This application is a National Stage of International Application No. PCT/JP2011/056529, filed on Mar. 18, 2011, which claims priority from Japanese Patent Application No. 2010-072129, filed on Mar. 26, 2010, the contents of all of which are incorporated herein by reference in their entirety.
The present invention relates to an inkjet recording apparatus that performs recording on a recording medium by using a plurality of inkjet heads.
An inkjet recording system discharges minute ink droplets from an ink discharge port (a nozzle) of an inkjet head to a work (an object to be recorded), to thereby perform printing or image recording. Since the inkjet recording system can perform recording operations in a state of being spaced apart from works, recording on works made of various materials is possible, and thus the system is used for a wide range of applications.
In recent years, the inkjet recording system has allowed more highly precise recording than other recording systems, and thus the inkjet recording system has been adopted also in a manufacturing process of, for example, color filters, organic electro luminescence (EL) displays, and the like which are components of color liquid crystal displays used as display units for color TVs and personal computers. Furthermore, application to a manufacturing process of electronic devices, such as thin film transistors, wiring boards and micro lens, is under study.
In recording characters or images on recording medium such as paper, generally, ink of four colors: black, cyan, magenta and yellow is used, and in a manufacturing process of the display units or the like described above, ink including coloring materials of three colors: red, green and blue and luminescent material is used. Generally, the inkjet recording apparatus includes inkjet heads for each type of ink to be used.
The inkjet recording apparatus used in the manufacturing process described above often includes a plurality of inkjet heads provided for one type of ink and also includes, in some case, a few tens to a few hundreds of inkjet heads, from the viewpoint of work size enlargement and higher production efficiency. Furthermore, each inkjet head is provided with nozzles for discharging ink droplets and along with needs of highly dense and highly precise recording quality, the number of nozzles provided on one inkjet head is on the increase and is sometimes in excess of 100.
An on-demand type inkjet recording apparatus makes use of a piezoelectric element in a piezo system or a heater in a thermal system as drive means for discharging ink droplets from nozzles, but in response to the increasing number of nozzles described above, the number of driver circuit boards for drive-controlling the drive means, such as piezoelectric element or heater, also increases.
Generally, the driver circuit boards are integrally attached to inkjet heads or disposed in the vicinity to the inkjet heads. Control circuit boards for transferring recording control signals obtained from recording data to the driver circuit boards are often arranged together, separately from the inkjet heads. Accordingly, in transferring recording data from the control circuit boards to the driver circuit boards, multi-core cables are used and each of the cables from the control circuit boards is connected to a predetermined driver circuit board (refer to Patent Literature 1 and Patent Literature 2).
As an inkjet recording apparatus with a plurality of inkjet heads comes to have a larger amount of inkjet heads, the number of cables for connecting between a control circuit board and a driver circuit board of each inkjet head becomes larger, and thus the weight of a head unit on which the inkjet heads is mounted increases. In addition, because bundles of a large amount of cables move along with scanning operations of the head units during recording operations, the cables interfere with the scanning operations of the head units.
Furthermore, in assembling head units or replacing a failed inkjet head, there arises a problem in which maintenance work becomes very troublesome due to burdensome cable handling. For cable connection between a control circuit board and a driver circuit board, it is necessary to connect cables for each driver circuit board, but when the number of cables increases along with the number of the inkjet heads, the possibility that erroneous cable connection occurs becomes higher. Furthermore, when recording operations are performed on a large-sized recording medium and as an inkjet recording apparatus becomes larger, a distance between the control circuit board and a driver circuit board becomes longer and hence the length of a cable needs to be lengthened, but lengthening the cable has an effect on signal characteristics in a cable or causes problems of garbled data or noise of recording signals.
Moreover, the total throughput of recording control also increases corresponding to the increase in the number of inkjet heads and the necessity of providing a plurality of control circuit boards is caused in order to meet increasing throughput. Accordingly, a plurality of control circuit boards is required to be totally controlled.
Therefore, the object of the present invention is to provide an inkjet recording apparatus capable of simplifying cables for transmitting a recording signal to a plurality of inkjet heads.
An inkjet recording apparatus according to the present invention has a plurality of head units comprising: a plurality of inkjet heads; a plurality of drive sections being provided corresponding to the ink jet heads and drive-controlling inkjet operation; a power supply section supplying, to each of the drive sections, a required voltage to perform the inkjet operation; a recording control section controlling the plurality of drive sections and the power supply section, based on recording control data; and a transmitting and receiving section acquiring the recording control data via a network based on address data and transmitting the data to the recording control section, wherein the inkjet recording apparatus discharges ink droplets from the inkjet heads based on the recording control data transmitted to the head units via the network, to thereby perform recording on a recording medium. Moreover, a LAN cable is connected to the head unit to perform data transmission and reception via a network. In addition, the power supply section supplies electric power to a heater provided on the inkjet head, to thereby control temperatures of the inkjet head. Furthermore, on the head unit, a storage apparatus for once storing the recording control data is mounted.
