The invention relates to inline liquid drug medical devices for liquid drug reconstitution and administration purposes.
Commonly owned U.S. Pat. No. 6,238,372 entitled Fluid Control Device illustrates and describes a fluid control device for use with a syringe and at least one medicinal vessel. The fluid control device includes a first port, a second port for receiving the syringe, a third port including an adaptor having a fluid conduit member extending into the interior of the medicinal vessel when attached thereto and a flow control member selectively disposable from a first flow control position enabling a flow path between a first pair of two ports and second flow control position enabling a flow path between a second pair of two ports. The flow control member is coupled to one of the ports for manipulation between its flow control positions.
Commonly owned PCT International Application No. PCT/IL2005/000376 entitled Liquid Drug Medical Devices and published under PCT International Publication No. WO 2005/105014 illustrates and describes a liquid drug medical device for liquid drug reconstitution and administration purposes, a vial adapter with elastomer tubing and a needle shield removal device. The liquid drug medical device has a longitudinal axis and is intended for use with a source of physiological solution and a medicinal vessel. The liquid drug medical device includes a body member having a first port for fluid connection with the source of physiological solution and a flow control member rotatably mounted in the body member about an axis of rotation co-directional with the longitudinal axis. The flow control member has a first major flow duct and a second major flow duct substantially parallel to and non-coaxial with the axis of rotation and respectively terminating at a second port, and a third port for administering the liquid drug. The liquid drug medical device further includes a manually rotatable adapter having a fluid conduit member with a proximal end in flow communication with the second port and a distal end extending into the medicinal vessel on its attachment to the adapter, and coupled to the flow control member for rotating same between a first flow control position for connecting the first port with the second port, and a second flow control position for connecting the first port with the third port.
Commonly owned PCT International Application No. PCT/US2008/070024 entitled Medicament Mixing and Injection Apparatus and published under PCT International Publication No. WO 2009/038860 illustrates and describes a mixing and injection apparatus including a needle and a needle base, a syringe attachment element and a mixing chamber engagement assembly including a needle chamber surrounding the needle and a first liquid conduit portion, sealed from the needle chamber and a mixing chamber engagement portion including a second liquid conduit portion communicating with the first liquid conduit portion and configured for communication with a mixing chamber. The syringe attachment element and the needle base are configured to permit liquid communication between an interior of the syringe and the first liquid conduit portion when the syringe attachment element and the needle base are in the first relative engagement orientation and to permit liquid communication between an interior of the syringe and the needle when the syringe attachment element and the needle base are in the second relative engagement orientation, axially separated from the first relative orientation along the injection axis.
The present invention is directed toward inline liquid drug medical devices for use with a source of physiological fluid and a medicinal vessel for liquid drug reconstitution and administration purposes.
The inline liquid drug medical device includes a housing having a longitudinal device axis and a vial adapter removably attached on the housing and detachable therefrom along a line of detachment co-directional with the device axis. The housing has three ports, a first port onto which is connected the source of physiological fluid, a second port which leads to the medicinal vessel, and a third port which is fitted with a drug dispenser such as a needle, an atomizer, and the like.
The inline liquid drug medical device includes a manually operated actuating mechanism for applying a linear displacement force to a flow control member sealingly accommodated inside a bore in the housing for sliding the flow control member along the bore in a transverse direction to the device axis from an initial first flow control position for liquid drug reconstitution purposes to a subsequent second flow control position for liquid drug administration purposes. The first flow control position enables flow communication between the first port and the second port for liquid drug reconstitution purposes. The second flow control position enables flow communication between the first port and the third port fitted with a drug dispenser such as a needle, an atomizer, and the like, for liquid drug administration purposes. The first and third ports are preferably co-axial for facilitating more intuitive use of the device.
The actuating mechanism has an initial liquid drug reconstitution position corresponding with the flow control member's first flow control position and a subsequent liquid drug administration position corresponding with the flow control member's second flow control position. One type of actuating mechanism employs a manual radial actuation force having a component for imparting a linear displacement force to the flow control member. Another type of actuating mechanism employs a manual linear actuation force for imparting a linear displacement force to a flow control member. Actuating mechanisms are preferably integrally formed with vial adapters for removal together with the vial adapters on detaching same from a housing after liquid drug reconstitution and prior to liquid drug administration. Alternatively, the actuating mechanisms can be integrally formed with the housings.
In order to understand the invention and to see how it can be carried out in practice, preferred embodiments will now be described, by way of non-limiting examples only, with reference to the accompanying drawings in which similar parts are likewise numbered, and in which:
The syringe port 108 constitutes a first port in flow communication with the bore 106. The syringe port 108 is intended to the syringe's connector 13 and is co-directional with the device axis 101 and preferably co-axial therewith. The syringe port 108 is typically in the form of a female Luer connector intended for receiving a syringe's male Luer lock connector. The port manifold 109 is generally cylindrically shaped and is coaxially aligned with the device axis 101. The port manifold 109 includes a second port 113 and a third port 114 both in flow communication with the bore 106. The second port 113 and the third port 114 are co-directional with the device axis 101 and the third port 114 is preferably co-axial therewith. The third port 114 is preferably fitted with a needle 116 for liquid drug administration purposes. The second port 113 is preferably recessed with respect to the third port 114 thereby forming an annular cavity 117 for removably coupling the vial adapter 103 on the housing 102.
