The present invention relates generally to systems and methods for repairing and sealing asphalt shingles and, more particularly, to several embodiments of a shingle patch for repairing hail damage to an asphalt shingle and to an integral nail/disk combination structure for eliminating exposed roof nails when applying new or replacement shingles to a roof structure.
Shingled roofs are typically laid in an overlapping pattern which necessarily requires the roofer to begin laying the shingles at the lowest point of the roof and moving horizontally until one row of shingles is complete. Asphalt shingles are typically nailed to the roof along the uppermost perimeter edge and the horizontal rows progress upwardly with each asphalt shingle slightly overlapping the one below it, thereby covering the nails securing the underlying shingle. With this progression, the shingles are laid in an overlapping specific pattern and it can be seen that at certain positions on the roof, for example, at edges abutting dormers, chimneys, and at the last row of shingles at the apex of the roof, the last course of nails will not be covered by an adjacent shingle and such uncovered nails are therefore exposed to the elements. If left exposed, such uncovered nails will corrode to the point that they may lose their grip or hold on the respective shingles that they are securing to the roof structure.
Shingled roofs are also subject to a wide variety of weather-related damage including hail damage, storm damage, wind damage and the like. In the particular case of hail damage, or any other damage to a particular asphalt shingle, the present methods for replacing damaged shingles are labor-intensive, time consuming and not very cost-effective, particularly, if the damaged shingles are located in the center portion of the roof structure. Current replacement methods typically require a roofer to remove the damaged shingles, which repair also then requires removal or at least lifting and separating surrounding shingles since shingled roofs are laid in an overlapping fashion as explained above. Because replacing individual shingles is time consuming, labor-intensive, and may even cause damage to surrounding shingles, there does exist a need for a better, less labor-intensive, and faster system for repairing damaged asphalt shingles without necessarily removing the damaged shingle.
Still further, since the last course of nails typically associated with an asphalt shingled roof are exposed to the elements, many building codes typically require that this last row of exposed roofing nails be sealed with some type of sealant. Roofers typically attempt to seal the exposed roof nails by using caulking to cover such nails. This is typically messy and an inefficient process. Almost all asphalt shingles come with a 25 or 50-year manufacturer's warranty. Caulking applied to the uncovered nail heads that are exposed to the elements will typically degrade and only last a few years. This breakdown in the caulking or other sealant also exposes the roof/shingle system to premature leaks and other damage thereby mandating that the sealing procedure be repeated to preserve the integrity of the roof structure. In addition, once a tube of caulking is opened, unavoidable exposure of the contents prevents reuse of leftover caulking at another job site. As a result, caulking is wasted and is usually discarded if not entirely used. As a result, there is likewise a need to develop a system for eliminating exposed roof nails, which system would last the life of the new shingles, match the colors of the existing shingles, and save time and money if caulking and other sealants could be eliminated from the roofing process.
In view of the foregoing, it will be apparent to those skilled in the art that a need exists for both a shingle patch for hail damage repair of asphalt shingles as well as an integral nail/disk structure for eliminating exposed roof nails. The present invention addresses both of these needs as well as other needs which will become apparent to those skilled in the art after reading the present disclosure.
The present invention is directed to several embodiments of a shingle patch and an asphalt emulsion injector system which can be used to repair hail damage and any other shingle damage associated with asphalt shingles as well as to an integrated nail/disk structure which can be used around dormers, chimneys, the last course of nails on a shingled roof, and other places where exposed nail heads would typically exist thereby eliminating any exposed roof nails on any shingled roof.