The present invention can simplify cable connection around head units with the structure described above.
That is, because a recording control section for controlling a power supply section and a drive section is mounted on the head unit based on recording control data, connection between the recording control section and the drive section can be made by wiring or the like, thereby achieving disuse of cables. In addition, since transmission of recording control data to the recording control section is implemented through a network, it is only necessary to connect cables used in the network and cable connection is simplified, and thus weight reduction in the head unit can be achieved.
Then, by connecting cables used in a network, the number of cables is much more reduced than in a conventional way, and thus removal of cables is facilitated for easy maintenance of inkjet heads.
Moreover, because data is transmitted and received via a network, if recording control data is transmitted together with an address corresponding to each head unit, all the plurality of head units are controlled for precise recording operations, by causing the head units to perform recording operations based on recording control data.
Then, by connecting head units through a network, it is possible to flexibly deal with the increase/decrease in the number of head units, and data transmission and reception to/from a distant location through the use of the internet or the like are also available, and thus expandability as a system of an inkjet recording apparatus is remarkably improved.
Furthermore, because the recording control section for creating driving data or the like about individual inkjet heads is mounted on the head unit, the drive section and the recording control section are disposed in proximity to each other to thereby allow preventing the generation of garbled data or noise during transmission of driving data or the like, an thus precise recording operations become possible even if the number of inkjet heads of the inkjet recording apparatus increases.
Hereinafter, an inkjet recording apparatus according to one embodiment of the present invention will be described with reference to the accompanying drawings. Note that, since the embodiment described below is a preferable example in carrying out the present invention, various technical limitations are provided, but no limitations are provided in such an embodiment unless the following description particularly specifies that the present invention is limited.
The each head unit 10 includes a plurality of inkjet heads each provided with drive means for discharging ink droplets corresponding to the each ink discharge port formed in the bottom face. The drive means generates an ink pressure fluctuation for discharging ink droplets to an ink channel communicating with the ink discharge port and includes, for example, a piezoelectric element or a heater. In addition, a drive circuit for controlling driving of the drive means is provided on a driving circuit board for each of the predetermined ink discharge ports, and the driving circuit board is mounted on the head unit 10.
In addition, on the head unit 10, there are mounted a recording control circuit 300 for controlling recording of the drive circuit 201, a power supply circuit 310 for supplying electric power to the drive circuit 201 and the heater 202, a power control circuit 320 for controlling the power circuit based on a control signal from the recording control circuit 300, and a transmitting and receiving circuit 330 that is connected to a network to transmit/receive data, and that transmits recording control data to the recording control circuit 300. Then, electrical connection between respective circuits is performed arbitrarily by wiring or a wiring pattern. In this example, the drive circuit 201 is equivalent to a drive section, the recording control circuit 300 is equivalent to a recording control section, the power supply circuit 310 and the power control circuit 320 are equivalent to a power supply section, and a transmitting and receiving circuit 330 is equivalent to a transmitting and receiving section.
The recording control circuit 300 is mounted on one circuit board and executes recording control based on recording control data such as recording data, driving control data and recording position data to be transmitted from the transmitting and receiving circuit 330. That is, the recording control circuit transmits a control signal to the drive circuit 201 based on recording data and recording position data, to thereby drive the inkjet head, and transmits a control signal to the power control circuit 320 based on driving control data, to thereby control a driving voltage to be supplied from the power supply circuit 310 to the drive circuit 201. Furthermore, when a temperature state of the inkjet head is detected by a temperature detection sensor (not shown) and the temperature lowers, the recording control circuit transmits a control signal to the power control circuit 320 and supplies electric power from the power supply circuit 310 to the heater 202 for performing heating control.
The head unit 10 is provided with three connection terminals 400, 401 and 402. The connection terminal 400 is connected to the recording control circuit 300 and is connected to a position detection section 20 of the base plate 1 provided at the outside of the base plate 1 so that wiring is removable therebetween. The connection terminal 401 is connected to a transmitting and receiving circuit 330, and is connected to a hub section 21 provided at the outside of the base plate 1 so that wiring is removable therebetween. The connection terminal 402 is connected to the power supply circuit 310, and is connected to the main power supply 22 of the apparatus body so that wiring is removable therebetween.
The position detection section 20 detects a position of a recording medium along with a scanning operation in the Y direction by using a known position detector such as linear scale and generates a timing signal for determining a recording position. The timing signal generated by the position detection section 20 is transmitted to the recording control circuit 300 via the connection terminal 400 and is used for recording start processing.
The hub section 21 is connected with each transmitting and receiving circuit 330 of the head units 101-n through a network cable, and also connected with an external information processing apparatus B installed outside via a LAN network such as Ethernet (registered trademark). The external information processing apparatus B creates recording control data such as recording data, driving control data and recording position data, required for recording operations in the inkjet recording apparatus A, corresponding to each of the head units 101-n and transmits, via a network, recording control data created by adding an address allocated for each of head units 101-n. The transmitted recording control data is received by each transmitting and receiving circuit 330 through the hub section 21, while the each transmitting and receiving circuit 330 acquires only recording control data added with an address corresponding to the head unit 10 and transmits the acquired recording control data to the recording control circuit 300.
