Integrated circuits for testing a display array

Information

  • Patent Grant
  • 6437596
  • Patent Number
    6,437,596
  • Date Filed
    Thursday, January 28, 1999
    25 years ago
  • Date Issued
    Tuesday, August 20, 2002
    22 years ago
Abstract
An improved apparatus for testing an array of pixel cells formed on a substrate is provided. Each pixel cell is coupled to at least one gate line of a plurality of gate lines formed on the substrate and at least one data line of a plurality of data lines formed on the substrate. The gate lines and/or data lines are partitioned into a plurality of groups. For each particular group, a first probe pad and select logic is formed on said substrate. The select logic, which is coupled between the first probe pad and the lines of the particular group, selectively couples the first probe pad to the lines of said particular group based upon first control signals supplied to the select logic during a test routine whereby charge is written to, stored, and read from the array of pixel cells. In addition, a second probe pad and hold logic for each particular group may be formed on the substrate. The hold logic, which is coupled between the second probe pad and the lines of the particular group, selectively couples the second probe pad to the lines of the particular group based upon second control signals supplied to the hold logic during the test routine. The apparatus provides a flexible interface between the array under test and the test system, which minimizes the redesign costs when the size and/or resolution of the array under test is varied.
Description




BACKGROUND OF THE INVENTION




1. Technical Field




The invention relates to electrical testers, and, more specifically, to electrical testing of liquid crystal display (LCD) arrays.




2. Description of the Related Art




An array tester as described in U.S. Pat. No. 5,179,345 and 5,546,013 provides a means for testing the cells of an TFT/LCD display array by coupling test probes to the gate line pads and data line pads that terminate the gate lines and data lines, respectively, of the TFT/LCD array.




Importantly, when the size of the TFT/LCD display array under test is changed, the spacing of the gate lines and/or data lines and the pads terminating thereof change. In order to test such an array, the probe fixture for the gate lines and/or data lines must be redesigned to accommodate for the variation in spacing, which is a costly solution.




In addition, when the resolution of the TFT/LCD display array under test results is changed, the number of gate lines and/or data lines and pads terminating thereof changes. In order to test such an array, the probe fixture for the gate lines and/or data lines must be redesigned to accommodate for the variation in the number of gate lines and/or data lines. Moreover, the gate line drive circuitry and/or the data line drive/sense circuitry and the control routine must be updated to accommodate for the variation in the number of the gate lines and/or data lines. Such design modifications are also very costly.




Thus, there remains a need in the art for an array test system whereby the configuration of the array test system can be changed with minimal costs in order to accommodate variations in the size and/or resolution of the TFT/LCD display arrays under test.




In addition, there remains a need in the art for circuitry integrated onto the substrate that enables reconfiguration of the array test system with minimal costs.




SUMMARY OF THE INVENTION




The problems stated above and the related problems of the prior art are solved with the principles of the present invention, integrated circuits for testing a display array, which comprises an array of pixel cells formed on a substrate. Each pixel cell is coupled to at least one gate line of a plurality of gate lines formed on the substrate and at least one data line of a plurality of data lines formed on the substrate. The gate lines and/or data lines are partitioned into a plurality of groups. For each particular group, a first probe pad and select logic is formed on said substrate. The select logic, which is coupled between the first probe pad and the lines of the particular group, selectively couples the first probe pad to the lines of said particular group based upon first control signals supplied to the select logic during a test routine whereby charge is written to, stored, and read from the array of pixel cells. In addition, a second probe pad and hold logic for each particular group may be formed on the substrate. The hold logic, which is coupled between the second probe pad and the lines of the particular group, selectively couples the second probe pad to the lines of the particular group based upon second control signals supplied to the hold logic during the test routine. The apparatus provides a flexible interface between the array under test and the test system, which minimizes the redesign costs when the size and/or resolution of the array under test is varied.











BRIEF DESCRIPTION OF THE DRAWINGS




FIG.


1


(A) is a pictorial illustration of the display array test system of the present invention.




FIG.


1


(B) is a pictorial illustration of an exemplary array of pixel cells and the gate lines and data lines connected thereto.





FIG. 2

is a functional block diagram illustrating the gate line select/hold circuitry of FIG.


1


(A) for a group of gate lines.





FIG. 3

is a functional block diagram illustrating the data line select/hold circuitry of FIG.


1


(A) for a group of data lines.




FIG.


4


(A) is a flow chart illustrating the control of the gate line select/hold circuitry and data line select/hold circuitry of

FIGS. 2 and 3

in writing charge to a cell connected to an exemplary gate line/data line pair (GL


0


, DL


3


) in an addressing cycle.




FIG.


