accompanying drawings:
FIGS. 2(a) and 2(b) are perspective views to show the appearance of the ink cartridge according to the embodiment of the invention;
FIGS. 10(a) and 10(b) are views to describe an ink injection flow passage of the ink cartridge according to the embodiment of the invention, in which
FIG. 10(a) is a sectional view to schematically show the internal structure of the ink cartridge, and
FIG. 10(b) is a bottom view to show an ink injection hole; and
Referring now to the accompanying drawings, there are shown preferred embodiments of an ink cartridge and an ink injection method thereinto incorporating the invention.
To begin with, the ink cartridge will be discussed with reference to
An ink cartridge 1 shown in FIGS. 2(a) and 2(b) has a container main body (lower case) 2 almost rectangular in a plane view, and opened to one side, and a lid body (upper case) 3 for sealing the opening of the container main body 2. The interior of the ink cartridge 1 is generally constructed to have an ink flow passage system and an air flow passage system (both described later).
Formed in the lower portion of the container main body 2 are an ink supply port 4 that can be connected to an ink supply needle 72 of a record head 112 (both are shown in FIG. 9), and a first opening (open hole) 85 and a second opening 86 (both are shown in
A substantially cylindrical seal member 200 made of rubber, etc., is placed in the ink supply port 4, as shown in
The second opening 86 is made to communicate with the first ink storage chamber 11 through an atmospheric communication port 86a, and communicate with the ink end chamber (second ink storage chamber 16, third ink storage chamber 17, etc.,) through an ink injection port 86b, as shown in FIGS. 10(a) and 10(b).
Retention members 5 and 6 that can be attached to and detached from a cartridge holder are provided integrally on the upper sides of the container main body 2. A circuit board (IC board) 7 is disposed below one retention member 5 as shown in FIG. 2(a), and a valve storage chamber 8 is disposed below the other retention member 6 as shown in FIGS. 2(a) and 2(b).
The circuit board 7 has a storage device retaining information data concerning ink, for example, color type, pigment/dye based ink type, ink remaining amount, serial number, expiration date, applied model, and the like so that the data can be written.
The valve storage chamber 8 has an internal space opened to the cartridge insertion side (lower side) as shown in
A through hole 60 as an atmospheric communication hole opened and closed by the opening and closing operation of an atmospheric open valve 601 is made in a chamber wall 8a of the valve storage chamber 8 (atmospheric open chamber 501), as shown in FIG. 8. The operation arm 66 is placed on one opening side of the through hole 60, and the atmospheric open valve 601 is placed on the other opening side of the through hole 60. The operation arm 66 has an operation part 66b for pressing a pressurization film (elastically deformable film) 61, and is placed projecting in an upward slanting direction into the path of the valve operation rod 70 and is fixed to the container main body 2 through a rotation supporting point 66a.
The pressurization film 61 is attached to the chamber wall 8a so as to block the through hole 60, and the whole of the pressurization film 61 is formed of an elastic seal member of rubber, etc. The internal space formed between the pressurization film 61 and the opening peripheral margin of the through hole 60 is opened to a through hole 67 communicating with the first ink storage chamber (ink tank chamber) 11 (both are shown in FIG. 5).
The atmospheric open valve 601 has a valve body 65 for opening and closing the through hole 60, and an elastic member (plate spring) 62 for constantly urging the valve body 65 against the opening peripheral margin of the through hole 60. The elastic member 62 is formed at an upper end part with a through hole 62b into which a projection 64 is inserted for regulating the elastic member 62 in move (guiding). On the other hand, the elastic member 62 is fixed at a lower end part onto the container main body 2 through a projection 63.
In
Next, the ink flow passage system and the air flow passage system in the container main body 2 will be discussed with reference to
[Ink Flow Passage System]
The ink cartridge 1 is formed with an internal space by joining the lid body 3 to the front of the container main body 2 through inner films (air shield films) 56 and 502 and joining a protective label 83 to the rear of the container main body 2 through an outer film (air shield film) 57, as shown in FIG. 1. The internal space is divided into upper and lower parts by a partition wall 10 extending slightly downward toward the ink supply port side opposed to the record head 112 (shown in FIG. 9), as shown in
Two intermediate walls 300 and 301 different in height position are disposed in the first ink storage chamber 11. One intermediate wall 300 is placed with a predetermined spacing from one side surface part of the first ink storage chamber 11. The other intermediate wall 301 is opposed to the bottom part of the first ink storage chamber 11 and is placed on the ink supply port side of the intermediate wall 300. The intermediate wall 301 partitions the first ink storage chamber 11 into two space parts 11a and 11b placed side by side in the ink injection direction (up and down). The intermediate wall 301 is formed with a through part 301a having the same axis as the axis of the first opening 85.
