The subject matter disclosed herein relates to electrical components, and specifically to transformers and inductors.
Transformers typically include primary and secondary windings wrapped around a magnetic core. The primary winding is electrically coupled to an alternating current (AC) power source and the secondary winding is electrically coupled to a load. Based on a ratio of the number of turns in the primary winding to the number of turns in the secondary winding, the transformer may increase or decrease the voltage output by the AC power source.
Inductors typically include a single winding wrapped around a magnetic core. Current through the winding creates a magnetic field. When a current flowing through the winding changes, the magnetic field induces a voltage in the winding, resisting the change in current. Accordingly, an inductor resists changes in the current flowing through it.
Manufacturing inductors and transformers may include purchasing many different components from many different parts suppliers. Because of the small form factor of some inductors and transformers, the various components may have tight tolerances such that obtaining a set of parts that fit together and form a functioning transformer or inductor can be time consuming and expensive.
Certain embodiments commensurate in scope with the original claims are summarized below. These embodiments are not intended to limit the scope of the claims, but rather these embodiments are intended only to provide a brief summary of possible forms of the claimed subject matter. Indeed, the claims may encompass a variety of forms that may be similar to or different from the embodiments set forth below.
In one embodiment, an electrical component includes a magnetic core, an insulator, and a first winding. The insulator includes a first aperture disposed about a first portion of the core and a first insulator passage extending through the insulator, encircling the first aperture. The first winding extends through the first insulator passage and conducts an electrical current.
In a second embodiment, a system includes an insulator, a first winding, a first terminal electrically coupled to a first end of the first winding, and a second terminal electrically coupled to a second end of the first winding. The insulator includes a first aperture, and a first insulator passage extending through the insulator, encircling the first aperture. The first winding extends through the first insulator passage and conducts an electrical current.
In a third embodiment, a method includes 3D printing an insulator, wherein the insulator comprises a first aperture configured to receive a first portion of a magnetic core, and a first passage extending through the insulator, encircling the first aperture, and forming a first conductive winding within the first passage.
These and other features, aspects, and advantages of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
One or more specific embodiments will be described below. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
When introducing elements of various embodiments of the present disclosure, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Furthermore, any numerical examples in the following discussion are intended to be non-limiting, and thus additional numerical values, ranges, and percentages are within the scope of the disclosed embodiments.
Transformers typically include primary and secondary windings wrapped around a core. Based on a ratio of the number of turns in the primary winding to the number of turns in the secondary winding, the transformer may increase or decrease a voltage of a signal received from an alternating current (AC) power source and providing power to a load. Inductors typically include a single winding wrapped around a magnetic core. Current flowing through the winding creates a magnetic field that resists changes in the current flowing through the winding.
Manufacturing inductors and transformers may include purchasing many different components from many different parts suppliers. Obtaining a set of parts that fit together and form a functioning transformer or inductor can be time consuming and expensive. By manufacturing an insulator that also acts as a mold for the windings, costs and part counts may be kept low, and the complexity of obtaining parts from many different suppliers may be reduced. Further, smaller form factors for electrical components may be achieved.
Both transformers and inductors typically include many small parts with different characteristics from various parts suppliers. Tight tolerances and small form factors may make it time consuming and expensive to obtain parts that fit together to form a working transformer or inductor. By utilizing additive manufacturing techniques (e.g., 3D printing), an insulator may be formed with a passageway that allows the insulator to be used as a mold for forming the windings. Using such an insulator may help to reduce part count, the number of parts suppliers, the cost of production, and the form factors of transformers, inductors, or other components.
The core 16 may include a first portion 58 and a second portion 60. The first portion 58 may be substantially “U” shaped, having a first leg 62 and a second leg 64. The second portion 60 may be generally “I” shaped. The core 16 may be divided into multiple portions 58, 60 to facilitate assembly of the inductor 30. For example, the first portion 58 may be inserted through apertures in the insulator 50 (see
As illustrated, the winding 34 extends from the first terminal 52, around the first leg 62 of the core 16 one or more times, then extends around the second leg 64 one or more times to the second terminal 54. It should be understood, however, that the inductor 30 shown in
Once the insulator 50 has been manufactured, the insulator 50 may be used to form the winding 32. In some embodiments, the winding 32 may be formed by filling the passages 104, 106, 108 with molten copper, a copper alloy, or another conductor, and then allow the winding 32 to solidify. In such an embodiment, the winding 32 are solid elements that extend through the passages 104, 106, 108. In another embodiment, electrolysis may be used in an electroplating process, or a multi-step electro plating process, to deposit a layer of conductive material (e.g., copper, copper alloy, or some other conductive material) on the walls of the passages 104, 106, 108 to form the winding 32. In such an embodiment, the winding 32 may have a hollow center. Because of the skin effect (i.e., an AC current tends to flow through a conductor toward the exterior of the conductor), a hollow center may not negatively affect the ability of the winding 32 to conduct electricity. Further, the hollow passage may improve the thermal performance of the winding 32. For example, air flowing through the hollow passages of the winding 32 may help in the dissipation of heat from the winding 32. In other embodiments, other materials may be disposed within the winding 32 to aid thermal performance. In further embodiments, liquid or gas fluids may be flowed through the hollow portions of the winding 32 to aid in cooling. In other embodiments, the winding 32 may be include a conductive fluid (e.g., liquid or gas) that may be stagnant in the insulator 50, or may flow through the insulator 50.
Though
As with the inductor winding 32 describe with regard to
The transformer steps up or steps down a voltage of a power signal received from an AC power source connected across the first and second terminals 52, 54, and outputs the stepped up or stepped down voltage to the load connected across the third and fourth terminals 220, 222. It should be understood, however, that the transformer 10 shown in
In block 254, one or more windings 12, 14, 32 may be formed in the one or more passages 104, 106, 108, 224, 226, 228. The windings 12, 14, 32 may be formed by filling the one or more passages 104, 106, 108, 224, 226, 228 with a molten conductor (e.g., copper, a copper alloy, or some other conductor) and allowing the molten conductor to set. In other embodiments, the windings 12, 14, 32 may be formed by electroplating the interior walls of the one or more passages 104, 106, 108, 224, 226, 228. In further embodiments, other techniques may be used to form the windings 12, 14, 32. In embodiments in which the windings 12, 14, 32 include hollow passages 202, the passages 202 may be left unfilled, may be filled with a material, or may be used to flow a liquid or gas fluid through the windings 12, 14, 32.
In block 256, the core 16 may be installed. In some embodiments, the core 16 may also be 3D printed, or formed by some other additive manufacturing process. In such an embodiment, the core 16 may even be formed at the same time, by the same process by which the insulator 50 is formed. As previously described, some embodiments of the electrical component may not have a core 16 at all. As shown and described with regard to
Technical effects of the invention include a transformer or inductor having an insulator produced by additive manufacturing techniques. The insulator may include one or more passages in which one or more windings may be formed via molding, electroplating, or some other technique. The disclosed techniques may reduce the part count of a transformer or an inductor and help to reduce the time and cost associated with sourcing many different parts from many different suppliers, and may also reduce the form factor of the component.
This written description uses examples to disclose the subject matter, including the best mode, and also to enable any person skilled in the art to practice the disclosed techniques, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the disclosure is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.