4


(B) is a timing diagram of an exemplary implementation of the control of FIG.


4


(A).




FIG.


5


(A) is a flow chart illustrating the control of the gate line select/hold circuitry and data line select/hold circuitry of

FIGS. 2 and 3

in reading charge from a cell connected to an exemplary gate line/data line pair (GL


0


, DL


3


) in an address cycle.




FIG.


5


(B) is a timing diagram of an exemplary implementation of the control of FIG.


5


(A).





FIG. 6

is a functional block diagram illustrating a preferred embodiment of the gate line drive module of FIG.


1


.





FIG. 7

is a functional block diagram illustrating a preferred embodiment of the data line drive/sense module of FIG.


1


.











DETAILED DESCRIPTION OF THE INVENTION




Referring to FIG.


1


(A), a substrate


10


having formed thereon an array of TFT/LC pixel cells


12


is supported on a substrate holder


14


. Substrate


10


has a number of gate lines


16


and data lines


18


formed thereon that are electrically coupled to the TFTs (not shown) of the cells to drive the array of cells


12


. FIG.


1


(B) illustrates the array of cells


12


formed on the substrate


10


. Each pixel cell


12


includes a TFT


19


coupled to a gate line


16


and data line


18


.




The basic routine for testing the array is as follows: biasing the gate line


16


and data line


18


connected to a cell


12


such that the TFT of the cell


12


is in a conductive (ON) state and charge is written to the cell


12


, storing the charge in the cell


12


by biasing the gate line


16


and data line


18


connected to the cell


12


such that the TFT of the cell


12


is in a nonconductive (OFF) state, and reading the charge stored in the cell


12


. Reading the charge stored in a cell


12


is accomplished by electrically coupling sense circuitry to the data line


18


connected to the cell


12


and biasing the gate line


16


connected to the cell


12


such that TFT


19


of the cell is in a conductive (ON) state, thereby allowing the charge stored in the cell


12


to be transferred to sense circuitry. The charge transferred to the sense circuitry is measured, and a waveform is generated based upon the transferred charge. The waveform for one or more cells is analyzed to identify defective cells (i.e., open gate or data line, short to adjacent line, resistive crossing, etc.).




According to the present invention, the gate lines


16


of the array are partitioned into groups (for example, partitioned into groups of 4 gate lines as shown in FIG.


1


). A probe pad


21


is provided for each group of gate lines. Gate line select/hold circuitry


17


is integrally formed on the substrate


10


coupled between the probe pad


21


and the group of gate lines, and provides select logic for selectively coupling one or more gate lines for the group to the probe pad


21


. Preferably the select logic for the group is controlled by control signals supplied to the select logic via gate select control pads


25


(for example, the 4 gate select control pads


25


shown). Note that for the sake of illustration, the gate select control pads


25


for the second group of gate lines is not shown in FIG.


1


. In addition, a second probe pad


27


(not shown in

FIG. 1

) is preferably provided for the group of gate lines, and the gate line select/hold circuitry


17


for the group includes hold logic for selectively coupling one or more of the gate lines for the group to the second probe pad


27


. Preferably the hold logic for the group is controlled by control signals supplied to the hold logic via gate hold control pads


28


(not shown). A more detailed description of the gate line select/hold circuitry


17


and associated control is described below with respect to FIG.


2


. Preferably, the second probe pad


27


is shared by more than one group of gate lines.




In addition, the data lines


18


of the array are preferably partitioned into groups (for example, partitioned into groups of 4 data lines as shown in FIG.


1


). A probe pad


23


is provided for each group of data lines. Data line select/hold circuitry


19


is integrally formed on the substrate


10


coupled between the probe pad


23


and the group of data lines, and provides select logic for selectively coupling one or more data lines for the group to the probe pad


23


. Preferably the select logic for the group is controlled by control signals supplied to the select logic via data select control pads


29


(for example, the 4 data select control pads


29


shown). Note that for the sake of illustration the data select control pads


29


for the second group of data lines is not shown in FIG.


1


. In addition, a second probe pad


31


(not shown) is preferably provided for the group of data lines, and the data line select/hold circuitry


19


for the group includes hold logic for selectively coupling one or more of the data lines for the group to the second probe pad


31


. Preferably the hold logic for the group is controlled by control signals supplied to the hold logic via data hold control pads


32


(not shown). A more detailed description of the data line select/hold circuitry


19


is described below with respect to FIG.


3


. Preferably, the second probe pad


31


is shared by more than one group of data lines.




