In one aspect, the present inventions described and illustrated herein relate to an integrated circuit device having a memory cell array including a plurality of rows and columns, and techniques for controlling and/or operating such a device. More particularly, in one aspect, the present inventions relate to an integrated circuit having memory cell array including a plurality of bit lines and a plurality of bit line segments, wherein a plurality of bit line segments are associated with each bit line, and wherein each bit line segment includes a plurality of memory cells (for example, memory cells having an electrically floating body in which a charge is stored) associated therewith and connected thereto; isolation circuits selectively and responsively couple an associated bit line segment to an associated bit line.
Briefly, with reference to
One type of dynamic random access memory cell is based on, among other things, a floating body effect of SOI transistors. (See, for example, U.S. Pat. No. 6,969,662). In this regard, the memory cell may consist of a partially depleted (PD) or a fully depleted (FD) SOI transistor (or transistor formed in bulk material/substrate) on having a channel, which is disposed adjacent to the body and separated therefrom by a gate dielectric. The body region of the transistor is electrically floating in view of the insulation or non-conductive region (for example, in bulk-type material/substrate) disposed beneath the body region. The state of cell is determined by the concentration of charge in the body of the transistor.
With reference to
Data is written into or read from a selected memory cell by applying suitable control signals to a selected word line(s) 28, and/or a selected bit line(s) 32. The source line (30) is a common node in a typical implementation though it could be similarly decoded. In response, charge carriers are accumulated in or emitted and/or ejected from electrically floating body region 18 wherein the data states are defined by the amount of carriers within electrically floating body region 18. Notably, the entire contents of the Semiconductor Memory Device Patent Application, including, for example, the features, attributes, architectures, configurations, materials, techniques and advantages described and illustrated therein, are incorporated by reference herein.
As mentioned above, memory cell 12 of memory cell array 10 operates by accumulating in or emitting/ejecting majority carriers (electrons or holes) 34 from body region 18 of, for example, N-channel transistors. (See,
Notably, an advantage of the floating body memory cell compared to a more traditional DRAM cell (i.e., one transistor and one capacitor) is that the floating body memory cell does not require an associated capacitor to store charge. This tends to reduce process complexity and provide a smaller memory cell footprint. In this way, the cost of a memory cell array implementing such memory cells is less than conventional memory cell arrays.
Another significant concern in memory cell arrays is power consumption. The need for products with reduced power consumption is particularly acute due to proliferation of battery powered products. With the floating body memory, one source of power consumption is the power consumed during refresh operations. A refresh operation involves reading the state of a cell and re-writing that cell to the state that was read. This may be necessary as a result of gradual loss of charge over time in the floating body. The rate of charge loss increases in a floating body array when disturb voltages are applied to the nodes of a given cell. These disturb voltages occur in an array when reads and writes are made to rows in a shared array. The unselected row remains with its gate off, but its drain nodes are “exposed” to changing voltages due to the voltages applied to the shared bit line.
Notably, the above mentioned disturb voltage tends to reduce the refresh interval necessary to maintain stored data and thus, increase the power consumption required to maintain stored data.
There are many inventions described and illustrated herein. The present inventions are neither limited to any single aspect nor embodiment thereof, nor to any combinations and/or permutations of such aspects and/or embodiments. Moreover, each of the aspects of the present inventions, and/or embodiments thereof, may be employed alone or in combination with one or more of the other aspects of the present inventions and/or embodiments thereof. For the sake of brevity, many of those permutations and combinations will not be discussed separately herein.
In a first principle aspect, certain of the present inventions are directed to an integrated circuit device (for example, logic device or discrete memory device) comprising a memory cell array including (1) a plurality of bit lines, (2) a plurality of bit line segments, wherein at least two bit line segments are associated with each bit line and wherein each bit line segment is selectively and responsively coupled to or decoupled from its associated bit line, (3) a plurality of word lines, and (4) a plurality of memory cells, wherein each memory cell stores at least two data states and includes a transistor. Each transistor of each memory cell includes a first region connected to an associated bit line segment, a second region, a body region disposed between the first region and the second region, and a gate disposed over the body region and coupled to an associated word line. The integrated circuit device includes a first group of memory cells is coupled to a first bit line via a first bit line segment, a second group of memory cells is coupled to the first bit line via a second bit line segment, a third group of memory cells is coupled to a second bit line via a third bit line segment, and a fourth group of memory cells is coupled to the second bit line via a fourth bit line segment. The integrated circuit device of certain aspects of the inventions also includes first circuitry, coupled to the first and second bit lines, to sense the data state stored in the memory cells of the first, second, third and fourth groups of memory cells.
In one embodiment, the integrated circuit device may include a plurality of isolation circuits, wherein each isolation circuit is associated with a bit line segment and wherein each isolation circuit is disposed between the associated bit line segment and the associated bit line thereof. The isolation circuit responsively connects the associated bit line segment to or disconnects the associated bit line segment from the associated bit line.
In one embodiment, each isolation circuit includes a first transistor (P-type or an N-type transistor) comprising: (i) a first region connected to the associated bit line, (ii) a second region connected to the associated bit line segment, (iii) a body region disposed between the first region and the second region, and (iv) a gate disposed over the body region and configured to receive a control signal. In another embodiment, each isolation circuit further includes a second transistor (P-type or an N-type transistor) comprising: (i) a first region connected to the associated bit line segment, (ii) a second region connected to a predetermined voltage, (iii) a body region disposed between the first region and the second region, and (iv) a gate disposed over the body region and configured to receive a control signal.
In another embodiment, each isolation circuit includes a plurality of transistors including a first transistor and a second transistor, wherein the first and second transistors are arranged in a CMOS configuration. The isolation circuit may further include a third transistor comprising: (i) a first region connected to the associated bit line segment, (ii) a second region connected to a predetermined voltage, (iii) a body region disposed between the first region and the second region, and (iv) a gate disposed over the body region and configured to receive a control signal.
In yet another embodiment of this aspect of the inventions, the integrated circuit device further includes a plurality of isolation circuits, wherein each isolation circuit is associated with a bit line segment and wherein each isolation circuit is disposed between the associated bit line segment and the associated bit line thereof. The plurality of isolation circuit includes first isolation circuit is disposed between the first bit line segment and the first bit line, a second isolation circuit is disposed between the second bit line segment and the first bit line. The first and second isolation circuits each include a transistor comprising: (i) a first region connected to the first bit line, (ii) a second region connected to the associated bit line segment, (iii) a body region disposed between the first region and the second region, and (iv) a gate disposed over the body region and configured to receive a control signal, wherein the transistors of the first and second isolation circuits share the first region. In one embodiment, the transistors of the first and second isolation circuits include P-type transistors or N-type transistors. The first and second isolation circuits may each further include a clamp transistor comprising: (i) a first region connected to the associated bit line segment, (ii) a second region connected to a predetermined voltage, (iii) a body region disposed between the first region and the second region, and (iv) a gate disposed over the body region and configured to receive a control signal.
In one embodiment, the number of memory cells in each of the first, second, third and fourth groups of memory cells may be equal to or greater than two. In another embodiment, the number of memory cells in each of the first, second, third and fourth groups of memory cells is equal to or greater than four.
In another principle aspect, certain of the present inventions are directed to an integrated circuit device (for example, logic device or discrete memory device) comprising a memory cell array, including a plurality of bit lines, a plurality of bit line segments, wherein at least two bit line segments are associated with each bit line and wherein each bit line segment is selectively and responsively coupled to or decoupled from associated bit line, a plurality of word lines, and a plurality of isolation circuits, wherein an isolation circuit is disposed between an associated bit line segment and associated bit line thereof, and wherein the isolation circuit responsively connects the associated bit line segment to or disconnects the associated bit line segment from the associated bit line. In this aspect, a plurality of memory cells are arranged in groups wherein each group of memory cells is connected to an associated bit line segment, and wherein each memory cell stores at least two data states which are representative of an amount of charge in the body region, each memory cell includes a transistor. Each transistor includes a first region connected to an associated bit line segment, a second region, a body region disposed between the first region and the second region, wherein the body region is electrically floating, and a gate disposed over the body region and coupled to an associated word line. The integrated circuit device of this aspect of the inventions also includes first circuitry, coupled to bit lines, to sense the data state stored in the memory cells.
In one embodiment, each isolation circuit includes a first transistor (a P-type or an N-type transistor) comprising: (i) a first region connected to the associated bit line, (ii) a second region connected to the associated bit line segment, (iii) a body region disposed between the first region and the second region, wherein the body region is electrically floating, and (iv) a gate disposed over the body region and configured to receive a control signal. Each isolation circuit may further include a second transistor (a P-type or an N-type transistor) comprising: (i) a first region connected to the associated bit line segment, (ii) a second region connected to a predetermined voltage, (iii) a body region disposed between the first region and the second region, wherein the body region is electrically floating, and (iv) a gate disposed over the body region and configured to receive a control signal.
In another embodiment, each isolation circuit may include a plurality of transistors including a first transistor and a second transistor which are arranged in a CMOS configuration. The isolation circuits of this embodiment may each also include a third transistor comprising: (i) a first region connected to the associated bit line segment, (ii) a second region connected to a predetermined voltage, (iii) a body region disposed between the first region and the second region, wherein the body region is electrically floating, and (iv) a gate disposed over the body region and configured to receive a control signal.
In one embodiment, the number of memory cells in each group of memory cells may be equal to or greater than two. In another embodiment, the number of memory cells in each of group of memory cells is equal to or greater than four. Indeed, in yet another embodiment, the number of memory cells in each of group of memory cells may be odd or even.
In another principle aspect, certain of the present inventions are directed to an integrated circuit device (for example, logic device or discrete memory device) comprising a memory cell array including a plurality of bit lines, a plurality of bit line segments, wherein at least two bit line segments are associated with each bit line and wherein each bit line segment is selectively and responsively coupled to or decoupled from its associated bit line, a plurality of word lines and a plurality of isolation circuits, wherein an isolation circuit is disposed between each bit line segment and its associated bit line, and wherein the isolation circuit responsively connects the associated bit line segment to or disconnects the associated bit line segment from the associated bit line. The memory cell array also includes a plurality of memory cells, wherein each is connected to an associated bit line segment, stores at least two data state and consists essentially of a transistor, wherein each transistor includes a first region connected to an associated bit line segment, a second region, a body region disposed between the first region and the second region, wherein the body region is electrically floating and a gate disposed over the body region and coupled to an associated word line. A first group of memory cells is coupled to a first bit line via a first bit line segment. A second group of memory cells is coupled to the first bit line via a second bit line segment. A third group of memory cells is coupled to a second bit line via a third bit line segment. A fourth group of memory cells is coupled to the second bit line via a fourth bit line segment. The integrated circuit device of this aspect of the inventions further first circuitry, coupled to the first and second bit lines, to sense the data state stored in the memory cells of the first, second, third and fourth groups.
In one embodiment, the integrated circuit device may include a plurality of isolation circuits, wherein each isolation circuit is associated with a bit line segment and wherein each isolation circuit is disposed between the associated bit line segment and the associated bit line thereof. The isolation circuit responsively connects the associated bit line segment to or disconnects the associated bit line segment from the associated bit line.
In one embodiment, each isolation circuit includes a first transistor (P-type or an N-type transistor) comprising: (i) a first region connected to the associated bit line, (ii) a second region connected to the associated bit line segment, (iii) a body region disposed between the first region and the second region, and (iv) a gate disposed over the body region and configured to receive a control signal. In another embodiment, each isolation circuit further includes a second transistor (P-type or an N-type transistor) comprising: (i) a first region connected to the associated bit line segment, (ii) a second region connected to a predetermined voltage, (iii) a body region disposed between the first region and the second region, and (iv) a gate disposed over the body region and configured to receive a control signal.
In another embodiment, each isolation circuit includes a plurality of transistors including a first transistor and a second transistor, wherein the first and second transistors are arranged in a CMOS configuration. The isolation circuit may further include a third transistor comprising: (i) a first region connected to the associated bit line segment, (ii) a second region connected to a predetermined voltage, (iii) a body region disposed between the first region and the second region, and (iv) a gate disposed over the body region and configured to receive a control signal.
