Mobile computing devices have been developed to increase the functionality that is made available to users in a mobile setting. For example, a user may interact with a mobile phone, tablet computer, or other mobile computing device to check email, surf the web, compose texts, interact with applications, and so on. Because mobile computing devices are configured to be mobile, however, the mobile devices may be ill suited for intensive data entry operations.
For example, some mobile computing devices provide a virtual keyboard that is accessible using touchscreen functionality of the device. However, it may difficult to perform some tasks using a virtual keyboard such as inputting a significant amount of text, composing a document, and so forth. Moreover, virtual keyboards consume some screen real estate that may otherwise be used to display content. Thus, use of traditional virtual keyboards may be frustrating when confronted with some input scenarios.
Input device configurations are described. In one or more implementations, an input device includes a sensor substrate having one or more conductors and a flexible contact layer spaced apart from the sensor substrate. The flexible contact layer is configured to flex to contact the sensor substrate to initiate an input of a computing device. The flexible contact layer includes a force concentrator pad that is configured to cause pressure to be channeled through the force concentrator pad to cause the flexible contact layer to contact the sensor substrate to initiate the input.
In one or more implementations, an input device includes a plurality of indications that are selectable to initiate corresponding inputs and pressure sensitive sensor nodes formed in an array such that each of the indications corresponds to a plurality of the pressure-sensitive keys to initiate the corresponding inputs. The formation of the plurality of pressure sensitive sensor nodes includes a sensor substrate having one or more conductors and a flexible contact layer spaced apart from the sensor substrate that is configured to flex to contact the sensor substrate to initiate the corresponding input of a computing device.
In one or more implementations, an input device includes a sensor substrate having one or more conductors, a flexible contact layer spaced apart from the sensor substrate that is configured to flex to contact the sensor substrate to initiate an input of a computing device. The flexible contact layer includes a surface having a force sensitive ink configured to contact the one or more conductors of the sensor substrate to initiate the input and a plurality of spacers formed on the surface.
In one or more implementations, an input device includes a capacitive sensor assembly arranged in an array that is configured to detect a location of an object that is proximal to a respective capacitive sensor of the capacitive sensor assembly and a pressure sensitive sensor assembly including a plurality of pressure sensitive sensor nodes that are configured to detect an amount of pressure applied by the object against a respective pressure sensitive sensor node of the pressure sensitive sensor assembly.
In one or more implementations, an object is detected that is located proximal to one or more capacitive sensors of an input device. The input device is configured to communicate one or more inputs to a computing device. Responsive to the detection, functionality of the input device that is not related to the capacitive sensors is caused to be placed in an operational state.
In one or more implementations, an input device includes a capacitive sensor array configured to detect proximity of an object and a plurality of pressure sensitive sensor nodes embedded as nodes in the capacitive sensor array. The plurality of pressure sensitive sensor nodes are configured to initiate corresponding inputs of a computing device, each of the plurality of pressure sensitive sensor nodes formed from flexible contact layer spaced apart from a sensor substrate.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different instances in the description and the figures may indicate similar or identical items.
Overview
Mobile computing devices may be utilized in a wide variety of different scenarios due to their mobile construction, e.g., configured to be held by one or more hands of a user. As previously described, however, conventional techniques that were utilized to interact with these mobile computing devices could be limited when restricted solely to a virtual keyboard. Although supplemental input devices have been developed (e.g., an external keyboard), these devices could be unwieldy and difficult to interact with in mobile scenarios, including limitations in inputs that are recognized by the input device, difficulty in transporting the devices, and so forth.
Input device configurations are described. In one or more implementations, an input device is configured to include a generally uniform array of pressure sensitive sensor nodes. The pressure sensitive sensor nodes may have a size and pitch that is sufficient to recognize gestures, e.g., made by a finger of a user's hand, a stylus, and so on, by detecting an input as involving motion across a plurality of the keys. Additionally, the array may also be configured such that collections of the pressure sensitive sensor nodes are mapped to particular inputs (e.g., keys of a keyboard) to also function as a keyboard, track pad, and so on. The input device may be configured in a variety of ways to implement pressure sensitive sensor nodes having this functionality. The input device may also be configured to promote a relative thin form factor for the input device overall, e.g., less than three millimeters. This may be performed through use of force concentrator pads, integrated spacers, and so on. In this way, the input device may be configured to support a variety of different types of input functionality and may do so in a manner that maintains mobility of the mobile computing device to which it may be attached.
Additionally, the input device may also be configured to incorporate a capacitive sensor assembly. For instance, the capacitive sensor assembly may be configured to detect proximity of an object, and when so detected, wake other functionality of the input device (e.g., backlighting, operation of the pressure sensitive sensor nodes, and so on) and/or a computing device communicatively coupled to the input device. The capacitive sensor assembly may also operate in conjunction with the pressure sensitive sensor nodes to expose inputs having an increased richness to a computing device. The capacitive sensor assembly, for instance, may be employed to provide a location of an object and the pressure sensitive sensor nodes may be utilized to indicate an amount of pressure (i.e., a “z” indication). These inputs may be leveraged by the computing device to recognize gestures, gaming inputs, and so on and thus may provide increased input functionality to a user. A variety of other examples are also contemplated, further discussion of which may be found in relation to the following sections.
In the following discussion, an example environment is first described that may employ the input device configuration techniques described herein. Examples of layers that are usable in the example environment (i.e., the input device) are then described which may be performed in the example environment as well as other environments. Consequently, use of the example layers is not limited to the example environment and the example environment is not limited to use of the example layers.
Example Environment
The computing device 102, for instance, is illustrated as including an input/output module 108. The input/output module 108 is representative of functionality relating to processing of inputs and rendering outputs of the computing device 102. A variety of different inputs may be processed by the input/output module 108, such as inputs relating to functions that correspond to keys of the input device 104, keys of a virtual keyboard displayed by the display device 110 to identify gestures and cause operations to be performed that correspond to the gestures that may be recognized through the input device 104 and/or touchscreen functionality of the display device 110, and so forth. Thus, the input/output module 108 may support a variety of different input techniques by recognizing and leveraging a division between types of inputs including key presses, gestures, and so on.
In the illustrated example, the input device 104 is configured as having an input portion that includes a keyboard having a QWERTY arrangement of keys and track pad although other arrangements of keys are also contemplated. Further, other non-conventional configurations are also contemplated, such as a game controller, configuration to mimic a musical instrument, and so forth. Thus, the input device 104 and keys incorporated by the input device 104 may assume a variety of different configurations to support a variety of different functionality.
As previously described, the input device 104 is physically and communicatively coupled to the computing device 102 in this example through use of a flexible hinge 106. The flexible hinge 106 is flexible in that rotational movement supported by the hinge is achieved through flexing (e.g., bending) of the material forming the hinge as opposed to mechanical rotation as supported by a pin, although that embodiment is also contemplated. Further, this flexible rotation may be configured to support movement in one or more directions (e.g., vertically in the figure) yet restrict movement in other directions, such as lateral movement of the input device 104 in relation to the computing device 102. This may be used to support consistent alignment of the input device 104 in relation to the computing device 102, such as to align sensors used to change power states, application states, and so on.
The flexible hinge 106, for instance, may be formed using one or more layers of fabric and include conductors formed as flexible traces to communicatively couple the input device 104 to the computing device 102 and vice versa. This communication, for instance, may be used to communicate a result of a key press to the computing device 102, receive power from the computing device, perform authentication, provide supplemental power to the computing device 102, and so on.
The connection portion 202 is flexibly connected to a portion of the input device 104 that includes the keys through use of the flexible hinge 106. Thus, when the connection portion 202 is physically connected to the computing device 102 the combination of the connection portion 202 and the flexible hinge 106 supports movement of the input device 104 in relation to the computing device 102 that is similar to a hinge of a book.
Through this rotational movement, a variety of different orientations of the input device 104 in relation to the computing device 102 may be supported. For example, rotational movement may be supported by the flexible hinge 106 such that the input device 104 may be placed against the display device 110 of the computing device 102 and thereby act as a cover. Thus, the input device 104 may act to protect the display device 110 of the computing device 102 from harm.
The connection portion 202 may be secured to the computing device in a variety of ways, an example of which is illustrated as including magnetic coupling devices 204, 206 (e.g., flux fountains), mechanical coupling protrusions 208, 210, and a plurality of communication contacts 212. The magnetic coupling devices 204, 206 are configured to magnetically couple to complementary magnetic coupling devices of the computing device 102 through use of one or more magnets. In this way, the input device 104 may be physically secured to the computing device 102 through use of magnetic attraction.
The connection portion 202 also includes mechanical coupling protrusions 208, 210 to form a mechanical physical connection between the input device 104 and the computing device 102. The mechanical coupling protrusions 208, 210 are shown in greater detail in relation to
The mechanical coupling protrusions 208, 210 are configured to be received within complimentary cavities within the channel of the computing device 102. When so received, the mechanical coupling protrusions 208, 210 promote a mechanical binding between the devices when forces are applied that are not aligned with an axis that is defined as correspond to the height of the protrusions and the depth of the cavity.
The connection portion 202 is also illustrated as including a plurality of communication contacts 212. The plurality of communication contacts 212 is configured to contact corresponding communication contacts of the computing device 102 to form a communicative coupling between the devices as shown. The connection portion 202 may be configured in a variety of other ways, including use of a rotational hinge, mechanical securing device, and so on. In the following, an example of a docking apparatus 112 is described and shown in a corresponding figure.
Beneath the outer layer is a smoothing layer 404. The smoothing layer 404 may be configured to support a variety of different functionality. This may include use as a support to reduce wrinkling of the outer layer 402, such as through formation as a thin plastic sheet, e.g., approximately 0.125 millimeters of polyethylene terephthalate (PET), to which the outer layer 402 is secured through use of an adhesive. The smoothing layer 404 may also be configured to including masking functionality to reduce and even eliminate unwanted light transmission, e.g., “bleeding” of light through the smoothing layer 404 and through a fabric outer layer 402. The smoothing layer also provides a continuous surface under the outer layer, such that it hides any discontinuities or transitions between the inner layers.
A light guide 406 is also illustrated, which may be included as part of a backlight mechanism to support backlighting of indications (e.g., legends) of inputs of the input device 104. This may include illumination of keys of a keyboard, game controls, gesture indications, and so on. The light guide 406 may be formed in a variety of ways, such as from a 250 micron thick sheet of a plastic, e.g., a clear polycarbonate material with etched texturing. Additional discussion of the light guide 406 may be found beginning in relation to
A sensor assembly 408 is also depicted. Thus, as illustrated the light guide 406 and the smoothing layer 404 are disposed between the outer layer 402 and the sensor assembly 408. The sensor assembly 408 is configured detect proximity of an object to initiate an input. The detected input may then be communicated to the computing device 102 (e.g., via the connection portion 202) to initiate one or more operations of the computing device 102. The sensor assembly 408 may be configured in a variety of ways to detect proximity of inputs, such as a capacitive sensor array, a plurality of pressure sensitive sensor nodes (e.g., membrane switches using a force sensitive ink), mechanical switches, a combination thereof, and so on.