Referring to

FIG. 2

, the gate line select/hold circuitry


17


is coupled between a group of gate lines


16


(for example the 4 gate lines GL


0


, GL


1


, GL


2


and GL


3


as shown) and a probe pad


21


for the group. The gate line select/hold circuitry


17


for the group includes select logic


201


that selectively couples one or more gate lines for the group to the probe pad


21


in response control signals supplied via gate select control pads


25


. For example, four (4) gate select control pads


25




0


,


25




1


,


25




2


,


25




3


may supply four binary control signals to control the select logic


201


for the group as follows:

















Gate Line Coupled






Control Signals




to Probe Pad 21 for the Group



















25


0






25


1






25


2






25


3






GL


0






GL


1






GL


2






GL


3






Mode









0




0




0




0




N




N




N




N




A and B






0




0




0




1




N




N




N




Y






0




0




1




0




N




N




Y




N




A






0




1




0




0




N




Y




N




N






1




0




0




0




Y




N




N




N






0




0




1




1




N




N




Y




Y






0




1




0




1




N




Y




N




Y






0




1




1




0




N




Y




Y




N






0




1




1




1




N




Y




Y




Y






1




0




0




1




Y




N




N




Y






1




0




1




0




Y




N




Y




N






1




0




1




1




Y




N




Y




Y




B






1




1




0




0




Y




Y




N




N






1




1




0




1




Y




Y




N




Y






1




1




1




0




Y




Y




Y




N






1




1




1




1




Y




Y




Y




Y














Note that the select logic


201


may operate in one of two modes A and B. In mode A, a single gate line is coupled to the probe pad


21


for the group of gate lines. In mode B, more than one gate line is coupled to the probe pad


21


for the group of gate lines. Mode A is preferably used for addressing the cells of the array connected to one gate line of the group. Mode B is preferably used for addressing the cells connected to multiple gate lines of the group.




It should be noted that gate select control pads (for example, the gate select control pads


25




0


,


25




1


,


25




2


,


25




3


) may supply control signals to the select logic


201


for more than one group of gate lines, in which case the addressing function of the select logic


201


for the more than one group of gate lines is replicated. By applying an activation signal to the probe pad


21


for only one group, this configuration may be used to selectively address the cells connected to the gate lines for the one group. Alternatively, an activation signal may be applied to the probe pad


21


for more then one group, thereby addressing multiple cells that are connected to gate lines belonging to different groups. This configuration may be useful in writing charge to and reading charge from multiple cells connecting to gate lines belonging to different groups yet share a common data line.




In addition, a second probe pad


27


is preferably provided for each group of gate lines, and one select/hold circuitry


17


for the group includes hold logic


203


that selectively couples one or more gate lines for the group to the second probe pad


27


in response control signals supplied gate hold control pads


28


. For example, four (4) gate hold control pads


28




0


,


28




1


,


28




2


,


28




3


may supply four binary control signals to control the hold logic


203


for the group as follows:

















Gate Line Coupled






Control Signals




to Probe Pad 27 for the Group



















28


0






28


1






28


2






28


3






GL


0






GL


1






GL


2






GL


3






Mode









0




0




0




0




N




N




N




N




A and B






0




0




0




1




N




N




N




Y






0




0




1




0




N




N




Y




N




A






0




1




0




0




N




Y




N




N






1




0




0




0




Y




N




N




N






0




0




1




1




N




N




Y




Y






0




1




0




1




N




Y




N




Y






0




1




1




0




N




Y




Y




N






0




1




1




1




N




Y




Y




Y






1




0




0




1




Y




N




N




Y






1




0




1




0




Y




N




Y




N






1




0




1




1




Y




N




Y




Y




B






1




1




0




0




Y




Y




N




N






1




1




0




1




Y




Y




N




Y






1




1




1




0




Y




Y




Y




N






1




1




1




1




Y




Y




Y




Y














Note that the hold logic


203


may operate in one of two modes A and B. In mode A, a single gate line is coupled to the probe pad


27


for the group of gate lines. In mode B, more than one gate line is coupled to the probe pad


27


for the group of gate lines. Mode A is preferably used for applying a predetermined potential (for example, a test potential as described below in more detail) to a single gate line of the group. Mode B is preferably used for used for applying a predetermined potential (for example, a ground potential as described below in more detail) to multiple gate lines of the group.




It should be noted that gate hold control pads (for example, the gate hold control pads


28




0


,


28




1


,


28




2


,


28




3


) may supply control signals to the hold logic


203


for more than one group of gate lines, in which case the function of the hold logic


203


for the more than one group of gate lines is replicated.




