Input device

Information

  • Patent Grant
  • 6307465
  • Patent Number
    6,307,465
  • Date Filed
    Thursday, April 13, 2000
    24 years ago
  • Date Issued
    Tuesday, October 23, 2001
    23 years ago
Abstract
The invention provides a thin and small input device that improves a tactile operation sensation and a luxurious appearance. An input device to which an operator enters a desired command by operating it with a finger and which has a case, switch contacts disposed in the case, rotatable operation members disposed rotatably corresponding to the switch contacts that are partially projected from the holes of the case and pressed by an operator, and support members 44 for supporting the rotatable operation members by pressing it onto the case side and for operating the switch contacts when an operator presses the rotatable operation member against the pressing force.
Description




BACKGROUND OF THE INVENTION




This invention relates to an input device that an operator operates to enter the desired command.




The input devices shown in FIG.


15


and

FIG. 16

have been known as input devices to which an operator enters a command through operation.




In the conventional input device shown in

FIG. 15

, key tops


1001


and


1002


are provided in a hole of a case


1000


, and the key tops


1001


and


1002


are disposed correspondingly to a slide switch


1003


and a press switch


1004


respectively. The slide switch


1003


and the press switch


1004


are connected electrically to a substrate


1005


. The operator slides the key top


1001


in the arrow direction to turn on/off the slide switch


1003


. Similarly, the operator presses the key top


1002


in the arrow direction to turn on/off the press switch


1004


.




In the conventional input device shown in

FIG. 16

, a sheet switch


1010


is provided on the case


1011


. Electrodes


1012


of the sheet switch


1010


are connected electrically to a connector


1015


of the substrate


1014


though a flexible member


1013


. The sheet switch


1010


has emboss-like projections


1016


. A projection


1016


is pressed to on/off to operate the corresponding electrode


1012


.




In the case of the conventional input device shown in

FIG. 15

, it is required that a key top


1001


or


1002


be provided on the case


1000


, and a key top


1001


or


1002


and a slide switch


1003


or a press switch


1004


are provided between the substrate


1005


and the case


1000


. Therefore, it is difficult to make the input device thin and small.




In the case of the conventional input device showing

FIG. 16

, it is possible to make the input device thin because the sheet switch


1010


is used, but it is difficult to give an operational tactile sensation and a luxurious appearance.




The present invention has been developed to solve the above-mentioned problem, and it is the object of the present invention to provides an input device that can be made thin and small and that can give a tactile operational sensation and luxurious appearance.




SUMMARY OF THE INVENTION




According to one aspect of the present invention, there is provided an input device into which an operator enters desired commands by operating with a finger that is comprised of a case, a switch contact provided in the inside of the case, a rotatable operation member for being pressed by an operator provided rotatably corresponding to the switch contact and disposed partially projecting from a hole of the case, and a support member that supports the rotatable operation member by pressing it onto the case side and that operates the switch contact against the pressing force when the operator presses the support member.




According to the aspect, the rotatable operation member is provided rotatably corresponding to the switch contact and disposed partially projecting from the hole of the case.




The support member supports the rotatable operation member by pressing it onto the case side and operates the switch contact against the pressing force when the operator presses the support.




As the result, the input device can be made thin and small, and good tactile operational sensation is given to the operator because the rotatable operation member is rotated when the operator presses it. In particular, because rotatable members are rotated when the operator moves a finger slidingly to operate a plurality of rotatable members, good tactile operation sensation is given to the operator. Because the operation rotatable member is projected partially from the hole of the case, the input device gives a luxurious appearance.




If the contacts are sealed, it is rendered reliable.




According to another aspect of the present invention, there is provided an input device described above in which a slit is formed on the case, and the rotatable operation member is disposed in the slit.




According to the aspect, the slit is disposed along the rotatable operation members in the case, and the operator can successively touch and press the rotatable operation members only by moving a finger along the slit. At that time, because the rotatable operation members are rotated when a finger touches the rotatable operation members, the input device gives the operator a good tactile operational sensation and gives a luxurious appearance.




If the contacts are sealed, it is rendered reliable.




According to another aspect of the present invention, there is provided an input device described above in which the input device has a plurality of the switch contacts, a plurality of the rotatable operation members and a microcomputer for selecting an operational mode from among different operational modes by operating an arbitrary switch selectively from among the plurality of switch contacts.