A structure assembly 410 is also illustrated. The structure assembly 410 may be configured in a variety of ways, such as a trace board and backer that are configured to provide rigidity to the input device 104, e.g., resistance to bending and flexing. A backing layer 412 is also illustrated as providing a rear surface to the input device 104. The backing layer 412, for instance, may be formed from a fabric similar to an outer layer 402 that omits one or more sub-layers of the outer layer 402, e.g., a 0.38 millimeter thick fabric made of wet and dry layers of polyurethane. Although examples of layers have been described, it should be readily apparent that a variety of other implementations are also contemplated, including removal of one or more of the layers, addition of other layers (e.g., a dedicated force concentrator layer, mechanical switch layer), and so forth. Thus, the following discussion of examples of layers is not limited to incorporation of those layer in this example implementation 400 and vice versa.
The light guide 406, for instance, may be configured to output light at specific locations through use of etching, embossing, contact by another material having a different refractive index (e.g., an adhesive disposed on the plastic of the light guide 406), and so on. In another example, the light guide 406 may be configured as a universal light guide such that a majority (and even entirety) of a surface of the light guide 406 may be configured output light, e.g., through etching of a majority of a surface 504 of the light guide 406. Thus, instead of specially configuring the light guide 406 in this example, the same light guide maybe used to output different indications of inputs, which may be used to support different languages, arrangements of inputs, and so on by the input device 104.
As previously described, however, this could cause bleeding of light through adjacent surfaces to the light guide in conventional techniques, such as through an outer layer 402 of fabric to give a “galaxy” effect, pinholes, and so on. Accordingly, one or more of these adjacent layers may be configured to reduce and even prevent transmission of light in undesirable locations. For example, the outer layer may include sub-layers having progressively darker shades of a color to enable use of a light surface color yet restrict transmission of light through the fabric, a mask of ink may be printed (e.g., to the smoothing layer 404) to absorb light at particular locations (e.g., near the light source), and so on. A variety of other examples are also contemplated.
The flexible contact layer 602 in this example includes a force sensitive ink 604 disposed on a surface of the flexible contact layer 602. The force sensitive ink 604 is configured such that an amount of resistance of the ink varies directly in relation to an amount of pressure applied. The force sensitive ink 604, for instance, may be configured with a relatively rough surface that is compressed against another surface (e.g., a conductor as shown in
The flexible contact layer 602 is also illustrated as including spacers 606 formed on the same surface of the flexible contact layer 602 as the force sensitive ink 604. The spacers 606 define openings through which the flexible contact layer 602 is to flex to initiate inputs. The spacers 606 may be configured in a variety of ways, such as through use of a dielectric spacer material having a height of approximately 6.5 um. The flexible contact layer 602 is also illustrated as including a securing mechanism 608 (e.g., 25 um of adhesive) to secure the flexible contact layer 602 to an adjacent layer of the pressure sensitive sensor node assembly.
Force contractor pads 610 are also illustrated as disposed on an opposing side of the flexible contact layer 602 in relation to the side of flexible contact layer 602 that includes the force sensitive ink 604. The force concentrator pads 610 are illustrated as secured to and/or a part of the flexible contact layer 602, such as formed from a material to have a height of approximately 50 um. The force concentrator pads have a cross section along an axis of the flexible contact layer 602 that approximates a cross section of the force sensitive ink 604 disposed on an opposing side of the flexible contact layer 602. The force concentrator pads 610 may be configured to channel pressure applied to the input device 104 to promote consistent contact of the force sensitive ink 606, further discussion of which may be found beginning in relation to the discussion of
The conductors 704 are configured to be contacted by the force sensitive ink 604 of the flexible contact layer 602. When contacted, an analog signal may be generated for processing by the input device 104 and/or the computing device 102, e.g., to recognize whether the signal is likely intended by a user to provide an input for the computing device 102. A variety of different types of conductors 704 may be disposed on the sensor substrate 702, such as formed from a variety of conductive materials (e.g., silver, copper), disposed in a variety of different configurations as further described in relation to
The sensor substrate 702 is also illustrated as including spacers 706. The spacers 706 are disposed on the same surface as the conductors 704 on the sensor substrate 702 in an area between the conductors. The spacers 706 of the sensor substrate 702 and the spacers 606 of the flexible contact layer 602 may be positioned to form a spacer assembly as shown in the figure, e.g., having a total height of 41 um. This height may thus cause the force sensitive ink 604 of the flexible contact layer 602 to be spaced apart from the conductors 604 of the sensor substrate 702.
Application of a pressure against the flexible contact layer 602 may cause the flexible contact layer 602 to flex through an opening formed by the spacer assembly to contact the conductors 704 of the sensor substrate 702. As previously described, the amount of pressure may be communicated through different resistances of the force sensitive ink 604 to provide an output that indicates an amount of pressure that was applied, e.g., with twelve bits of resolution as further described below.
The securing mechanism 608 (e.g., the adhesive described in relation to
The flexible contact layer 602 is also illustrated as secured to the light guide 406 through use of the previously described adhesives 612. As this may cause light to bleed from the light guide 406, the flexible contact layer 602 may be configured to promote reflectance of this light (e.g., by being colored white). Additionally, to reduce an amount of light bleed “upward” through the smoothing layer 404 and outer surface 402 of
As previously described, the flexible contact layer 602 may be configured from a variety of materials, such as a flexible material (e.g., Mylar) that is capable of flexing to contact a sensor substrate 702. The flexible contact layer 602 in this instance includes a force concentrator pad 610 disposed thereon that is raised from a surface of the flexible contact layer 602. Thus, the force concentrator pad 610 is configured as a protrusion to contact another layer of the input device 104, such as the light guide 406, smoothing layer 404, outer surface 402, and so on. The force concentrator pad 610 may be formed in a variety of ways, such as formation as a layer (e.g., printing, deposition, forming, etc.) on a substrate of the flexible contact layer 602 (e.g., Mylar), as an integral part of the substrate itself, and so on.
As illustrated, the force concentrator pad 610 is sized so as to permit the flexible contact layer 602 to flex between the spacer assemblies 802. The force concentrator pad 610 is configured to provide increased mechanical stiffness and thus improved resistance to localized bending and flexing around a single sensor, e.g., as in comparison with a substrate (e.g., Mylar) of the flexible contact layer 602 alone. Therefore, when the force concentrator pad 610 receives pressures (e.g., is “pressed”), the flexible contact layer 602 has a decreased bend radius than would otherwise be the case.
Thus, the bending of a substrate of the flexible contact layer 602 around the force concentrator pad 610 may promote a relatively consistent contact area between the force sensitive ink 604 and the conductors 704 of the sensor substrate 702. This may promote normalization of a signal produced by the key, e.g., to address “off center” contact.
The force concentrator pad 610 may also act to spread a contact area of a source of the pressure. The flexible contact layer 602, for instance, may receive a pressure caused by a fingernail, a tip of a stylus, pen, or other object that has a relatively small contact area. This could result in correspondingly small contact area of the flexible contact layer 602 that contacts the sensor substrate 702, and thus a corresponding decrease in signal strength.
However, due to the mechanical stiffness of the force concentrator pad 610, this pressure may be spread across an area of the force concentrator pad 610, which is then spread across an area of the flexible contact layer 602 that correspondingly bends around the spacer assemblies 802 to contact the sensor substrate 702. In this way, the force concentrator pad 610 may be used to distribute and normalize a contact area between the flexible contact layer 602 and the sensor substrate 702 that is used to generate a signal by the pressure sensitive sensor node.
The force concentrator pad 610 may also act to channel pressure, even if this pressure is applied “off center.” For example, the flexibility of the flexible contact layer 602 may depend at least partially on a distance from an edge of the pressure sensitive sensor node, e.g., an edge defined by the spacer assembly 802 in this instance.
The force concentrator pad 610, however, may be used to channel pressure to the flexible contact layer 602 to promote relatively consistent contact. For example, pressure applied at a first location 902 that is positioned at a general center region of the flexible contact layer 602 may cause contact that is similar to contact achieved when pressure applied at a second location 904 that is positioned at an edge of the force concentrator pad 610. Pressures applied outside of a region defined by the force concentrator pad 610 may also be channeled through use of the force concentrator pad 610, such as a third position 906 that is located outside of the region defined by the force concentrator pad 610 but within an edge of the key. A position that is located outside of a region of the flexible contact layer 602 defined by the spacer assembly 802 may also be channeled to cause the flexible contact layer 602 to contact the sensor substrate 702 as illustrated. A variety of different configurations of pressure sensitive sensor assemblies may leverage the pressures sensitive keys previously described, an example of which is described as follows and shown in a corresponding figure.
An enlarged example of a conductor 704 of the pressure sensitive sensor assembly 1002 is also shown. In this example, conductors 704 of the sensor substrate 702 are configured in first and second portions of inter-digitated trace fingers. Thus, a pressure applied to the flexible contact layer 602 may cause the force sensitive ink 604 to contact the conductors 804 and act as a shunt to permit a flow of electricity between the first and second portions of inter-digitated trace fingers. Other examples are also contemplated, such as to the first portion on the flexible contact layer 602 and the second portion on the sensor substrate 702 with the force sensitive ink being disposed between the layers having the portions.
In the illustrated example, the input device 104 includes an array of sensors spaced in a generally uniform manner, e.g., individual sensors placed approximately five millimeters apart on center in a grid arrangement. The sensors are illustrated as squares in the example although other sizes and arrangements are also contemplated, such as staggered generally circular sensors and so on. Further, the sensors may be configured in a variety of ways, such as pressure sensitive sensors, include a capacitive grid as described in relation to
The size and spacing of the sensors may be configured in a variety of ways. For example, a surface area of the sensor may be configured to have a surface area of approximately 25 millimeters (e.g., a 5×5 square or less), may be configured to have a surface area of approximately nine millimeters (e.g., a 3×3 square), may be configured to have a surface area of approximately 2.25 millimeters (e.g., a 1.5×1.5 square configured to detect a fingernail, stylus, and so on), have a pitch of approximately five millimeters or less, and so on. Additionally, a variety of different detection and sampling rates may be supported, such as a one kilohertz sampling rate with twelve bits of resolution (e.g., to indicate pressure) and may be responsive to twenty five grams of pressure. In this way, the array may be configured to detect gestures across a sequence of the sensors, may support dynamic mapping of key presses to corresponding indications as described in relation to
The indication 1102 is disposed over four sensors of the array of the pressure sensitive sensor assembly 1002 of
Likewise, indication 1104 is taken from a game controller is of an input for a rocker control, such as to provide inputs to control direction of an object in a game. The indication 1104 is also disposed over a plurality of sensors (e.g., the pressure sensitive sensor nodes of the array of
Additionally, techniques may be employed to detect a centroid of a contact to determine a likely intent of a contact received by a user. For the indication 1104 of the rocker control, for instance, a centroid of a user's finger may be detected to determine a likely direction. This technique may also be employed to determine which of a plurality of indications likely correspond to an input, such as when a user contacts a border between multiple indications the centroid may be used to determine which indication and corresponding sensor is likely intended as an input by a user. Capacitive sensors may also be incorporated to aid this detection as further described beginning in relation to
The input device 104 also includes capacitive sensor assemblies 1204 which are illustrated as disposed beneath palm rests of the input device 104 although other configurations as also contemplated as further described below. The capacitive sensor assemblies 1204 are configured to detect proximity of an object, such as a finger of a user's hand 1206 as illustrated, a stylus, or other object. This detection may be leveraged to support a wide variety of different functionality. For example, the capacitive sensor assemblies 1204 may remain operational (e.g., awake) while other functionality of the input device 104 (e.g., the pressure sensitive sensor node assembly 1202, backlighting, and so on), computing device 102, and so on are in a non-operational state, e.g., a sleep state, hibernation state, “off,” and so on. This may be performed to reduce power consumption by these devices.