It should be understood by those skilled in the art that when substrate


10


is assembled with a second substrate, spacers, liquid crystal material and a seal, the following components may not be present: the gate line select/hold circuitry


17


for the group, and pads


21


,


25


,


27


and


28


for the group. In other words, substrate


10


may be cut to remove these elements. In this case, the substrate


10


includes gate line pads that interface to gate line driver circuitry for driving the gates lines of the array during normal operation of the display system. In an alternate embodiment, the probe pad


21


, select logic


201


and control pads


25


for the group may interface to the gate line driver circuitry and be integrated into the driving scheme for the array during normal operation.




Referring to

FIG. 3

, the data line select/hold circuitry


19


is coupled between a group of data lines


18


(for example the 4 data lines DL


0


, DL


1


, DL


2


and DL


3


as shown) and a probe pad


23


for the group. The data line select/hold circuitry


19


for the group includes select logic


301


that selectively couples one or more of the data lines for the group to the probe pad


23


in response control signals supplied via data select control pads


29


. For example, four (4) data select control pads


29




0


,


29




1


,


29




2


,


29




3


may supply four binary control signals to control the select logic


301


for the group as follows:

















Data Line Coupled






Control Signals




to Probe Pad 23 for the Group



















29


0






29


1






29


2






29


3






DL


0






DL


1






DL


2






DL


3






Mode









0




0




0




0




N




N




N




N




A and B






0




0




0




1




N




N




N




Y






0




0




1




0




N




N




Y




N




A






0




1




0




0




N




Y




N




N






1




0




0




0




Y




N




N




N






0




0




1




1




N




N




Y




Y






0




1




0




1




N




Y




N




Y






0




1




1




0




N




Y




Y




N






0




1




1




1




N




Y




Y




Y






1




0




0




1




Y




N




N




Y






1




0




1




0




Y




N




Y




N






1




0




1




1




Y




N




Y




Y




B






1




1




0




0




Y




Y




N




N






1




1




0




1




Y




Y




N




Y






1




1




1




0




Y




Y




Y




N






1




1




1




1




Y




Y




Y




Y














Note that the select logic


301


may operate in one of two modes A and B. In mode A, a single data line is coupled to the probe pad


23


for the group of data lines. In mode B, more than one data line is coupled to the probe pad


23


for the group of data lines. Mode A is preferably used for writing charge to (and reading charge from) cells of the array connected to one data line of the group in single address cycle. Mode B is preferably used for writing charge to (and reading charge from) cells of the array connected to multiple data lines of the group in a single address cycle.




It should be noted that data select control pads (for example, the data select control pads


29




0


,


29




1


,


29




2


,


29




3


) may supply control signals to the select logic


301


for more than one group of data lines, in which case the function of the select logic


301


for the more than one group of data lines is replicated. Charge may be applied to and/or read from a probe pad


23


for only one group of data lines. This configuration may be used to write charge and/or read charge from the cells connected to the data lines for the one group in an address cycle. Alternatively, charge may be applied to and/or read from the probe pad


23


for more than one group. This configuration may be used to write charge to and/or read charge from multiple cells connected to data lines for more than one group in an address cycle.




It should be noted that mode A of the select logic


301


may be used in conjunction with mode B of the select logic


201


of the gate line select/hold circuitry


17


to write charge to (and read charge from) more than one cell of the array in an address cycle. In addition, mode B of the select logic


301


may be used in conjunction with modes A and B of the select logic


201


of the gate line select/hold circuitry


17


to write charge to (and read charge from) more than one cell of the array in an address cycle. When charge from more than one cell is read from a single data line (Mode A of the select logic


301


) or more than one data line (Mode B of the select logic


301


), the analysis of the waveform for the cells is adjusted appropriately. In the event that a defect is identified in the cells, the test routine may sequence through the potentially defective cells individually (Mode A of select logic


201


and mode A of select logic


301


) to identify the defective cell(s).




In addition, a second probe pad


31


is preferably provided for the group of data lines, and the data line select/hold circuitry


19


for the group includes hold logic


301


that selectively couples one or more data lines for the group to the second probe pad


31


in response control signals supplied via data hold control pads


32


. For example, four (4) data hold control pads


32




0


,


32




1


,


32




2


,


32




3


may supply four binary control signals to control the hold logic


303


for the group as follows:

















Data Line Coupled






Control Signals




to Probe Pad 31 for the Group



















32


0






32


1






32


2






32


3






DL


0






DL


1






DL


2






DL


3






Mode









0




0




0




0




N




N




N




N




A and B






0




0




0




1




N




N




N




Y






0




0




1




0




N




N




Y




N




A






0




1




0




0




N




Y




N




N






1




0




0




0




Y




N




N




N






0




0




1




1




N




N




Y




Y






0




1




0




1




N




Y




N




Y






0




1




1




0




N




Y




Y




N






0




1




1




1




N




Y




Y




Y






1




0




0




1




Y




N




N




Y






1




0




1




0




Y




N




Y




N






1




0




1




1




Y




N




Y




Y




B






1




1




0




0




Y




Y




N




N






1




1




0




1




Y




Y




N




Y






1




1




1




0




Y




Y




Y




N






1




1




1




1




Y




Y




Y




Y














Note that the hold logic


303


may operate in one of two modes A and B. In mode A, a single data line is coupled to the probe pad