According to the aspect, a different operational mode can be selected by operating an arbitrary switch selectively from among a plurality of switches, and the total number of switches can be reduced. In detail, the computer selects an arbitrary mode from among the plurality of operational modes based on a combination of arbitrary switches.




According to another aspect of the present invention, there is provided an input device described above in which the operator moves a finger along the slit thereby to operate an arbitrary switch contact selectively from among a plurality of switch contacts for activating a desired operational mode.




According to the aspect, the operator moves a finger along the slit to select an arbitrary switch for activating a desired operational mode.




Thereby, only by moving a finger along the slit, the operator can select a desired operational mode simply.




According to another aspect of the present invention, there is provided an input device described above in which each switch is assigned to one type of operation.




According to the aspect, each switch can be assigned to one type of operation.




According to another aspect of the present invention, there is provided an input device described above in which the moving direction of a finger of the operator is the first direction along the longitudinal direction of the slit or the second direction that is opposite to the first direction.




According to the aspect, the operational mode can be selected by moving in the first direction along the longitudinal direction of the slit and the second direction that is opposite to the first direction.




According to another aspect of the present invention, there is provided an input device described above in which when the switch is operated a plurality of times in a predetermined time, the device is operated in an operational mode corresponding to the number of repeated operations.




According to the aspect, by operating one switch two or more times in a predetermined time, the device is operated in the operational mode corresponding to the number of repeated operations.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view for illustrating a preferable input device of the present invention.





FIG. 2

is an exemplary cross section along the line A—A of the input device shown in FIG.


1


.





FIG. 3

is a diagram for illustrating a rotatable member that is being pressed in FIG.


2


.





FIG. 4

is a diagram for describing an exemplary electrical connection in the input device.





FIG. 5

is a diagram for describing the connectiing relation between a microcomputer and a key operation unit shown in FIG.


4


.





FIG. 6

is a diagram for describing the flow of the key operation.





FIG. 7

is a diagram for showing an exemplary determination table for the input key code.





FIG. 8

is a diagram for showing the exemplary determination sequence for the input key code.





FIG. 9

is a perspective view for illustrating the exemplary support members formed for rotatable operation members.





FIG. 10

is a cross sectional view for illustrating another embodiment of the input device of the present invention.





FIG. 11

is a perspective view for illustrating another embodiment of the input device of the present invention.





FIG. 12

is a diagram for illustrating an exemplary cross section along the line C—C of the input device shown in FIG.


11


.





FIG. 13

is a diagram for illustrating the rotatable member that is being pressed in FIG.


12


.





FIG. 14

is a diagram for illustrating further another embodiment of the present invention.





FIG. 15

is a diagram for illustrating a conventional input device.





FIG. 16

is a diagram for illustrating another conventional input device.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




The preferred embodiments will be described in detail hereinafter with reference to the attached drawings.




The embodiments described hereinafter are preferred examples of the present invention. Various technically preferable limitations are included, but the scope of the present invention will not be limited by any of these embodiments, unless otherwise specified in the description hereinafter.





FIG. 1

shows a preferred embodiment of an input device of the present invention. This input device


10


is an input device to which an operator enters desired commands by touching with a finger. In this embodiment, the input device


10


is provided in a portable music player


11


for reproducing music data, as an example; and, when an operator enters a desired command to the input device


10


, the music player


11


reproduces, for example, the music data.




The input device


10


has a case


20


and key operation unit


22


. The case


20


is formed of material such as plastic or metal. When the case


20


is formed of plastic, for example, ABS (acrylonitrile-butadiene-styrene), ABS-PC (acrylonitrile-butadiene-styrene-polycarbonate), PA (polyamide), or LCP (liquid crystal polymer) may be used. When the case


20


is formed of metal, for example, a material such as Mg alloy, Al alloy, or Zn ally may be used.





FIG. 2

is an exemplary cross sectional view along the line A—A in FIG.


1


. The operation unit


22


has rotatable operation members


30


to


34


, as shown in FIG.


1


and FIG.


2


. These rotatable operation members


30


to


34


are disposed preferably in series in the slit


40


in the case


20


of the input device


10


with a predetermined distance interval d.