In one aspect of the present invention, several embodiments of a shingle patch are disclosed wherein the patch can be overlaid on top of a damaged asphalt shingle such as a shingle having hail damage thereby eliminating the need for totally removing the damaged shingle. One embodiment of the present shingle patch includes a patch base member having one end portion of the base member specifically structured for sliding under an existing shingle such as the shingle located immediately above the damaged shingle, whereas the opposite end portion of the present shingle patch base member includes a roof nail built into the patch itself. The top portion of the base member includes colored granules that are embedded into the patch so as to match the color of the existing damaged shingle. In this regard, the present patch can be produced in multiple colors so as to match the known existing asphalt shingle colors in the marketplace, or the patch can be manufactured on site in the field by using a pre-made patch base member as will be hereinafter further explained and thereafter affixing colored granules to the patch base member in the field so as to match the existing colors of the roof to be repaired.
A sealant is associated with the bottom portion of the shingle patch base member and with that portion of the patch base member to be inserted under the existing shingle located above the damaged shingle. This sealant is preferably heat activated and can be factory applied and is typically activated by the sun. A cellophane tape or other material can be placed over the sealant areas so as to prevent the sealant from binding to any other material during shipment and storage. The tape is removed prior to installing the shingle patch over the damaged shingle. In this regard, a technician will lift the bottom edge of the shingle that lies just one row above the damaged shingle, remove the release tape from that portion of the shingle patch that slides under the existing shingle, and then insert that portion of the shingle patch under the raised shingle. The raised shingle is then lowered onto that portion of the shingle patch and that portion of the patch will bind to the existing shingle through the sealant. Once inserted under the existing adjacent shingle, the opposite end portion of the shingle patch housing the integrated roof nail is then nailed to the damaged shingle thereby allowing the under surface of the shingle patch to seal directly to the damaged shingle via the sealant located on the bottom portion of the present patch. Once complete, the present shingle patch will overlay the damaged shingle and will match the color scheme of the roof. Since the damaged shingle remains in place, the present shingle patch provides a double layer of protection over the damaged shingle since the damaged shingle still provides some protection to the roof structure.
In another embodiment of the present shingle patch, the patch base member again includes one end portion that slides under an existing shingle, colored granules embedded in its top surface to match the color scheme of the roof shingle to be repaired, and a sealant covering both that portion of the base member which again slides under the existing shingle as well as covering the bottom surface of the base member. In contrast to the other embodiment of the present shingle patch, this patch embodiment includes a flap portion at its opposite end portion, the flap portion being lifted so that a standard roof nail can be nailed through the corresponding mating surface of the base member into the underlying damaged shingle. In this particular embodiment, an integrated roof nail is not associated with the patch. Instead, the inner surface of the flap portion and its corresponding mating surface are likewise covered with a sealant and both surfaces are likewise covered with a cellophane tape or other release tape to prevent such mating surfaces from bonding together until required. This embodiment of the present patch is again inserted under an existing shingle located immediately above the damaged shingle and once so inserted, the flap portion at the opposite end portion of the base member is lifted, the release tape is removed and a standard roof nail is then nailed through the mating surface of the base member located under the flap portion and through the damaged shingle located below. Once the standard roof nail is hammered into place, the flap portion is lowered such that the flap will cover the head of the standard roof nail just hammered into place. As such, the flap portion serves as a roof nail seal and completely covers the nail head thereby preventing exposure to the elements. The sealant located on the bottom surface of the shingle patch as well as on the mating flap areas and on the area that slides under the existing shingle are all preferably activated either by the sun or by other heat sources thereby bonding the shingle patch to the existing shingle, the damaged shingle and to various portions of the patch itself. Here again, this embodiment of the present shingle patch overlays the damaged shingle and provides an extra layer of protection to the roof structure.
In still another aspect of the present invention, an asphalt emulsion ejector system is also disclosed for repairing a damaged shingle. In this method, a sealant or appropriate emulsion is injected under the damaged shingle so as to cover the area where the damage occurred and to likewise seal the bottom of the damaged shingle to the shingle located therebelow. The upper surface of the damaged shingle is then filled with a liquid emulsion to seal the damaged area located on the top surface of the damaged shingle and color granules are placed in the emulsion to match the granules associated with the damaged shingle. In this method, no specific shingle patch is utilized.