31


for the group of data lines. In mode B, more than one data line is coupled to the probe pad


31


for the group of data lines. Mode A is preferably used for applying a predetermined potential (for example, a test potential, as described below in more detail) to a single data lines of the group. Mode B is preferably used for used for applying a predetermined potential (for example, a ground potential, as described below in more detail) to multiple data lines of the group.




It should be noted that data hold control pads (for example, the data hold control pads


32




0


,


32




1


,


32




2


,


32




2


) may supply control signals to the hold logic


303


for more than one group of data lines, in which case the function of the hold logic


303


for the more than one group of data lines is replicated.




It should be understood by those skilled in the art that when substrate


10


is assembled with a second substrate, spacers, liquid crystal material and a seal, the following components may not be present: the data line select/hold circuitry


19


for the group, and pads


23


,


29


,


31


and


32


for the group. In other words, substrate


10


may be cut to remove these elements. In this case, the substrate


10


includes data line pads that interface to data line driver circuitry for driving the data lines of the array during normal operation of the display system. In an alternate embodiment, the probe pad


23


, select logic


301


and control pads


29


for the group may interface to the data line driver circuitry and be integrated into the driving scheme for the array during normal operation.




Importantly, when performing the test routine for the cells of the array, the gate line select/hold circuitry


17


for each group of gate lines is controlled to apply activation signals to the group of gate lines associated therewith and the data line select/hold circuitry


19


for each group of data lines is controlled, such that charge is written and read from the cells of the array via the data lines associated therewith. An example of the control of the gate line select/hold circuitry


17


and data line select/hold circuitry


19


in performing the test routine for the cells of the array is illustrated in

FIGS. 4 and 5

.




FIGS.


4


(A) and (B) illustrate the control of the gate line select/hold circuitry


17


and data line select/hold circuitry


19


in writing charge to a cell connected to an exemplary gate line/data line pair (GL


0


, DL


3


) belonging to the group of gate lines and group of data lines illustrated in

FIGS. 2 and 3

. FIG.


4


(A) is a flow chart illustrating the control of the gate line select/hold circuitry


17


and data line select/hold circuitry


19


in writing charge to a cell connected to an exemplary gate line/data line pair (GL


0


, DL


3


) in an addressing cycle; and FIG.


4


(B) is a timing diagram of an exemplary implementation of the control of FIG.


4


(A). Similar operations are performed in writing charge to multiple cells of the array in an address cycle.




Referring to FIG.


4


(A), in step


401


, probe pad


27


and probe pad


31


are connected to ground potential. In step


403


, hold logic


203


of the gate line select/hold circuitry


17


is controlled (via control signals applied to gate hold control pads


28


) such that the other gate lines GL


1


, GL


2, GL




3


of the group are coupled to ground potential via probe pad


27


and the gate line GL


0


is not coupled to the probe pad


27


. In step


405


, hold logic


303


of the data line select/hold circuitry


19


is controlled (via control signals applied to data hold control pad(s)


32


) such that the other data lines DL


0


, DL


1


, DL


2


of the group are coupled to ground potential via probe pad


31


and the data line DL


3


is not coupled to the probe pad


31


. In step


407


, select logic


301


of the data line select/hold circuitry


19


is controlled (via control signals applied to data select control pads


29


) such that probe pad


23


is coupled to the data line DL


3


of the cell. In step


409


, select logic


201


of the gate line select/hold circuitry


17


is controlled (via control signals applied to gate select control pads


25


) such probe pad


21


is coupled to the gate line GL


0


of the cell. In step


411


, a charging pulse is applied to the pad


23


(and to data line DL


3


coupled thereto in step


407


). In step


413


, concurrent with the application of the charging pulse in step


411


, an activation pulse is applied to pad


21


(and to gate line GL


0


coupled thereto in step


409


). The activation pulse on gate line GL


0


turns the TFT of the cell into a conductive state (ON), thereby providing a conduction path for the charging pulse applied to data line DL


3


to charge the cell.




Note that, in step


403


, the hold logic


203


is controlled such that those gate lines not connected to a cell that is to be charged) are coupled to ground potential, and, in step


405


, hold logic


303


is controlled such that those data lines not connected to a cell that is to be charged are also coupled to ground potential. These operations ground the inactive gate lines to ground, which minimizes the capacitive coupling between the inactive gate lines and the active (i.e., lines to which the charging pulse is applied) data lines.