In yet another embodiment of this aspect of the inventions, the integrated circuit device further includes a plurality of isolation circuits, wherein each isolation circuit is associated with a bit line segment and wherein each isolation circuit is disposed between the associated bit line segment and the associated bit line thereof. The plurality of isolation circuit includes first isolation circuit is disposed between the first bit line segment and the first bit line, a second isolation circuit is disposed between the second bit line segment and the first bit line. The first and second isolation circuits each include a transistor comprising: (i) a first region connected to the first bit line, (ii) a second region connected to the associated bit line segment, (iii) a body region disposed between the first region and the second region, and (iv) a gate disposed over the body region and configured to receive a control signal, wherein the transistors of the first and second isolation circuits share the first region. In one embodiment, the transistors of the first and second isolation circuits include P-type transistors or N-type transistors. The first and second isolation circuits may each further include a clamp transistor comprising: (i) a first region connected to the associated bit line segment, (ii) a second region connected to a predetermined voltage, (iii) a body region disposed between the first region and the second region, and (iv) a gate disposed over the body region and configured to receive a control signal.
In one embodiment, the number of memory cells in each of the first, second, third and fourth groups of memory cells may be equal to or greater than two. In another embodiment, the number of memory cells in each of the first, second, third and fourth groups of memory cells is equal to or greater than four.
Again, there are many inventions, and aspects of the inventions, described and illustrated herein. This Summary of the Inventions is not exhaustive of the scope of the present inventions. Indeed, this Summary of the Inventions may not be reflective of or correlate to the inventions protected in this and/or in continuation/divisional applications hereof.
Moreover, this Summary of the Inventions is not intended to be limiting of the inventions or the claims (whether the currently presented claims or claims of a divisional/continuation application) and should not be interpreted in that manner. While certain embodiments have been described and/or outlined in this Summary of the Inventions, it should be understood that the present inventions are not limited to such embodiments, description and/or outline, nor are the claims limited in such a manner (which should also not be interpreted as being limited by the Summary of the Inventions).
Indeed, many other aspects, inventions and embodiments, which may be different from and/or similar to, the aspects, inventions and embodiments presented in this Summary, will be apparent from the description, illustrations and claims, which follow. In addition, although various features, attributes and advantages have been described in this Summary of the Inventions and/or are apparent in light thereof, it should be understood that such features, attributes and advantages are not required whether in one, some or all of the embodiments of the present inventions and, indeed, need not be present in any of the embodiments of the present inventions.
In the course of the detailed description to follow, reference will be made to the attached drawings. These drawings show different aspects of the present inventions and, where appropriate, reference numerals illustrating like structures, components, materials and/or elements in different figures are labeled similarly. It is understood that various combinations of the structures, components, materials and/or elements, other than those specifically shown, are contemplated and are within the scope of the present inventions.
Moreover, there are many inventions described and illustrated herein. The present inventions are neither limited to any single aspect nor embodiment thereof, nor to any combinations and/or permutations of such aspects and/or embodiments. Moreover, each of the aspects of the present inventions, and/or embodiments thereof, may be employed alone or in combination with one or more of the other aspects of the present inventions and/or embodiments thereof. For the sake of brevity, many of those permutations and combinations will not be discussed separately herein.
Again, there are many inventions described and illustrated herein. The present inventions are neither limited to any single aspect nor embodiment thereof, nor to any combinations and/or permutations of such aspects and/or embodiments. Each of the aspects of the present inventions, and/or embodiments thereof, may be employed alone or in combination with one or more of the other aspects of the present inventions and/or embodiments thereof. For the sake of brevity, many of those combinations and permutations are not discussed separately herein.
There are many inventions described and illustrated herein. In one aspect, the present inventions are directed to an architecture, a configuration and/or a layout of a semiconductor memory cell array having a plurality of memory cells, arranged in a plurality of rows and columns. The memory cell array includes a plurality of bit lines, wherein each bit line is coupled to circuitry to read data from or write data into memory cells associated with the bit line. The memory cell array of the present inventions further includes a plurality of bit line segments coupled to each bit line, wherein each bit line segment is selectively and responsively coupled to its associated bit line via an associated isolation circuit. Notably, the memory cell array may comprise a portion of an integrated circuit device, for example, a logic device (such as, a microcontroller or microprocessor) or a memory device (such as, a discrete memory). In one embodiment of this aspect of the present inventions, each memory cell includes at least one electrically floating body transistor.
In another aspect, the present inventions are directed to techniques to control, read from and/or write data into one or more memory cells of the memory cell array. In this regard, in one embodiment, an integrated circuit device may include circuitry to implement the control, read and/or write operations/techniques with respect to the memory cell array having a plurality of bit line segments responsively coupled to each of the bit lines via an associated isolation circuit. In one embodiment of the present inventions, each memory cell includes at least one electrically floating body transistor.
With reference to
Notably, the source regions of transistors 14 of memory cells 12 may be connected to a common signal line that may be routed parallel to word lines 28. A predetermined voltage (for example, a ground, common potential or decoded signal) may be applied to the common signal line.
In this exemplary embodiment, isolation circuit 104xn includes isolation transistor 106x4 having a first region (for example, source region) connected to bit line segment 32xn, and a second region (for example, drain region) connected to bit line 32x. As such, in this embodiment, an isolation enable signal is applied to the gate of isolation transistor 106xn, via isolation select line 108xn, to connect bit line segment 32xn, to associated bit line 32x. In response to the isolation enable signal, the transistor 106xn connects bit line segment 32xn to associated bit line 32x. For example, in response to an isolation enable signal applied to isolation select line 108a, the source region of isolation transistor 106 connects bit line segment 32a1 to bit line 32a.
Notably, in this exemplary embodiment, four adjacent memory cells 12 are connected to an associated bit line segment 32xn. The present inventions may, however, be implemented with any number of memory cells 12, whether odd or even, connected to an associated bit line segment 32xn. Indeed, any number of memory cells 12, whether odd or even, is intended to fall within the scope of the present inventions.
The integrated circuit device 100 further includes memory cell selection circuitry 110 and reading and programming circuitry 112. Briefly, memory cell selection circuitry 110 selects or enables one or more memory cells 12 to facilitate reading data therefrom and/or writing data thereto by applying a control signal, for example, on one or more word line 28 and isolation select lines 108. The memory cell selection circuitry 110 may generate such control signals using address data, for example, row address data. Indeed, memory cell selection circuitry 110 may include a conventional word line decoder and/or driver. There are many different control/selection techniques (and circuitry therefor) to implement the memory cell selection technique. Such techniques, and circuitry therefor, are well known to those skilled in the art. All memory cell control/selection techniques, and circuitry therefor, whether now known or later developed, are intended to fall within the scope of the present inventions.
Notably, memory cell selection circuitry 110 may generate the isolation enable signal(s) using the row addresses and appropriate addressing decoding architecture (which may be a subset of the pre-existing decoding architecture). In addition thereto, or in lieu thereof, memory cell selection circuitry 110 may employ the control signals applied on the associated word line 28 in conjunction with appropriate logic (for example, an n-input OR gate wherein the “n” inputs are connected to word lines 28 which are connected to memory cells 12 which are associated with bit line segment 32xn; in this way, if any of the associated word lines 28 are enabled, the OR gate connected to receive those word lines 28 generates an active high for the associated isolation enable signal (See, for example,
Alternatively, during “inactive” memory cycles, the “default” condition may include bit line segments 32xn connected to their respective associated bit lines 32x. Under these circumstances, during an active cycle, the decoded or selected bit line segment(s) may remain connected to the associated bit line and all unaddressed or unselected segments 32 may be isolated from the associated bit lines via associated isolation circuits 104. As such, in this embodiment, the bit line segments are connected to their respective associated until the associated isolation circuits are disabled (or enabled depending on the type of isolation circuit employed) thereby disconnecting unselected bit line segments form their associated bit line.
As mentioned above, reading and programming circuitry 112 reads data from and writes data to selected memory cells 12. With reference to
The present inventions may employ any type or form of data sense/write circuitry 114 to read the data stored in memory cells 12. For example, the data sense/write circuitry 114 may implement one or more sense amplifiers, using voltage or current sensing techniques, to sense the data state stored in memory cell 12.
Moreover, the present inventions may employ any architecture or layout and/or technique of sensing data from and/or writing data into memory cells 12. For example, reading and programming circuitry 112 may employ the architectures, circuitry and techniques described and illustrated in U.S. Non-Provisional patent application Ser. No. 11/787,718, filed by Popoff, on Apr. 17, 2007, and entitled “Semiconductor Memory Array Architecture, and Method of Controlling Same”, the application being incorporated herein by reference in its entirety. Briefly, with reference to
In one embodiment, the active bit line is selected by memory cell selection circuitry 110 using, for example, one or more bits of the row address (for example, the MSB or LSB). Notably, the other bit line is disconnected from the sensing circuitry of data sense/write circuitry 114. Again, the architectures, circuitry and/or techniques described and illustrated in U.S. Non-Provisional patent application Ser. No. 11/787,718 are incorporated by reference herein.
Notably, with reference to
With continued reference to
Similarly, isolation circuit 104b1, in response to a isolation select signal applied on isolation select line 108a, couples bit line segment 32b1 to bit line 32b. As such, the data state of memory cell 12b4 may be read by the data sensing circuitry of reading and programming circuitry 112. As mentioned above, in one embodiment, during a read operation, the data sensing circuitry in reading and programming circuitry 112 compares a signal from the selected memory cells 12 (in this example, memory cells 12a4 and 12b4) to a reference signal from reference generator circuitry 116 to determine the data state stored in the selected memory cells 12.
Notably, during the exemplary read operation, isolation circuit 104a2 and isolation circuit 104b2 isolate memory cells 12 which are associated with or connected to bit line segments 32a2 and 32b2 (i.e., memory cells 12a5-12a8 and 12b5-12b8, respectively). That is, transistors 14 of memory cells 12 which are connected to the other bit line segments 32xn associated with bit lines 32a and 32b are “isolated” during the read or write operations. Thus, when a drain voltage is passed through isolation transistor 106 associated with the selected memory cell 12 of the associated bit line segments 32xn, the voltage may adversely impact the other cells of that bit line segment; the other memory cells 12 in memory cell array 102 are isolated. Accordingly, such memory cells are less susceptible to voltage/current disturbance on bit line 32 during the read operation of memory cells 12 connected to other bit line segments 32xn (in this example, bit line segments 32a1 and 32b1). Indeed, the present inventions may facilitate implementing significant burst read and write operations where the memory cells isolated from bit lines 32, via isolation circuit 104xn, may be read in a burst read manner (for example, by sequentially addressing those word lines 28 which are associated with a given bit line segment 32).
In a write operation, in response to an address signal designating memory cells 12 connected to, for example, word line 28e, memory cell selection circuitry 110 applies a control signal on word line 28e and isolation select line 108b. In response, isolation circuit 104a2 couples bit line segment 32a2 to bit line 32a. Similarly, isolation circuit 104b2, in response to an isolation select signal applied on isolation select line 108b, couples bit line segment 32b2 to bit line 32b. In this way, the data writing circuitry of reading and programming circuitry 112 may write (or refresh) the data state of memory cells 12a5 and 12b5.
During the exemplary write operation, isolation circuits 106a1 and 106b1 isolate memory cells 12 which are connected to bit line segments 32a1 and 32b1 (i.e., memory cells 12a1-12a4 and 12b1-12b4, respectively). Accordingly, such memory cells are less susceptible to voltage/current disturbance on bit line 32 during the write operation of memory cells 12 connected to other bit line segments 32xn (in this example, bit line segments 32a2 and 32b2). Moreover, as noted above in the context of a read operation, the present inventions may facilitate implementing significant burst write operations where the memory cells isolated from bit lines 32, via isolation circuit 104xn, may be written in a burst write manner (for example, by sequentially addressing those word lines 28 which are associated with a given bit line segment 32).
Notably, the discussion above with respect to
As discussed above, in one embodiment, the present inventions may include memory cells 12 having electrically floating body transistor 14, as described above. The memory cells 12 may include electrically floating body transistor 14 that are N-channel type transistor (see,
In another embodiment, isolation circuit 104 may include a plurality of transistors 106xnm and 106xnm+1. For example, with reference to
Implementing a CMOS isolation circuit may enhance or improve the charge transfer from bit line 32x to an associated segmented bit line 32xn, (and/or vice versa). In addition to providing a more complete charge transfer from bit line 32 to the associated segmented bit line 32xn, employing a CMOS isolation circuit may also enhance the access times of the read and write operations. Notably, although there may be certain inefficiency in the size and layout of memory cell array 102, such inefficiency may be mitigated by increasing the number of memory cells 12 which are associated with a given bit line segment 32xn and/or increasing the number of bit line segments 32xn associated with each bit line 32.