Responsive to detection of an object (e.g., the finger of the user's hand 1206), the input device 104 may cause this other functionality of the input device 104 and/or computing device 102 to “wake.” For example, this may cause examination of an output of a camera of the computing device 102 and/or input device 104 to determine whether to turn the backlighting of the input device 104 “on” based on an amount of light detected in the surroundings of the device, place the pressure sensitive sensor assembly 1202 in an operational state to detect pressure, and so on. In this way, the capacitive sensor assembly 1204 may be utilized to conserve power consumed by the input device 104 and/or the computing device 102 as well as increase responsiveness of these devices, e.g., by waking before contact is even received by the pressure sensitive sensor node assembly. Additionally, this may be utilized to protect against inadvertent presses of the keys of the input device 104, such as in combination with detection of a location of the input device 104 in relation to the computing device 102, e.g., positioned at a rear of the computing device 102 through use of a Hall Effect sensor, accelerometers, magnetometers, and so forth.
The capacitive sensor assembly 1204 may be configured in a variety of ways to perform this object detection. For example, the capacitive sensor assembly 1204 may be configured in a portion of the input device 104 that is separate and non-overlapping from a portion including the pressure sensitive sensor assembly 1202 as shown in
Thus, in this example the pressure sensitive sensor nodes (e.g., sensor nodes) are embedded into a capacitive sensor array to support both capacitive location and pressure input to be reported by the input device 104. Accuracy and linearity of the capacitive sensor assembly 1204 may support a high degree of positional accuracy at virtually non-contact use inputs to support gesturing, mousing movements, and so on.
Additionally, integration of the pressure sensitive sensor nodes of the pressure sensitive sensor assembly 1202 supports pressure readings at each discrete location of capacitive touch events detected by the capacitive sensor assembly 1204. This may also be utilized to support a thin form factor of the input device 104 as a whole that is configured to detect position and pressure at multiple, discrete user inputs. In one or more implementations, conductors of the capacitive sensors and the conductors 704 of the pressure sensitive sensor nodes may be incorporated at the same layer of the input device 104, e.g., the sensor substrate 702 of
Example System and Device
The example computing device 1502 as illustrated includes a processing system 1504, one or more computer-readable media 1506, and one or more I/O interface 1508 that are communicatively coupled, one to another. Although not shown, the computing device 1502 may further include a system bus or other data and command transfer system that couples the various components, one to another. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures. A variety of other examples are also contemplated, such as control and data lines.
The processing system 1504 is representative of functionality to perform one or more operations using hardware. Accordingly, the processing system 1504 is illustrated as including hardware element 1510 that may be configured as processors, functional blocks, and so forth. This may include implementation in hardware as an application specific integrated circuit or other logic device formed using one or more semiconductors. The hardware elements 1510 are not limited by the materials from which they are formed or the processing mechanisms employed therein. For example, processors may be comprised of semiconductor(s) and/or transistors (e.g., electronic integrated circuits (ICs)). In such a context, processor-executable instructions may be electronically-executable instructions.
The computer-readable storage media 1506 is illustrated as including memory/storage 1512. The memory/storage 1512 represents memory/storage capacity associated with one or more computer-readable media. The memory/storage component 1512 may include volatile media (such as random access memory (RAM)) and/or nonvolatile media (such as read only memory (ROM), Flash memory, optical disks, magnetic disks, and so forth). The memory/storage component 1512 may include fixed media (e.g., RAM, ROM, a fixed hard drive, and so on) as well as removable media (e.g., Flash memory, a removable hard drive, an optical disc, and so forth). The computer-readable media 1506 may be configured in a variety of other ways as further described below.
Input/output interface(s) 1508 are representative of functionality to allow a user to enter commands and information to computing device 1502, and also allow information to be presented to the user and/or other components or devices using various input/output devices. Examples of input devices include a keyboard, a cursor control device (e.g., a mouse), a microphone, a scanner, touch functionality (e.g., capacitive or other sensors that are configured to detect physical touch), a camera (e.g., which may employ visible or non-visible wavelengths such as infrared frequencies to recognize movement as gestures that do not involve touch), and so forth. Examples of output devices include a display device (e.g., a monitor or projector), speakers, a printer, a network card, tactile-response device, and so forth. Thus, the computing device 1502 may be configured in a variety of ways to support user interaction.
The computing device 1502 is further illustrated as being communicatively and physically coupled to an input device 1514 that is physically and communicatively removable from the computing device 1502. In this way, a variety of different input devices may be coupled to the computing device 1502 having a wide variety of configurations to support a wide variety of functionality. In this example, the input device 1514 includes one or more keys 1516, which may be configured as pressure sensitive sensor nodes, mechanically switched keys, and so forth.
The input device 1514 is further illustrated as include one or more modules 1518 that may be configured to support a variety of functionality. The one or more modules 1518, for instance, may be configured to process analog and/or digital signals received from the keys 1516 to determine whether a keystroke was intended, determine whether an input is indicative of resting pressure, support authentication of the input device 1514 for operation with the computing device 1502, and so on.
Various techniques may be described herein in the general context of software, hardware elements, or program modules. Generally, such modules include routines, programs, objects, elements, components, data structures, and so forth that perform particular tasks or implement particular abstract data types. The terms “module,” “functionality,” and “component” as used herein generally represent software, firmware, hardware, or a combination thereof. The features of the techniques described herein are platform-independent, meaning that the techniques may be implemented on a variety of commercial computing platforms having a variety of processors.
An implementation of the described modules and techniques may be stored on or transmitted across some form of computer-readable media. The computer-readable media may include a variety of media that may be accessed by the computing device 1502. By way of example, and not limitation, computer-readable media may include “computer-readable storage media” and “computer-readable signal media.”
“Computer-readable storage media” may refer to media and/or devices that enable persistent and/or non-transitory storage of information in contrast to mere signal transmission, carrier waves, or signals per se. Thus, computer-readable storage media refers to non-signal bearing media. The computer-readable storage media includes hardware such as volatile and non-volatile, removable and non-removable media and/or storage devices implemented in a method or technology suitable for storage of information such as computer readable instructions, data structures, program modules, logic elements/circuits, or other data. Examples of computer-readable storage media may include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, hard disks, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or other storage device, tangible media, or article of manufacture suitable to store the desired information and which may be accessed by a computer.
“Computer-readable signal media” may refer to a signal-bearing medium that is configured to transmit instructions to the hardware of the computing device 1502, such as via a network. Signal media typically may embody computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as carrier waves, data signals, or other transport mechanism. Signal media also include any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, and other wireless media.
As previously described, hardware elements 1510 and computer-readable media 1506 are representative of modules, programmable device logic and/or fixed device logic implemented in a hardware form that may be employed in some embodiments to implement at least some aspects of the techniques described herein, such as to perform one or more instructions. Hardware may include components of an integrated circuit or on-chip system, an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), a complex programmable logic device (CPLD), and other implementations in silicon or other hardware. In this context, hardware may operate as a processing device that performs program tasks defined by instructions and/or logic embodied by the hardware as well as a hardware utilized to store instructions for execution, e.g., the computer-readable storage media described previously.
Combinations of the foregoing may also be employed to implement various techniques described herein. Accordingly, software, hardware, or executable modules may be implemented as one or more instructions and/or logic embodied on some form of computer-readable storage media and/or by one or more hardware elements 1510. The computing device 1502 may be configured to implement particular instructions and/or functions corresponding to the software and/or hardware modules. Accordingly, implementation of a module that is executable by the computing device 1502 as software may be achieved at least partially in hardware, e.g., through use of computer-readable storage media and/or hardware elements 1510 of the processing system 1504. The instructions and/or functions may be executable/operable by one or more articles of manufacture (for example, one or more computing devices 1502 and/or processing systems 1504) to implement techniques, modules, and examples described herein.
Although the example implementations have been described in language specific to structural features and/or methodological acts, it is to be understood that the implementations defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as example forms of implementing the claimed features.