As shown in

FIG. 2

, a portions of the respective rotatable operation members


30


to


34


project from the holes


20


H of the case


20


.




FIG.


2


and

FIG. 3

are enlarged views of the vicinity of the key operation unit


22


and the slit


40


.




In FIG.


2


and

FIG. 3

, the rotatable operation members


30


to


34


are preferably spherical and may be made of, for example, electrical insulating material or metal material. If plastic material is used, for example, PET (polyethyleneterephthalate), PI (polyimide), POM (polyacetal), LCP (liquid crystal polymer), PPS (polyphenylenesulfide), or PBT (polybutyleneterephthalate) may be used.




Otherwise if metal material is used, for example, a ball made of metal such as stainless steel, carbon steel, or hard metal may be used.




Support members


44


are provided corresponding to the respective rotatable operation members


30


to


34


. A support member


44


is obtained, for example, by punching an elastic plate member


45


, as exemplarily shown in FIG.


9


. The support member may be formed of, for example, metal or resin.




When the support member


44


is formed of metal, material used for springs, such as phosphor bronze, beryllium copper, or SUS, may be used. When the support member


44


is formed of resin, PVC (polyvinylchloride), POM (polyacetal), or ABS (acrylonitrile-butadiene-styrene) may be used.




As shown in FIG.


2


and

FIG. 3

, support member


44


has a receiving portion


44


A for receiving one of the rotatable operation members


30


to


34


and an operation end


44


B for operating one of the electrodes


66


and


68


in contact, as described hereinafter. The support member


44


is formed from the elastic sheet shown in

FIG. 9

in the form of an overhanging type.

FIG. 2

shows the support member


44


in the state when an operator does not press the rotatable operation members


30


to


34


, and the support member


44


presses the ball up against the periphery


20


R side of the hole


20


H of the case


20


by means of elastic deformation force.




On the other hand, when the operator presses one of the rotatable operation members


30


to


34


with a finger in the P-direction, as shown in

FIG. 3

, the one of rotatable members


30


to


34


leaves from the periphery


20


R of the hole


20


H. The diameter of the hole


20


H is smaller than the diameter of each of the rotatable members


30


to


34


.




Switch contacts


50


to


54


are disposed correspondingly to respective rotatable operation members


30


to


34


, as shown in

FIG. 1

to FIG.


3


. The switch contacts


50


to


54


are disposed in the sheet switch


53


.




The sheet switch


53


is held between a reinforcing plate


49


and a sheet


56


and has electrical insulating sheet members


56


and


58


and an electrical insulating spacer


60


. The spacer


60


is disposed between the sheet members


56


and


58


to form a space


64


.




In the space


64


, the switch contacts


50


to


54


are disposed. One-side electrodes


66


of the switch contacts


50


to


54


are formed on the bottom surface of the sheet member


56


, and the other- side electrodes


68


of the switch contacts


50


to


54


are formed on the top surface of the sheet member


58


.




These electrodes


66


and


68


are disposed facing each other with a predetermined distance interval. The switch contacts


50


to


54


are disposed separately from each other so as to correspond to respective rotatable operation members


30


to


34


.




As shown in FIG.


2


and

FIG. 3

, a portion of the inner surface of the case


20


that forms the slit


40


has a slope


70


. The slope


70


is inclined a predetermined angle θ, preferably 30 degrees, with respect to the horizontal line HL of the case


20


, but the angle may be in the range from 15 degrees to 60 degrees. A portion of the inner surface that forms the slit


40


is inclined to form the slope


70


. Slope


70


is advantageous in that the finger


12


of the operator shown in

FIG. 1

is guided surely to the rotatable operation members


30


to


34


.




The finger


12


is easily slidable along the slope


70


in the X


1


direction or X


2


direction in

FIG. 1

, and by sliding the finger


12


, an arbitrary rotatable member selected from among the plurality of rotatable operation members


30


to


34


is operated easily.




As described above, a rotatable member is rotated when a finger


12


slides and touches the rotatable member and the rotatable member is moved down in P-direction in

FIG. 3

against the elastic deformation force of the support member


44


As a result, the operation causes the click sensation, and the tactile operation sensation is improved.




