Nano-fabrication includes the fabrication of very small structures that have features on the order of 100 nanometers or smaller. One application in which nano-fabrication has had a sizeable impact is in the processing of integrated circuits. The semiconductor processing industry continues to strive for larger production yields while increasing the circuits per unit area formed on a substrate, therefore nano-fabrication becomes increasingly important. Nano-fabrication provides greater process control while allowing continued reduction of the minimum feature dimensions of the structures formed. Other areas of development in which nano-fabrication has been employed include biotechnology, optical technology, mechanical systems, and the like.
An exemplary nano-fabrication technique in use today is commonly referred to as imprint lithography. Exemplary imprint lithography processes are described in detail in numerous publications, such as U.S. Patent Publication No. 2004/0065976, U.S. Patent Publication No. 2004/0065252, and U.S. Pat. No. 6,936,194, all of which are hereby incorporated by reference herein.
An imprint lithography technique disclosed in each of the aforementioned U.S. patent publications and patent includes formation of a relief pattern in a formable (polymerizable) layer and transferring a pattern corresponding to the relief pattern into an underlying substrate. The substrate may be coupled to a motion stage to obtain a desired positioning to facilitate the patterning process. The patterning process uses a template spaced apart from the substrate and a formable liquid applied between the template and the substrate. The formable liquid is solidified to form a rigid layer that has a pattern conforming to a shape of the surface of the template that contacts the formable liquid. After solidification, the template is separated from the rigid layer such that the template and the substrate are spaced apart. The substrate and the solidified layer are then subjected to additional processes to transfer a relief image into the substrate that corresponds to the pattern in the solidified layer.
So that the present invention may be understood in more detail, a description of embodiments of the invention is provided with reference to the embodiments illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of the invention, and are therefore not to be considered limiting of the scope.
Referring to the figures, and particularly to
Substrate 12 and substrate chuck 14 may be further supported by stage 16. Stage 16 may provide translation and/or rotational motion with respect to the x, y, and z axes. Stage 16, substrate 12, and substrate chuck 14 may also be positioned on a base (not shown).
Spaced-apart from substrate 12 is template 18. Template 18 may include mesa 20 extending therefrom towards substrate 12, mesa 20 having a patterning surface 22 thereon. Further, mesa 20 may be referred to as mold 20. Alternatively, template 18 may be formed without mesa 20.
Template 18 and/or mold 20 may be formed from such materials including, but not limited to, fused-silica, quartz, silicon, organic polymers, siloxane polymers, borosilicate glass, fluorocarbon polymers, metal, hardened sapphire, and/or the like. As illustrated, patterning surface 22 comprises features defined by a plurality of spaced-apart recesses 24 and/or protrusions 26, though embodiments of the present invention are not limited to such configurations. Patterning surface 22 may define any original pattern that forms the basis of a pattern to be formed on substrate 12.
Template 18 may be coupled to chuck 28. Chuck 28 may be configured as, but not limited to, vacuum, pin-type, groove-type, electrostatic, electromagnetic, and/or other similar chuck types. Exemplary chucks are further described in U.S. Pat. No. 6,873,087, which is hereby incorporated by reference herein. Further, chuck 28 may be coupled to imprint head 30 such that chuck 28 and/or imprint head 30 may be configured to facilitate movement of template 18.
System 10 may further comprise fluid dispense system 32. Fluid dispense system 32 may be used to deposit polymerizable material 34 on substrate 12. Polymerizable material 34 may be positioned upon substrate 12 using techniques such as drop dispense, spin-coating, dip coating, chemical vapor deposition (CVD), physical vapor deposition (PVD), thin film deposition, thick film deposition, and/or the like. For example, polymerizable material 34 may be positioned upon substrate 12 using techniques such as those described in U.S. Patent Publication No. 2005/0270312 and U.S. Patent Publication No. 2005/0106321, both of which are hereby incorporated by reference herein. Polymerizable material 34 may be disposed upon substrate 12 before and/or after a desired volume is defined between mold 20 and substrate 12 depending on design considerations. Polymerizable material 34 may comprise a monomer mixture as described in U.S. Pat. No. 7,157,036 and U.S. Patent Publication No. 2005/0187339, both of which are hereby incorporated by reference herein.