In addition, several tools are disclosed which are specifically designed to raise the bottom edge of the shingle to be lifted so as to create enough space so as to slide the present shingle patch under the raised shingle. One of the disclosed tools also includes a trowel portion with optional saw teeth located along one or both opposed side edge portions thereof for breaking up the sealed asphalt associated with the already installed shingle to be lifted. The trowel portion of this tool can likewise optionally include a heated portion to facilitate the break-up of the seal associated with the shingle to be lifted.
In still another aspect of the present invention, an integral nail/disk structure is disclosed which eliminates the need of having any exposed nails associated with a shingled roof. In this aspect of the present invention, a color matching asphalt shingle disk or other disk material is integrally formed with a nail structure such that both the disk and nail are manufactured together. The body of the disk can take on any shape such as a round shape, a rectangular shape, or a square shape made of hail impact resistant shingle type material or other material which can include a reinforcing layer. A sealant again can optionally cover the underside portion of the disk thereby allowing the disk to permanently seal to the existing shingle when the nail/disk structure is nailed into an existing shingle. The sealant helps to prevent water from entering under the disk. The nail structure itself may include a barbed structure to further improve attachment to the existing shingle.
The present nail/disk structure can be used in all places where an exposed nail head would typically exist on a shingled roof. More specifically, this nail/disk structure would be used as the last course of nails on a typical shingled roof as well as around dormers, chimneys and the like. The present nail/disk structure eliminates the need for caulking or using other sealants to cover exposed nail heads and likewise saves time, money and improves the sealing capacity associated with the last course of nails in a typical shingled roof. The present system and structure will last the life of the new roof shingles; it will match the colors associated with a typical roof and it eliminates exposed nail heads.
The various embodiments of the present shingle patch provide an improved roof repair system for repairing and/or replacing damaged shingles due to severe weather damage such as hail and the like, and the integrated integral nail/disk structure provides a weather-proof roofing nail seal combination that prevents corrosion of nail heads due to exposure to the elements and also provides leak protection and eliminates exposed roofing nails.
These and other specific aspects and advantages of the present embodiments will be apparent to those skilled in the art after reviewing the following detailed description of the illustrative embodiments set forth below which, taken in conjunction with the accompanying drawings, disclose improved structures for the roofing industry.
Several embodiments of the present invention will now be explained with reference to the accompanying drawings. It will be apparent to those skilled in the art from this disclosure that the following description of the various embodiments of the present invention is provided for illustration purposes only and not for the purpose of limiting the present invention as defined by the appended claims and their equivalents.
Referring to the drawings more particularly by reference numbers wherein like numbers refer to like parts, the number 10 in
The notched portion 14 also includes a sealant and/or adhesive 18 distributed across at least a portion of its upper surface as best illustrated in
The opposite end portion 20 of base member 12 includes a roofing nail 22 built into the base member 12. Roofing nail 22 can be any known conventional roofing nail suitable for asphalt shingles. The roofing nail 22 is attached or integrally formed with the shingle patch base member 12 during the manufacturing process or, nail 22 can be otherwise attached to member 12 after the manufacturing process so long as nail 22 and base member 12 form a one-piece unit.
A sealant 26 is likewise associated with at least a portion of the bottom surface 24 of base member 12 as best illustrated in
The top portion of base member 12 includes colored granules (not shown) that are embedded into the patch material so as to match the color of the existing damaged shingle to be repaired. In this regard, the present shingle patch 10 can be produced in multiple colors so as to match the known existing asphalt shingle colors present in the marketplace, or the base member 12 can be color-coordinated with the shingles to be repaired on-site in the field by using a pre-made shingle base member 12 with no color granules associated therewith and thereafter affixing colored granules to the member 12 in the field so as to match the existing colors of the roof to be repaired. Colored granules can be applied to any portion or the entire top surface of base member 12 in a known conventional manner using appropriate adhesives and/or other sealing materials.