In another embodiment, isolation circuits 104 may be located adjacent each other, in a mirror layout, to improve array efficiency. In this regard, isolation transistors 106xn of isolation circuits 104 may be juxtaposed so that the one or more regions of isolation transistors 106xn are “shared” or are a common region. For example, with reference to
With reference to
In another embodiment, isolation circuits 104 include two or more transistors including an isolation transistor and a clamp transistor. With reference to
With continued reference to
Thus, in operation, when bit line segment 32a2 is isolated from bit line 32a, any leakage currents that may tend to “charge-up” the bit line segment 32a2 are addressed and/or controlled by enabling clamp transistor 106a22, which maintains bit line segment 32a2 at a predetermined and/or fixed voltage. Although this may not present a disturb due to the limited power available, it may be advantageous to eliminate any “charging” of bit line segment 32ax via the clamp transistor. Notably, the embodiment of
As noted above, in one embodiment, the present inventions may implement memory cells 12 including N-channel type transistor (see,
It may be advantageous to incorporate or provide a timing relationship between the enablement of isolation transistor 106xnm and the disablement of the associated clamp transistor 106xnm+1 from the predetermined and/or fixed voltage. In this regard, in one embodiment, isolation transistor 106xnm may be enabled coincident (or substantially coincident) with disabling the associated clamp transistor 106xnm+1. In another embodiment, it may be advantageous to disable the clamp transistor 106xnm+1 prior to enabling the associated isolation transistor 106xnm. In yet another embodiment, it may be advantageous to enable isolation transistor 106xnm prior to enabling the associated clamp transistor 106xnm+1.
Notably, as mentioned above, the present inventions may include an even number of memory cells 12 associated with a given bit line segment 32ax or an odd number of memory cells 12 associated with a given bit line segment 32ax. (see, for example,
Indeed, while many of the embodiments illustrated herein provide four memory cells connected to an associated bit line segment, any number of memory cells (including 1, 2, 3, 4, 5, 6, 7, 8, 9 10, 11, etc.) may be associated with a given bit line segment. All embodiments and/or features described and illustrated herein may be implemented with an even number of memory cells (for example, 2, 4, 6, 8, 10, 12, etc.) or odd number of memory cells (for example, 1, 3, 5, 7, 9, 11, 13, etc.) being associated with a predetermined bit line segment. For the sake of brevity, such permutations and combinations are not discussed in detail herein. However, all permutations and combinations of odd or even number of memory cells associated with a bit line segment, in conjunction with the embodiments and/or features described and illustrated herein, are intended to fall within the scope of the present inventions.
As mentioned above, the present inventions may be implemented in a logic device having a memory portion and logic portion (see, for example,
Indeed, the present inventions may be implemented in any configuration and/or arrangement of memory cell array 102 and reading and programming circuitry 112. In this regard, integrated circuit device 100 (for example, memory or logic device) may include a plurality of memory cell arrays 12a-12x, each having corresponding reading and programming circuitry 112a-112x. Moreover, as illustrated in
Notably, the present inventions may be implemented in conjunction with any memory cell technology, whether now known or later developed. For example, the memory cells may include one or more electrically floating body transistors, one transistor-one capacitor architecture, electrically floating gate transistors, junction field effect transistors (often referred to as JFETs), or any other memory/transistor technology whether now known or later developed. All such memory technologies are intended to fall within the scope of the present inventions.
Further, the present inventions may be implemented in conjunction with any type of memory (including discrete or integrated with logic devices), whether now known or later developed. For example, the memory may be a DRAM, SRAM and/or Flash. All such memories are intended to fall within the scope of the present inventions.
In one embodiment, the memory cells of the memory cell array may include at least one electrically floating body transistor which stores an electrical charge in the electrically floating body region of the transistor. One type of such memory cell is based on, among other things, a floating body effect of semiconductor on insulator (SOI) transistors. (See, for example, (1) U.S. Pat. No. 6,969,662, (2) Okhonin et al., U.S. Patent Application Publication No. 2006/0131650 (“Bipolar Reading Technique for a Memory Cell Having an Electrically Floating Body Transistor”), (3) Okhonin et al., U.S. Patent Application Publication No. 2007/0058427 (“Memory Cell and Memory Cell Array Having an Electrically Floating Body Transistor, and Methods of Operating Same”), (4) U.S. Non-Provisional patent application Ser. No. 11/633,311, Okhonin, filed Dec. 4, 2006 and entitled “Electrically Floating Body Memory Cell and Array, and Method of Operating or Controlling Same”, (5) U.S. Non-Provisional patent application Ser. No. 11/703,429, Okhonin et al., filed on Feb. 7, 2007 and entitled “Multi-Bit Memory Cell Having Electrically Floating Body Transistor, and Method of Programming and Reading Same”, and (6) U.S. Non-Provisional patent application Ser. No. 11/796,935, Okhonin et al., filed on Apr. 30, 2007 and entitled “Semiconductor Memory Cell and Array Using Punch-Though to Program and Read Same”). In this regard, the memory cell may consist of one or more PD and/or FD SOI transistor (or one or more transistors formed on or in bulk material/substrate) having a gate, which is disposed adjacent to the electrically floating body and separated therefrom by a gate dielectric. The body region of the transistor is electrically floating in view of the insulation or non-conductive region (for example, in bulk-type material/substrate) disposed beneath the body region. The state of memory cell is determined by the concentration of charge within the body region of the SOI transistor.
As mentioned above, the memory cells of the memory cell array may be comprised of N-channel, P-channel and/or both types of transistors. Indeed, circuitry that is peripheral to the memory array (for example, sense amplifiers or comparators, row and column address decoders, as well as line drivers (not illustrated in detail herein)) may include P-channel and/or N-channel type transistors (including, for example, transistors formed in bulk, PD SOI, FD SOI and/or combinations thereof). Where N-channel type transistors or P-channel type transistors are employed as the memory cells in the memory array(s), suitable write and read voltages are well known to those skilled in the art (and in view of the U.S. patents and U.S. patent applications incorporated herein by reference).
Moreover, the present inventions may be implemented in conjunction with any memory cell array architecture and/or control technique. For example, the present inventions may be employed or implemented in conjunction with one or more of the memory cell arrays and/or techniques for programming, reading, controlling and/or operating a memory cell and memory cell array including, for example, (1) Okhonin et al., U.S. Patent Application Publication No. 2006/0131650 (“Bipolar Reading Technique for a Memory Cell Having an Electrically Floating Body Transistor”), (2) Okhonin et al., U.S. Patent Application Publication No. 2007/0058427 (“Memory Cell and Memory Cell Array Having an Electrically Floating Body Transistor, and Methods of Operating Same”), (3) U.S. Non-Provisional patent application Ser. No. 11/633,311, Okhonin, filed Dec. 4, 2006 and entitled “Electrically Floating Body Memory Cell and Array, and Method of Operating or Controlling Same”, and (4) U.S. Non-Provisional Patent application Ser. No. 11/703,429, Okhonin et al., filed on Feb. 7, 2007 and entitled “Multi-Bit Memory Cell Having Electrically Floating Body Transistor, and Method of Programming and Reading Same”. The entire contents of these U.S. patent applications, including, for example, the inventions, features, attributes, architectures, configurations, materials, techniques and advantages described and illustrated therein, are hereby incorporated by reference herein. For the sake of brevity, those discussions will not be repeated; rather those discussions (text and illustrations), including the discussions relating to the memory cell, architecture, layout, structure, are incorporated by reference herein in its entirety.
In addition, the memory cells and/or memory cell arrays may be configured and/or controlled using any of the memory cell arrays, architectures and/or control/operation techniques described and illustrated in the following U.S. patent applications:
(1) application Ser. No. 10/450,238, which was filed by Fazan et al. on Jun. 10, 2003 and entitled “Semiconductor Device” (now U.S. Pat. No. 6,969,662);
(2) application Ser. No. 10/487,157, which was filed by Fazan et al. on Feb. 18, 2004 and entitled “Semiconductor Device” (now U.S. Pat. No. 7,061,050);
(3) application Ser. No. 10/829,877, which was filed by Ferrant et al. on Apr. 22, 2004 and entitled “Semiconductor Memory Cell, Array, Architecture and Device, and Method of Operating Same” (now U.S. Pat. No. 7,085,153);
(4) application Ser. No. 10/840,009, which was filed by Ferrant et al. on May 6, 2004 and entitled “Semiconductor Memory Device and Method of Operating Same” (U.S. Patent Application Publication US 2004/0228168);
(5) application Ser. No. 10/941,692, which was filed by Fazan et al. on Sep. 15, 2004 and entitled “Low Power Programming Technique for a One Transistor SOI Memory Device & Asymmetrical Electrically Floating Body Memory Device, and Method of Manufacturing Same” (now U.S. Pat. No. 7,184,298); and
(6) application Ser. No. 11/724,552, which was filed by Carman on Mar. 15, 2007 and entitled “Memory Array Having a Programmable Word Length, and Method of Operating Same”.
The entire contents of these six (6) U.S. patent applications, including, for example, the inventions, features, attributes, architectures, configurations, materials, techniques and advantages described and illustrated therein, are hereby incorporated by reference herein. For the sake of brevity, those discussions will not be repeated; rather those discussions (text and illustrations), including the discussions relating to the memory cell, architecture, layout, structure, are incorporated by reference.
Notably, the present inventions may be fabricated using well known techniques and/or materials. Indeed, any fabrication technique and/or material, whether now known or later developed, may be employed to fabricate the memory cells, transistors and/or memory array(s). For example, the present inventions may employ silicon (whether bulk-type or SOI), germanium, silicon/germanium, gallium arsenide or any other semiconductor material in which transistors may be formed. Indeed, the electrically floating body transistors, memory cells, and/or memory array(s) may employ the techniques described and illustrated in U.S. patent application entitled “Integrated Circuit Device, and Method of Fabricating Same”, which was filed on Jul. 2, 2004, by Fazan, Ser. No. 10/884,481 (U.S. Patent Application Publication US 2005/0017240) and/or U.S. patent application entitled “One Transistor Memory Cell having a Strained Electrically Floating Body Region, and Method of Operating Same”, which was filed on Oct. 12, 2006, and assigned Ser. No. 11/580,169 (U.S. Patent Application Publication US 2007/0085140), by Bassin (hereinafter collectively “Integrated Circuit Device Patent Applications”). The entire contents of the Integrated Circuit Device Patent Applications, including, for example, the inventions, features, attributes, architectures, configurations, materials, techniques and advantages described and illustrated therein, are hereby incorporated by reference herein.
Further, in one embodiment, an integrated circuit device includes memory section (having a plurality of memory cells, for example, PD or FD SOI memory transistors) and logic section (having, for example, high performance transistors, such as FinFET, multiple gate transistors, and/or non-high performance transistors (for example, single gate transistors that do not possess the performance characteristics of high performance transistors—not illustrated)). Moreover, as noted above, the memory cell and/or memory cell array, as well as the circuitry of the present inventions may be implemented in an integrated circuit device having a memory portion and a logic portion (see, for example,
There are many inventions described and illustrated herein. While certain embodiments, features, attributes and advantages of the inventions have been described and illustrated, it should be understood that many others, as well as different and/or similar embodiments, features, attributes and advantages of the present inventions, are apparent from the description and illustrations. As such, the embodiments, features, attributes and advantages of the inventions described and illustrated herein are not exhaustive and it should be understood that such other, similar, as well as different, embodiments, features, attributes and advantages of the present inventions are within the scope of the present inventions.
For example, with reference to
For example, memory cells 120 may be comprised of electrically floating gate transistors, junction field effect transistors (often referred to as JFETs), or any other memory/transistor technology whether now known or later developed. All such memory technologies are considered to fall within the scope of the present inventions. Indeed, such memory cells may be employed in any of the embodiments described and/or illustrated herein. Indeed, all permutations and combinations of such memory cells with such embodiments and/or features thereof, are intended to fall within the scope of the present inventions. For the sake of brevity, such permutations and combinations are not discussed in detail herein.
Notably, where electrically floating body transistor 14 are employed, electrically floating body transistor 14 may be a symmetrical or non-symmetrical device. Where transistor 14 is symmetrical, the source and drain regions are essentially interchangeable. However, where transistor 14 is a non-symmetrical device, the source or drain regions of transistor 14 have different electrical, physical, doping concentration and/or doping profile characteristics. As such, the source or drain regions of a non-symmetrical device are typically not interchangeable. This notwithstanding, the drain region of the electrically floating N-channel type transistor of the memory cell (whether the source and drain regions are interchangeable or not) is that region of the transistor that is connected to the bit line/sense amplifier.