This application claims priority as a continuation-in-part to U.S. patent application Ser. No. 13/974,749, filed Aug. 23, 2013 and titled “Input Device with Interchangeable Surface,” which claims priority as a continuation-in-part of U.S. patent application Ser. No. 13/655,065, filed Oct. 18, 2012, and titled “Media Processing Input Device,” which claims priority to U.S. Provisional Patent Application No. 61/659,364, filed Jun. 13, 2012, and titled “Music Blade,” the disclosures of each of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
578325 | Fleming | Mar 1897 | A |
4046975 | Seeger, Jr. | Sep 1977 | A |
4065649 | Carter et al. | Dec 1977 | A |
4243861 | Strandwitz | Jan 1981 | A |
4279021 | See et al. | Jul 1981 | A |
4302648 | Sado et al. | Nov 1981 | A |
4317013 | Larson | Feb 1982 | A |
4326193 | Markley et al. | Apr 1982 | A |
4365130 | Christensen | Dec 1982 | A |
4492829 | Rodrique | Jan 1985 | A |
4527021 | Morikawa et al. | Jul 1985 | A |
4559426 | Van Zeeland et al. | Dec 1985 | A |
4577822 | Wilkerson | Mar 1986 | A |
4588187 | Dell | May 1986 | A |
4607147 | Ono et al. | Aug 1986 | A |
4651133 | Ganesan et al. | Mar 1987 | A |
4735394 | Facco | Apr 1988 | A |
4890832 | Komaki | Jan 1990 | A |
5149923 | Demeo | Sep 1992 | A |
5220521 | Kikinis | Jun 1993 | A |
5283559 | Kalendra et al. | Feb 1994 | A |
5331443 | Stanisci | Jul 1994 | A |
5480118 | Cross | Jan 1996 | A |
5489900 | Cali et al. | Feb 1996 | A |
5510783 | Findlater et al. | Apr 1996 | A |
5546271 | Gut et al. | Aug 1996 | A |
5548477 | Kumar et al. | Aug 1996 | A |
5558577 | Kato | Sep 1996 | A |
5576981 | Parker et al. | Nov 1996 | A |
5618232 | Martin | Apr 1997 | A |
5681220 | Bertram et al. | Oct 1997 | A |
5745376 | Barker et al. | Apr 1998 | A |
5748114 | Koehn | May 1998 | A |
5781406 | Hunte | Jul 1998 | A |
5807175 | Davis et al. | Sep 1998 | A |
5818361 | Acevedo | Oct 1998 | A |
5828770 | Leis et al. | Oct 1998 | A |
5842027 | Oprescu et al. | Nov 1998 | A |
5874697 | Selker et al. | Feb 1999 | A |
5909211 | Combs et al. | Jun 1999 | A |
5926170 | Oba | Jul 1999 | A |
5942733 | Allen et al. | Aug 1999 | A |
5971635 | Wise | Oct 1999 | A |
6002389 | Kasser | Dec 1999 | A |
6005209 | Burleson et al. | Dec 1999 | A |
6012714 | Worley et al. | Jan 2000 | A |
6040823 | Seffernick et al. | Mar 2000 | A |
6044717 | Biegelsen et al. | Apr 2000 | A |
6061644 | Leis | May 2000 | A |
6112797 | Colson et al. | Sep 2000 | A |
6147859 | Abboud | Nov 2000 | A |
6178443 | Lin | Jan 2001 | B1 |
6239786 | Burry et al. | May 2001 | B1 |
6254105 | Rinde et al. | Jul 2001 | B1 |
6279060 | Luke et al. | Aug 2001 | B1 |
6329617 | Burgess | Dec 2001 | B1 |
6344791 | Armstrong | Feb 2002 | B1 |
6380497 | Hashimoto et al. | Apr 2002 | B1 |
6437682 | Vance | Aug 2002 | B1 |
6506983 | Babb et al. | Jan 2003 | B1 |
6511378 | Bhatt et al. | Jan 2003 | B1 |
6532147 | Christ, Jr. | Mar 2003 | B1 |
6543949 | Ritchey et al. | Apr 2003 | B1 |
6565439 | Shinohara et al. | May 2003 | B2 |
6597347 | Yasutake | Jul 2003 | B1 |
6600121 | Olodort et al. | Jul 2003 | B1 |
6603408 | Gaba | Aug 2003 | B1 |
6617536 | Kawaguchi | Sep 2003 | B2 |
6651943 | Cho et al. | Nov 2003 | B2 |
6685369 | Lien | Feb 2004 | B2 |
6695273 | Iguchi | Feb 2004 | B2 |
6704864 | Philyaw | Mar 2004 | B1 |
6721019 | Kono et al. | Apr 2004 | B2 |
6725318 | Sherman et al. | Apr 2004 | B1 |
6738049 | Kiser et al. | May 2004 | B2 |
6758615 | Monney et al. | Jul 2004 | B2 |
6774888 | Genduso | Aug 2004 | B1 |
6776546 | Kraus et al. | Aug 2004 | B2 |
6781819 | Yang et al. | Aug 2004 | B2 |
6784869 | Clark et al. | Aug 2004 | B1 |
6813143 | Makela | Nov 2004 | B2 |
6819316 | Schulz et al. | Nov 2004 | B2 |
6856506 | Doherty et al. | Feb 2005 | B2 |
6861961 | Sandbach et al. | Mar 2005 | B2 |
6864573 | Robertson et al. | Mar 2005 | B2 |
6898315 | Guha | May 2005 | B2 |
6914197 | Doherty et al. | Jul 2005 | B2 |
6950950 | Sawyers et al. | Sep 2005 | B2 |
6970957 | Oshins et al. | Nov 2005 | B1 |
6976799 | Kim et al. | Dec 2005 | B2 |
6977352 | Oosawa | Dec 2005 | B2 |
7051149 | Wang et al. | May 2006 | B2 |
7083295 | Hanna | Aug 2006 | B1 |
7091436 | Serban | Aug 2006 | B2 |
7091955 | Kramer | Aug 2006 | B2 |
7095404 | Vincent et al. | Aug 2006 | B2 |
7106222 | Ward et al. | Sep 2006 | B2 |
7116309 | Kimura et al. | Oct 2006 | B1 |
7123292 | Seeger et al. | Oct 2006 | B1 |
7194662 | Do et al. | Mar 2007 | B2 |
7202837 | Ihara | Apr 2007 | B2 |
7213991 | Chapman et al. | May 2007 | B2 |
7224830 | Nefian et al. | May 2007 | B2 |
7277087 | Hill et al. | Oct 2007 | B2 |
7280348 | Ghosh | Oct 2007 | B2 |
7301759 | Hsiung | Nov 2007 | B2 |
7374312 | Feng et al. | May 2008 | B2 |
7401992 | Lin | Jul 2008 | B1 |
7423557 | Kang | Sep 2008 | B2 |
7447934 | Dasari et al. | Nov 2008 | B2 |
7469386 | Bear et al. | Dec 2008 | B2 |
7486165 | Ligtenberg et al. | Feb 2009 | B2 |
7499037 | Lube | Mar 2009 | B2 |
7502803 | Culter et al. | Mar 2009 | B2 |
7542052 | Solomon et al. | Jun 2009 | B2 |
7557312 | Clark et al. | Jul 2009 | B2 |
7558594 | Wilson | Jul 2009 | B2 |
7559834 | York | Jul 2009 | B1 |
RE40891 | Yasutake | Sep 2009 | E |
7620244 | Collier | Nov 2009 | B1 |
7622907 | Vranish | Nov 2009 | B2 |
7636921 | Louie | Dec 2009 | B2 |
7639876 | Clary et al. | Dec 2009 | B2 |
7656392 | Bolender | Feb 2010 | B2 |
7686694 | Cole | Mar 2010 | B2 |
7728923 | Kim et al. | Jun 2010 | B2 |
7731147 | Rha | Jun 2010 | B2 |
7733326 | Adiseshan | Jun 2010 | B1 |
7736042 | Park et al. | Jun 2010 | B2 |
7773076 | Pittel et al. | Aug 2010 | B2 |
7773121 | Huntsberger et al. | Aug 2010 | B1 |
7774155 | Sato et al. | Aug 2010 | B2 |
7777972 | Chen et al. | Aug 2010 | B1 |
7782342 | Koh | Aug 2010 | B2 |
7813715 | McKillop et al. | Oct 2010 | B2 |
7815358 | Inditsky | Oct 2010 | B2 |
7817428 | Greer, Jr. et al. | Oct 2010 | B2 |
7865639 | McCoy et al. | Jan 2011 | B2 |
7884807 | Hovden et al. | Feb 2011 | B2 |
7907394 | Richardson et al. | Mar 2011 | B2 |
D636397 | Green | Apr 2011 | S |
7928964 | Kolmykov-Zotov et al. | Apr 2011 | B2 |
7936501 | Smith et al. | May 2011 | B2 |
7945717 | Rivalsi | May 2011 | B2 |
7970246 | Travis et al. | Jun 2011 | B2 |
7973771 | Geaghan | Jul 2011 | B2 |
7976393 | Haga et al. | Jul 2011 | B2 |
7978281 | Vergith et al. | Jul 2011 | B2 |
8016255 | Lin | Sep 2011 | B2 |
8018386 | Qi et al. | Sep 2011 | B2 |
8018579 | Krah | Sep 2011 | B1 |
8022939 | Hinata | Sep 2011 | B2 |
8026904 | Westerman | Sep 2011 | B2 |
8053688 | Conzola et al. | Nov 2011 | B2 |
8063886 | Serban et al. | Nov 2011 | B2 |
8065624 | Morin et al. | Nov 2011 | B2 |
8069356 | Rathi et al. | Nov 2011 | B2 |
8077160 | Land et al. | Dec 2011 | B2 |
8090885 | Callaghan et al. | Jan 2012 | B2 |
8094134 | Suzuki et al. | Jan 2012 | B2 |
8098233 | Hotelling et al. | Jan 2012 | B2 |
8115499 | Osoinach et al. | Feb 2012 | B2 |
8117362 | Rodriguez et al. | Feb 2012 | B2 |
8118274 | McClure et al. | Feb 2012 | B2 |
8118681 | Mattice et al. | Feb 2012 | B2 |
8130203 | Westerman | Mar 2012 | B2 |
8154524 | Wilson et al. | Apr 2012 | B2 |
8162282 | Hu et al. | Apr 2012 | B2 |
D659139 | Gengler | May 2012 | S |
8169421 | Wright et al. | May 2012 | B2 |
8189973 | Travis et al. | May 2012 | B2 |
8216074 | Sakuma | Jul 2012 | B2 |
8229509 | Paek et al. | Jul 2012 | B2 |
8229522 | Kim et al. | Jul 2012 | B2 |
8232963 | Orsley et al. | Jul 2012 | B2 |
8267368 | Torii et al. | Sep 2012 | B2 |
8269093 | Naik et al. | Sep 2012 | B2 |
8274784 | Franz et al. | Sep 2012 | B2 |
8279589 | Kim | Oct 2012 | B2 |
8322290 | Mignano | Dec 2012 | B1 |
8330061 | Rothkopf et al. | Dec 2012 | B2 |
8330742 | Reynolds et al. | Dec 2012 | B2 |
8378972 | Pance et al. | Feb 2013 | B2 |
8403576 | Merz | Mar 2013 | B2 |
8416559 | Agata et al. | Apr 2013 | B2 |
8498100 | Whitt, III et al. | Jul 2013 | B1 |
8638315 | Algreatly | Jan 2014 | B2 |
8757374 | Kaiser | Jun 2014 | B1 |
9063693 | Raken et al. | Jun 2015 | B2 |
9073123 | Campbell et al. | Jul 2015 | B2 |
9459160 | Shaw et al. | Oct 2016 | B2 |
20010035859 | Kiser | Nov 2001 | A1 |
20020000977 | Vranish | Jan 2002 | A1 |
20020126445 | Minaguchi et al. | Sep 2002 | A1 |
20020134828 | Sandbach et al. | Sep 2002 | A1 |
20020154099 | Oh | Oct 2002 | A1 |
20020188721 | Lemel et al. | Dec 2002 | A1 |
20030016282 | Koizumi | Jan 2003 | A1 |
20030044215 | Monney et al. | Mar 2003 | A1 |
20030083131 | Armstrong | May 2003 | A1 |
20030132916 | Kramer | Jul 2003 | A1 |
20030163611 | Nagao | Aug 2003 | A1 |
20030197687 | Shetter | Oct 2003 | A1 |
20030201982 | Iesaka | Oct 2003 | A1 |
20040005184 | Kim et al. | Jan 2004 | A1 |
20040100457 | Mandle | May 2004 | A1 |
20040140998 | Gravina et al. | Jul 2004 | A1 |
20040174670 | Huang et al. | Sep 2004 | A1 |
20040190239 | Weng et al. | Sep 2004 | A1 |
20040212598 | Kraus et al. | Oct 2004 | A1 |
20040258924 | Berger et al. | Dec 2004 | A1 |
20040268000 | Barker et al. | Dec 2004 | A1 |
20050030728 | Kawashima et al. | Feb 2005 | A1 |
20050057515 | Bathiche | Mar 2005 | A1 |
20050057521 | Aull et al. | Mar 2005 | A1 |
20050059441 | Miyashita | Mar 2005 | A1 |
20050059489 | Kim | Mar 2005 | A1 |
20050146512 | Hill et al. | Jul 2005 | A1 |
20050190159 | Skarine | Sep 2005 | A1 |
20050240949 | Liu et al. | Oct 2005 | A1 |
20050264653 | Starkweather et al. | Dec 2005 | A1 |
20050264988 | Nicolosi | Dec 2005 | A1 |