Once notched portion 14 is inserted under the existing adjacent shingle 34, the opposite end portion 20 of base member 12 housing the integrated roofing nail 22 is then nailed to the damaged shingle 36 as best illustrated in
Shingle patch 42 differs from shingle patch 10 in that it does not include an integrated roofing nail. Instead, the opposite end portion 56 of base member 44 includes a flap portion 58 that can be moved or lifted away from its mating surface 60 as best illustrated in
Shingle patch 42 is attached overlaying a damaged shingle in a manner substantially similar to shingle patch 10 as illustrated and discussed with respect to
Importantly, flap portion 58 covers the head 68 of roofing nail 62 and serves as a seal thereby preventing the roofing nail 62 from being exposed to the elements. Again, the respective heat activated sealants 48, 54 and 64, if used, can all be activated either by the sun or by other heat sources thereby bonding the shingle patch 42 to the existing damaged shingle, the adjacent existing shingle, and the various portions of the mating flap portion 58. Here again, shingle patch 42 overlays the damaged shingle and provides an extra layer of protection to the roof structure. The method of positioning and attaching the shingle patch 42 over a damaged shingle is substantially identical to the procedure outlined with respect to shingle patch 10 as illustrated in
Tool 90 illustrated in
In another aspect of the asphalt emulsion ejector system 98, tube 102 can be manipulated under the damaged shingle by using any one of the tools 82, 90 or any other suitable tool and the liquid emulsion can again be pumped or moved under the damaged shingle and around the damaged area to again seal the bottom of the damaged shingle to the shingle located therebelow. In this aspect of system 98, no hole 100 need be made through the damaged shingle. Once a sealant is pumped under the damaged area, the damaged upper face of the shingle is filled with an emulsion to seal the damaged area and colored granules are again placed in the emulsion to match the granules associated with the damaged shingle. Either method of system 98 will adequately seal and repair the damaged shingle.
More particularly,
A sealant 78 can optionally cover the underside portion of disk 72 as best illustrated in
The present nail/disk structure 70 represents an improvement over the structures disclosed in Applicant's U.S. Pat. No. 9,206,835 as well as the other known structures disclosed in the prior art. The present structure 70 is a one-piece structure which can be used in all places where an exposed nail head would typically exist on a shingle roof. This could include use as the last course of nails on a typical shingled roof at the apex of the roof, at edges abutting dormers and chimneys, and at other places where an exposed nail head would occur. The present nail/disk structure 70 eliminates the need for caulking or using other sealants, adhesives or granules to cover exposed nail heads such as the exposed nail heads disclosed in U.S. Pat. No. 9,206,835, and its use saves time, money and improves the sealing capacity associated with exposed nails in a typical shingled roof. A roofing technician would carry a plurality of the nail/disk structures 70 along with typical roofing nails and would use the present structure 70 at all locations where the roofing nail will not be covered by another shingle. The present system and structure would be compatible with the life of new roof shingles; it will match the colors associated with a particular roof; and it eliminates exposed nail heads.
A cellophane tape or other release tape 81 can be placed over the sealant 78 so as to prevent the sealant from binding to any other material during shipment and storage. The roof technician would have to remove the release tape prior to nailing the present structure 70 into an asphalt shingle. The present one-piece structure 70 provides a water-proof roofing nail seal combination that prevents corrosion of nail heads due to exposure to the elements and also provides leak protection since the disk or body member 72 substantially overlays and overlaps the hole formed in the existing shingle through which the nail 74 is hammered. In addition, the sealant 78 likewise provides additional leak protection if used. If a sealant is used, the sealant causes the disk 72 to permanently seal to the existing shingle and further prevents water from entering under the disk 72. There are no exposed nail heads associated with the integral nail/disk member 70 since the nail head 75B is incorporated into or encapsulated within the disk or body member 72. Other advantages and features of the present nail/disk structure 70 will be apparent to those skilled in the art.