In this manner, since the recording control data is transmitted to the head unit 10 through a network, the head unit 10 needs only the connection of a network cable, and thus cable connection is simplified. As the network cable, for example, a LAN cable may be used. Accordingly, maintenance work and the like of the inkjet head can be implemented with ease. In addition, because cables are detachably connected with the head unit 10 through a connection terminal, it is possible to flexibly deal with the increase/decrease in the head unit 10, and it is possible to facilitate replacement work even when some failure occurs in the head unit.
Even when a plurality of base plates 1 is arranged, it is possible to set network connection with ease through the hub section 21, and excellent expandability is achieved even in increasing the number of inkjet heads.
In addition, because the head units are connected through a network, it is also possible to connect external control apparatus via the Internet and it also becomes possible to perform recording operations by transmitting recording control data from an apparatus installed at a distant location.
The recording control circuit 300 stores the transmitted recording control data (S103) and transmits the driving control data to the power control circuit 320 (S104). The power control circuit 320 generates a driving voltage control signal based on the transmitted driving control data (S105) and inputs the signal into the power supply circuit 310. The power supply circuit 310 supplies a driving voltage set based on the driving voltage control signal, to the driving circuit 201 (S106)
Next, it is checked whether or not a recording start command from the external information processing apparatus B has been transmitted (S107), and when the recording start command has been transmitted, recording data and recording position data are read (S108). Then, a recording start position is calculated based on a position detection signal from the position detection section 20 and recording position data (S109), and it is checked whether or not the position detection signal has corresponded to the recording start position (S110). When the signal has corresponded to the recording start position, recording data is transmitted to the drive circuit 201 and ink is discharged from each inkjet head for performing recording operations (S111). During a recording operation, the recording control circuit monitors a driving voltage supplied to the drive circuit in the recording control circuit, and when a failure exists, performs control so that the recording operation is stopped.
It is checked whether or not the next recording data exits (S112), and when the data exits, the process proceeds to a step S108 for performing the next recording operation. When the next recording data is not present, the process is completed.
As described above, each of the head units individually acquires the recording control data from the external information processing apparatus B through a network and performs a recording operation based on a position detection signal from the position detection section in accordance with a recording start command from the external information processing apparatus B, and thus a plurality of head units is controlled for performing precise recording operations. In addition, since the head unit can be easily increased, it becomes possible to respond to processing of recordings such as high-density recording, multi-color recording and large-sized image recording, which require a large amount of inkjet heads.
In the example described above, recording operations are performed based on the recording control data transmitted from the external information processing apparatus B, but a storage device connected with the recording control circuit may be mounted on the head unit 10, and all the recording control data required for recording operations may be acquired and once stored in the storage device. In this case, a removable storage medium, such as memory card or USB memory, may be used as the storage device, and after recording control data is stored in the storage medium from the external information processing apparatus B, the storage medium may be fitted on the inkjet recording apparatus. With such a structure, in the recording operations using a large amount of inkjet heads 200, high-speed recording operations can be achieved without being affected by a communication speed between the external information processing apparatus B and the recording control circuit. In performing more complicated and highly precise recording, the size of recording control data becomes large, and in some cases, the communication speed of the recording control data may become lower than the speed of recording operation. Even in such a case, if the storage device is connected with the recording control circuit to previously store recording control data, the speed of recording operation is not lowered.
Furthermore, as the recording control data, setting temperature data of the inkjet head may be also transmitted through a network. In the recording control circuit, the acquired setting temperature data and a detection signal from the temperature detection sensor disposed at the inkjet head are compared to each other and, if the detected temperature is different from the setting temperature data, a control signal is transmitted from the recording control circuit to the power control circuit, and the driving voltage supplied from the power circuit to the heater is adjusted. In adjusting the driving voltage, heating control may be performed by the fact that the driving voltage supplied from the power circuit to the heater is turned on and off, or the driving voltage is increased or decreased.
Number | Date | Country | Kind |
---|---|---|---|
2010-072129 | Mar 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/056529 | 3/18/2011 | WO | 00 | 9/24/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/118516 | 9/29/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20060139383 | Hayasaki | Jun 2006 | A1 |
20070279449 | Mori et al. | Dec 2007 | A1 |
20080239389 | Kudo | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
6-15918 | Jan 1994 | JP |
2003-136698 | May 2003 | JP |
2005111936 | Apr 2005 | JP |
2006-243859 | Sep 2006 | JP |
2007-62264 | Mar 2007 | JP |
2008230123 | Oct 2008 | JP |
Entry |
---|
Extended European Search Report dated May 21, 2014, issued by the European Patent Office in corresponding European Application No. 11759322.8. |
Number | Date | Country | |
---|---|---|---|
20130016144 A1 | Jan 2013 | US |