The device 100 includes a linear displaceable sliding flow control member (FCM) 120 sealingly accommodated in the bore 106 for establishing flow communication between the syringe port 108 and the second port 113 in a first flow control position for liquid drug reconstitution purposes, and between the syringe port 108 and the third port 114 in a second flow control position for liquid drug administration purposes. The flow control member 120 is of a generally cylindrical shape and has a peripheral cylindrical surface 121 with a semi-circular peripheral flow channel 122 and a longitudinally directed flow cutout 123, a blind bore 124, a proximal FCM end 126, and a distal FCM end 127.
A proximal rounded protrusion 128 extends beyond the proximal FCM end 126, and serves as an abutment surface for applying a radial actuation force RAF thereagainst to impart a linear displacement force LDF to urge the flow control member 120 along the bore 106. In the first flow control position, the flow control member 120 is sealingly inserted in the bore 106 with the proximal rounded protrusion 128 substantially protruding out of the proximal bore end 106A (see
The longitudinally directed flow cutout 123 is dimensioned so that it is in flow communication with the first port 108 when the flow control member 120 is in both its first flow control position and its second flow control position. The flow channel 122 is disposed towards the proximal FCM end 126 circumferentially extends from a proximal channel end 122A in flow communication with the flow cutout 123 to a distal channel end 122B. In the first flow control position, the distal channel end 122B is in flow communication with the second port 113 (see
The vial adapter 103 includes a skirt 130 with a top surface 131 and downward depending flex members 132 for snap fitting onto the vial 20. The vial adapter 103 includes an elongated upright stem 133 and terminating in a circular stem end portion 134 having a stem cavity 135 shaped for accommodating onto the housing 102. The stem cavity 135 includes an upper body cavity section 135A for rotatably fitting onto the generally cylindrical body 104 and a cylindrically shaped lower manifold cavity section 135B for rotatably fitting onto the port manifold 109.
The stem 133 includes an annular manifold support 136 at a distal end of the lower manifold cavity section 135B for circumferentially coupling with the annular cavity 117. A fluid conduit 137 which is co-axial with the device axis 101 has a proximal end 137A in the annular manifold support 136 for sealed flow communication with the second port 113 on coupling the vial adapter 103 to the housing 102. The fluid conduit 137 fluidly connects at a distal end 137B to a co-axial puncturing cannula 141 through a fluid interconnect conduit 137C. The puncturing cannula 141 serves to puncture the vial stopper 22 on its positive insertion into the vial adapter 103, and extends slightly therebeyond so that on inverting the vial 20 its nearly entire contents 24 can be aspirated therefrom through the puncturing cannula 141 to syringe 10. The stem 133 also includes a blind needle bore 138 for receiving the needle 116 on coupling the vial adapter 103 on the housing 102.
In a first embodiment, as shown in
The vial adapter 103 is screw threaded onto the housing 102 by means of a pair of opposite fastening members 143 extending upright from the stem end portion 134 co-directional and on opposing sides of the device axis 101. The fastening members 143 each have a perpendicularly projecting tooth 144 for engaging the fastening threads 112A. As the vial adapter 103 is rotated relative to the housing 102 about an axis of rotation 146 co-axial with the device axis 101, the vial adapter 103 unscrews from the housing 102 and is detachable therefrom along a line of detachment co-directional with the device axis 101.
The vial adapter 103 is integrally formed with a manually operated rotary actuating mechanism 150 for applying a radial actuation force RAF for imparting a linear displacement force LDF for sliding the flow control member 120 along the bore 106 from its first flow control position to its second flow control position. The actuating mechanism 150 is implemented by employing a semi-circular internal cam surface 151 of the stem end portion 134 for bearing against the proximal rounded protrusion 128 as the vial adapter 103 is rotationally detached from the housing 102. The actuating mechanism 150 has an initial liquid drug reconstitution position corresponding to the flow control member 120's first flow control position when the vial adapter 103 is screw threaded attached on the housing 102 and a subsequent liquid drug administration position corresponding with the flow control member 120's second flow control position when the vial adapter 103 is detachable from the housing 102. The internal cam surface 151 defines a separation (S) relative to the axis of rotation 146. The internal cam surface 151 has a maximum separation S1 at the actuating mechanism 150's liquid drug reconstitution position and a minimum separation S2 in actuating mechanism 150's liquid drug administration position. The separation S2 is smaller than the separation S1 such that as the vial adapter 103 is screw unthreaded from the housing 102, the internal cam surface 151 applies a radial actuation force RAF against the protrusion 128 having a component for imparting a linear displacement force (LDF) to the flow control member 120 for sliding same along the bore 106 from its first flow control position to its second flow control position. The stem end portion 134 has an external surface 134A with a uniform radius relative to the axis of rotation 146 such that its wall thickness increases from its thinnest where the internal cam surface 151 abuts the flow control member 120 at the actuating mechanism's liquid drug reconstitution position to its thickest where the internal cam surface 151 abuts the flow control member 120 at the actuating mechanism's liquid drug administration position.