Understanding the scope of the present invention, the term “comprising” and its derivatives, as used herein, are intended to be open-ended terms that specify the presence of the stated features, elements, components and/or groups, but do not exclude the presence of other unstated features, elements, components and/or groups. The foregoing also applies to words having similar meanings such as the terms “including”, “having” and their derivatives. The terms of degree such as “substantially”, “about” and “approximate” as used herein mean a reasonable amount of deviation of the modified term such that the end result is not significantly changed.
Only selected embodiments have been chosen to illustrate the present inventions. The various constructions described above and illustrated in the drawings are presented by way of example only and are not intended to limit the concepts and principals of the present inventions. It is also recognized and anticipated that the size, shape, location and other orientation of the various components and/or elements associated with the present inventions can be changed as needed and/or as desired depending upon a particular application. Components that are shown directly connected or contacting each other can have intermediate structures disposed between them. In addition, the functions of one element can be performed by two elements, and vice versa. The structures and functions of one embodiment can also be adopted in another embodiment. It is not necessary for all advantages to be present in a particular embodiment at the same time. Thus, the foregoing descriptions of the embodiments according to the present inventions are provided for illustration only, and not for the purpose of limiting the inventions as defined by the appended claims and their equivalents.
Thus, there has been shown and described several embodiments of a novel shingle patch for damage repair of asphalt shingles as well as an integral nail/disk structure for eliminating exposed roofing nails. As is evident from the foregoing description, certain aspects of the present inventions are not limited by the particular details of the examples illustrated herein, and it is therefore contemplated that other modifications, applications, variations, or equivalents thereof, will occur to those skilled in the art. Many such changes, modifications, variations and other uses and applications of the present constructions will, however, become apparent to those skilled in the art after considering the specification and the accompanying drawings. All such changes, modifications, variations and other uses in applications which do not depart from the spirit and scope of the present inventions are deemed to be covered by the inventions which are limited only by the claims which follow.
This application is a continuation-in-part application to U.S. patent application Ser. No. 15/428,521 filed Feb. 9, 2017, which application is a divisional application of U.S. patent application Ser. No. 14/965,559 filed Dec. 10, 2015. The entire disclosures of these applications are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
669315 | Whitmore | Mar 1901 | A |
742589 | Casler | Oct 1903 | A |
846572 | Kunzler | Mar 1907 | A |
868930 | Kirk | Oct 1907 | A |
948116 | Pendery | Feb 1910 | A |
1018524 | Smiley | Feb 1912 | A |
1410076 | Overbury | Mar 1922 | A |
1583163 | Munro | May 1926 | A |
1649635 | Willard | Nov 1927 | A |
1925774 | Phillips | Sep 1933 | A |