FIGS.


5


(A) and (B) illustrate the control of the gate line select/hold circuitry


17


and data line select/hold circuitry


19


in reading charge from a cell connected to an exemplary gate line/data line pair (GL


0


, DL


3


) belonging to the group of gate lines and group of data lines illustrated in

FIGS. 2 and 3

. FIG.


5


(A) is a flow chart illustrating the control of the gate line select/hold circuitry


17


and data line select/hold circuitry


19


in reading charge from a cell connected to an exemplary gate line/data line pair (GL


0


, DL


3


) in an address cycle; and FIG.


5


(B) is a timing diagram of an exemplary implementation of the control of FIG.


5


(A). Similar operations are performed in reading charge from multiple cells of the array in an address cycle.




Referring to FIG.


5


(A), in step


501


, probe pad


27


and probe pad


31


are connected to ground potential. In step


503


, hold logic


203


of the gate line select/hold circuitry


17


is controlled (via control signals applied to gate hold control pads


28


) such that the other gate lines GL


1


, GL


2, GL




3


of the group are coupled to ground potential via probe pad


27


and the gate line GL


0


is not coupled to the probe pad


27


. In step


505


, hold logic


303


of the data line select/hold circuitry


19


is controlled (via control signals applied to data hold control pad(s)


32


) such that such that the other data lines DL


0


, DL


1


, DL


2


of the group are coupled to ground potential via probe pad


31


and the data line DL


3


is not coupled to the probe pad


31


. In step


507


, select logic


301


of the data line select/hold circuitry


19


is controlled (via control signals applied to data select control pads


29


) such that probe pad


23


is coupled to the data line DL


3


of the cell. In step


509


, select logic


201


of the gate line select/hold circuitry


17


is controlled (via control signals applied to gate select control pads


25


) such probe pad


21


is coupled to the gate line GL


0


of the cell. In step


511


, sense circuitry is coupled to the probe pad


23


(and to the data line DL


3


coupled thereto in step


507


). In step


513


, an activation pulse is applied to pad


21


(and to gate line GL


0


coupled thereto in step


509


). The activation pulse on gate line GL


0


turns the TFT of the cell into a conductive state (ON), thereby providing a conduction path for transferring the charge stored in the cell via the data line DL


3


to the sense circuitry coupled thereto in step


511


.




Note that in the waveform of FIG.


5


(B), the signal denoted “1” illustrates the characteristic signal measured in the event that charge is not stored on the selected cell (i.e., the cell connected to the gate line/data line pair (GL


0


, DL


3


)), and the signal denoted “2” illustrates the characteristic signal measured in the event that charge is stored on the selected cell (i.e., the cell connected to the gate line/data line pair (GL


0


, DL


3


)).




The test routines described above may identify one (or more) “defective” cells. It may be useful to extend the test routine to determine if the cell is not in fact defective, but a defect exists in the gate line select/hold circuitry


17


and/or in the data line select/hold circuitry


19


associated with the gate line and data line, respectively, connected to the “defective” cell, thereby causing errors in the test routine. For example, an unexpected short circuit or open circuit may exist between two nodes in the gate line select/hold circuitry


17


and/or the data line select/hold circuitry


19


which cause errors in the test routine.




An open circuit in the gate line select/hold circuitry


17


and/or the data line select/hold circuitry


19


is preferably isolated by a performing continuity test between two suspected open nodes whereby a reference test voltage is applied to one of the suspected open nodes and the voltage at the other suspected open node is read. If the voltages do not match, an open circuit may exist between the two nodes; otherwise, an open circuit does not exist between the two nodes. For example, an unexpected open circuit may exist if the select logic


201


and/or hold logic


203


coupled to the gate lines of the group do not switch properly and remain “open”. Such an open circuit may be isolated as follows by performing the following for each gate line in the group: i) control select logic


201


such that the probe pad


21


is electrically coupled to the respective gate line; ii) control hold logic


203


such that probe pad


27


is coupled to the respective gate line; and iii) perform a continuity test to determine if an open circuit exists between the probe pads


21


and


27


. If an open circuit exists between the probe pads


21


and


27


, an open circuit exists in the select logic


201


and/or hold logic


203


for the gate line of the group. Similar operations may be performed to isolate an open circuit in the select logic


301


and/or hold logic


303


coupled to the data lines of the group.