As mentioned above, the inventions (and embodiments thereof) described and illustrated herein are entirely applicable to N-channel and/or P-channel type transistors. Moreover, while the discussion described and illustrated only source and drain implants, other implants may also be included. For example, implants to modify the operation of memory cells 12, which affect, for example, the power consumption of memory cells 12 as described and illustrated in (1) Fazan et al., U.S. Pat. No. 6,969,662, entitled “Semiconductor Device”, (2) Fazan et al., U.S. Pat. No. 7,061,050 entitled “Semiconductor Device”; and (3) Provisional Application Ser. No. 60/578,631, which was filed on Jun. 10, 2004, and entitled “Asymmetrical Electrically Floating Body Memory Device, and Method of Manufacturing Same”.
Further, as mentioned above, the memory arrays may be comprised of N-channel type transistors, P-channel type transistors and/or both types of transistors, as well as partially depleted and/or fully depleted type transistors. For example, circuitry that is peripheral to the memory array (for example, sense amplifiers or comparators, row and column address decoders, as well as line drivers (not illustrated herein)) may include fully depleted type transistors (whether P-channel and/or N-channel type). Alternatively, such circuitry may include partially depleted type transistors (whether P-channel and/or N-channel type). There are many techniques to integrate both partially depleted and/or fully depleted type transistors on the same substrate (see, for example, U.S. Pat. No. 7,061,050). All such techniques, whether now known or later developed, are intended to fall within the scope of the present inventions.
Notably, memory cell selection circuitry 110 may employ any circuitry and/or technique now known or later developed to select one or more memory cells for reading and/or programming. (See, for example,
In addition, reading and programming circuitry 112 may include output pass gates, latches and/or column switch circuitry to facilitate and/or implement read and write operations to memory cells 12. There are many different configurations and techniques (and circuitry therefor) to implement such circuitry. All such configurations and techniques, whether now known or later developed, are intended to fall within the scope of the present inventions.
Further, reference generator circuitry 116 is described in the context of generating, providing and/or supplying a reference current or voltage. The reference current or voltage may be substantially equal to one-half of the summation of the currents in a first reference cell, which has a logic low data state, and a second reference cell, which has a logic high data state. Other circuitry and techniques may be employed to generate the reference currents used by data sense amplifier circuitry to sense, sample and/or determine the data state of a selected memory cell 12. Indeed, all such reference current generation techniques and circuitry therefor, whether now known or later developed, are intended to be within the scope of the present inventions.
For example, the circuitry and techniques described and illustrated in U.S. Pat. No. 6,912,910 (“Reference Current Generator, and Method of Programming, Adjusting and/or Operating Same”, filed May 7, 2004), may be employed to generate an appropriate reference current for data sense amplifier circuitry. The entire contents of U.S. Pat. No. 6,912,910, including, for example, the inventions, features, attributes, architectures, configurations, materials, techniques and advantages described and illustrated therein, are hereby incorporated by reference herein.
In addition, the present inventions may employ the circuitry and techniques for generating a reference current for data sense amplifier circuitry 102 as described and illustrated in U.S. patent application Ser. No. 11/515,667, which was filed by Bauser on Sep. 5, 2007, and entitled “Method and Circuitry to Generate a Reference Current for Reading a Memory Cell, and Device Implementing Same” (U.S. Patent Application Publication US 2007/0064489). The entire contents of U.S. patent application Ser. No. 11/515,667, including, for example, the inventions, features, attributes, architectures, configurations, materials, techniques and advantages described and illustrated therein, are hereby incorporated by reference herein.
Further, the present inventions may employ the circuitry and techniques for independently controlling certain parameters (for example, temporal or voltage), for a memory operation (for example, restore, write, refresh), to program or write a predetermined data state into a memory cell (for example, programming or writing data state “1” or “0” into a memory cell) as described and illustrated in U.S. patent application Ser. No. 11/590,147, which was filed by Popoff et al. on Oct. 31, 2006, and entitled “Method and Apparatus for Varying the Programming Duration and/or Voltage of an Electrically Floating Body Transistor, and Memory Cell Array Implementing Same”. For example, the duration of programming/writing/refreshing of a given memory state into a memory cell by data write and sense circuitry may be controlled, adjusted, determined and/or predetermined according to or based on the given memory operation (for example, restore, write, refresh). Likewise, the voltage conditions applied to the memory cell for programming/writing a given memory state into a memory cell by data write and sense circuitry may be controlled and/or adjusted according to the memory operation (for example, restore, write, refresh). The entire contents of U.S. patent application Ser. No. 11/590,147, including, for example, the inventions, features, attributes, architectures, configurations, materials, techniques and advantages described and illustrated therein, are hereby incorporated by reference herein.
In addition, the present inventions may be employed in conjunction with the circuitry and techniques for generating a voltage, for example, for use during a memory operation (for example, restore, write, refresh) to program or write a data state into a memory cell (for example, programming or writing data state “1” or “0” into a memory cell) as described and illustrated in U.S. Provisional Patent Application Ser. No. 60/932,223, which was filed by Fisch and Bauser on May 30, 2007, and entitled “Integrated Circuit Having Voltage Generation Circuitry for Memory Cell Array, and Method of Operating and/or Controlling Same”. For example, may employ the structure and capacitance of the memory cell array to generate and/or provide one or more voltages used during one or more memory operations. The structure and capacitance of the memory cell array may be modified, changed and/or configured via controlling the number of bit line segments that are connected to the associated bit lines. By connecting one or more bit line segments to a bit line, the capacitance of a predetermined and selected portion the memory cell array can be changed or adjusted. As noted therein, the voltage generation circuitry of the present inventions may be implemented in a local manner (i.e., using two or more bit lines of an array or sub-array) and/or in a more global manner (i.e., using all or substantially all of an array or sub-array) without consuming a significant area of the integrated circuit. Implementing the present inventions in conjunction with the circuitry and techniques of U.S. Patent Application Ser. No. 60/932,223 provides an additional level of controlling the amplitude of the generated voltage. The entire contents of U.S. Patent Application Ser. No. 60/932,223, including, for example, the inventions, features, attributes, architectures, configurations, materials, techniques and advantages described and illustrated therein, are hereby incorporated by reference herein.
The embodiments of the inventions described and illustrated above are merely exemplary. They are not intended to be exhaustive or to limit the inventions to the precise forms, techniques, materials and/or configurations disclosed. Many modifications and variations are possible in light of this disclosure. For example, while many of the embodiments illustrate four memory cells connected to an associated bit line segment, any number of memory cells (including 1, 2, 3, 4, 5, 6, 7, 8, 9 10, 11, etc.) may be associated with a given bit line segment. Thus, it is to be understood that other embodiments may be utilized and operational changes may be made without departing from the scope of the present inventions. The scope of the inventions is not limited solely to the description above because the description of the above embodiments has been presented for the purposes of illustration and description.
Moreover, there are many inventions described and illustrated herein. The present inventions are neither limited to any single aspect nor embodiment thereof, nor to any combinations and/or permutations of such aspects and/or embodiments. Moreover, each of the aspects of the present inventions, and/or embodiments thereof, may be employed alone or in combination with one or more of the other aspects of the present inventions and/or embodiments thereof. For example, the present inventions may employ an isolation circuit (including, for example, a CMOS type (see
Further, the above embodiments of the present inventions are merely exemplary embodiments. They are not intended to be exhaustive or to limit the inventions to the precise forms, techniques, materials and/or configurations disclosed. Many modifications and variations are possible in light of the above teaching. It is to be understood that other embodiments may be utilized and operational changes may be made without departing from the scope of the present inventions. As such, the foregoing description of the exemplary embodiments of the inventions has been presented for the purposes of illustration and description. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the inventions not be limited solely to the description above.
For example, although much of the discussion above describes a “default” condition whereby the bit line segments 32xn are disconnected from the associated bit line 32x, the “default” condition may include bit line segments 32xn that are connected to their respective associated bit lines 32x—for example, during “inactive” memory cycles. As such, during an active cycle, the selected/decoded bit line segment(s) may remain connected to the associated bit line and all unselected or unaddressed segments 32xn may be isolated from the associated bit lines 32x via (disabling or enabling) the associated isolation circuits 104. As such, in this embodiment, the bit line segments are connected to their respective associated until the associated isolation circuits are disabled (or enabled depending on the type of isolation circuit employed) thereby disconnecting unselected or unaddressed bit line segments form their associated bit line. Notably, this embodiment may be implemented in any and all of the embodiments discussed above. For the sake of brevity, such discussions will not be repeated.
It should be noted that the term “circuit” may mean, among other things, a single component (for example, electrical/electronic and/or microelectromechanical) or a multiplicity of components (whether in integrated circuit form or otherwise), which are active and/or passive, and which are coupled together to provide or perform a desired function. The term “circuitry” may mean, among other things, a circuit (whether integrated or otherwise), a group of such circuits, one or more processors, one or more state machines, one or more processors implementing software, or a combination of one or more circuits (whether integrated or otherwise), one or more state machines, one or more processors, and/or one or more processors implementing software. The term “data” may mean, among other things, a current or voltage signal(s) whether in an analog or a digital form.
In sum, an isolation circuit disposed between the bit line and a subset of the floating body memory cells may alleviate, minimize, manage and/or control disturbance on the bit line of other memory cells. The use of an isolation circuit in this manner provides a plurality of bit line segments, associated with a given bit line, which are selectively and responsively coupled to the associated bit line via the isolation circuit. This architecture may provide the advantage of allowing longer bit lines which improves array utilization. Indeed, the segmented bit line architecture of the present inventions may enhance the burst read and write operations where the memory cells of an associated bit line segment may be read or written in a burst read or burst write manner via, among other things, enabling the associated isolation circuit.
