This invention relates to intake manifold tuning valve (IMTV) actuators and control circuits therefor.
In 1970, Congress passed the Clean Air Act and established the Environmental Protection Agency (EPA) which initiated a series of graduated emission standards and requirements for maintenance of vehicles over extended periods of time. In the beginning there were few standards, however, in 1988, the Society of Automotive Engineers (SAE) developed a set of diagnostic test signals, and the EPA adapted most of the SAE standards for On-Board Diagnostic programs and recommendations (OBD). Currently, the second generation of these diagnostic standards (OBD-II) have been adopted by the EPA and, as such, internal combustion engine vehicles must now meet the federally mandated OBD-II standards for the life of the vehicle.
A main focus of the EPA in regard to internal combustion engines is on the emissions of the engines. To meet the current federally mandated emission standards prescribed by OBD-II, an internal combustion engine requires management of air flow through an intake manifold. In addition, regulatory requirements mandate that the components used to ensure compliance of the emission standards be continuously monitored over the life of the vehicle. This is in an effort to ensure that the emissions performance over the useful life of the vehicle is not degraded due to a component or system malfunction. For the air intake manifold, one device used in some engines to obtain improved emissions and engine performance is an intake manifold tuning valve which can be used to join intake manifold plenums at a certain range of engine speeds. Generally, the actuators used to control the intake manifold tuning valves (herein referred to as IMTV actuators) have been constructed as two position actuators, having a fully open position and a fully closed position. In addition, the actuators generally do not provide position feedback capability to indicate which position the actuator is in. This two position operation of the IMTV actuator limits its ability to regulate the air flow through the intake manifold, and thus, can restrict the ability of the engine to operate at its a maximum performance level and can limit the ability of the engine to meet emissions and fuel economy goals.
The OBD-II regulations require that the presence and functionality of emission systems components be monitored. Generally, the monitoring function may be performed using one or more external sensors connected to the vehicle engine controller. This approach adds to the complexity of the emission system assembly, for example by adding additional components and wire connections. In addition, the added external components increase the amount of communication and analysis burden on the engine controller. Though the current OBD-II emission control system requirements come at an increased cost, the manufacturer has little option but to take on these expenses, as a result of having to meet the federally mandated standards.
The present invention provides a valve actuator method and apparatus for an IMTV or other intake manifold valve. In accordance with one aspect of the invention, the valve actuator is used to position a valve blade within the intake manifold. The actuator includes a motor, valve blade drive member, control circuit, and sensor. The valve blade drive member is coupled to the motor and is adjustable to different positions by the motor. The control circuit has an input that receives actuator commands and has an output connected to the motor to control operation of the motor. The sensor is connected to the control circuit and provides the control circuit with data indicative of the position of the drive member. The control circuit operates the motor in response to the actuator commands to move the drive member to a commanded position, and the control circuit receives feedback signals from the sensor relating to the position of the drive member. Preferably, the control circuit provides closed loop control of the position of the drive member using the feedback signals. Also preferably, the control circuit outputs position data relating to the position of the drive member and this information can be used by an engine control unit for diagnostic and other purposes. The actuator can include a housing in which the motor, control circuit, and sensor are mounted.
In accordance with another aspect of the invention, there is provided an intake manifold tuning valve actuator that includes a motor, valve blade, control circuit, and stop member that prevents full rotation of the valve blade about its rotational axis. The valve blade is coupled to the motor and is rotationally adjustable about the axis to different positions by the motor. The control circuit has an input that receives actuator commands and has an output connected to the motor to control rotation of the valve blade via the motor. The stop member is located adjacent the valve blade. Preferably, the motor and control circuit are mounted in a housing with valve blade being located exterior of the housing and the stop member being located on the housing adjacent the valve blade. Rotation of the valve blade past a predetermined position results in the valve blade engaging the stop member which prevents it from further rotating, unless the valve blade is not present or is otherwise not working properly.
In accordance with yet another aspect of the invention, there is provide various methods of using the valve actuator to regulate airflow in the intake manifold. One of these methods includes use of the sensor to provide closed loop position control. Another method is used for diagnostic testing and involves use of the stop member to determine whether the valve blade is present and functioning properly. This diagnostic capability can be useful for OBD-II compliance.