A short circuit in the gate line select/hold circuitry


17


and/or the data line select/hold circuitry


19


is preferably isolated by applying a reference test voltage to a suspected shorted node, measuring the current at the suspected shorted node while selectively placing each other nodes of the circuit in an high impedance state. If a leakage current disappears when a given node is placed into a high impedance state, the short does not exists between the given node and the suspected shorted node. For example, an unexpected short circuit may exist if the hold logic


203


coupled to the gate lines of the group do not switch properly and remain “closed”. Such a short circuit may be isolated as follows by performing the following: i) apply a reference test voltage to probe pad


27


and measure current at probe pad


27


; ii) cycle through each gate line in the group and control hold logic


203


such that probe pad


27


is coupled to the respective gate line; and iii) for each gate line, if leakage current disappears, the hold logic


203


is operating properly for the respective gate line; otherwise, the hold switch for the respective gate line has an unexpected short circuit. Similar operations may be performed to isolate a short circuit in the select logic


201


coupled to the gate lines for the group and to isolate a short circuit in the select logic


301


and/or hold logic


303


coupled to the data lines of the group.




In the event that a defect is identified in the gate line select/hold circuitry and/or data line select/hold circuitry, the array may be tested manually (or some other test mechanism) to determine if the “defective” cell is in fact defective.





FIG. 1

illustrates an exemplary embodiment of an array tester for performing the test operations of the cells of the array in the manner set forth above. More specifically, the probe pads of the array as described above (probe pads


21


,


25


,


27


,


28


for each group of gate lines and probe pads


23


,


29


,


31


, and


32


for each group of data lines) are contacted by electrically conductive testing probes extending from a probe fixture


40


. A cable


42


has wiring connecting each of the gate line probes (i.e., probes that connect to the probe pads for the groups of gate lines) to gate line drive module


44


. A cable


33


has wiring connecting each of the data line probes (i.e., probes that connect to the probe pads for the groups of data lines) to a data line drive/sense module


34


. The gate line drive module


44


and data line drive/sense module


34


are controlled by a test controller


46


, which executes a control routine that dictates how the test is conducted (such as voltages to be applied, lines to be activated, and analysis of signals read from the cells


12


of the array, the details of which are described above). The test controller


46


interfaces to the gate line drive module


44


via a bus


47


, and interfaces to the data line drive/sense module


34


via a bi-directional bus


48


. Test controller


46


is connected to a computer system


52


via a bi-directional bus


50


. Computer system


52


may be any one of a number of personal computers with suitable software programming support to accomplish the functions described above.





FIG. 6

illustrates a preferred embodiment of the gate line drive module


44


of FIG.


1


. More specifically, the gate line drive module


44


includes gate line drive circuitry


601


, multiplexing circuitry


605


and gate line control circuitry


607


that interface to the test controller


46


via bus


47


and interface logic


603


. The gate line drive circuitry


601


generates the gate line activation signals under control of the test controller


46


. The gate line multiplexing circuitry


605


, under control of the test controller


46


, selectively switches the gate line activation signals to the probe pads


21


for the groups of gate lines of the array via the cable


42


. Finally, the gate line control circuitry


607


, under control of the test controller


46


, provides the control signals for controlling the gate line select/hold circuitry


17


for the groups of gate lines of the array via cable


42


and the probe pads


25


,


27


,


28


associated with each group of gate lines coupled thereto.




Similarly,

FIG. 7

illustrates a preferred embodiment of the data line drive/sense module


34


of FIG.


1


. More specifically, the data line drive/sense module


34


includes data line drive/sense circuitry


701


, multiplexing circuitry


705


and data line control circuitry


707


that interface to the test controller


46


via bus


48


and interface logic


703


. The data line drive/sense circuitry


701


includes: drive circuitry that, under control of the test controller


46


, generates the charging pulse signals for application to the cells of the array via the data lines; and sense circuitry that, under control of the test controller


46


, reads the charge transferred from the cells of the array via the data lines, and generates waveforms based upon the transferred charge. The waveform for one or more cells is analyzed by the test controller


46


to identify defective cells (i.e., open gate or data line, short to adjacent line, resistive crossing, etc.) in the array. A more detailed description of the circuitry and operation of the gate line drive module


44


and the data line drive/sense module


34


may be found in U.S. Pat. No. 5,179,345 and 5,546,013, commonly assigned to the assignee of the present invention, herein incorporated by reference in its entirety. The data line multiplexing circuitry


705


, under control of the test controller


46


, selectively couples the data line drive/sense circuitry


701


to the probe pads


23


for the groups of data lines of the array via the cable


33


. Finally, the data line control circuitry


607


, under control of the test controller


46


, provides the control signals for controlling the data line select/hold circuitry


19


for the groups of data lines of the array via cable


33


and the probe pads


29


,


31


,


32


associated with each group of data lines coupled thereto.