This application is a continuation application of U.S. patent application Ser. No. 12/467,331, filed May 18, 2009, entitled “Integrated Circuit Including Memory Array Having a Segmented Bit Line Architecture and Method of Controlling and/or Operating Same,” which is a divisional application of U.S. patent application Ser. No. 11/821,848, filed Jun. 26, 2007, entitled “Integrated Circuit Including Memory Array Having a Segmented Bit Line Architecture and Method of Controlling and/or Operating Same,” which claims priority to U.S. Provisional Application No. 60/830,084, entitled “Integrated Circuit Having Memory Array having a Segmented Bit Line Architecture, and Method of Controlling and/or Operating Same”, filed Jul. 11, 2006, each of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3439214 | Kabell | Apr 1969 | A |
3997799 | Baker | Dec 1976 | A |
4032947 | Kesel et al. | Jun 1977 | A |
4250569 | Sasaki et al. | Feb 1981 | A |
4262340 | Sasaki et al. | Apr 1981 | A |
4298962 | Hamano et al. | Nov 1981 | A |
4371955 | Sasaki | Feb 1983 | A |
4527181 | Sasaki | Jul 1985 | A |
4630089 | Sasaki et al. | Dec 1986 | A |
4658377 | McElroy | Apr 1987 | A |
4791610 | Takemae | Dec 1988 | A |
4807195 | Busch et al. | Feb 1989 | A |
4954989 | Auberton-Herve et al. | Sep 1990 | A |
4979014 | Hieda et al. | Dec 1990 | A |
5010524 | Fifield et al. | Apr 1991 | A |
5144390 | Matloubian | Sep 1992 | A |
5164805 | Lee | Nov 1992 | A |
5258635 | Nitayama et al. | Nov 1993 | A |
5313432 | Lin et al. | May 1994 | A |
5315541 | Harari et al. | May 1994 | A |
5350938 | Matsukawa | Sep 1994 | A |
5355330 | Hisamoto et al. | Oct 1994 | A |
5388068 | Ghoshal et al. | Feb 1995 | A |
5397726 | Bergemont et al. | Mar 1995 | A |
5432730 | Shubat et al. | Jul 1995 | A |
5446299 | Acovic et al. | Aug 1995 | A |
5448513 | Hu et al. | Sep 1995 | A |
5466625 | Hsieh et al. | Nov 1995 | A |
5489792 | Hu et al. | Feb 1996 | A |
5506436 | Hayashi et al. | Apr 1996 | A |
5515383 | Katoozi | May 1996 | A |
5526307 | Yiu et al. | Jun 1996 | A |
5528062 | Hsieh et al. | Jun 1996 | A |
5568356 | Schwartz | Oct 1996 | A |
5583808 | Brahmbhatt | Dec 1996 | A |
5593912 | Rajeevakumar | Jan 1997 | A |
5606188 | Bronner et al. | Feb 1997 | A |
5608250 | Kalnitsky | Mar 1997 | A |
5627092 | Alsmeier et al. | May 1997 | A |
5631186 | Park et al. | May 1997 | A |
5677867 | Hazani | Oct 1997 | A |
5696718 | Hartmann | Dec 1997 | A |
5740099 | Tanigawa | Apr 1998 | A |
5754469 | Hung et al. | May 1998 | A |
5774411 | Hsieh et al. | Jun 1998 | A |
5778243 | Aipperspach et al. | Jul 1998 | A |
5780906 | Wu et al. | Jul 1998 | A |
5784311 | Assaderaghi et al. | Jul 1998 | A |
5796671 | Wahlstrom | Aug 1998 | A |
5798968 | Lee et al. | Aug 1998 | A |
5811283 | Sun | Sep 1998 | A |
5847411 | Morii | Dec 1998 | A |
5877978 | Morishita et al. | Mar 1999 | A |
5886376 | Acovic et al. | Mar 1999 | A |
5886385 | Arisumi et al. | Mar 1999 | A |
5897351 | Forbes | Apr 1999 | A |
5929479 | Oyama | Jul 1999 | A |
5930648 | Yang | Jul 1999 | A |
5936265 | Koga | Aug 1999 | A |
5939745 | Park et al. | Aug 1999 | A |
5943258 | Houston et al. | Aug 1999 | A |
5943581 | Lu et al. | Aug 1999 | A |
5960265 | Acovic et al. | Sep 1999 | A |
5968840 | Park et al. | Oct 1999 | A |
5977578 | Tang | Nov 1999 | A |
5982003 | Hu et al. | Nov 1999 | A |
5986914 | McClure | Nov 1999 | A |
6018172 | Hidada et al. | Jan 2000 | A |
6048756 | Lee et al. | Apr 2000 | A |
6081443 | Morishita | Jun 2000 | A |
6096598 | Furukawa et al. | Aug 2000 | A |
6097056 | Hsu et al. | Aug 2000 | A |
6097624 | Chung et al. | Aug 2000 | A |
6111778 | MacDonald et al. | Aug 2000 | A |
6121077 | Hu et al. | Sep 2000 | A |
6133597 | Li et al. | Oct 2000 | A |
6157216 | Lattimore et al. | Dec 2000 | A |
6171923 | Chi et al. | Jan 2001 | B1 |
6177300 | Houston et al. | Jan 2001 | B1 |
6177698 | Gruening et al. | Jan 2001 | B1 |
6177708 | Kuang et al. | Jan 2001 | B1 |
6214694 | Leobandung et al. | Apr 2001 | B1 |
6222217 | Kunikiyo | Apr 2001 | B1 |
6225158 | Furukawa et al. | May 2001 | B1 |
6245613 | Hsu et al. | Jun 2001 | B1 |
6252281 | Yamamoto et al. | Jun 2001 | B1 |
6262935 | Parris et al. | Jul 2001 | B1 |
6292424 | Ohsawa | Sep 2001 | B1 |
6297090 | Kim | Oct 2001 | B1 |
6300649 | Hu et al. | Oct 2001 | B1 |
6320227 | Lee et al. | Nov 2001 | B1 |
6333532 | Davari et al. | Dec 2001 | B1 |
6333866 | Ogata | Dec 2001 | B1 |
6350653 | Adkisson et al. | Feb 2002 | B1 |
6351426 | Ohsawa | Feb 2002 | B1 |
6359802 | Lu et al. | Mar 2002 | B1 |
6373748 | Ikehashi et al. | Apr 2002 | B2 |
6384445 | Hidaka et al. | May 2002 | B1 |
6391658 | Gates et al. | May 2002 | B1 |
6403435 | Kang et al. | Jun 2002 | B1 |
6421269 | Somasekhar et al. | Jul 2002 | B1 |
6424011 | Assaderaghi et al. | Jul 2002 | B1 |
6424016 | Houston | Jul 2002 | B1 |
6429477 | Mandelman et al. | Aug 2002 | B1 |
6430077 | Eitan et al. | Aug 2002 | B1 |
6432769 | Fukuda et al. | Aug 2002 | B1 |
6440872 | Mandelman et al. | Aug 2002 | B1 |
6441435 | Chan | Aug 2002 | B1 |
6441436 | Wu et al. | Aug 2002 | B1 |
6445612 | Naji | Sep 2002 | B1 |
6466511 | Fujita et al. | Oct 2002 | B2 |
6479862 | King et al. | Nov 2002 | B1 |
6480407 | Keeth | Nov 2002 | B1 |
6492211 | Divakaruni et al. | Dec 2002 | B1 |
6518105 | Yang et al. | Feb 2003 | B1 |
6531754 | Nagano et al. | Mar 2003 | B1 |
6537871 | Forbes | Mar 2003 | B2 |
6538916 | Ohsawa | Mar 2003 | B2 |
6544837 | Divakauni et al. | Apr 2003 | B1 |
6548848 | Horiguchi et al. | Apr 2003 | B2 |
6549450 | Hsu et al. | Apr 2003 | B1 |
6552398 | Hsu et al. | Apr 2003 | B2 |
6552932 | Cernea | Apr 2003 | B1 |
6556477 | Hsu et al. | Apr 2003 | B2 |
6560142 | Ando | May 2003 | B1 |
6563733 | Liu et al. | May 2003 | B2 |
6566177 | Radens et al. | May 2003 | B1 |
6567330 | Fujita et al. | May 2003 | B2 |
6573566 | Ker et al. | Jun 2003 | B2 |
6574135 | Komatsuzaki | Jun 2003 | B1 |
6590258 | Divakauni et al. | Jul 2003 | B2 |
6590259 | Adkisson et al. | Jul 2003 | B2 |
6617651 | Ohsawa | Sep 2003 | B2 |
6621725 | Ohsawa | Sep 2003 | B2 |
6632723 | Watanabe et al. | Oct 2003 | B2 |
6650565 | Ohsawa | Nov 2003 | B1 |
6653175 | Nemati et al. | Nov 2003 | B1 |
6686624 | Hsu | Feb 2004 | B2 |
6703673 | Houston | Mar 2004 | B2 |
6707118 | Muljono et al. | Mar 2004 | B2 |
6714436 | Burnett et al. | Mar 2004 | B1 |
6721222 | Somasekhar et al. | Apr 2004 | B2 |
6825524 | Ikehashi et al. | Nov 2004 | B1 |
6861689 | Burnett | Mar 2005 | B2 |
6870225 | Bryant et al. | Mar 2005 | B2 |
6882566 | Nejad et al. | Apr 2005 | B2 |
6888770 | Ikehashi | May 2005 | B2 |
6894913 | Yamauchi | May 2005 | B2 |
6897098 | Hareland et al. | May 2005 | B2 |
6903984 | Tang et al. | Jun 2005 | B1 |
6909151 | Hareland et al. | Jun 2005 | B2 |
6909639 | Park et al. | Jun 2005 | B2 |
6912150 | Portmann et al. | Jun 2005 | B2 |
6913964 | Hsu | Jul 2005 | B2 |
6936508 | Visokay et al. | Aug 2005 | B2 |
6969662 | Fazan et al. | Nov 2005 | B2 |
6975536 | Maayan et al. | Dec 2005 | B2 |
6982902 | Gogl et al. | Jan 2006 | B2 |
6987041 | Ohkawa | Jan 2006 | B2 |
7030436 | Forbes | Apr 2006 | B2 |
7037790 | Chang et al. | May 2006 | B2 |
7041538 | Ieong et al. | May 2006 | B2 |
7042765 | Sibigtroth et al. | May 2006 | B2 |
7061806 | Tang et al. | Jun 2006 | B2 |
7085153 | Ferrant et al. | Aug 2006 | B2 |
7085156 | Ferrant et al. | Aug 2006 | B2 |
7170807 | Fazan et al. | Jan 2007 | B2 |
7177175 | Fazan et al. | Feb 2007 | B2 |
7187581 | Ferrant et al. | Mar 2007 | B2 |
7230846 | Keshavarzi | Jun 2007 | B2 |
7233024 | Scheuerlein et al. | Jun 2007 | B2 |
7256459 | Shino | Aug 2007 | B2 |
7289369 | Matick et al. | Oct 2007 | B2 |
7301803 | Okhonin et al. | Nov 2007 | B2 |
7301838 | Waller | Nov 2007 | B2 |
7317641 | Scheuerlein | Jan 2008 | B2 |
7324387 | Bergemont et al. | Jan 2008 | B1 |
7335934 | Fazan | Feb 2008 | B2 |
7341904 | Willer | Mar 2008 | B2 |
7388774 | Kim | Jun 2008 | B1 |
7416943 | Figura et al. | Aug 2008 | B2 |
7456439 | Horch | Nov 2008 | B1 |
7477540 | Okhonin et al. | Jan 2009 | B2 |
7492632 | Carman | Feb 2009 | B2 |
7517744 | Mathew et al. | Apr 2009 | B2 |
7539041 | Kim et al. | May 2009 | B2 |
7542340 | Fisch et al. | Jun 2009 | B2 |
7542345 | Okhonin et al. | Jun 2009 | B2 |
7545694 | Srinivasa Raghavan et al. | Jun 2009 | B2 |
7606066 | Okhonin et al. | Oct 2009 | B2 |
7619944 | Fisch et al. | Nov 2009 | B2 |
7696032 | Kim et al. | Apr 2010 | B2 |
7969779 | Fisch et al. | Jun 2011 | B2 |
20010055859 | Yamada et al. | Dec 2001 | A1 |
20020030214 | Horiguchi | Mar 2002 | A1 |
20020034855 | Horiguchi et al. | Mar 2002 | A1 |
20020036322 | Divakauni et al. | Mar 2002 | A1 |
20020051378 | Ohsawa | May 2002 | A1 |
20020064913 | Adkisson et al. | May 2002 | A1 |
20020070411 | Vermandel et al. | Jun 2002 | A1 |
20020072155 | Liu et al. | Jun 2002 | A1 |
20020076880 | Yamada et al. | Jun 2002 | A1 |
20020086463 | Houston et al. | Jul 2002 | A1 |
20020089038 | Ning | Jul 2002 | A1 |
20020098643 | Kawanaka et al. | Jul 2002 | A1 |
20020110018 | Ohsawa | Aug 2002 | A1 |
20020114191 | Iwata et al. | Aug 2002 | A1 |
20020130341 | Horiguchi et al. | Sep 2002 | A1 |
20020160581 | Watanabe et al. | Oct 2002 | A1 |
20020180069 | Houston | Dec 2002 | A1 |
20030003608 | Arikado et al. | Jan 2003 | A1 |
20030015757 | Ohsawa | Jan 2003 | A1 |
20030035324 | Fujita et al. | Feb 2003 | A1 |
20030042516 | Forbes et al. | Mar 2003 | A1 |
20030047784 | Matsumoto et al. | Mar 2003 | A1 |
20030057487 | Yamada et al. | Mar 2003 | A1 |
20030057490 | Nagano et al. | Mar 2003 | A1 |
20030102497 | Fried et al. | Jun 2003 | A1 |
20030112659 | Ohsawa | Jun 2003 | A1 |
20030123279 | Aipperspach et al. | Jul 2003 | A1 |
20030146474 | Ker et al. | Aug 2003 | A1 |
20030146488 | Nagano et al. | Aug 2003 | A1 |
20030151112 | Yamada et al. | Aug 2003 | A1 |
20030231521 | Ohsawa | Dec 2003 | A1 |
20040021137 | Fazan et al. | Feb 2004 | A1 |
20040021179 | Lee | Feb 2004 | A1 |
20040029335 | Lee et al. | Feb 2004 | A1 |
20040075143 | Bae et al. | Apr 2004 | A1 |
20040108532 | Forbes et al. | Jun 2004 | A1 |
