This invention relates to an installation for filling an aerosol container with liquid, such as paint, whereby the aerosol container is of the type that comprises at least one frame, means for holding—in a removable manner—a scoop of liquid for filling on the frame at a mount point that is located above the point where the aerosol container is mounted, generally in a position of contact with the valve of said container, a pushing element with a removable piston head, and means that indicate when the piston head is not attached to the pushing element, whereby said pushing element can be moved axially in said scoop to bring about, by pushing on said liquid, the transfer of this liquid through an opening of the scoop, into the aerosol container, whereby the removable piston head is disengaged from the pushing element inside the scoop before the pushing element is withdrawn from said scoop.
Installations of the type mentioned above are described in the U.S. Pat. No. 4,938,260, U.S. Pat. No. 3,651,836, CH-458,965 and EP-0,440,477.
An example of such an installation is described in particular in the international application PCT WO 2007 034043. Such an installation is characterized by the fact that the pushing element is equipped with a piston head that can be removed and disengaged from the pushing element inside the scoop before withdrawing the pushing element from said scoop so as to keep the pushing element from being soiled during its travel. Owing to this design, at the end of the filling operation, the operator is prevented from any cleaning operation of the installation, since any contact between the installation and the filling liquid is carried out by means of the removable piston head that constitutes a consumable of said installation. However, this objective is not achieved when the operator neglects, before the filling or transfer operation, to equip the pushing element with its removable piston head. In this case, the pushing element is in direct contact with the filling liquid during its back-and-forth movement and should be cleaned after the liquid is transferred from the scoop to the aerosol container.
To solve this problem, it has been conceived to provide, in the pushing element that forms a piston, channels that empty into the open air, whereby, when the piston head does not close said channels, said channels prevent any rise in pressure of the chambers for actuating the piston, thereby making the transfer operation impossible. The drawback of such a solution is that it makes it necessary to use a pushing element of a complex design and with necessarily pneumatic operation. In addition, the air that is introduced into the channels comes, in the presence of the piston head, to rest on said head at the risk of disengaging in an ill-timed manner from the remainder of the pushing element.
One object of this invention is to propose a filling installation of the above-mentioned type whose design of the means that indicate when the piston head is not attached to the pushing element is a simplified design, whereby said means have no impact on the intrinsic operation of the pushing element.
For this purpose, the invention has as its object an installation for filling an aerosol container with liquid, such as paint, whereby said container is of the type that comprises at least
Owing to the presence of a movable stop that forms an obstacle to the installation of the scoop, in or on the frame when the piston head is not attached to the pushing element, any risk of the pushing element being soiled owing to the piston head not being attached to said element is avoided.
The invention will be well understood from reading the following description of sample embodiments, with reference to the accompanying drawings in which:
As mentioned above, the filling installation, object of the invention, is more particularly designed to allow the aerosol container 12, which generally comes in the form of a cylindrical body equipped with a valve on its upper part, to be filled with liquid, in particular paint. On top of this valve is a removable diffuser that makes it possible to diffuse the liquid that is contained inside the aerosol container into the atmosphere. This diffusion is achieved using a propellant gas that is contained inside the aerosol container. The filling of the aerosol container with liquid to be sprayed is carried out by the valve of the aerosol container. The filling requires a filling installation according to the invention.
This filling installation conventionally comprises a frame 1, means 3A, 3B for holding, in a removable manner, a scoop 10 of liquid for filling on the frame 1 in a mount point 4 that is located above the point 5 where the aerosol container is mounted, generally in a position of contact with the valve of said container, a pushing element 6 with a removable piston head 7, and means that indicate when the piston head 7 is not attached to the pushing element 6. This pushing element 6 can be moved axially in the scoop 10 to bring about, by pushing on said liquid, the transfer of this liquid through an opening 11 of the scoop into the aerosol container. The removable piston head 7 is disengaged from the pushing element 6 inside the scoop 10 before the pushing element 6 is withdrawn from the scoop 10.
In the examples that are shown, the frame 1 delimits a chamber, generally of the column type, equipped with a front inlet 2, which can preferably be closed, for inserting the scoop 10 and the aerosol container 12 into said chamber. This frame 1 generally houses the scoop 10 and the aerosol container in the suspended state of the scoop in said chamber that is delimited by the frame. The installation and the removal of the scoop and the aerosol container of the chamber that is delimited by the frame 1 is carried out by means of an inlet 2 that is generally equipped with a pivoting or sliding door.
To make it possible to hold, in particular in suspension, the scoop 10 inside the chamber of the frame 1 at a mount point 4 that is located above the point 5 where the aerosol container is mounted, the scoop 10 is, before insertion into the frame 1, housed inside a scoop-carrier 3A. This scoop-carrier, with a shape that mates with said scoop, is equipped with an annular, external, circumferential shoulder that works with slides 3B that are made along the internal peripheral walls of the frame 1. These holding means 3A, 3B will not be described in more detail below.