2207897 | Schaus | Mar 1939 | A |
2576262 | Morehead | Nov 1951 | A |
2616377 | Bullard | Nov 1952 | A |
2674026 | St. Palley | Apr 1954 | A |
3049836 | Weissman | Aug 1962 | A |
3230817 | Thomas | Jan 1966 | A |
3468092 | Chalmers | Sep 1969 | A |
3469490 | Pearce | Sep 1969 | A |
3485134 | Ott | Dec 1969 | A |
3750523 | Fujita | Aug 1973 | A |
4010590 | Reinke | Mar 1977 | A |
4074501 | Sandqvist | Feb 1978 | A |
4195461 | Thiis-Evensen | Apr 1980 | A |
4343215 | Fuchs | Aug 1982 | A |
4637191 | Smith | Jan 1987 | A |
4659604 | Lambuth | Apr 1987 | A |
4686808 | Triplett | Aug 1987 | A |
4781508 | Schroeder et al. | Nov 1988 | A |
4787188 | Murphy | Nov 1988 | A |
4788807 | Whitman | Dec 1988 | A |
4875322 | Rozzi | Oct 1989 | A |
4923348 | Carlozzo et al. | May 1990 | A |
4982543 | Boyd | Jan 1991 | A |
5195290 | Hulett | Mar 1993 | A |
5204148 | Alexander et al. | Apr 1993 | A |
5239802 | Robinson | Aug 1993 | A |
5311716 | Houssin | May 1994 | A |
5419666 | Best | May 1995 | A |
5669277 | Perrone | Sep 1997 | A |
5778623 | Powell | Jul 1998 | A |
5800891 | Wasitis | Sep 1998 | A |
5916103 | Roberts | Jun 1999 | A |
5946877 | Gallinat et al. | Sep 1999 | A |
5997229 | Akers | Dec 1999 | A |
6095739 | Albertson et al. | Aug 2000 | A |
6148578 | Nowacek et al. | Nov 2000 | A |
D471400 | Jeter et al. | Mar 2003 | S |
6813866 | Naipawer, III | Nov 2004 | B2 |
7712275 | Kelly | May 2010 | B2 |
7900266 | Longcor, IV | Mar 2011 | B1 |
8210785 | Gager | Jul 2012 | B1 |
8763337 | Buckwalter et al. | Jul 2014 | B2 |
9206835 | Mathieson | Dec 2015 | B2 |
9309911 | Powell | Apr 2016 | B1 |
D764896 | Partridge et al. | Aug 2016 | S |
9631383 | Mathieson | Apr 2017 | B1 |
9695595 | Mathieson | Jul 2017 | B1 |
20040115022 | Albertson et al. | Jun 2004 | A1 |
20050055961 | Albertson et al. | Mar 2005 | A1 |
20050102922 | Williams | May 2005 | A1 |
20050204675 | Snyder | Sep 2005 | A1 |
20060059825 | Wiercinski et al. | Mar 2006 | A1 |
20060099370 | Glass | May 2006 | A1 |
20070199251 | Sieling et al. | Aug 2007 | A1 |
20070199276 | Duque | Aug 2007 | A1 |
20070237600 | Albertson et al. | Oct 2007 | A1 |
20070261337 | Whitaker et al. | Nov 2007 | A1 |
20080155923 | Teng et al. | Jul 2008 | A1 |
20080209835 | Margarites | Sep 2008 | A1 |
20090145944 | Shor | Jun 2009 | A1 |
20090245966 | Albertson et al. | Oct 2009 | A1 |
20100192509 | Sieling et al. | Aug 2010 | A1 |
20110041446 | Stephens et al. | Feb 2011 | A1 |
20110083391 | Mathieson | Apr 2011 | A1 |
20110176885 | Albertson et al. | Jul 2011 | A1 |
20110289879 | Binkley et al. | Dec 2011 | A1 |
20130025224 | Vermilion et al. | Jan 2013 | A1 |
20140334897 | Mathieson | Nov 2014 | A1 |
20160002914 | Snyder et al. | Jan 2016 | A1 |
20160024794 | Jenkins et al. | Jan 2016 | A1 |
20170167143 | Mathieson | Jun 2017 | A1 |
20170218997 | Mathieson | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
2484560 | May 2005 | CA |
204326375 | May 2015 | CN |
19547851 | Jun 1997 | DE |
0558459 | Sep 1993 | EP |
191111261 | Jan 1912 | GB |
211338 | Feb 1924 | GB |
02020754 | Jan 1990 | JP |
02-272152 | Nov 1990 | JP |
09151592 | Jun 1997 | JP |
2001-173623 | Jun 2001 | JP |
8102437 | Sep 1981 | WO |
Entry |
---|
7 page translationof CN 204326375U found on Google Apr. 14, 2018. |
Number | Date | Country | |
---|---|---|---|
20180135319 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14965559 | Dec 2015 | US |
Child | 15428521 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15428521 | Feb 2017 | US |
Child | 15872131 | US |