In addition, unlike the conventional input device having a sheet switch on which projections are provided, the input device of the present invention gives a luxurious appearance. The slope


70


is connected to the vertical wall


74


, as shown in FIG.


2


and FIG.


3


. The slope


70


and the vertical wall


74


constitute the slit


40


.




The width W of the slit


40


shown in

FIG. 11

is, for example, preferably 3 to 10 mm; and, it is desirable that the shape of the slope


70


of the slit


40


that supports the finger


12


cushion is such that the finger


12


cushion does not directly press in the sheet switch


53


shown in FIG.


2


.




As shown in

FIG. 2

, it is desirable that the height of the portion of the rotatable members


30


to


34


projected from the hole


20


are smaller than the depth of the slit


40


. The reason is that the switch is prevented from being unintentionally turned on while being unused.





FIG. 9

shows an exemplary elastic sheet


45


and support members


44


, which are shown in FIG.


2


and FIG.


3


. The support members


44


are formed by punching or cutting sheet


45


.




Next,

FIG. 4

shows an exemplary electric connection between the input device


20


shown in

FIG. 1 and a

component of a music player


11


. A microcomputer


80


used exclusively for key input, a microcomputer


84


used for integral control, and a memory


86


for storing, for example, arbitrary music data are provided in the case


20


.




The microcomputers


80


and


84


and the music data amplification output unit


88


constitute a circuit unit


90


, and the circuit unit


90


is contained in the space of the case


20


. The microcomputer


80


is connected to the switch contacts


50


to


54


of the above-mentioned key operation unit


22


. The microcomputer


80


is connected to the microcomputer


84


used for integral control. The memory


86


is connected to the microcomputer


84


used for integral control. The microcomputer


84


controls the microcomputer


80


, memory


86


, and audio the amplification output unit


88


.




The microcomputer


84


is connected to the music data amplification output unit


88


. The music data amplification output unit


88


amplifies the music data supplied from the memory


86


through the microcomputer


84


and supplies the music data to, for example, an output unit


92


, such as a headphone or earphone. An operator can hear the music data by means of the output unit


92


.




The music data supplied from the output unit


82


may be other type of audio data a than music data.




For example, a semiconductor memory or memory of another type may be used as the memory


86


. The memory


86


may be fixed to the circuit unit


90


or may be detachable from the circuit unit


90


. It is possible to write information, such as music data, directly through a communication network, such as the Internet, in the memory


86


.




For example, a flash memory, D-RAM (dynamic random access memory), or S-RAM (static random access memory) may be used as a semiconductor memory. A memory of another type, such as a hard disk, an optical disc, or a magneto-optical disc, may be used.





FIG. 5

shows an exemplary connection between the microcomputer


80


and the switch contacts


50


to


54


of the key operation unit


22


. In

FIG. 5

, the switch contacts


50


to


54


correspond to key


0


to key


4


, respectively. The electrodes


66


shown in

FIG. 3

, of the switch contacts


50


to


54


are connected to ports P


10


to P


14


of the microcomputer


80


, respectively, as shown in

FIG. 5. A

port P


20


of the microcomputer


80


is connected to an electrode


68


that is common for the switch contacts


50


to


54


.




The output unit


87


of the microcomputer


80


can generate a voltage corresponding to the input key code determined by means of the internal process of the microcomputer


80


, as shown in (A) of FIG.


5


. Examples of key input codes and output voltage ratios are shown in (A) of FIG.


5


.




The input key code VOL+ shown in (A) of

FIG. 5

has a function to increase the sound volume of the music data amplification output unit


88


shown in FIG.


4


and has a voltage ratio of 0.5. The input key code VOL− has a function to reduce the sound volume and has a voltage ratio of 0.57. The input key code STOP a function to stop the reproduction of the music data and has an output voltage ratio of 0.69. The input key code PLAY/FF shows an exemplary case in which the music data are sent from the memory


86


to output unit


92


shown in FIG.


4


and in which the music data are fed forward, and the output voltage ratio is 0.73. The input key code REW shows a function to return the reproduction position of the music data in the memory


86


shown in FIG.


4


and the output voltage ratio is 0.9.




The output voltage ratio is defined as output voltage=output voltage ratio×Vcc.