On the other hand, the upper area of the internal space is defined by a frame 14 with the partition wall 10 as a bottom part. The internal space of the frame 14 forms (a part of) the ink end chamber connected to the record head 112, and the front side of the ink end chamber is divided into left and right parts by a vertical wall 15 having a communication port 15a. One of the areas into which the internal space is divided provides a second ink storage chamber 16, and the other area provides a third ink storage chamber 17.
A communication flow passage 18 communicating with the first ink storage chamber 11 is connected to the second ink storage chamber 16. The communication flow passage 18 has communication ports 18a and 18b at lower and upper positions. The communication flow passage 18 is formed by a recess part 18c (shown in
On the other hand, the third ink storage chamber 17 is formed with a differential pressure regulating valve storage chamber 33 (shown in
The partition wall 24 is formed at a lower part with a partition wall 26 having a communication port 26a between the partition wall 24 and the partition wall 10, and is formed on a side with a partition wall 27 having a communication port 27a between the partition wall 24 and the frame 14. A communication passage 28 communicating with the communication port 27a and extended in the up and down direction is provided between the partition wall 27 and the frame 14. A through hole 29 communicating with the filter chamber 34 through the communication port 24a and an area 31 is placed in an upper part of the communication passage 28.
The through hole 29 is formed by a partition wall (annular wall) 30 continuous to the partition wall 27.
The area 31 is formed by the partition walls 22, 24, and 30 and a partition wall 30a (shown in FIG. 6). The area 31 is formed deep at one end part of the container main body 2 (portion communicating with the through hole 29) and shallow at an opposite end part (portion communicating with the filter chamber 34).
The differential pressure regulating valve storage chamber 33 stores the membrane valve 52 as a differential pressure regulating valve that can become elastically deformed, such as an elastomer, as shown in FIG. 7. The membrane valve 52 has a through hole 52c, and is urged to the filter chamber side by a helical compression spring 50, and has an outer peripheral margin fixed through an annular thick part 52a to the container main body 2 by ultrasonic welding. The helical compression spring 50 is supported at one end part by a spring bracket 52b of the membrane valve 52 and at an opposite end part by a spring bracket 203 in the differential pressure regulating valve storage chamber 33. The position accuracy of the helical compression spring 50 to the membrane valve 52 is an important element for the differential pressure regulating valve to control the differential pressure, and the convex part of the membrane valve 52 needs to be placed by the helical compression spring 50 without bend, position shift, etc., as shown in FIG. 7.
Numeral 54 denotes a frame formed integrally with the thick part 52a of the membrane valve 52.
The filter 55 for allowing ink to pass through and capturing dust, etc., is placed in the filter chamber 34, as shown in FIG. 7. The opening of the filter chamber 34 is sealed with the inner film 56 and the opening of the differential pressure regulating valve storage chamber 33 is sealed with the outer film 57. When the pressure in the ink supply port 4 lowers, the membrane valve 52 is separated from a valve seat part 25b against the urging force of the helical compression spring 50 (the through hole 52c is opened). Thus, ink passed through the filter 55 passes through the through hole 52c and flows into the ink supply port 4 through the flow passage formed by the recess part 35. When the ink pressure in the ink supply port 4 rises to a predetermined value, the membrane valve 52 sits on the valve seat part 25b by the urging force of the helical compression spring 50, shutting off the flow of ink. Such operation is repeated, whereby ink is supplied to the ink supply port 4 while a constant negative pressure is maintained.
[Air Flow Passage System]
As shown in
According to the configuration, when the ink cartridge 1 is mounted to the cartridge holder 71 as shown in
As the valve body 201 in the ink supply port 4 is opened and ink is consumed by the record head 112, the pressure of the ink supply port 4 falls below a stipulated value. Thus, the membrane valve 52 in the differential pressure regulating valve storage chamber 33 shown in
Further, as consumption of ink in the record head 112 proceeds, ink in the first ink storage chamber 11 flows into the second ink storage chamber 16 through the communication flow passage 18 shown in FIG. 4.
On the other hand, as ink is consumed, air flows in through the through hole 67 (shown in
After this, the ink in the filter chamber 34 passes through the filter 55 shown in
The ink is thus supplied from the ink cartridge 1 to the record head 112.
If a different kind of ink cartridge 1 is placed in the cartridge holder 71, before the ink supply port 4 arrives at the ink supply needle 72, the identification convex part 68 (shown in
On the other hand, if the ink cartridge 1 is drawn out from the placement position in the cartridge holder 71, the operation arm 66 is elastically restored because it is no longer supported by the operation rod 70, and the valve body 65 is elastically restored accordingly, blocking the through hole 60, so that communication between the recess part 38 and the first ink storage chamber 11 is shut off.
Next, a method of ink injection into the ink cartridge 1 according to the embodiment will be discussed with reference to
The ink injection method into the ink cartridge in the embodiment is characterized by the fact that the ink tank chamber 11 and the ink end chamber can be filled with ink under different ink filling conditions.