20050285703 | Wheeler et al. | Dec 2005 | A1 |
20060049993 | Lin et al. | Mar 2006 | A1 |
20060082973 | Egbert et al. | Apr 2006 | A1 |
20060085658 | Allen et al. | Apr 2006 | A1 |
20060102914 | Smits et al. | May 2006 | A1 |
20060103633 | Gioeli | May 2006 | A1 |
20060125799 | Hillis et al. | Jun 2006 | A1 |
20060132423 | Travis | Jun 2006 | A1 |
20060154725 | Glaser et al. | Jul 2006 | A1 |
20060156415 | Rubinstein et al. | Jul 2006 | A1 |
20060158433 | Serban | Jul 2006 | A1 |
20060181514 | Newman | Aug 2006 | A1 |
20060181521 | Perreault et al. | Aug 2006 | A1 |
20060187216 | Trent, Jr. et al. | Aug 2006 | A1 |
20060195522 | Miyazaki | Aug 2006 | A1 |
20060197753 | Hotelling | Sep 2006 | A1 |
20060197755 | Bawany | Sep 2006 | A1 |
20060209050 | Serban | Sep 2006 | A1 |
20060238510 | Panotopoulos et al. | Oct 2006 | A1 |
20060248597 | Keneman | Nov 2006 | A1 |
20070047221 | Park | Mar 2007 | A1 |
20070051792 | Wheeler et al. | Mar 2007 | A1 |
20070056385 | Lorenz | Mar 2007 | A1 |
20070057922 | Schultz et al. | Mar 2007 | A1 |
20070062089 | Homer et al. | Mar 2007 | A1 |
20070069153 | Pai-Paranjape et al. | Mar 2007 | A1 |
20070072474 | Beasley et al. | Mar 2007 | A1 |
20070145945 | McGinley et al. | Jun 2007 | A1 |
20070152983 | McKillop et al. | Jul 2007 | A1 |
20070182663 | Biech | Aug 2007 | A1 |
20070182722 | Hotelling et al. | Aug 2007 | A1 |
20070200830 | Yamamoto | Aug 2007 | A1 |
20070220708 | Lewis | Sep 2007 | A1 |
20070234420 | Novotney et al. | Oct 2007 | A1 |
20070236408 | Yamaguchi et al. | Oct 2007 | A1 |
20070236475 | Wherry | Oct 2007 | A1 |
20070247338 | Marchetto | Oct 2007 | A1 |
20070247432 | Oakley | Oct 2007 | A1 |
20070257821 | Son et al. | Nov 2007 | A1 |
20070260892 | Paul et al. | Nov 2007 | A1 |
20070274094 | Schultz et al. | Nov 2007 | A1 |
20070274095 | Destain | Nov 2007 | A1 |
20070283179 | Burnett et al. | Dec 2007 | A1 |
20080005423 | Jacobs et al. | Jan 2008 | A1 |
20080013809 | Zhu et al. | Jan 2008 | A1 |
20080018608 | Serban | Jan 2008 | A1 |
20080018611 | Serban et al. | Jan 2008 | A1 |
20080094367 | Van De Ven et al. | Apr 2008 | A1 |
20080104437 | Lee | May 2008 | A1 |
20080151478 | Chern | Jun 2008 | A1 |
20080158185 | Westerman | Jul 2008 | A1 |
20080167832 | Soss | Jul 2008 | A1 |
20080180411 | Solomon et al. | Jul 2008 | A1 |
20080202251 | Serban | Aug 2008 | A1 |
20080219025 | Spitzer et al. | Sep 2008 | A1 |
20080228969 | Cheah et al. | Sep 2008 | A1 |
20080232061 | Wang et al. | Sep 2008 | A1 |
20080238884 | Harish | Oct 2008 | A1 |
20080253822 | Matias | Oct 2008 | A1 |
20080297878 | Brown et al. | Dec 2008 | A1 |
20080309636 | Feng et al. | Dec 2008 | A1 |
20080316002 | Brunet et al. | Dec 2008 | A1 |
20080320190 | Lydon et al. | Dec 2008 | A1 |
20090002218 | Rigazio et al. | Jan 2009 | A1 |
20090007001 | Morin et al. | Jan 2009 | A1 |
20090009476 | Daley, III | Jan 2009 | A1 |
20090046416 | Daley, III | Feb 2009 | A1 |
20090049979 | Naik et al. | Feb 2009 | A1 |
20090065267 | Sato | Mar 2009 | A1 |
20090073060 | Shimasaki et al. | Mar 2009 | A1 |
20090073957 | Newland et al. | Mar 2009 | A1 |
20090079639 | Hotta et al. | Mar 2009 | A1 |
20090083562 | Park et al. | Mar 2009 | A1 |
20090090568 | Min | Apr 2009 | A1 |
20090117955 | Lo | May 2009 | A1 |
20090127005 | Zachut et al. | May 2009 | A1 |
20090135142 | Fu et al. | May 2009 | A1 |
20090140985 | Liu | Jun 2009 | A1 |
20090163147 | Steigerwald et al. | Jun 2009 | A1 |
20090182901 | Callaghan et al. | Jul 2009 | A1 |
20090195497 | Fitzgerald et al. | Aug 2009 | A1 |
20090200148 | Honmatsu et al. | Aug 2009 | A1 |
20090219250 | Ure | Sep 2009 | A1 |
20090231019 | Yeh | Sep 2009 | A1 |
20090231275 | Odgers | Sep 2009 | A1 |
20090251008 | Sugaya | Oct 2009 | A1 |
20090259865 | Sheynblat et al. | Oct 2009 | A1 |
20090262492 | Whitchurch et al. | Oct 2009 | A1 |
20090265670 | Kim et al. | Oct 2009 | A1 |
20090284397 | Lee et al. | Nov 2009 | A1 |
20090303137 | Kusaka et al. | Dec 2009 | A1 |
20090303204 | Nasiri et al. | Dec 2009 | A1 |
20090320244 | Lin | Dec 2009 | A1 |
20090321490 | Groene et al. | Dec 2009 | A1 |
20100001963 | Doray et al. | Jan 2010 | A1 |
20100013319 | Kamiyama et al. | Jan 2010 | A1 |
20100026656 | Hotelling et al. | Feb 2010 | A1 |
20100038821 | Jenkins et al. | Feb 2010 | A1 |
20100039764 | Locker | Feb 2010 | A1 |
20100045609 | Do et al. | Feb 2010 | A1 |
20100045633 | Gettemy | Feb 2010 | A1 |
20100051356 | Stern et al. | Mar 2010 | A1 |
20100051432 | Lin et al. | Mar 2010 | A1 |
20100053534 | Hsieh et al. | Mar 2010 | A1 |
20100075517 | Ni et al. | Mar 2010 | A1 |
20100077237 | Sawyers | Mar 2010 | A1 |
20100081377 | Chatterjee et al. | Apr 2010 | A1 |
20100085321 | Pundsack | Apr 2010 | A1 |
20100102182 | Lin | Apr 2010 | A1 |
20100103112 | Yoo et al. | Apr 2010 | A1 |
20100103131 | Segal et al. | Apr 2010 | A1 |
20100123686 | Klinghult et al. | May 2010 | A1 |
20100133398 | Chiu et al. | Jun 2010 | A1 |
20100137033 | Lee | Jun 2010 | A1 |
20100141588 | Kimura et al. | Jun 2010 | A1 |
20100142130 | Wang et al. | Jun 2010 | A1 |
20100149111 | Olien | Jun 2010 | A1 |
20100149134 | Westerman et al. | Jun 2010 | A1 |
20100156798 | Archer | Jun 2010 | A1 |
20100161522 | Tirpak et al. | Jun 2010 | A1 |
20100162109 | Chatterjee et al. | Jun 2010 | A1 |
20100164857 | Liu et al. | Jul 2010 | A1 |
20100171708 | Chuang | Jul 2010 | A1 |
20100171891 | Kaji et al. | Jul 2010 | A1 |
20100174421 | Tsai et al. | Jul 2010 | A1 |
20100180063 | Ananny et al. | Jul 2010 | A1 |
20100188299 | Rinehart et al. | Jul 2010 | A1 |
20100188338 | Longe | Jul 2010 | A1 |
20100206614 | Park et al. | Aug 2010 | A1 |
20100206644 | Yeh | Aug 2010 | A1 |
20100214257 | Wussler et al. | Aug 2010 | A1 |
20100222110 | Kim et al. | Sep 2010 | A1 |
20100231498 | Large et al. | Sep 2010 | A1 |
20100231510 | Sampsell et al. | Sep 2010 | A1 |
20100231556 | Mines et al. | Sep 2010 | A1 |
20100238075 | Pourseyed | Sep 2010 | A1 |
20100238119 | Dubrovsky et al. | Sep 2010 | A1 |
20100238138 | Goertz et al. | Sep 2010 | A1 |
20100245221 | Khan | Sep 2010 | A1 |
20100250988 | Okuda et al. | Sep 2010 | A1 |
20100274932 | Kose | Oct 2010 | A1 |
20100279768 | Huang et al. | Nov 2010 | A1 |
20100289457 | Onnerud et al. | Nov 2010 | A1 |
20100295812 | Burns et al. | Nov 2010 | A1 |
20100302378 | Marks et al. | Dec 2010 | A1 |
20100304793 | Kim | Dec 2010 | A1 |
20100306538 | Thomas et al. | Dec 2010 | A1 |
20100308778 | Yamazaki et al. | Dec 2010 | A1 |
20100308844 | Day et al. | Dec 2010 | A1 |
20100315348 | Jellicoe et al. | Dec 2010 | A1 |
20100315373 | Steinhauser et al. | Dec 2010 | A1 |
20100321299 | Shelley et al. | Dec 2010 | A1 |
20100321301 | Casparian et al. | Dec 2010 | A1 |
20100321330 | Lim et al. | Dec 2010 | A1 |
20100321339 | Kimmel | Dec 2010 | A1 |
20100325155 | Skinner et al. | Dec 2010 | A1 |
20100331059 | Apgar et al. | Dec 2010 | A1 |
20110007008 | Algreatly | Jan 2011 | A1 |
20110012873 | Prest et al. | Jan 2011 | A1 |
20110018556 | Le et al. | Jan 2011 | A1 |
20110019123 | Prest et al. | Jan 2011 | A1 |
20110031287 | Le Gette et al. | Feb 2011 | A1 |
20110036965 | Zhang et al. | Feb 2011 | A1 |
20110037721 | Cranfill et al. | Feb 2011 | A1 |
20110043990 | Mickey et al. | Feb 2011 | A1 |
20110050587 | Natanzon et al. | Mar 2011 | A1 |
20110055407 | Lydon et al. | Mar 2011 | A1 |
20110057899 | Sleeman et al. | Mar 2011 | A1 |
20110060926 | Brooks et al. | Mar 2011 | A1 |
20110069148 | Jones et al. | Mar 2011 | A1 |
20110074688 | Hull et al. | Mar 2011 | A1 |
20110084909 | Hsieh et al. | Apr 2011 | A1 |
20110095994 | Birnbaum | Apr 2011 | A1 |
20110096513 | Kim | Apr 2011 | A1 |
20110102326 | Casparian et al. | May 2011 | A1 |
20110102356 | Kemppinen et al. | May 2011 | A1 |
20110115712 | Han et al. | May 2011 | A1 |
20110115747 | Powell et al. | May 2011 | A1 |
20110118025 | Lukas et al. | May 2011 | A1 |
20110134032 | Chiu et al. | Jun 2011 | A1 |
20110134112 | Koh et al. | Jun 2011 | A1 |
20110147398 | Ahee et al. | Jun 2011 | A1 |
20110148793 | Ciesla et al. | Jun 2011 | A1 |
20110157087 | Kanehira et al. | Jun 2011 | A1 |
20110163955 | Nasiri et al. | Jul 2011 | A1 |
20110164370 | McClure et al. | Jul 2011 | A1 |
20110167181 | Minoo et al. | Jul 2011 | A1 |
20110167287 | Walsh et al. | Jul 2011 | A1 |
20110167391 | Momeyer et al. | Jul 2011 | A1 |
20110167992 | Eventoff et al. | Jul 2011 | A1 |
20110179864 | Raasch et al. | Jul 2011 | A1 |
20110184646 | Wong et al. | Jul 2011 | A1 |
20110193787 | Morishige et al. | Aug 2011 | A1 |
20110193938 | Oderwald et al. | Aug 2011 | A1 |
20110202878 | Park et al. | Aug 2011 | A1 |
20110205372 | Miramontes | Aug 2011 | A1 |
20110216266 | Travis | Sep 2011 | A1 |
20110227913 | Hyndman | Sep 2011 | A1 |
20110231682 | Kakish et al. | Sep 2011 | A1 |
20110234502 | Yun et al. | Sep 2011 | A1 |
20110241999 | Thier | Oct 2011 | A1 |
20110242138 | Tribble | Oct 2011 | A1 |
20110248152 | Svajda et al. | Oct 2011 | A1 |
20110248920 | Larsen | Oct 2011 | A1 |
20110248941 | Abdo et al. | Oct 2011 | A1 |
20110261001 | Liu | Oct 2011 | A1 |
20110261083 | Wilson | Oct 2011 | A1 |
20110267300 | Serban et al. | Nov 2011 | A1 |
20110267757 | Probst | Nov 2011 | A1 |
20110290686 | Huang | Dec 2011 | A1 |
20110295697 | Boston et al. | Dec 2011 | A1 |
20110297566 | Gallagher et al. | Dec 2011 | A1 |
20110304577 | Brown et al. | Dec 2011 | A1 |