As illustrated in
In general, IMTV actuator 10 is a single, self contained module that includes a control circuit 61 which operates a motor 36 connected to an output shaft 18 via a gear set 56, all of which are mounted in a housing 24. The output shaft 18 extends out of housing 24 and supports a valve blade 16 that is securely attached to the shaft 18 for concomitant rotation therewith. Shaft 18 thus comprises a valve blade drive member that is controlled by motor 36 and used to move the valve blade 16 between various positions within the intake manifold 12. Rotatable or pivotable output drive members other than shaft 18 could be used as well. As will be explained in further detail below, ECU 60 delivers actuator commands to control circuit 61 which responds to these command signals by energizing the motor 36 to move the valve blade 16 to the commanded position. A sensor 122 located adjacent one of the gears in the gear set 56 detects the instantaneous position of the gear and, thus, the output shaft 18 and valve blade 16. The position information from this sensor 122 is fed back to the control circuit 61 which uses this feedback data to provide closed loop control of the valve blade position. Control circuit 61 is further operable to return feedback data to the ECU 60 indicating the actual, sensed position of the shaft 18 and valve blade 16. Furthermore, as will also be discussed below, the IMTV actuator 10 includes a physical stop on its housing adjacent the valve blade 16 which prevents full rotation of the blade about its axis. This stop is used for integrity checking to determine whether or not the valve blade is present and intact.
With reference now to
As shown in
The base 26 has a lower wall 42 with a side wall 44 extending generally laterally and upwardly therefrom. The side wall 44 terminates at an outer perimeter defining a lateral flange 46 extending from the side wall 44 constructed for mating engagement with the flange 30 of the cover 28. As shown in
As shown in
The gear set 56 comprises a gear train having a pair of shafts 70, 72 maintained at least in part by a plate 74 (
As shown in
Mounted on the driven shaft 92 is a segmented driven gear 100 having teeth 102 arranged for meshed engagement with the pinion gear 86. The driven gear 100 is securely attached to the driven shaft 92 for conjoint rotation therewith. The gear teeth 102 on the gear 100 span approximately 120 degrees, although gear 100 is generally driven about 85 degrees in use. The gear teeth 102 terminate at flat faces 104,106, that are bounded on one side by perpendicular surfaces 108, 110, respectively, that extend radially inwardly therefrom. The surfaces 108, 110 act as stop surfaces against a downwardly bent tab 112 extending generally laterally from the plate 74. Accordingly, the tab 112 acts as a positive stop to limit the angular rotation of the driven gear 100, thereby ensuring that the teeth 102 of the segmented driven gear 100 remain in meshed engagement with the pinion gear 86 under any conditions, such as an over rotation of the motor 36, for example. Other ways of preventing over rotation of gear 100 will be apparent to those skilled in the art.
As best shown in
As shown in
Control circuit 61 is a microprocessor based control circuit that continuously monitors ECU 60 for commands to rotate the valve blade 16 to a particular angular position within the intake manifold 12. When receiving commands, the control circuit preferably uses a debounce algorithm to insure that a valid position command has been sent by the ECU 60 before activating the motor 36 to initiate movement. Suitable debouncing algorithms are known to those skilled in the art.
To move the valve blade 16, control circuit 61 sends a signal to energize the motor 36, thereby causing the gear set 56 to rotate the valve blade 16 towards the commanded angular position. As magnet 116 rotates with the gear train, the control circuit monitors the flux direction and strength of the magnetic field impinging on the Hall Effect sensor 122. The voltage level of the position feedback signal from the Hall Effect sensor 122 is compared by the control circuit 61 to a voltage range programmed within the control circuit to ensure that the received feedback signal voltage is within a valid range. Upon determining that the voltage level is proper, the actual angular position of the driven shaft 92 (and, thus, the valve blade 16) is determined, and this can be done in various way such as by using equations or a look-up table. This sensed, actual position can then be compared by the control circuit to the commanded position received from the ECU 60 and the resulting error used to adjust the position of the valve blade until no error exists between the commanded and actual positions, or until the error falls to within an acceptable level. In this way, the control circuit 61 provides closed loop control of the position of valve blade 16, and this is done without involving the ECU 60 and, thus, without any additional computational effort by ECU 60. Other closed loop control schemes can be used in addition to or in lieu of proportional control, including integral and derivative control, and these control approaches can be used not only to achieve the commanded position, but if desired, to also control the speed at which the adjustments are made. For example, for larger angular adjustments, the rotational speed of the valve blade could be increased. Such control schemes are known to those skilled in the art.
Once the valve blade has reached its commanded position, as determined from the position feedback from sensor 122, the control circuit 61 interrupts power to the motor 36. Thereafter, the control circuit 61 will wait for a subsequent actuator command from ECU 60. Additionally, the control circuit will periodically sample the angular position of the valve blade 16. If the valve blade 16 inadvertently moves from its commanded angular position, the control circuit again activates the motor 36 to re-orient the valve blade 16 back to its commanded angular position. In addition to using the position feedback from sensor 122 for closed loop control, the control circuit 61 can also report the actual position back to the ECU 60, thereby providing confirmation of the valve blade position.