Vcc denotes a reference voltage, that is, for example, 5 V.





FIG. 6

shows an exemplary key input operation of the input device


10


shown in

FIG. 1

to FIG.


3


.




For example, in

FIG. 6

, any one of the switch contacts


50


to


54


shown in

FIG. 2

detects whether a key input is entered in step SP


100


. Then an input key code, as shown in

FIG. 7

, is set in step SP


120


.





FIG. 7

shows an example of an input key code determination table.




In the example of the input key code determination table shown in

FIG. 7

, the key turned on first (switch contact) is shown in column (A), the key turned on currently (switch contact) is shown in column (B), and an exemplary input key code is shown in column (C).




The input key code determination table contains rows (D), (E), and (F) in FIG.


7


.




In row (D) of

FIG. 7

, various input key codes defined by means of combinations of keys turned on first shown in column (A) of FIG.


7


and keys turned on currently are shown. For example, when the key turned on first is key


0


and the key turned on currently within a certain time is key


0


, in other words, the same key is pressed twice within a certain time, the input key code is VOL+ (volume is increased). When the key turned on first is key


1


and the key turned on currently within a certain time is the same key


1


, the input key code is invalid. Similarly, when the key turned on first is key


3


and the key turned on currently within a certain time is key


3


, the input key code is invalid.




When the key turned on first is key


2


and the key turned on currently within a certain time is key


2


, then the input key code is STOP (reproduction of the music data is stopped). When the key turned on first is key


4


and the key turned on currently within a certain time is key


4


, the input key code is VOL− (volume is decreased).




In row (E) of

FIG. 7

, when the key turned on first is different from the key turned on currently within a certain time in the combination, the input key code activates PLAY/FF function. For example, when the key turned on first is key


0


and the key turned on currently within a certain time is key


1


, then the input key code is PLAY (music data reproduction operation) /FF (music data reproduction position forward feeding operation).




Row (E) in

FIG. 7

shows the case in which the key number of the key turned on first is smaller than the key number of the key turned on currently. On the other hand, row (F) in

FIG. 7

shows the case where the key number of the key turned on first is larger than the key number of the key turned on currently. In this case, the input key code is REW (operation for returning the music data reproduction position). For example, when the key turned on first is key


4


and the key turned on currently within a certain time is key


3


, the input key code is REW.





FIG. 8

shows an example of an input key code determination sequence.




In the case of (A) in

FIG. 8

, the microcomputer


80


shown in

FIG. 5

checks ports P


10


to P


14


and determines what port is turned on among the ports P


10


to P


14


connected to the key operation unit


22


and sets the determined port as the key turned on first.




As a matter of course, the software process, such as chattering removal and noise removal, is applied internally when the port is checked so that wrong pressing of a key is avoided without any intention of pressing the key by an operator or so that pressing the key wrongly due to external electromagnetic wave noise is avoided.




Afterwards, a switch is pressed once more in any mode out of the modes shown in (B) to (D) in FIG.


8


. In other words, any key is pressed again within a certain time.




In (B) of

FIG. 8

, the same key is turned on within a certain time, and the input key code shown in row (D) of

FIG. 7

is exhibited.




In the state that the neighboring key is on as shown in (C) of

FIG. 8

, the PLAY/FF or REW function is set by means of combination of row (E) or row (F) in FIG.


7


.




(D) in

FIG. 8

shows an exemplary case of another key code operation In this case, the function of the key turned on first is ignored, and the key newly turned on currently is set as the key turned on first. This case is an exemplary case in which the key turned on first shown in row (A) of

FIG. 7

is pressed and then the key turned on currently is pressed after a certain time has elapsed.




Next, an exemplary operation for use of the input device


10


shown in

FIG. 1

to

FIG. 3

is described.




An operator moves a finger along the longitudinal direction X


1


of the slit


40


or along the opposite direction namely X


2


direction as shown in

FIG. 1

, and presses a plurality of rotatable members successively or one rotatable member.




In this case, because the slope


70


of the slit


40


shown in FIG.


2


and

FIG. 3

surely guides the finger


12


cushion to any one of rotatable operational members


30


to


34


of the key operation unit


22


, the operator can surely touch a rotatable member without missing. Furthermore, because the slope


70


supports a portion of the finger


12


cushion and the finger


12


cushion does not exert a needless force on the sheet switch


53


, the performance of the sheet switch


53


and switch contacts


50


to


54


is prevented from being deteriorated.