20040188714 | Scheuerlein et al. | Sep 2004 | A1 |
20040217420 | Yeo et al. | Nov 2004 | A1 |
20050001257 | Schloesser et al. | Jan 2005 | A1 |
20050001269 | Hayashi et al. | Jan 2005 | A1 |
20050017240 | Fazan | Jan 2005 | A1 |
20050047240 | Ikehashi et al. | Mar 2005 | A1 |
20050062088 | Houston | Mar 2005 | A1 |
20050063224 | Fazan et al. | Mar 2005 | A1 |
20050064659 | Willer | Mar 2005 | A1 |
20050105342 | Tang et al. | May 2005 | A1 |
20050111255 | Tang et al. | May 2005 | A1 |
20050121710 | Shino | Jun 2005 | A1 |
20050135169 | Somasekhar et al. | Jun 2005 | A1 |
20050141262 | Yamada et al. | Jun 2005 | A1 |
20050141290 | Tang et al. | Jun 2005 | A1 |
20050145886 | Keshavarzi et al. | Jul 2005 | A1 |
20050145935 | Keshavarzi et al. | Jul 2005 | A1 |
20050167751 | Nakajima et al. | Aug 2005 | A1 |
20050189576 | Ohsawa | Sep 2005 | A1 |
20050208716 | Takaura et al. | Sep 2005 | A1 |
20050226070 | Ohsawa | Oct 2005 | A1 |
20050232043 | Ohsawa | Oct 2005 | A1 |
20050242396 | Park et al. | Nov 2005 | A1 |
20060043484 | Cabral et al. | Mar 2006 | A1 |
20060084247 | Liu | Apr 2006 | A1 |
20060091462 | Okhonin et al. | May 2006 | A1 |
20060098481 | Okhonin et al. | May 2006 | A1 |
20060104102 | Choi et al. | May 2006 | A1 |
20060126374 | Waller et al. | Jun 2006 | A1 |
20060131650 | Okhonin et al. | Jun 2006 | A1 |
20060223302 | Chang et al. | Oct 2006 | A1 |
20070008811 | Keeth et al. | Jan 2007 | A1 |
20070023833 | Okhonin et al. | Feb 2007 | A1 |
20070045709 | Yang | Mar 2007 | A1 |
20070058427 | Okhonin et al. | Mar 2007 | A1 |
20070064489 | Bauser | Mar 2007 | A1 |
20070085140 | Bassin | Apr 2007 | A1 |
20070097751 | Popoff et al. | May 2007 | A1 |
20070114599 | Hshieh | May 2007 | A1 |
20070133330 | Ohsawa | Jun 2007 | A1 |
20070138524 | Kim et al. | Jun 2007 | A1 |
20070138530 | Okhonin et al. | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
0 030 856 | Jun 1981 | EP |
0 350 057 | Jan 1990 | EP |
0 354 348 | Feb 1990 | EP |
0 202 515 | Mar 1991 | EP |
0 207 619 | Aug 1991 | EP |
0 175 378 | Nov 1991 | EP |
0 253 631 | Apr 1992 | EP |
0 513 923 | Nov 1992 | EP |
0 300 157 | May 1993 | EP |
0 564 204 | Oct 1993 | EP |
0 579 566 | Jan 1994 | EP |
0 362 961 | Feb 1994 | EP |
0 599 506 | Jun 1994 | EP |
0 359 551 | Dec 1994 | EP |
0 366 882 | May 1995 | EP |
0 465 961 | Aug 1995 | EP |
0 694 977 | Jan 1996 | EP |
0 333 426 | Jul 1996 | EP |
0 727 820 | Aug 1996 | EP |
0 739 097 | Oct 1996 | EP |
0 245 515 | Apr 1997 | EP |
0 788 165 | Aug 1997 | EP |
0 801 427 | Oct 1997 | EP |
0 510 607 | Feb 1998 | EP |
0 537 677 | Aug 1998 | EP |
0 858 109 | Aug 1998 | EP |
0 860 878 | Aug 1998 | EP |
0 869 511 | Oct 1998 | EP |
0 878 804 | Nov 1998 | EP |
0 920 059 | Jun 1999 | EP |
0 924 766 | Jun 1999 | EP |
0 642 173 | Jul 1999 | EP |
0 727 822 | Aug 1999 | EP |
0 933 820 | Aug 1999 | EP |
0 951 072 | Oct 1999 | EP |
0 971 360 | Jan 2000 | EP |
0 980 101 | Feb 2000 | EP |
0 601 590 | Apr 2000 | EP |
0 993 037 | Apr 2000 | EP |
0 836 194 | May 2000 | EP |
0 599 388 | Aug 2000 | EP |
0 689 252 | Aug 2000 | EP |
0 606 758 | Sep 2000 | EP |
0 682 370 | Sep 2000 | EP |
1 073 121 | Jan 2001 | EP |
0 726 601 | Sep 2001 | EP |
0 731 972 | Nov 2001 | EP |
1 162 663 | Dec 2001 | EP |
1 162 744 | Dec 2001 | EP |
1 179 850 | Feb 2002 | EP |
1 180 799 | Feb 2002 | EP |
1 191 596 | Mar 2002 | EP |
1 204 146 | May 2002 | EP |
1 204 147 | May 2002 | EP |
1 209 747 | May 2002 | EP |
0 744 772 | Aug 2002 | EP |
1 233 454 | Aug 2002 | EP |
0 725 402 | Sep 2002 | EP |
1 237 193 | Sep 2002 | EP |
1 241 708 | Sep 2002 | EP |
1 253 634 | Oct 2002 | EP |
0 844 671 | Nov 2002 | EP |
1 280 205 | Jan 2003 | EP |
1 288 955 | Mar 2003 | EP |
2 197 494 | Mar 1974 | FR |
1 414 228 | Nov 1975 | GB |
H04-176163 | Jun 1922 | JP |
S62-007149 | Jan 1987 | JP |
S62-272561 | Nov 1987 | JP |
02-294076 | Dec 1990 | JP |
03-171768 | Jul 1991 | JP |
05-347419 | Dec 1993 | JP |
08-213624 | Aug 1996 | JP |
H08-213624 | Aug 1996 | JP |
08-274277 | Oct 1996 | JP |
H08-316337 | Nov 1996 | JP |
09-046688 | Feb 1997 | JP |
09-082912 | Mar 1997 | JP |
10-242470 | Sep 1998 | JP |
11-087649 | Mar 1999 | JP |
2000-247735 | Aug 2000 | JP |
12-274221 | Sep 2000 | JP |
12-389106 | Dec 2000 | JP |
13-180633 | Jun 2001 | JP |
2002-009081 | Jan 2002 | JP |
2002-083945 | Mar 2002 | JP |
2002-094027 | Mar 2002 | JP |
2002-176154 | Jun 2002 | JP |
2002-246571 | Aug 2002 | JP |
2002-329795 | Nov 2002 | JP |
2002-343886 | Nov 2002 | JP |
2002-353080 | Dec 2002 | JP |
2003-031693 | Jan 2003 | JP |
2003-68877 | Mar 2003 | JP |
2003-086712 | Mar 2003 | JP |
2003-100641 | Apr 2003 | JP |
2003-100900 | Apr 2003 | JP |
2003-132682 | May 2003 | JP |
2003-203967 | Jul 2003 | JP |
2003-243528 | Aug 2003 | JP |
2004-335553 | Nov 2004 | JP |
WO 2005008778 | Jan 2005 | JP |
WO 0124268 | Apr 2001 | WO |
Entry |
---|
Arimoto et al., A Configurable Enhanced T2RAM Macro for System-Level Power Management Unified Memory, 2006, VLSI Symposium. |
Arimoto, A High-Density Scalable Twin Transistor RAM (TTRAM) With Verify Control for SOI Platform Memory IPs, Nov. 2007, Solid-State Circuits. |
Asian Technology Information Program (ATIP) Scoops™, “Novel Capacitorless 1T-DRAM From Single-Gate PD-SOI to Double-Gate FinDRAM”, May 9, 2005, 9 pages. |
Assaderaghi et al., “A Dynamic Threshold Voltage MOSFET (DTMOS) for Ultra-Low Voltage Operation”, IEEE IEDM, 1994, pp. 809-812. |
Assaderaghi et al., “A Dynamic Threshold Voltage MOSFET (DTMOS) for Very Low Voltage Operation”, IEEE Electron Device Letters, vol. 15, No. 12, Dec. 1994, pp. 510-512. |
Assaderaghi et al., “A Novel Silicon-On-Insulator (SOI) MOSFET for Ultra Low Voltage Operation”, 1994 IEEE Symposium on Low Power Electronics, pp. 58-59. |
Assaderaghi et al., “Dynamic Threshold-Voltage MOSFET (DTMOS) for Ultra-Low Voltage VLSI”, IEEE Transactions on Electron Devices, vol. 44, No. 3, Mar. 1997, pp. 414-422. |
Assaderaghi et al., “High-Field Transport of Inversion-Layer Electrons and Holes Including Velocity Overshoot”, IEEE Transactions on Electron Devices, vol. 44, No. 4, Apr. 1997, pp. 664-671. |
Avci, Floating Body Cell (FBC) Memory for 16-nm Technology with Low Variation on Thin Silicon and 10-nm BOX, Oct. 2008, SOI Conference. |
Bae, Evaluation of 1T RAM using Various Operation Methods with SOONO (Silicon-On-ONO) device, Dec. 2008, IEDM. |
Ban et al., Integration of Back-Gate Doping for 15-nm Node Floating Body Cell (FBC) Memory, Components Research, Process Technology Modeling, presented in the 2010 VLSI Symposium on Jun. 17, 2010. |
Ban, A Scaled Floating Body Cell (FBC) Memory with High-k+Metal Gate on Thin-Silicon and Thin-BOX for 16-nm Technology Node and Beyond, Jun. 2008, VLSI Symposium. |
Ban, Ibrahim, et al., “Floating Body Cell with Independently-Controlled Double Gates for High Density Memory,” Electron Devices Meeting, 2006. IEDM '06, International, IEEE, Dec. 11-13, 2006. |
Bawedin, Maryline, et al., A Capacitorless 1T Dram on SOI Based on Dynamic Coupling and Double-Gate Operation, IEEE Electron Device Letters, vol. 29, No. 7, Jul. 2008. |
Blagojevic et al., Capacitorless 1T DRAM Sensing Scheme Automatice Reference Generation, 2006, IEEE J.Solid State Circuits. |
Blalock, T., “A High-Speed Clamped Bit-Line Current-Mode Sense Amplifier”, IEEE Journal of Solid-State Circuits, vol. 26, No. 4, Apr. 1991, pp. 542-548. |
Butt, Scaling Limits of Double Gate and Surround Gate Z-RAM Cells, 2007, IEEE Trans. on El. Dev. |
Chan et al., “Effects of Floating Body on Double Polysilicon Partially Depleted SOI Nonvolatile Memory Cell”, IEEE Electron Device Letters, vol. 24, No. 2, Feb. 2003, pp. 75-77. |
Chan, et al., “SOI MOSFET Design for All-Dimensional Scaling with Short Channel, Narrow Width and Ultra-thin Films”, IEEE IEDM, 1995, pp. 631-634. |
Chi et al., “Programming and Erase with Floating-Body for High Density Low Voltage Flash EEPROM Fabricated on SOI Wafers”, Proceedings 1995 IEEE International SOI Conference, Oct. 1995, pp. 129-130. |
Cho et al., “Novel DRAM Cell with Amplified Capacitor for Embedded Application”, IEEE, Jun. 2009. |
Cho, A novel capacitor-less DRAM cell using Thin Capacitively-Coupled Thyristor (TCCT), 2005, IEDM. |
Choi et al., Current Flow Mechanism in Schottky-Barrier MOSFET and Application to the 1T-DRAM, 2008, SSDM. |
Choi, High Speed Flash Memory and 1T-DRAM on Dopant Segregated Schottky Barrier (DSSB) FinFET SONOS Device for Multi-functional SoC Applications, Dec. 2008, IEDM. |
Clarke, Junctionless Transistors Could Simply Chip Making, Say Researchers, EE Times, Feb. 2010, www.eetimes.com/showArticle.jhtml?articleID=223100050. |
Colinge, J.P., “An SOI voltage-controlled bipolar-MOS device”, IEEE Transactions on Electron Devices, vol. ED-34, No. 4, Apr. 1987, pp. 845-849. |
Colinge, Nanowire Transistors Without Junctions, Nature NanoTechnology, vol. 5, 2010, pp. 225-229. |
Collaert et al., Optimizing the Readout Bias for the Capacitorless 1T Bulk FinFET RAM Cell, 2009, IEEE EDL. |
Collaert, Comparison of scaled floating body RAM architectures, Oct. 2008, SOI Conference. |
Ershov, Optimization of Substrate Doping for Back-Gate Control in SOI T-RAM Memory Technology, 2005, SOI Conference. |
Ertosun et al., A Highly Scalable Capacitorless Double Gate Quantum Well Single Transistor DRAM: 1T-QW DRAM, 2008, IEEE EDL. |
Fazan et al., “A Simple 1-Transistor Capacitor-Less Memory Cell for High Performance Embedded DRAMs”, IEEE 2002 Custom Integrated Circuits Conference, Jun. 2002, pp. 99-102. |
Fazan, A Highly Manufacturable Capacitor-less 1T-DRAM Concept, 2002, SPIE. |
Fazan, et al., “Capacitor-Less 1-Transistor DRAM”, 2002 IEEE International SOI Conference, Oct. 2002, pp. 10-13. |
Fazan, P., “MOSFET Design Simplifies DRAM”, EE Times, May 14, 2002 (3 pages). |
Fisch, Beffa, Bassin, Soft Error Performance of Z-RAM Floating Body Memory, 2006, SOI Conference. |
Fisch, Carman, Customizing SOI Floating Body Memory Architecture for System Performance and Lower Cost, 2006, SAME. |