20110304962 | Su | Dec 2011 | A1 |
20110306424 | Kazama et al. | Dec 2011 | A1 |
20110316807 | Corrion | Dec 2011 | A1 |
20120007821 | Zaliva | Jan 2012 | A1 |
20120011462 | Westerman et al. | Jan 2012 | A1 |
20120013519 | Hakansson et al. | Jan 2012 | A1 |
20120023459 | Westerman | Jan 2012 | A1 |
20120024682 | Huang et al. | Feb 2012 | A1 |
20120026048 | Vazquez et al. | Feb 2012 | A1 |
20120044179 | Hudson | Feb 2012 | A1 |
20120047368 | Chinn et al. | Feb 2012 | A1 |
20120050975 | Garelli et al. | Mar 2012 | A1 |
20120055770 | Chen | Mar 2012 | A1 |
20120062245 | Bao et al. | Mar 2012 | A1 |
20120068933 | Larsen | Mar 2012 | A1 |
20120072167 | Cretella, Jr. et al. | Mar 2012 | A1 |
20120075249 | Hoch | Mar 2012 | A1 |
20120081316 | Sirpal et al. | Apr 2012 | A1 |
20120087078 | Medica et al. | Apr 2012 | A1 |
20120092279 | Martin | Apr 2012 | A1 |
20120094257 | Pillischer et al. | Apr 2012 | A1 |
20120098751 | Liu | Apr 2012 | A1 |
20120099263 | Lin | Apr 2012 | A1 |
20120099749 | Rubin et al. | Apr 2012 | A1 |
20120106082 | Wu et al. | May 2012 | A1 |
20120113579 | Agata et al. | May 2012 | A1 |
20120115553 | Mahe et al. | May 2012 | A1 |
20120117409 | Lee et al. | May 2012 | A1 |
20120127118 | Nolting et al. | May 2012 | A1 |
20120140396 | Zeliff et al. | Jun 2012 | A1 |
20120145525 | Ishikawa | Jun 2012 | A1 |
20120155015 | Govindasamy et al. | Jun 2012 | A1 |
20120162693 | Ito | Jun 2012 | A1 |
20120175487 | Goto | Jul 2012 | A1 |
20120182242 | Lindahl et al. | Jul 2012 | A1 |
20120194393 | Uttermann et al. | Aug 2012 | A1 |
20120194448 | Rothkopf | Aug 2012 | A1 |
20120200532 | Powell et al. | Aug 2012 | A1 |
20120200802 | Large | Aug 2012 | A1 |
20120206937 | Travis et al. | Aug 2012 | A1 |
20120223866 | Ayala Vazquez et al. | Sep 2012 | A1 |
20120224073 | Miyahara | Sep 2012 | A1 |
20120235635 | Sato | Sep 2012 | A1 |
20120235921 | Laubach | Sep 2012 | A1 |
20120246377 | Bhesania | Sep 2012 | A1 |
20120256959 | Ye et al. | Oct 2012 | A1 |
20120268911 | Lin | Oct 2012 | A1 |
20120274811 | Bakin | Nov 2012 | A1 |
20120287562 | Wu et al. | Nov 2012 | A1 |
20120299866 | Pao et al. | Nov 2012 | A1 |
20120300275 | Vilardell et al. | Nov 2012 | A1 |
20120312955 | Randolph | Dec 2012 | A1 |
20120328349 | Isaac et al. | Dec 2012 | A1 |
20130044059 | Fu | Feb 2013 | A1 |
20130047747 | Joung, II | Feb 2013 | A1 |
20130063873 | Wodrich et al. | Mar 2013 | A1 |
20130088431 | Ballagas et al. | Apr 2013 | A1 |
20130088442 | Lee | Apr 2013 | A1 |
20130094131 | O'Donnell et al. | Apr 2013 | A1 |
20130097534 | Lewin et al. | Apr 2013 | A1 |
20130106766 | Yilmaz et al. | May 2013 | A1 |
20130107144 | Marhefka et al. | May 2013 | A1 |
20130141370 | Wang et al. | Jun 2013 | A1 |
20130167663 | Eventoff | Jul 2013 | A1 |
20130194235 | Zanone et al. | Aug 2013 | A1 |
20130227836 | Whitt, III | Sep 2013 | A1 |
20130228433 | Shaw | Sep 2013 | A1 |
20130229273 | Nodar Cortizo et al. | Sep 2013 | A1 |
20130229356 | Marwah et al. | Sep 2013 | A1 |
20130229386 | Bathiche | Sep 2013 | A1 |
20130278542 | Stephanou | Oct 2013 | A1 |
20130278552 | Kamin-Lyndgaard | Oct 2013 | A1 |
20130304941 | Drasnin | Nov 2013 | A1 |
20130304944 | Young | Nov 2013 | A1 |
20130335330 | Lane | Dec 2013 | A1 |
20130335902 | Campbell | Dec 2013 | A1 |
20130335903 | Raken | Dec 2013 | A1 |
20130342464 | Bathiche et al. | Dec 2013 | A1 |
20130342465 | Bathiche | Dec 2013 | A1 |
20130346636 | Bathiche | Dec 2013 | A1 |
20140020484 | Shaw et al. | Jan 2014 | A1 |
20140221098 | Boulanger | Aug 2014 | A1 |
20170023418 | Shaw et al. | Jan 2017 | A1 |
Number | Date | Country |
---|---|---|
1223722 | Jul 2002 | EP |
1591891 | Nov 2005 | EP |
2353978 | Aug 2011 | EP |
2584432 | Apr 2013 | EP |
2178570 | Feb 1987 | GB |
10326124 | Dec 1998 | JP |
1173239 | Mar 1999 | JP |
11345041 | Dec 1999 | JP |
1020110087178 | Aug 2011 | KR |
1038411 | May 2012 | NL |
WO-2010011983 | Jan 2010 | WO |
WO-2012036717 | Mar 2012 | WO |
Entry |
---|
Deitz et al.,“A Practical Pressure Sensitive Computer Keyboard”, In Proceedings of UIST 2009, Oct. 2009, 4 pages. |
“Accessing Device Sensors”, retrieved from <https://developer.palm.com/content/api/dev-guide/pdk/accessing-device-sensors.html> on May 25, 2012, 4 pages. |
“ACPI Docking for Windows Operating Systems”, Retrieved from: <http://www.scritube.com/limba/engleza/software/ACPI-Docking-for-Windows-Opera331824193.php> on Jul. 6, 2012, 10 pages. |
“Advanced Configuration and Power Management Specification”, Intel Corporation, Microsoft Corporation, Toshiba Corp. Revision 1, Dec. 22, 1996, 364 pages. |
Purcher “Apple is Paving the Way for a New 3D GUI for IOS Devices”, Retrieved from: <http://www.patentlyapple.com/patently-apple/2012/01/apple-is-paving-the-way-for-a-new-3d-gui-for-ios-devices.html> on Jun. 4, 2012, Jan. 12, 2012, 15 pages. |
Glatt “Channel and Key Pressure (Aftertouch).”, Retrieved from: <http://home.roadrunner.com/˜jgglatt/tutr/touch.htm> on Jun. 11, 2012, 2 pages. |
“Cholesteric Liquid Crystal”, Retrieved from: <http://en.wikipedia.org/wiki/Cholesteric—liquid—crystal> on Aug. 6, 2012, Jun. 10, 2012, 2 pages. |
“Cirago Slim Case®—Protective case with built-in kickstand for your iPhone 50®”, Retrieved from <http://cirago.com/wordpress/wp-content/uploads/2012/10/ipc1500brochure1.pdf> on Jan. 29, 2013, Jan. 2013, 1 page. |
Block et al.,“DeviceOrientation Event Specification”, W3C, Editor's Draft, retrieved from <https://developer.palm.com/content/api/dev-guide/pdk/accessing-device-sensors.html> on May 25, 2012, Jul. 12, 2011, 14 pages. |
Post et al.,“E-Broidery: Design and Fabrication of Textile-Based Computing”, IBM Systems Journal, vol. 39, Issue 3 & 4, Jul. 2000, pp. 840-860. |
McLellen “Eleksen Wireless Fabric Keyboard: a first look”, Retrieved from: <http://www.zdnetasia.com/eleksen-wireless-fabric-keyboard-a-first-look-40278954.htm> on May 7, 2012, Jul. 17, 2006, 9 pages. |
Hanlon “ElekTex Smart Fabric Keyboard Goes Wireless”, Retrieved from: <http://www.gizmag.com/go/5048/ > on May 7, 2012, Jan. 15, 2006, 5 pages. |
Khuntontong et al.,“Fabrication of Molded Interconnection Devices by Ultrasonic Hot Embossing on Thin Polymer Films”, IEEE Transactions on Electronics Packaging Manufacturing, vol. 32, No. 3, Jul. 2009, pp. 152-156. |
“First One Handed Fabric Keyboard with Bluetooth Wireless Technology”, Retrieved from: <http://press.xtvworld.com/article3817.html> on May 8, 2012, Jan. 6, 2005, 2 pages. |
Takamatsu et al.,“Flexible Fabric Keyboard with Conductive Polymer-Coated Fibers”, In Proceedings of Sensors 2011, Oct. 28, 2011, 4 pages. |
“Force and Position Sensing Resistors: An Emerging Technology”, Interlink Electronics,Available at <http://staff.science.uva.nl/˜vlaander/docu/FSR/An—Exploring—Technology.pdf>, Feb. 1990, pp. 1-6. |
“Frogpad Introduces Weareable Fabric Keyboard with Bluetooth Technology”, Retrieved from: <http://www.geekzone.co.nz/content.asp?contentid=3898> on May 7, 2012, Jan. 7, 2005, 3 pages. |
Staff,“Gametel Android controller turns tablets, phones into portable gaming devices”, Retrieved from <http://www.mobiletor.com/2011/11/18/gametel-android-controller-turns-tablets-phones-into-portable-gaming-devices/#> on Nov. 20, 2012, Nov. 18, 2011, 5 pages. |
“iControlPad 2—The open source controller”, Retrieved from <http://www.kickstarter.com/projects/1703567677/icontrolpad-2-the-open-source-controller> on Nov. 20, 2012, 2012, 15 pages. |
“i-Interactor electronic pen”, Retrieved from: <http://www.alibaba.com/product-gs/331004878/i—Interactor—electronic—pen.html> on Jun. 19, 2012, 5 pages. |
“Incipio LG G-Slate Premium Kickstand Case—Black Nylon”, Retrieved from: <http://www.amazon.com/Incipio-G-Slate-Premium-Kickstand-Case/dp/B004ZKP916> on May 8, 2012, 4 pages. |
Bathiche et al.,“Input Device with Interchangeable Surface”, U.S. Appl. No. 13/974,749, filed Aug. 23, 2013, 51 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/044871, Aug. 14, 2013, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/040968, Sep. 5, 2013, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/045049, Sep. 16, 2013, 9 pages. |
Linderholm “Logitech Shows Cloth Keyboard for PDAs”, Retrieved from: <http://www.pcworld.com/article/89084/logitech—shows—cloth—keyboard—for—pdas.html> on May 7, 2012, Mar. 15, 2002, 5 pages. |
Lance et al.,“Media Processing Input Device”, U.S. Appl. No. 13/655,065, filed Oct. 18, 2012, 43 pages. |
“Membrane Keyboards & Membrane Keypads”, Retrieved from: <http://www.pannam.com/> on May 9, 2012, Mar. 4, 2009, 2 pages. |
Brown “Microsoft Shows Off Pressure-Sensitive Keyboard”, retrieved from <http://news.cnet.com/8301-17938—105-10304792-1.html> on May 7, 2012, Aug. 6, 2009, 2 pages. |
Zhang et al.,“Model-Based Development of Dynamically Adaptive Software”, In Proceedings of ICSE 2006,Available at <http://www.irisa.fr/lande/lande/icse-proceedings/icse/p371.pdf>, May 20, 2006, pp. 371-380. |
Miller “MOGA gaming controller enhances the Android gaming experience”, Retrieved from <http://www.zdnet.com/moga-gaming-controller-enhances-the-android-gaming-experience-7000007550/> on Nov. 20, 2012, Nov. 18, 2012, 9 pages. |
“Motion Sensors”, Android Developers, retrieved from <http://developer.android.com/guide/topics/sensors/sensors—motion.html> on May 25, 2012, 7 pages. |