In its face that forms the bottom, the scoop 10 is equipped with an injection opening 11 that generally extends outside of a projection that forms an injection nozzle that can be positioned on the valve of the aerosol container. The injection opening of the scoop can therefore be adapted to the valve of the aerosol container and is more particularly designed to engage with the latter. The pushing element 6 acts by pushing on the filling liquid that is contained in the scoop 10 to transfer it from the scoop 10 to the aerosol container 12. Thus, the scoop 10 is positioned, in a first step, with its injection opening 11 opposite the valve of the aerosol container, whereby said opening with its projection is inserted into the valve. The filling liquid that is contained inside the scoop 10 is, under the action of an axial movement of the pushing element 6 inside the scoop 10, transferred from the scoop 10 to the aerosol container 12. This pushing element 6 is equipped with a removable piston head 7 that is disengaged from the pushing element inside the scoop 10 before the pushing element 6 is withdrawn from said scoop 10. This piston head 7—which is shaped to work with the scoop to ensure that, after transfer, the piston head 7 is held inside the scoop 10 and to form an airtight wall that imprisons the residual liquid that is not transferred to the inside of the scoop—is held in the scoop 10 in a final transfer position close to the bottom of the scoop in which it closes the injection opening 11 of the scoop 10. Generally, the piston head 7 comes in the form of a circular disk, with a scraper segment for radial sealing, whereby this disk is extended by a circular skirt that is designed to cover the pushing element 6. Thus, the piston head 7 is attached to the pushing element by simple interlocking. The pushing element 6 forms the piston of a hydraulic or pneumatic jack whose body is formed by at least one part of the frame 1 of the installation. This pushing element 6 assumes the shape here of a cylindrical body that is equipped with an external, peripheral, circular shoulder. This body with shoulders makes it possible to form, on both sides of the zone with shoulders, each time, a chamber that, in the state supplied with fluid, causes the piston to move axially in one direction. When the removable piston head 7 is removed from the pushing element 6, the risk is that the pushing element will plunge directly into the scoop that contains the filling liquid and will become soiled upon contact with the liquid, making it necessary to clean said element after each transfer operation.
To prevent such a problem, the filling installation comprises means that indicate when the piston head 7 is not attached to the pushing element 6. These indicating means assume here the shape of a stop 8 that can move between an active position (
The stop 8 is returned to the active position at least under the action of its own weight. In the examples that are shown, the stop 8 is loaded by a spring 13 that returns the stop 8 to the active position. This stop 8 is, in the examples shown, mounted on the pushing element 6. This stop 8 is placed in or close to the free end of the pushing element 6. In the active position, this stop 8 forms an extension of the pushing element 6. In the inactive position, this stop 8 is retracted into a housing 6A of the pushing element 6. In the active position, the stop 8 projects and extends beyond the free end of the pushing element 6 into a position in which it prevents the installation of the scoop and its scoop-carrier in the chamber that is delimited by the frame 1 as
In such an installation, in which the frame 1 delimits a chamber that is equipped with an inlet 2, which preferably can be closed, for inserting the scoop 10 and the aerosol container into said chamber, the stop 8 forms, in the active position, a ramp that is inclined in a descending manner from its zone for connection to the pushing element 6 in the direction of the inlet zone 2 of the scoop in the frame 1 so as to prevent, in said position, the access of the scoop 10 to the mount point 4 for receiving the scoop but to allow the extraction of the scoop 10 from said mount point 4. Actually, as
As
The operations are generally as follows, whereby the order can be modified:
The door of the chamber, when it is present, is closed. The closing of this door entrains the actuation of the pushing element and in particular the descent of the piston that constitutes the pushing element and the piston head in the scoop that entrains the transfer of the filling liquid from the scoop to the aerosol. When the piston head 7 reaches the bottom of the scoop 10, it is held inside the latter. The pushing element 6 is then moved in the direction of an extraction or a withdrawal of said scoop and returns to its initial position. The aerosol container and scoop unit can then be extracted from the chamber that consists of the frame 1 of the installation. A new transfer operation can then be performed after a new piston head has been repositioned on the pushing element and a new scoop has been repositioned in the scoop-carrier. No cleaning operation of the installation is necessary before operating this new transfer operation. An extremely easy implementation of the unit results therefrom.
Quite obviously, if the piston head 7 is left out, the operator cannot position the aerosol and scoop 10 unit in the chamber that is formed by the frame 1.
Number | Date | Country | Kind |
---|---|---|---|
07/06656 | Sep 2007 | FR | national |