That is, the ink injection method is characterized by the fact that the ink tank chamber 11 can be filled with ink in a state in which the atmosphere remains therein, and the ink end chamber can be filled with ink so that no atmosphere remains therein.
To this end, an ink injection machine 100 as shown in
The nozzle 100b is preferably inserted into and placed at a deeper position in the cartridge than the through part 301a of the intermediate wall 301 shown in
Thus, if the ink cartridge 1 is turned upside down (is placed in the state shown in
Consequently, ink with no bubbles can be supplied through the communication ports 19a and 19b to the communication flow passage 18 and finally can be supplied to the ink supply port 4.
When ink is supplied through the first opening 85 to the ink tank chamber 11 as indicated by the arrow (solid line) in
The atmospheric communication port 86a is opened facing the second opening 86 together with the ink injection port 86b. Thus, the second opening 86 is sealed with the film 90 after ink is injected, whereby the atmospheric communication port 86a and the ink injection port 86b can be hermetically sealed.
Next, ink injection into the ink end chamber through the nozzle 100c will be discussed with reference to FIG. 11.
The differential pressure regulating valve 52 is placed between the ink injection port 86b of the second opening 86, to which the nozzle 100c is connected, and the ink supply port 4. Thus, unless the pressure on the ink supply port 4 side is low, ink cannot be filled up to the ink supply port 4.
Air needs to be prevented from being mixed into the ink end chamber. Thus, vacuum suction is conducted through the nozzle 100a from the ink supply port 4 side at the same time as ink is supplied through the nozzle 100c.
Further, the communication port 18a is provided in the proximity of the ink injection port 86b of the second opening. 86, so that ink supplied through the nozzle 100c is filled through the communication port 18a, the communication flow passage 18, the second ink storage chamber 16, and the third ink storage chamber 17 up to the ink supply port 4 as ink mixed with no air (atmosphere).
Next, the ink injection operation in the embodiment will be discussed with reference to FIG. 11. As an ink cartridge, the ink cartridge 1 before the ink supply port 4 is sealed with the film 89 and the first opening 85 and the second opening 86 are sealed (hermetically sealed) with the film 90 is provided.
As shown in
When the first ink storage chamber 11 is filled with ink to about 50% of the volume of the first ink storage chamber 11, ink injection through the ink nozzle 100b is terminated. Ink is injected into the ink end chamber while vacuum suction (vacuum degree 100%) is conducted through the ink supply port 4. In this case, to prevent remaining bubbles and air mixture, it is desirable that ink should be injected into the ink end chamber to about 100% of the volume thereof. Excessively injected ink may be discharged through the ink supply port 4.
After ink injection using the nozzles 100a, 100b, and 100c is ended, the first opening 85, the second opening 86, and the ink supply port 4 are hermetically sealed. The ink injection operation is now complete.
Thus, in the embodiment, ink injection can be executed under the ink injection conditions respectively required for the ink tank chamber and the ink end chamber, so that bubbles can be prevented from being mixed into ink supplied to the head when ink is used, and stability on printing can be ensured.
In the embodiment, the case where the atmosphere filling percentage in the first ink storage chamber 11 is set to 50% has been described, but the invention is not limited to it and the percentage can be changed appropriately in response to injected ink amount.
As seen in the description made above, according to the ink cartridge and the ink injection method thereinto according to the invention, ink can be smoothly supplied from the ink tank chamber to the ink end chamber, and stability on printing can also be ensured.
Number | Date | Country | Kind |
---|---|---|---|
P2001-147418 | May 2001 | JP | national |
P2001-149315 | May 2001 | JP | national |
P2001-262036 | Aug 2001 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4967207 | Ruder | Oct 1990 | A |
5552816 | Oda et al. | Sep 1996 | A |
5619238 | Higuma et al. | Apr 1997 | A |
6010212 | Yamashita et al. | Jan 2000 | A |
6022102 | Ikkatai et al. | Feb 2000 | A |
6238042 | Kobayashi et al. | May 2001 | B1 |
6312115 | Hara et al. | Nov 2001 | B1 |
6378971 | Tamura et al. | Apr 2002 | B1 |
6398353 | Tsuchii | Jun 2002 | B1 |
6511167 | Kitabatake et al. | Jan 2003 | B1 |
6520630 | Oda et al. | Feb 2003 | B1 |
Number | Date | Country |
---|---|---|
0 709 207 | May 1996 | EP |
0 803 364 | Oct 1997 | EP |
1 016 533 | Jul 2000 | EP |
1 270 235 | Jan 2003 | EP |
2 299 972 | Oct 1996 | GB |
WO 0178988 | Oct 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20020171723 A1 | Nov 2002 | US |