Operation of the device 100 may best be explained by referring to
The use of the inline liquid drug medical device 100 for liquid drug reconstitution and administration is shown in
The housing 202 includes a syringe port 208 constituting a first port in flow communication with the bore 206 and a port manifold 209 on opposite sides of the central body 204. The syringe port 208 is co-directional with the device axis 201 and preferably co-axial therewith. The port manifold 209 includes a pair of opposite and parallel major surfaces 211 co-directional with the bore axis 207 and a pair of opposite minor end surfaces 212 for securing the vial adapter 203 onto the housing 202. The port manifold 209 includes the second port 213 and the third port 214 both in flow communication with the bore 206. The second port 213 and the third port 214 are co-directional with the device axis 201 and the third port 214 is preferably co-axial therewith. A center of the second port 213 is offset from the device axis 201 by a length L. The third port 214 is preferably fitted with a needle 216. The second port 213 is preferably recessed with respect to the third port 214 thereby forming a cavity 217 for sealingly coupling the vial adapter 203 to the housing 202.
The housing 202 includes a flow control member 218 for sliding linear movement along the bore 206 from an initial first flow control position for establishing flow communication between the first port 208 and the second port 213 to a subsequent second flow control position for establishing flow communication between the first port 208 and the third port 214. The bore 206 has a uniform cross section therealong except its distal end 206B which is formed with a platform 219 on the side of the port manifold 209 for acting as a stopper for stopping the sliding linear movement of the flow control member 218 at its second flow control position. The platform may be formed on the side of the syringe port 208.
The flow control member 218 has a proximal end 218A and a distal end 218B and a peripheral cylindrical surface 221. The flow control member 218 is shaped and dimensioned for sealing insertion in the throughgoing bore 206 and is longer than same such that its proximal end 218A protrudes from the proximal end 206A in its first flow control position (see
The flow control member 218 includes a flow channel 222 co-directional with the device axis 201 and disposed toward the proximal end 218A. The flow channel 222 has a proximal end 223 and a distal end 224. The peripheral surface 221 is formed with a longitudinally directed flow cutout 226 and a second longitudinally directed cutout 227 on the opposite side to the flow cutout 226. The cutout 227 faces the port manifold 209 and is located towards the distal end 218B and defines an abutment surface 228 for abutting against the stopper 219 for stopping the flow control member 218 at its second flow control position.
The vial adapter 203 includes a skirt 230 with a top surface 231 and downward depending flex members 232 for snap fitting onto a vial 20. The vial adapter 203 includes an elongated upright stem 233 terminating in a bifurcated tip 234 with a pair of opposite and parallel spaced apart inside surfaces 236 for friction fitting onto the port manifold 209's major surfaces 211. The stem 233 includes a fluid conduit 237 with a proximal end 237A for sealing insertion in the cavity 217 for sealed flow communication with the second port 213 on coupling the vial adapter 203 on the housing 202. The fluid conduit 237 terminates at the distal end 237B fluidly connecting with a patted cannula 241. The stem 233 also includes a blind needle bore 238 for receiving the needle 216 on coupling the vial adapter 203 to the housing 202.
The vial adapter 203 is integrally formed with a manually operated actuating mechanism 250 for applying a linear actuation force LAF for imparting a linear displacement force LDF for sliding the flow control member 218 along the bore 206 from its first flow control position to its second flow control position. The actuating mechanism 250 is in the form of a hand operated upright spring leaf like actuator 251 attached towards the stem 233's base and having a free end 252 disposed opposite the flow control member's proximal end 218A. The actuator 251 has a pin 253 for sliding insertion into a recess 254 formed in the flow control member's proximal end 218A. The actuator 251 is preferably resiliently flexed from an initial position juxtaposed against the flow control member 218. The actuating mechanism 250 is preferably designed such that the pin 253 slides freely from the recess 254 on being released after being used to urge the flow control member 218 to its second flow control position to revert to its initial vertical position.
The use of the inline liquid drug medical device 200 for liquid drug reconstitution and administration as shown in
While the invention has been described with respect to a limited number of embodiments, it will be appreciated that many variations, modifications, and other applications of the invention can be made within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
202,070 | Nov 2009 | IL | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IL2010/000915 | 11/4/2010 | WO | 00 | 5/3/2012 |