Fisch, Z-RAM® Ultra-Dense Memory for 90nm and Below, 2006, Hot Chips. |
Fossum et al., New Insights on Capacitorless Floating Body DRAM Cells, 2007, IEEE EDL. |
Fujita, Array Architectureof Floating Body Cell (FBC) with Quasi-Shielded Open Bit Line Scheme for sub-40nm Node, 2008, SOI Conference. |
Furuhashi, Scaling Scenario of Floating Body Cell (FBC) Suppressing Vth Variation Due to Random Dopant Fluctuation, Dec. 2008, SOI Conference. |
Furuyama et al., “An Experimental 2-bit/Cell Storage DRAM for Macrocell or Memory-on-Logic Application”, IEEE Journal of Solid-State Circuits, vol. 24, No. 2, Apr. 1989, pp. 388-393. |
Giffard et al., “Dynamic Effects in SOI MOSFET's”, IEEE, 1991, pp. 160-161. |
Gupta et al., SPICE Modeling of Self Sustained Operation (SSO) to Program Sub-90nm Floating Body Cells, Oct. 2009, Conf on Simulation of Semiconductor Processes & Devices. |
Han et al., Bulk FinFET Unified-RAM (URAM) Cell for Multifunctioning NVM and Capacitorless 1T-DRAM, 2008, IEEE EDL. |
Han et al., Partially Depleted SONOS FinFET for Unified RAM (URAM) Unified Function for High-Speed 1T DRAM and Nonvolatile Memory, 2008, IEEE EDL. |
Han, Energy Band Engineered Unified-RAM (URAM) for Multi-Functioning 1T-DRAM and NVM, Dec. 2008, IEDM. |
Han, Parasitic BJT Read Method for High-Performance Capacitorless 1-DRAM Mode in Unified RAM, Oct. 2009, IEEE EDL. |
Hara, Y., “Toshiba's DRAM Cell Piggybacks on SOI Wafer”, EE Times, Jun. 2003. |
Hu, C., “SOI (Silicon-on-Insulator) for High Speed Ultra Large Scale Integration”, Jpn. J. Appl. Phys. vol. 33 (1994) pp. 365-369, Part 1, No. 1B, Jan. 1994. |
Idei et al., “Soft-Error Characteristics in Bipolar Memory Cells with Small Critical Charge”, IEEE Transactions on Electron Devices, vol. 38, No. 11, Nov. 1991, pp. 2465-2471. |
Ikeda et al., “3-Dimensional Simulation of Turn-off Current in Partially Depleted SOI MOSFETs”, IEIC Technical Report, Institute of Electronics, Information and Communication Engineers, 1998, vol. 97, No. 557 (SDM97 186-198), pp. 27-34. |
Inoh et al., “FBC (Floating Body Cell) for Embedded DRAM on SOI”, 2003 Symposium on VLSI Circuits Digest of Technical Papers, Jun. 2003 (2 pages). |
Iyer et al., “SOI MOSFET on Low Cost SPIMOX Substrate”, IEEE IEDM, Sep. 1998, pp. 1001-1004. |
Jang et al., Highly scalable Z-RAM with remarkably long data retention for DRAM application, Jun. 2009, VLSI. |
Jeong et al., “A Capacitor-less 1T DRAM Cell Based on a Surrounding Gate MOSFET with Vertical Channel”, Technology Development Team, Technology Development Team, Samsung Electronics Co., Ltd., May 2007. |
Jeong et al., “A New Capacitorless 1T DRAm Cell: Surrounding Gate MOSFET with Vertical Channel (SGVC Cell)”, IEEE Transactions on Nanotechnology, vol. 6, No. 3, May 2007. |
Jeong et al., “Capacitorless DRAM Cell with Highly Scalable Surrounding Gate Structure”, Extended Abstracts of the 2006 International Conference on Solid State Devices and Materials, pp. 574-575, Yokohama (2006). |
Jeong et al., “Capacitorless Dynamic Random Access Memory Cell with Highly Scalable Surrounding Gate Structure”, Japanese Journal of Applied Physics, vol. 46, No. 4B, pp. 2143-2147 (2007). |
Kedzierski, J.; “Design Analysis of Thin-Body Silicide Source/Drain Devices”, 2001 IEEE International SOI Conference, Oct. 2001, pp. 21-22. |
Kim et al., “Chip Level Reliability on SOI Embedded Memory”, Proceedings 1998 IEEE International SOI Conference, Oct. 1998, pp. 135-139. |
Kuo et al., “A Capacitorless Double-Gate DRAM Cell Design for High Density Applications”, IEEE IEDM, Feb. 2002, pp. 843-846. |
Kuo et al., “A Capacitorless Double-Gate DRAM C8ell”, IEEE Electron Device Letters, vol. 23, No. 6, Jun. 2002, pp. 345-347. |
Kuo et al., A Capacitorless Double Gate DRAM Technology for Sub 100 nm Embedded and Stand Alone Memory Applications, 2003, IEEE Trans. on El. Dev. |
Kwon et al., “A Highly Scalable 4F2 DRAm Cell Utilizing a Doubly Gated Vertical Channel”, Extended Abstracts of the 2009 International Conference on Solid State Devices and Materials, UC Berkley, pp. 142-143 Sendai (2009). |
Lee et al., “A Novel Pattern Transfer Process for Bonded SOI Giga—bit DRAMs”, Proceedings 1996 IEEE International SOI Conference, Oct. 1996, pp. 114-115. |
Leiss et al., dRAM Design Using the Taper-Isolated Dynamic RAM Cell, IEEE Transactions on Electron Devices, vol. ED-29, No. 4, Apr. 1982, pp. 707-714. |
Lin et al., “Opposite Side Floating Gate SOI FLASH Memory Cell”, IEEE, Mar. 2000, pp. 12-15. |
Liu et al., Surface Generation-Recombination Processes of Gate and STI Oxide Interfaces Responsible for Junction Leakage on SOI, Sep. 2009, ECS Transactions, vol. 25. |
Liu, Surface Recombination-Generation Processes of Gate, STI and Buried Oxide Interfaces, Responsible for Junction Leakage, ICSI, May 19, 2009. |
Lon{hacek over (c)}ar et al., “One of Application of SOI Memory Cell—Memory Array”, IEEE Proc. 22nd International Conference on Microelectronics (MIEL 2000), vol. 2, NI{hacek over (S)}, Serbia, May 14-17, 2000, pp. 455-458. |
Lu et al., A Novel Two-Transistor Floating Body/Gate Cell for Low Power Nanoscale Embedded DRAM, 2008, IEEE Trans. on El. Dev. |
Ma, et al., “Hot-Carrier Effects in Thin-Film Fully Depleted SOI MOSFET's”, IEEE Electron Device Letters, vol. 15, No. 6, Jun. 1994, pp. 218-220. |
Malhi et al., “Characteristics and Three-Dimensional Integration of MOSFET's in Small-Grain LPCVD Polycrystalline Silicon”, IEEE Transactions on Electron Devices, vol. ED-32, No. 2, Feb. 1985, pp. 258-281. |
Malinge, An 8Mbit DRAM Design Using a 1TBulk Cell, 2005, VLSI Circuits. |
Mandelman et al, “Floating-Body Concerns for SOI Dynamic Random Access Memory (DRAM)”, Proceedings 1996 IEEE International SOI Conference, Oct. 1996, pp. 136-137. |
Matsuoka et al., FBC Potential of 6F2 Single Cell Operation in Multi Gbit Memories Confirmed by a Newly Developed Method for Measuring Signal Sense Margin, 2007, IEDM. |
Minami, A Floating Body Cell (FBC) fully Compatible with 90nm CMOS Technology(CMOS IV) for 128Mb SOI DRAM, 2005, IEDM. |
Mohapatra et al., Effect of Source/Drain Asymmetry on the Performance of Z-RAMÒ Devices, Oct. 2009, SOI conference. |
Morishita, A Capacitorless Twin-Transistor Random Access Memory (TTRAM) on SOI, 2005, CICC. |
Morishita, F. et al., “A Configurable Enhanced TTRAM Macro for System-Level Power Management Unified Memory”, IEEE Journal of Solid -State Circuits, vol. 42, No. 4, pp. 853, Apr. 2007. |
Morishita, F., et al., “A 312-MHz 16-Mb Random-Cycle Embedded DRAM Macro With a Power-Down Data Retention Mode for Mobile Applications”, J. Solid-State Circuits, vol. 40, No. 1, pp. 204-212, 2005. |
Morishita, F., et al., “Dynamic floating body control SOI CMOS for power managed multimedia ULSIs”, Proc. CICC, pp. 263-266, 1997. |
Morishita, F., et al., “Leakage Mechanism due to Floating Body and Countermeasure on Dynamic Retention Mode of SOI-DRAM”, Symposium on VLSI Technology Digest of Technical Papers, pp. 141-142, 1995. |
Nagoga, Studying of Hot Carrier Effect in Floating Body Soi Mosfets by the Transient Charge Pumping Technique, Switzerland 2003. |
Nayfeh, A Leakage Current Model for SOI based Floating Body Memory that Includes the Poole-Frenkel Effect, 2008, SOI Conference. |
Nemati, A Novel High Density, Low Voltage SRAM Cell with a Vertical NDR Device, 1998, VLSI Tech. Symp. |
Nemati, A Novel Thyristor-based SRAM Cell (T-RAM) for High-Speed, Low-Voltage, Giga-scale Memories, 1999, IEDM Conference. |
Nemati, Embedded Volatile Memories-Embedded Tutorial: The New Memory Revolution, New Drives Circuits and Systems, ICCAD 2008, Nov. 2008. |
Nemati, Fully Planar 0.562 μ m2 T-RAM Cell in a 130nm SOI CMOS Logic Technology for High-Density High-Performance SRAMs, 2004, IEDM. |
Nemati, The New Memory Revolution. New Devices, Circuits and Systems, 2008, ICCAD. |
Nemati, Thyristor RAM (T-RAM): A High-Speed High-Density Embedded Memory Technology for Nano-scale CMOS, 2007, Hot Chips. |
Nemati, Thyristor-RAM: A Novel Embedded Memory Technology that Outperforms Embedded S RAM/DRAM, 2008, Linley Tech Tour. |
Nishiguchi et al., Long Retention of Gain-Cell Dynamic Random Access Memory with Undoped Memory Node, 2007, IEEE EDL. |
Oh, Floating Body DRAM Characteristics of Silicon-On-ONO (SOONO) Devices for System-on-Chip (SoC) Applications, 2007, VLSI Symposium. |
Ohno et al., “Suppression of Parasitic Bipolar Action in Ultra-Thin-Film Fully-Depleted CMOS/SIMOX Devices by Ar-Ion Implantation into Source/Drain Regions”, IEEE Transactions on Electron Devices, vol. 45, No. 5, May 1998, pp. 1071-1076. |
Ohsawa et al., “A Memory Using One-Transistor Gain Cell on SOI (FBC) with Performance Suitable for Embedded DRAM's”, 2003 Symposium on VLSI Circuits Digest of Technical Papers, Jun. 2003 (4 pages). |
Ohsawa et al., “Memory Design Using a One-Transistor Gain Cell on SOI”, IEEE Journal of Solid-State Circuits, vol. 37, No. 11, Nov. 2002, pp. 1510-1522. |
Ohsawa, A 128Mb Floating Body RAM (FBRAM) on SOI with a Multi-Averaging Scheme of Dummy Cell, 2006 Symposium of VLSI Circuits Digest of Tech Papers, (2006). |
Ohsawa, An 18.5ns 128Mb SOI DRAM with a Floating Body Cell, 2005, ISSCC. |
Ohsawa, Autonomous Refresh of Floating Body Cell (FBC), Dec. 2008, IEDM. |
Ohsawa, Design of a 128-Mb SOI DRAM Using the Floating Body Cell (FBC), Jan. 2006, Solid-State Circuits. |
Okhonin, A Capacitor-Less 1T-DRAM Cell, Feb. 2002, Electron Device Letters. |
Okhonin, A SOI Capacitor-less 1T-DRAM Concept, 2001, SOI Conference. |
Okhonin, Charge Pumping Effects in Partially Depleted SOI MOSFETs, 2003, SOI Conference. |
Okhonin, New characterization techniques for SOI and related devices, 2003, ECCTD. |
Okhonin, New Generation of Z-RAM, 2007, IEDM. |
Okhonin, Principles of Transient Charge Pumping on Partially Depleted SOI MOSFETs, May 2002, Electron Device Letters. |
Okhonin, Transient Charge Pumping for Partially and Fully Depleted SOI MOSFETs, 2002, SOI Conference. |
Okhonin, Transient effects in PD SOI MOSFETs and potential DRAM applications, 2002, Solid-State Electronics. |