Referring to
Either imprint head 30, stage 16, or both vary a distance between mold 20 and substrate 12 to define a desired volume therebetween that is filled by polymerizable material 34. For example, imprint head 30 may apply a force to template 18 such that mold 20 contacts polymerizable material 34. After the desired volume is filled with polymerizable material 34, source 38 produces energy 40, e.g., ultraviolet radiation, causing polymerizable material 34 to solidify and/or cross-link conforming to a shape of surface 44 of substrate 12 and patterning surface 22, defining patterned layer 46 on substrate 12. Patterned layer 46 may comprise a residual layer 48 and a plurality of features shown as protrusions 50 and recessions 52, with protrusions 50 having a thickness t1 and residual layer having a thickness t2.
The above-mentioned system and process may be further employed in imprint lithography processes and systems referred to in U.S. Pat. No. 6,932,934, U.S. Patent Publication No. 2004/0124566, U.S. Patent Publication No. 2004/0188381, and U.S. Patent Publication No. 2004/0211754, all of which are hereby incorporated by reference herein.
A standard template 18, as illustrated in
A template design for correcting such deficiencies is proposed in related U.S. Patent Publication No. 2008/0160129, which is hereby incorporated by reference herein in its entirety. This template design may improve filling speed by flexing of a thin patterned layer. For example, the design includes a hollow center that may allow for a flexible surface. The hollow center may reduce the stiffness of the design, yet may be susceptible to alignment and overlay issues resulting from out-of-plane bending and/or actuator compression errors. These issues may result in a non-uniform thickness t2 of residual layer 48 (shown in
Referring to
Referring to
Patterned surface layer 306 may comprise a thin flexible base 308, a mesa region 310 (corresponding to mesa 20 of
Mesa region 310 may have a thickness t4, and may be formed of materials similar to flexible base 308. For example, mesa region 310 may be formed of fused silica having a magnitude of thickness of approximately 5 to 200 μm. Relief image 312 may extend from the surface of mesa region 310 and/or relief image 312, or portions of relief image 312, may be recessed into the surface of mesa region 310. Relief image 312, or portions of relief image 312, may be used to form the corresponding pattern in patterned layer 46, such as illustrated and described with respect to
Inner cavity 302 may include a volume between support layer 304 and patterned surface layer 306. The volume may include a distance d1 between support layer 304 and patterned surface layer 306. For example, distance d1 may be approximately 0.010 mm to 5 mm depending on design considerations. Additionally, the volume of space forming cavity 302 may include a length L1. For example, length L1 may be substantially similar to or larger than the length of patterned mesa region 310, the length of support layer 304, and/or other range depending on design considerations.
Referring to
Referring again to
Applied pressure in cavity 302 provided by pressure system 314 may be used to flex and/or bow patterned surface 306. For example, pressure applied by pressure system 314 into cavity 302 may be in the ragne of −100 kPa to 100 Kpa. Additionally, pressure within the cavity 302 may be controlled by a precision pressure regulator. Pressure may be increased or decreased depending on use (e.g., flexing and/or bowing) of template system 300. During application of pressure within cavity 302, support layer 304 may provide stiffness within template system 300 through material and/or thickness design. Such stiffness, during application of pressure within cavity 302, may provide control of overlay and/or alignment of template system 300. For example, stiffness of support layer 304 may provide control of overlay and/or alignment of template system 300 during flexing and/or bowing of patterned surface 306 resulting from application of pressure within cavity 302.
Pressure may be controlled using multiple pressure systems 314a and 314b as illustrated in
Referring to
This application claims the benefit under 35 U.S.C. § 119(e)(1) of U.S. Provisional No. 61/080,890, filed on Jul. 15, 2008, which is hereby incorporated by reference herein.
The United States government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided by the terms of SPAWAR N66001-06-C-2003 Nanoimprint Lithography Manufacturing Scale (NIMS) Award and NIST ATP AWARD 70NANB4H3012.
| Number | Date | Country | |
|---|---|---|---|
| 61080890 | Jul 2008 | US |