When the finger leaves from the rotatable member, the rotatable member is pressed up by means of the elastic force of the support member


44


, the electrodes


66


and


68


are disconnected from each other and the switch is turned off.




For example, as shown in

FIG. 7

, when an operator presses the operational rotatable member


30


shown in

FIG. 1

a plurality of times, for example, twice in a certain time, in row (D) of

FIG. 7

, the microcomputer


80


shown in

FIG. 5

sends a control signal that indicates the input key code VOL+ to another microcomputer


84


shown in FIG.


4


. Thereby, the microcomputer


84


gives the control signal to the music data amplification unit


88


and the volume of the music data generated from the output unit


92


is increased.




When, for example, the operational rotatable member


30


(key


0


) shown in row (E) of

FIG. 7

is pressed and then the operational key


31


(key


1


) is pressed after a certain time has elapsed, the input key code PLAY/FF is activated, and a PLAY/FF control signal is sent from the microcomputer


80


shown in

FIG. 4

to the microcomputer


84


. Thereby, the microcomputer


84


performs reproduction of the music data in the memory


86


from the output unit


92


or forward feeding of the reproduction position. The forward feeding leads to head finding of the next music.




When, for example, the operation rotatable member


34


(key


4


) and the operation rotatable member


33


(key


3


) are pressed within a certain time period, as shown in row (F) of

FIG. 7

, the microcomputer


80


activates the input key code REW function. Thereby, the microcomputer


80


shown in

FIG. 4

gives a REW control signal to the microcomputer


84


, and the microcomputer


84


returns the music data in the memory


86


to a certain reproduction position.




As described above, when an operator touches an arbitrary number of rotatable members out of the plurality of rotatable members


30


to


34


successively with a finger


12


, the operator can touch the rotatable member surely only by sliding the finger in either the X


1


direction or the opposite direction, namely X


2


direction, along the longitudinal direction of the slit


40


. Furthermore, only by providing several operational rotatable members


30


to


34


, various functions as shown in

FIG. 7

, can be selected by the simple use of a finger of an operator. The input key code determination table used in this case can be displayed on, for example, the backside of the case


20


shown in FIG.


1


.





FIG. 10

shows another embodiment of the present invention, and the embodiment shown in

FIG. 10

corresponds to the embodiment shown in FIG.


2


. The embodiment shown in

FIG. 10

is the same as the embodiment shown in

FIG. 2

excepting that the configuration of the support member


144


and switch


181


of the substrate


180


is different. An on/off switch


181


is provided on the substrate


180


. The support member


144


is fixed on the substrate


180


corresponding to the switch


181


. The support member


144


is otherwise called as inversion plate and is formed of elastic metal or plastic. Each of the rotatable operation members


30


to


34


is placed on a recess


144


A of the support member


144


at the position corresponding to the support member


144


, and a part of each of the rotatable members


30


to


34


is projected from the hole


20


H of the case.




When an operator presses one of the rotatable members


30


to


34


in the P-direction, the support member


144


is pressed toward the switch


181


side of the substrate


180


, and the switch


181


is thereby turned on. In this case, the rotatable operation members


30


to


34


are rotated between the peripheries


20


R of the case and. the support members


144


as the finger moves.





FIG. 11

to

FIG. 13

show another embodiment of the input device of the present invention. A music player


11


shown in

FIG. 11

has the same structure as that of the music player


11


shown. in

FIG. 1

excepting that the slit


40


shown in

FIG. 1

is not provided. Therefore, a portion of each of the operation rotatable members


30


to


34


is projected directly from the front surface of the case


20


. The structure is shown in FIG.


12


. The structure shown in FIG.


12


and

FIG. 13

is the same as the structure shown in FIG.


2


and

FIG. 3

, respectively, excepting that the slit


40


is not provided. Therefore, because other components of the embodiment shown in

FIG. 11

to

FIG. 13

are the same as those of the embodiment shown in

FIG. 1

to

FIG. 3

, the detailed description of those components are omitted.