Okhonin, Ultra-scaled Z-RAM cell, 2008, SOI Conference. |
Okhonin, Z-RAMO® (Limits of DRAM), 2009, ESSDERC. |
Padilla, Alvaro, et al., “Feedback FET: A Novel Transistor Exhibiting Steep Switching Behavior at Low Bias Voltages,” Electron Devices Meeting, 2008. IEDM 2008. IEEE International, Dec. 5-17, 2008. |
Park, Fully Depleted Double-Gate 1T-DRAM Cell with NVM Function for High Performance and High Density Embedded DRAM, 2009, IMW. |
Pelella et al., “Low-Voltage Transient Bipolar Effect Induced by Dynamic Floating-Body Charging in PD/SOI MOSFETs”, Final Camera Ready Art, SOI Conference, Oct. 1995, 2 pages. |
Portmann et al., “A SOI Current Memory for Analog Signal Processing at High Temperature”, 1999 IEEE International SOI Conference, Oct. 1999, pp. 18-19. |
Puget et al., 1T Bulk eDRAM using GIDL Current for High Speed and Low Power applications, 2008, SSDM. |
Puget et al., Quantum effects influence on thin silicon film capacitor-less DRAM performance, 2006, SOI Conference. |
Puget, FDSOI Floating Body Cell eDRAM Using Gate-Induced Drain-Leakage (GIDL) Write Current for High Speed and Low Power Applications, 2009, IMW. |
Ranica et al., 1T-Bulk DRAM cell with improved performances: the way to scaling, 2005, ICMTD. |
Ranica, A capacitor-less DRAM cell on 75nm gate length, 16nm thin Fully Depleted SOI device for high density embedded memories, 2004, IEDM. |
Ranica, A One Transistor Cell on Bulk Substrate (1T-Bulk) for Low-Cost and High Density eDRAM, 2004, VLSI Symposium. |
Rodder et al., “Silicon-On-Insulator Bipolar Transistors”, IEEE Electron Device Letters, vol. EDL-4, No. 6, Jun. 1983, pp. 193-195. |
Rodriguez, Noel, et al., A-RAM Novel Capacitor-less Dram Memory, SOI Conference, 2009 IEEE International, Oct. 5-8, 2009 pp. 1-2. |
Roy, Thyristor-Based Volatile Memory in Nano-Scale CMOS, 2006, Isscc. |
Sailing et al., Reliability of Thyristor Based Memory Cells, 2009, IRPS. |
Sasaki et al., Charge Pumping in SOS-MOS Transistors, 1981, IEEE Trans. on El. Dev. |
Sasaki et al., Charge Pumping SOS-MOS Transistor Memory, 1978, IEDM. |
Schloesser et al., “A 6F2 Buried Wordline DRAM Cell for 40nm and Beyond”, IEEE, Qimonda Dresden GmbH & Co., pp. 809-812 (2008). |
Shino et al., Floating Body RAM technology and its scalability to 32 nm node and beyond, 2006, IEDM. |
Shino et al., Operation Voltage Dependence of Memory Cell Characteristics in Fully Depleted FBC, 2005, IEEE Trans. on El. Dev. |
Shino, Fully-Depleted FBC (Floating Body Cell) with Enlarged Signal Window and Excellent Logic Process Compatibility, 2004, IEDM. |
Shino, Highly Scalable FBC (Floating Body Cell) with 25nm BOX Structure for Embedded DRAM Applications, 2004, VLSI Symposium. |
Sim et al., “Source-Bias Dependent Charge Accumulation in P+ -Poly Gate SOI Dynamic Random Access Memory Cell Transistors”, Jpn. J. Appl. Phys. vol. 37 (1998) pp. 1260-1263, Part 1, No. 3B, Mar. 1998. |
Singh, A 2ns-Read-Latency 4Mb Embedded Floating-Body Memory Macro in 45nm SOI Technology, Feb. 2009, ISSCC. |
Sinha et al., “In-Depth Analysis of Opposite Channel Based Charge Injection in SOI MOSFETs and Related Defect Creation and Annihilation”, Elsevier Science, Microelectronic Engineering 28, 1995, pp. 383-386. |
Song, 55 nm Capacitor-less 1T DRAM Cell Transistor with Non-Overlap Structure, Dec. 2008, IEDM. |
Stanojevic et al., “Design of a SOI Memory Cell”, IEEE Proc. 21st International Conference on Microelectronics (MIEL '97), vol. 1, NIS, Yugoslavia, Sep. 14-17, 1997, pp. 297-300. |
Su et al., “Studying the Impact of Gate Tunneling on Dynamic Behaviors of Partially-Depleted SOI CMOS Using BSIMPD”, IEEE Proceedings of the International Symposium on Quality Electronic Design (ISQED'02), Apr. 2002 (5 pages). |
Suma et al., “An SOI-DRAM with Wide Operating Voltage Range by CMOS/SIMOX Technology”, 1994 IEEE International Solid-State Circuits Conference, pp. 138-139. |
Tack et al., “The Multi-Stable Behaviour of SOI-NMOS Transistors at Low Temperatures”, Proc. 1988 SOS/SOI Technology Workshop (Sea Palms Resort, St. Simons Island, GA, Oct. 1988), p. 78. |
Tack et al., “The Multistable Charge Controlled Memory Effect in SOI Transistors at Low Temperatures”, IEEE Workshop on Low Temperature Electronics, Aug. 7-8, 1989, University of Vermont, Burlington, pp. 137-141. |
Tack et al., “The Multistable Charge-Controlled Memory Effect in SOI MOS Transistors at Low Temperatures”, IEEE Transactions on Electron Devices, vol. 37, No. 5, May 1990, pp. 1373-1382. |
Tack, et al., “An Analytical Model for the Misis Structure in SOI MOS Devices”, Solid-State Electronics vol. 33, No. 3, 1990, pp. 357-364. |
Tanabe et al., A 30-ns 64-MB DRAM with Built-in-Self-Test and Self-Repair Function, IEEE Journal of Solid State Circuits, vol. 27, No. 11, Nov. 1992, pp. 1525-1533. |
Tanaka et al., “Scalability Study on a Capacitorless 1T-DRAM: From Single-gate PD-SOI to Double-gate FINDRAM”, 2004 IEEE, 4 pages. |
Tang, Poren, Highly Scalable Capacitorless DRAM Cell on Thin-Body with Band-gap Engineered Source and Drain, Extended Abstracts of the 2009 ICSSDM, Sendai, 2009, pp. 144-145. |
Terauchi et al., “Analysis of Floating-Body-Induced Leakage Current in 0.15μ m SOI DRAM”, Proceedings 1996 IEEE International SOI Conference, Oct. 1996, pp. 138-139. |
Thomas et al., “An SOI 4 Transistors Self-Refresh Ultra-Low-Voltage Memory Cell”, IEEE, Mar. 2003, pp. 401-404. |
Tomishima, et al., “A Long Data Retention SOI DRAM with the Body Refresh Function”, IEICE Trans. Electron., vol. E80-C, No. 7, Jul. 1997, pp. 899-904. |
Tsaur et al., “Fully Isolated Lateral Bipolar-MOS Transistors Fabricated in Zone-Melting-Recrystallized Si Films on SiO2”, IEEE Electron Device Letters, vol. EDL-4, No. 8, Aug. 1983, pp. 269-271. |
Tu, et al., “Simulation of Floating Body Effect in SOI Circuits Using BSIM3S0I”, Proceedings of Technical Papers (IEEE Cat No. 97TH8303), Jun. 1997, pp. 339-342. |
Villaret et al., “Mechanisms of Charge Modulation in the Floating Body of Triple-Well nMOSFET Capacitor-less DRAMs”, Proceedings of the INFOS 2003, Insulating Films on Semiconductors, 13th Bi-annual Conference, Jun. 18-20, 2003, Barcelona (Spain), (4 pages). |
Villaret et al., “Triple-Well nMOSFET Evaluated as a Capacitor-Less DRAM Cell for Nanoscale Low-Cost & High Density Applications”, Handout at Proceedings of 2003 Silicon Nanoelectronics Workshop, Jun. 8-9, 2003, Kyoto, Japan (2 pages). |
Villaret et al., Further Insight into the Physics and Modeling of Floating Body Capacitorless DRAMs, 2005, IEEE Trans. on El. Dev. |
Wang et al., A Novel 4.5F2 Capacitorless Semiconductor Memory Device, 2008, IEEE EDL. |
Wann et al., “A Capacitorless DRAM Cell on SOI Substrate”, IEEE IEDM, 1993, pp. 635-638. |
Wann et al., “High-Endurance Ultra-Thin Tunnel Oxide in MONOS Device Structure for Dynamic Memory Application”, IEEE Electron Device Letters, vol. 16, No. 11, Nov. 1995, pp. 491-493. |
Wei, A., “Measurement of Transient Effects in SOI DRAM/SRAM Access Transistors”, IEEE Electron Device Letters, vol. 17, No. 5, May 1996, pp. 193-195. |
Wouters, et al., “Characterization of Front and Back Si—SiO2 Interfaces in Thick- and Thin-Film Silicon-on-Insulator MOS Structures by the Charge-Pumping Technique”, IEEE Transactions on Electron Devices, vol. 36, No. 9, Sep. 1989, pp. 1746-1750. |
Wu, Dake, “Performance Improvement of the Capacitorless DRAM Cell with Quasi-SOI Structure Based on Bulk Substrate,” Extended Abstracts of the 2009 ICSSDM, Sendai, 2009, pp. 146-147. |
Yamanaka et al., “Advanced TFT SRAM Cell Technology Using a Phase-Shift Lithography”, IEEE Transactions on Electron Devices, vol. 42, No. 7, Jul. 1995, pp. 1305-1313. |
Yamauchi et al., “High-Performance Embedded SOI DRAM Architecture for the Low-Power Supply”, IEEE Journal of Solid-State Circuits, vol. 35, No. 8, Aug. 2000, pp. 1169-1178. |
Yamawaki, M., “Embedded DRAM Process Technology”, Proceedings of the Symposium on Semiconductors and Integrated Circuits Technology, 1998, vol. 55, pp. 38-43. |
Yang, Optimization of Nanoscale Thyristors on SOI for High-Performance High-Density Memories, 2006, SOI Conference. |
Yoshida et al., “A Design of a Capacitorless 1-T-DRAM Cell Using Gate-induced Drain Leakage (GIDL) Current for Low-Power and High-speed Embedded Memory”, 2003 IEEE, 4 pages. |
Yoshida et al., “A Study of High Scalable DG-FinDRAM”, IEEE Electron Device Letters, vol. 26, No. 9, Sep. 2005, pp. 655-657. |
Yoshida et al., A Capacitorless 1T-DRAM Technology Using GIDL Current for Low Power and High Speed Embedded Memory, 2006, IEEE Trans. on El. Dev. |
Yu et al., Hot-Carrier Effect in Ultra-Thin-Film (UTF) Fully-Depleted SOI MOSFET's, 54th Annual Device Research Conference Digest (Cat. No. 96TH8193), Jun. 1996, pp. 22-23. |
Yu et al., “Hot-Carrier-Induced Degradation in Ultra-Thin-Film Fully-Depleted SOI MOSFETs”, Solid-State Electronics, vol. 39, No. 12, 1996, pp. 1791-1794. |
Yu et al., “Interface Characterization of Fully-Depleted SOI MOSFET by a Subthreshold I-V Method”, Proceedings 1994 IEEE International SOI Conference, Oct. 1994, pp. 63-64. |
Yun et al., Analysis of Sensing Margin in SOONO Device for the Capacitor-less RAM Applications, 2007, SOI Conference. |
Zhou, Physical Insights on BJT-Based 1T DRAM Cells, IEEE Electron Device Letters, vol. 30, No. 5, May 2009. |
Villaret et al., “Mechanisms of Charge Modulation in the Floating Body of Triple-Well nMOSFET Capacitor-less DRAMs”,Handout at Proceedings of the INFOS 2003, Jun. 18-20, 2003, Barcelona (Spain), (2 pages). |
D.A. Puckhell et al., “Basic VLSI Design,” Prentice Hall, Australia, pp. 100 (1988). |
European Office action mailed on Nov. 28, 2011 for European Application No. 07810300.9 filed Jul. 10, 2007 (6 pages). |
Number | Date | Country | |
---|---|---|---|
20110249499 A1 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
60830084 | Jul 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11821848 | Jun 2007 | US |
Child | 12467331 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12467331 | May 2009 | US |
Child | 13166291 | US |