“MPC Fly Music Production Controller”, AKAI Professional, Retrieved from: <http://www.akaiprompc.com/mpc-fly> on Jul. 9, 2012, 4 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,202, Feb. 11, 2013, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,272, Feb. 12, 2013, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/653,682, Feb. 7, 2013, 11 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/603,918, Dec. 19, 2013, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,139, Mar. 21, 2013, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,287, Jan. 29, 2013, 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/653,321, Feb. 1, 2013, 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,336, Jan. 18, 2013, 14 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,871, Mar. 18, 2013, 14 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,195, Jan. 2, 2013, 14 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,001, Feb. 19, 2013, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,232, Jan. 17, 2013, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,976, Feb. 22, 2013, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/527,263, Jul. 19, 2013, 5 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,327, Mar. 22, 2013, 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,304, Mar. 22, 2013, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/470,633, Mar. 22, 2013, 7 pages. |
“Position Sensors”, Android Developers, retrieved from <http://developer.android.com/guide/topics/sensors/sensors—position.html> on May 25, 2012, 5 pages. |
Quin et al.,“pPen: Enabling Authenticated Pen and Touch Interaction on Tabletop Surfaces”, In Proceedings of ITS 2010,Available at <http://www.dfki.de/its2010/papers/pdf/po172.pdf>, Nov. 2010, pp. 283-284. |
“Reflex LCD Writing Tablets”, retrieved from <http://www.kentdisplays.com/products/lcdwritingtablets.html> on Jun. 27, 2012, 3 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/651,871, Feb. 7, 2013, 6 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/651,726, Feb. 22, 2013, 6 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/471,139, Jan. 17, 2013, 7 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/651,304, Jan. 18, 2013, 7 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/603,918, Nov. 27, 2013, 8 pages. |
Butler et al.,“SideSight: Multi-“touch” Interaction around Small Devices”, In the proceedings of the 21st annual ACM symposium on User interface software and technology., retrieved from <http://research.microsoft.com/pubs/132534/sidesight—crv3.pdf> on May 29, 2012, Oct. 19, 2008, 4 pages. |
“SMART Board™ Interactive Display Frame Pencil Pack”, Available at <http://downloads01.smarttech.com/media/sitecore/en/support/product/sbfpd/400series(interactivedisplayframes)/guides/smartboardinteractivedisplayframepencilpackv12mar09.pdf>, 2009, 2 pages. |
“SolRxTM E-Series Multidirectional Phototherapy ExpandableTM 2-Bulb Full Body Panel System”, Retrieved from: <http://www.solarcsystems.com/us—multidirectional—uv—light—therapy—1—intro.html > on Jul. 25, 2012, 2011, 4 pages. |
Crider “Sony Slate Concept Tablet “Grows” a Kickstand”, Retrieved from: <http://androidcommunity.com/sony-slate-concept-tablet-grows-a-kickstand-20120116/> on May 4, 2012, Jan. 16, 2012, 9 pages. |
“The Microsoft Surface Tablets Comes With Impressive Design and Specs”, Retrieved from <http://microsofttabletreview.com/the-microsoft-surface-tablets-comes-with-impressive-design-and-specs> on Jan. 30, 2013, Jun. 2012, 2 pages. |
“Tilt Shift Lenses: Perspective Control”, retrieved from http://www.cambridgeincolour.com/tutorials/tilt-shift-lenses1.htm, Mar. 28, 2008, 11 Pages. |
Summimoto “Touch & Write: Surface Computing With Touch and Pen Input”, Retrieved from: <http://www.gottabemobile.com/2009/08/07/touch-write-surface-computing-with-touch-and-pen-input/> on Jun. 19, 2012, Aug. 7, 2009, 4 pages. |
McPherson “TouchKeys: Capacitive Multi-Touch Sensing on a Physical Keyboard”, In Proceedings of NIME 2012, May 2012, 4 pages. |
Hinckley et al.,“Touch-Sensing Input Devices”, In Proceedings of ACM SIGCHI 1999, May 15, 1999, 8 pages. |
Kaur “Vincent Liew's redesigned laptop satisfies ergonomic needs”, Retrieved from: <http://www.designbuzz.com/entry/vincent-liew-s-redesigned-laptop-satisfies-ergonomic-needs/> on Jul. 27, 2012, Jun. 21, 2010, 4 pages. |
“Virtualization Getting Started Guide”, Red Hat Enterprise Linux 6, Edition 0.2,retrieved from <http://docs.redhat.com/docs/en-US/Red—Hat—Enterprise—Linux/6/html-single/Virtualization—Getting—Started—Guide/index.html> on Jun. 13, 2012, 24 pages. |
“What is Active Alignment?”, http://www.kasalis.com/active—alignment.html,retrieved on Nov. 22, 2012, 2 Pages. |
“Write & Learn Spellboard Advanced”, Available at <http://somemanuals.com/VTECH,WRITE%2526LEARN-SPELLBOARD-ADV-71000,JIDFHE.PDF>, 2006, 22 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/044873, Nov. 22, 2013, 9 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/045283, Mar. 12, 2014, 19 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/655,065, Apr. 24, 2014, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/974,749, May 8, 2014, 16 pages. |
“Final Office Action”, U.S. Appl. No. 13/974,749, Sep. 5, 2014, 18 pages. |
“Final Office Action”, U.S. Appl. No. 13/655,065, Aug. 8, 2014, 20 pages. |
“Final Office Action”, U.S. Appl. No. 13/655,065, Apr. 2, 2015, 23 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2014/056185, Dec. 4, 2014, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/655,065, Dec. 19, 2014, 24 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/974,749, Feb. 12, 2015, 15 pages. |
“Visus Photonics—Visionary Technologies New Generation of Production Ready Keyboard-Keypad Illumination Systems”, Available at: <http://www.visusphotonics.com/pdf/appl—keypad—keyboard—backlights.pdf>, May 2006, pp. 1-22. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/470,633, Apr. 9, 2013, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/470,633, Jul. 2, 2013, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/603,918, May 8, 2015, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/645,405, Jul. 7, 2015, 2 pages. |
“Developing Next-Generation Human Interfaces using Capacitive and Infrared Proximity Sensing”, Silicon Laboratories, Inc., Available at <http://www.silabs.com/pages/DownloadDoc.aspx?FILEURL=support%20documents/technicaldocs/capacitive%20and%20proximity%20sensing—wp.pdf&src=SearchResults>, Aug. 30, 2010, pp. 1-10. |
“Directional Backlighting for Display Panels”, U.S. Appl. No. 13/021,448, filed Feb. 4, 2011, 38 pages. |
“DR2PA”, retrieved from <http://www.architainment.co.uk/wp-content/uploads/2012/08/DR2PA-AU-US-size-Data-Sheet-Rev-H—LOGO.pdf> on Sep. 17, 2012, Jan. 2012, 4 pages. |
“Ex Parte Quayle Action”, U.S. Appl. No. 13/599,763, Nov. 14, 2014, 6 pages. |
“Final Office Action”, U.S. Appl. No. 13/471,001, Jul. 25, 2013, 20 pages. |
“Final Office Action”, U.S. Appl. No. 13/527,263, Jan. 27, 2015, 7 pages. |
“Final Office Action”, U.S. Appl. No. 13/603,918, Mar. 21, 2014, 14 pages. |
“Final Office Action”, U.S. Appl. No. 13/647,479, Dec. 12, 2014, 12 pages. |
“Final Office Action”, U.S. Appl. No. 13/651,195, Apr. 18, 2013, 13 pages. |
“Final Office Action”, U.S. Appl. No. 13/651,232, May 21, 2013, 21 pages. |
“Final Office Action”, U.S. Appl. No. 13/651,287, May 3, 2013, 16 pages. |
“Final Office Action”, U.S. Appl. No. 13/651,976, Jul. 25, 2013, 21 pages. |
“Final Office Action”, U.S. Appl. No. 13/653,321, Aug. 2, 2013, 17 pages. |
“Final Office Action”, U.S. Appl. No. 13/759,875, Mar. 27, 2015, 18 pages. |
“Final Office Action”, U.S. Appl. No. 13/974,749, May 21, 2015, 19 pages. |
“Final Office Action”, U.S. Appl. No. 13/974,994, Jun. 10, 2015, 28 pages. |
“Final Office Action”, U.S. Appl. No. 13/974,994, Oct. 6, 2014, 26 pages. |
“Final Office Action”, U.S. Appl. No. 13/975,087, Aug. 7, 2015, 16 pages. |
“Final Office Action”, U.S. Appl. No. 13/975,087, Sep. 10, 2014, 19 pages. |
“How to Use the iPad's Onscreen Keyboard”, Retrieved from <http://www.dummies.com/how-to/content/how-to-use-the-ipads-onscreen-keyboard.html> on Aug. 28, 2012, 2012, 3 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/028948, Jun. 21, 2013, 11 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/029461, Jun. 21, 2013, 11 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2014/014522, Jun. 6, 2014, 13 pages. |
“Microsoft Tablet PC”, Retrieved from <http://web.archive.org/web/20120622064335/https://en.wikipedia.org/wiki/Microsoft—Tablet—PC> on Jun. 4, 2014, Jun. 21, 2012, 9 pages. |