FIG. 14

shows another embodiment corresponding to

FIG. 10

The structure of the embodiment shown in

FIG. 14

is the same as that of the embodiment shown in

FIG. 10

excepting that the slit


40


is not provided. Because other components are common, the same characters are given to the same components and detailed description of those components are omitted.




In this embodiment of the present invention, a ball that is used as the key top of the switch is pressed with a finger to press down the sheet- spring like support member, and the sheet switch is turned on.




The spherical rotatable member is held between the inclined hole of the case and the plate- spring like support member and is pressed always onto the case side by means of the plate spring like support member.




The plate spring- like support member for holding the ball has a configuration for turning on the sheet switch. One plate metal having a plurality of plate- spring like support members for pressing a plurality of contacts separately is provided at the position corresponding to the rotatable members.




The case, support member sheet, and reinforcing plate are combined together into one piece by means of adhesion, welding, or caulking.




For example, when a finger is slid in either the X


1


or X


2


direction. shown in

FIG. 2

, the rotatable member is rotated, friction. between the finger and the rotatable member changes from sliding to rolling, the friction coefficient μ between the finger and the rotatable member is reduced, and as the result the tactile operational sensation is significantly improved and a luxurious appearance is given. For example, the color of the rotatable members is differentiated from the color of the case, or the color of the rotatable members is differentiated each other, and thus the appearance is improved with this feature.




The present invention will not be limited to the above-mentioned embodiments, and various modifications may be applied.




The microcomputers


80


and


84


shown in

FIG. 4

may be structured by a single microcomputer.




The input device


20


shown in

FIG. 1

shows an example in which the input device


20


is provided to a portable music player. The music player including the input device may be a hand-held music data player, may be a type that is attached on an arm, may be a type that is hung from a neck, or may be another type.




The input device of the present invention may be applied not only to the music or music data player but also the music data recording/reproducing apparatus. The input device of the present invention may be applied not only to the music data recording/reproducing apparatus but also the image and audio recording/reproducing apparatus or image and audio data player.




The shape of the rotatable operation member is by no means limited to the ball. A cylinder shape, hollow cylinder shape, or rugby ball shape may be employed. Any-way, the rotatable members are rotatable along the arranging direction of the rotatable operation members; and, the rotatable members are necessarily rotated when the finger moves along the rotatable members for operation.




The input device of the present invention may be applied not only to the above-mentioned embodiment but also to electronic apparatus of other that are and used in other fields.



Claims
  • 1. An input device info which an operator enters desired commands by operating with a finger comprising;a case, a switch contact provided in the inside of said case having a hole communicating to the outside of said case, an rotatable operation member provided rotatably to said switch contact and disposed partially projecting from said hole of said case, and a support member for supporting said rotatable operation member by pressing it onto said hole of said case side and actuating electrodes provided to said switch contact to be connected when said rotatable operation member is pressed from the outside of said case.
  • 2. The input device as claimed in claim 1, wherein a slit is formed on said case, and said rotatable operation member is disposed in said slit.
  • 3. The input device as claimed in claim 1, wherein said input device has a plurality of said switch contacts, a plurality of said operation rotatable members, and a microcomputer for selecting an operation mode from among different operation modes by operating an arbitrary switch selectively from among said plurality of switch contacts.
  • 4. The input device as claimed in claim 3, wherein said operator moves a finger along said slit thereby to operate an arbitrary switch contact selectively from among said plurality of switch contacts for activating an operation mode.
  • 5. The input device as claimed in claim 1, wherein said each switch is assigned to one operation type.
  • 6. The input device as claimed in claim 4, wherein the moving direction of a finger of said operator is the first direction along the longitudinal direction of said slit or the second direction that is opposite to said first direction.
  • 7. The input device as claimed in claim 3, wherein when said switch is operated a plurality of times in a predetermined time, said device is operated in an operation mode corresponding to the number of repeated operations.
Priority Claims (1)
Number Date Country Kind
11-104142 Apr 1999 JP
US Referenced Citations (7)
Number Name Date Kind
5008528 Duchon Apr 1991
5298919 Chang Mar 1994
5543821 Marchis et al. Aug 1996
5751275 Bullister May 1998
6031518 Adams et al. Mar 2000
6097372 Suzuki Aug 2000
6104969 Beeks Aug 2000