Yet another use for the sensor 122 is in performing integrity checks of the valve blade 16. Since OBD-II standards require verification that the valve blade is present and functioning properly, sensor 122 can be used for this purpose in conjunction with a physical stop member that prevents free rotation of the valve blade 16 past a predetermined position. As shown in
Attempted rotation of the valve blade beyond the predetermined position where it engages stop member 124 can be accomplished in different ways, such as by simply commanding the motor to run continuously in a certain direction, or by attempting to rotate to an over-travel target position. To reduce the stresses on the motor and gears while they continues to attempt rotation of the valve blade past the predetermined stop position, the power and rate of travel of the motor 36 can be conducted at reduced rates.
To facilitate an airtight seal between the actuator 10 and the intake manifold 12, the mounting flange 38 is generally equipped with an annular seal 126 for sealing engagement with an opening 128 in the intake manifold 14. The actuator 10 is easily attached to the intake manifold 12 through the use of fasteners 130 passing through the fastener openings 48 in the base 26, with the fasteners 130 generally threaded within openings in the intake manifold 12. Accordingly, a reduction in assembly costs is recognized by providing a unitized actuator 10 requiring little time for attachment to the intake manifold 12 in assembly. In addition, the actuator 10 can be easily removed from the intake manifold 12 for service.
It will thus be apparent that there has been provided in accordance with the present invention an IMTV actuator which achieves the aims and advantages specified herein. It will of course be understood that the foregoing description is of a preferred exemplary embodiment of the invention and that the invention is not limited to the specific embodiment shown. Various changes and modifications will become apparent to those skilled in the art. For example, for applications where the valve blade 16 is supplied as a part of the intake manifold itself, the IMTV actuator need only include the output shaft 18 or some other valve blade drive member that interconnects with the valve blade. Furthermore, in such instances, the stop member, if used, can be provided as a hard stop on the intake manifold itself, rather than on the IMTV actuator. All such variations and modifications are intended to come within the scope of the appended claims.
As used in this specification and claims, the terms “for example” and “such as,” and the verbs “comprising,” “having,” “including,” and their other verb forms, when used in conjunction with a listing of one or more components or other items, are each to be construed as open-ended, meaning that that the listing is not to be considered as excluding other, additional components or items. Other terms are to be construed using their broadest reasonable meaning unless they are used in a context that requires a different interpretation.
This application claims the priority of U.S. Provisional Application No. 60/556,122, filed Mar. 25, 2004, the entire contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4087728 | Porter | May 1978 | A |
4246526 | Phillips | Jan 1981 | A |
4570590 | Kawai et al. | Feb 1986 | A |
4645992 | Ritenour | Feb 1987 | A |
4738233 | Hitomi et al. | Apr 1988 | A |
4765286 | Lyjak | Aug 1988 | A |
4816987 | Brooks et al. | Mar 1989 | A |
5092298 | Suzuki et al. | Mar 1992 | A |
5113826 | Anzai | May 1992 | A |
5123382 | Aoki et al. | Jun 1992 | A |
5129368 | Kristl et al. | Jul 1992 | A |
5168954 | Nakaniwa et al. | Dec 1992 | A |
5197433 | Dykstra et al. | Mar 1993 | A |
5370094 | Sorg et al. | Dec 1994 | A |
5411239 | Sorensen | May 1995 | A |
5590628 | Patyi et al. | Jan 1997 | A |
5632239 | Patyi et al. | May 1997 | A |
5704328 | Dykstra et al. | Jan 1998 | A |
5740778 | Corcoran et al. | Apr 1998 | A |
5854545 | Eibel | Dec 1998 | A |
5992370 | Pringle et al. | Nov 1999 | A |
6051948 | Vepy | Apr 2000 | A |
6188193 | Michelson | Feb 2001 | B1 |
6260528 | Pringle et al. | Jul 2001 | B1 |
6276316 | Arai et al. | Aug 2001 | B1 |
6291955 | Itabashi et al. | Sep 2001 | B1 |
6329777 | Itabashi et al. | Dec 2001 | B1 |
6386178 | Rauch | May 2002 | B1 |
6422201 | Yamada et al. | Jul 2002 | B1 |
6637397 | Ward et al. | Oct 2003 | B1 |
6683429 | Pringle et al. | Jan 2004 | B1 |
6802292 | Nelson et al. | Oct 2004 | B1 |
20030182049 | Bale et al. | Sep 2003 | A1 |
20030183202 | Mischker et al. | Oct 2003 | A1 |
20040035383 | Ward et al. | Feb 2004 | A1 |
20040107934 | Bucknell et al. | Jun 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20050211215 A1 | Sep 2005 | US |
Number | Date | Country | |
---|---|---|---|
60556122 | Mar 2004 | US |