“NI Releases New Maschine & Maschine Mikro”, Retrieved from <http://www.djbooth.net/index/dj-equipment/entry/ni-releases-new-maschine-mikro/> on Sep. 17, 2012, 19 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/021,448, Dec. 13, 2012, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/527,263, Apr. 3, 2014, 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/563,435, Jun. 14, 2013, 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/564,520, Jun. 19, 2013, 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/565,124, Jun. 17, 2013, 5 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/599,763, May 28, 2014, 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/603,918, Sep. 2, 2014, 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/645,405, Jan. 31, 2014, 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/645,405, Aug. 11, 2014, 5 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/647,479, Apr. 28, 2015, 11 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/647,479, Jul. 3, 2014, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,726, Apr. 15, 2013, 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,871, Jul. 1, 2013, 5 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/653,682, Jun. 3, 2013, 14 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/655,065, Aug. 19, 2015, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/656,055, Apr. 23, 2013, 11 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/656,520, Feb. 1, 2013, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/656,520, Jun. 5, 2013, 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/759,875, Aug. 1, 2014, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/974,994, Jan. 23, 2015, 26 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/974,994, Jun. 4, 2014, 24 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/975,087, Feb. 27, 2015, 20 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/975,087, May 8, 2014, 18 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/471,202, May 28, 2013, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/599,763, Feb. 18, 2015, 4 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/603,918, Jan. 22, 2015, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/645,405, Mar. 26, 2015, 6 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/651,195, Jul. 8, 2013, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/651,272, May 2, 2013, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/651,304, Jul. 1, 2013, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/651,327, Jun. 11, 2013, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/651,726, May 31, 2013, 5 pages. |
“On-Screen Keyboard for Windows 7, Vista, XP with Touchscreen”, Retrieved from <www.comfort-software.com/on-screen-keyboard.html> on Aug. 28, 2012, Feb. 2, 2011, 3 pages. |
“Optical Sensors in Smart Mobile Devices”, ON Semiconductor, TND415/D, Available at <http://www.onsemi.jp/pub—link/Collateral/TND415-D.PDF>, Nov. 2010, pp. 1-13. |
“Optics for Displays: Waveguide-based Wedge Creates Collimated Display Backlight”, OptoIQ, retrieved from <http://www.optoiq.com/index/photonics-technologies-applications/lfw-display/lfw-article-display.articles.laser-focus-world.volume-46.issue-1.world-news.optics-for—displays.html> on Nov. 2, 2010, Jan. 1, 2010, 3 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/715,229, Aug. 13, 2013, 7 pages. |
“Snugg iPad 3 Keyboard Case—Cover Ultra Slim Bluetooth Keyboard Case for the iPad 3 & iPad 2”, Retrieved from <https://web.archive.org/web/20120810202056/http://www.amazon.com/Snugg-iPad-Keyboard-Case-Bluetooth/dp/B008CCHXJE> on Jan. 23, 2015, Aug. 10, 2012, 4 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/603,918, Apr. 20, 2015, 8 pages. |
“Writer 1 for iPad 1 keyboard+Case (Aluminum Bluetooth Keyboard, Quick Eject and Easy Angle Function!)”, Retrieved from <https://web.archive.org/web/20120817053825/http://www.amazon.com/keyboard-Aluminum-Bluetooth-Keyboard-Function/dp/B004OQLSLG> on Jan. 23, 2015, Aug. 17, 2012, 5 pages. |
Das,“Study of Heat Transfer through Multilayer Clothing Assemblies: A Theoretical Prediction”, Retrieved from <http://www.autexrj.com/cms/zalaczone—pliki/5—013—11.pdf>, Jun. 2011, 7 pages. |
Gaver,“A Virtual Window on Media Space”, retrieved from <http://www.gold.ac.uk/media/15gaver-smets-overbeeke.MediaSpaceWindow.chi95.pdf> on Jun. 1, 2012, retrieved from <http://www.gold.ac.uk/media/15gaver-smets-overbeeke.MediaSpaceWindow.chi95.pdf> on Jun. 1, 2012, May 7, 1995, 9 pages. |
Harada,“VoiceDraw: A Hands-Free Voice-Driven Drawing Application for People With Motor Impairments”, In Proceedings of Ninth International ACM SIGACCESS Conference on Computers and Accessibility, retrieved from <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.7211&rep=rep1&type=pdf> on Jun. 1, 2012, Oct. 15, 2007, 8 pages. |
Iwase,“Multistep Sequential Batch Assembly of Three-Dimensional Ferromagnetic Microstructures with Elastic Hinges”, Retrieved at <<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1549861>> Proceedings: Journal of Microelectromechanical Systems, Dec. 2005, 7 pages. |
Kaufmann,“Hand Posture Recognition Using Real-time Artificial Evolution”, EvoApplications'09, retrieved from <http://evelyne.lutton.free.fr/Papers/KaufmannEvolASP2010.pdf> on Jan. 5, 2012, Apr. 3, 2010, 10 pages. |
Li,“Characteristic Mode Based Tradeoff Analysis of Antenna-Chassis Interactions for Multiple Antenna Terminals”, In IEEE Transactions on Antennas and Propagation, Retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6060882>, Feb. 2012, 13 pages. |
Manresa-Yee,“Experiences Using a Hands-Free Interface”, In Proceedings of the 10th International ACM SIGACCESS Conference on Computers and Accessibility, retrieved from <http://dmi.uib.es/˜cmanresay/Research/%5BMan08%5DAssets08.pdf> on Jun. 1, 2012, Oct. 13, 2008, pp. 261-262. |
Nakanishi,“Movable Cameras Enhance Social Telepresence in Media Spaces”, In Proceedings of the 27th International Conference on Human Factors in Computing Systems, retrieved from <http://smg.ams.eng.osaka-u.ac.jp/˜nakanishi/hnp—2009—chi.pdf> on Jun. 1, 2012, Apr. 6, 2009, 10 pages. |
Piltch,“ASUS Eee Pad Slider SL101 Review”, Retrieved from <http://www.laptopmag.com/review/tablets/asus-eee-pad-slider-sl101.aspx>, Sep. 22, 2011, 5 pages. |
Reilink,“Endoscopic Camera Control by Head Movements for Thoracic Surgery”, In Proceedings of 3rd IEEE RAS & EMBS International Conference of Biomedical Robotics and Biomechatronics, retrieved from <http://doc.utwente.nl/74929/1/biorob—online.pdf> on Jun. 1, 2012, Sep. 26, 2010, pp. 510-515. |
Sundstedt,“Gazing at Games: Using Eye Tracking to Control Virtual Characters”, In ACM SIGGRAPH 2010 Courses, retrieved from <http://www.tobii.com/Global/Analysis/Training/EyeTrackAwards/veronica—sundstedt.pdf> on Jun. 1, 2012, Jul. 28, 2010, 85 pages. |
Travis,“Collimated Light from a Waveguide for a Display Backlight”, Optics Express, 19714, vol. 17, No. 22, retrieved from <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2- 70F9D4081007/OpticsExpressbacklightpaper.pdf> on Oct. 15, 2009, Oct. 15, 2009, 6 pages. |
Travis,“The Design of Backlights for View-Sequential 3D”, retrieved from <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2-70F9D4081007/Backlightforviewsequentialautostereo.docx> on Nov. 1, 2010, 4 pages. |
Valli,“Notes on Natural Interaction”, retrieved from <http://www.idemployee.id.tue.nl/g.w.m.rauterberg/lecturenotes/valli-2004.pdf> on Jan. 5, 2012, Sep. 2005, 80 pages. |
Valliath,“Design of Hologram for Brightness Enhancement in Color LCDs”, Retrieved from <http://www.loreti.it/Download/PDF/LCD/44—05.pdf> on Sep. 17, 2012, May 1998, 5 pages. |
Vaucelle,“Scopemate, A Robotic Microscope!”, Architectradure, retrieved from <http://architectradure.blogspot.com/2011/10/at-uist-this-monday-scopemate-robotic.html> on Jun. 6, 2012, Oct. 17, 2011, 2 pages. |
Williams,“A Fourth Generation of LCD Backlight Technology”, Retrieved from <http://cds.linear.com/docs/Application%20Note/an65f.pdf>, Nov. 1995, 124 pages. |
Xu,“Hand Gesture Recognition and Virtual Game Control Based on 3D Accelerometer and EMG Sensors”, IUI'09, Feb. 8-11, 2009, retrieved from <http://sclab.yonsei.ac.kr/courses/10TPR/10TPR.files/Hand%20Gesture%20Recognition%20and%20Virtual%20Game%20Control%20based%20on%203d%20accelerometer%20and%20EMG%20sensors.pdf> on Jan. 5, 2012, Feb. 8, 2009, 5 pages. |
Xu,“Vision-based Detection of Dynamic Gesture”, ICTM'09, Dec. 5-6, 2009, retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5412956> on Jan. 5, 2012, Dec. 5, 2009, pp. 223-226. |
Zhu,“Keyboard before Head Tracking Depresses User Success in Remote Camera Control”, In Proceedings of 12th IFIP TC 13 International Conference on Human-Computer Interaction, Part II, retrieved from <http://csiro.academia.edu/Departments/CSIRO—ICT—Centre/Papers?page=5> on Jun. 1, 2012, Aug. 24, 2009, 14 pages. |
“Advisory Action”, U.S. Appl. No. 13/975,087, Nov. 16, 2015, 3 pages. |
“Final Office Action”, U.S. Appl. No. 13/655,065, Nov. 17, 2015, 25 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/974,749, Dec. 3, 2015, 20 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/033,508, Dec. 3, 2015, 14 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/033,508, Jun. 16, 2016, 2 pages. |
“Examiner's Answer to Appeal Brief”, U.S. Appl. No. 13/974,994, May 18, 2016, 40 pages. |
“Final Office Action”, U.S. Appl. No. 13/974,749, Mar. 23, 2016, 22 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/975,087, May 10, 2016, 18 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/033,508, May 6, 2016, 9 pages. |
“Final Office Action”, U.S. Appl. No. 13/975,087, Nov. 4, 2016, 23 pages. |
“Non-Final Office Action”, U.S. Appl. No. 15/283,913, Feb. 10, 2017, 20 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/974,749, Jan. 20, 2017, 23 pages. |
Number | Date | Country | |
---|---|---|---|
20140022177 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
61659364 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13974749 | Aug 2013 | US |
Child | 14033510 | US | |
Parent | 13655065 | Oct 2012 | US |
Child | 13974749 | US |