Importantly, the present invention provides a flexible interface between the array under test and the test system. More specifically, in the event that the size of the array under test is changed, the gate line select/hold circuitry


17


and/or the data line select/hold circuitry


19


and the probe pads associated therewith may be designed such that they align with the spacing of an existing probe fixture, thereby eliminating the high costs associated with redesigning the probe fixture for the array. In addition, in the event that the resolution of the array under test is changed, the gate line select/hold circuitry


17


and/or the data line select/hold circuitry


19


and the probe pads associated therewith, along with the appropriate updates to the test routine executed by the array tester, can be used to accommodate for the variations in the number of gate lines and/or data lines, thereby eliminating the costs associated with redesigning the probe fixture for the array.




While the invention has been described in connection with specific embodiments, it will be understood that those with skill in the art may develop variations of the disclosed embodiments without departing from the spirit and scope of the following claims.



Claims
  • 1. An apparatus for testing an array of pixel cells formed on a substrate, wherein each pixel cell is coupled to at least one gate line of a plurality of gate lines formed on the substrate and at least one data line of a plurality of data lines formed on the substrate, CHARACTERIZED IN THAT one of said plurality of gate lines and said plurality of data lines are partitioned into a plurality of groups, the apparatus comprising:for each particular group, a first probe pad formed on said substrate, and select logic, that is formed on said substrate and coupled between said first probe pad and lines of said particular group, for selectively coupling said first probe pad to said lines of said particular group based upon first control signals supplied to said select logic during a test routine whereby charge is written to, stored, and read from said array of pixel cells.
  • 2. The apparatus of claim 1, further comprising a plurality of first control probe pads that are formed on said substrate for supplying said first control signals to said select logic during said test routine.
  • 3. The apparatus of claim 2, wherein said gate lines are partitioned into said groups.
  • 4. The apparatus of claim 3, further comprising a gate line drive module that operates under control of a test controller; said gate line drive module comprises gate line drive circuitry for generating gate line activation signals, gate line multiplexing circuitry for selectively switching said gate line activation signals to said first probe pad for said groups of gate lines, and gate line control circuitry for generating said first control signals supplied to said select logic for said groups of gate lines via said first control probe pads.
  • 5. The apparatus of claim 2, wherein said data lines are partitioned into said groups.
  • 6. The apparatus of claim 5, further comprising a data line drive/sense module that operates under control of a test controller; said data line drive/sense module comprising drive circuitry for generating charging pulse signals for application to said pixel cells via said data lines, and sense circuitry for reading charge transferred from said pixel cells via said data lines and generating waveforms based upon said transferred charge, data line multiplexing circuitry for selectively coupling said data line/drive sense circuitry to said first probe pad for said groups of data lines, and data line control circuitry for generating said first control signals supplied to said select logic for said groups of data lines via said first control probe pads.
  • 7. The apparatus of claim 2, further comprising:a second probe pad formed on said substrate; and for each particular group, hold logic, that is formed on said substrate and coupled between said second probe pad and said lines of said particular group, for selectively coupling said second probe pad to said lines of said particular group based upon second control signals supplied to said hold logic during said test routine.
  • 8. The apparatus of claim 7, further comprising a plurality of second control probe pads that are formed on said substrate for supplying said control signals to said hold logic during said test routine.
  • 9. The apparatus of claim 8, wherein said gate lines are partitioned into said groups.
  • 10. The apparatus of claim 9, further comprising a gate line drive module that operates under control of a test controller; said gate line drive module comprises gate line drive circuitry for generating gate line activation signals, gate line multiplexing circuitry for selectively switching said gate line activation signals to said first probe pad for said groups of gate lines, and gate line control circuitry for generating said first control signals supplied to said select logic for said groups of gate lines via said first control probe pads and for generating said second control signals supplied to said hold logic for said groups of gate lines via said second control probe pads.
  • 11. The apparatus of claim 8, wherein said data lines are partitioned into said groups.
  • 12. The apparatus of claim 11, further comprising a data line drive/sense module that operates under control of a test controller; said data line drive/sense module comprising drive circuitry for generating charging pulse signals for application to said pixel cells via said data lines, and sense circuitry for reading charge transferred from said pixel cells via said data lines and generating waveforms based upon said transferred charge, data line multiplexing circuitry for selectively coupling said data line drive/sense circuitry to said first probe pad for said groups of data lines, and data line control circuitry for generating said first control signals supplied to said select logic for said groups of data lines via said first control probe pads and for generating said second control signals supplied to said hold logic for said groups of data lines via said second control probe pads.
  • 13. The apparatus of claim 2, wherein said select logic for a particular group of lines includes at least one switching transistor formed on said substrate for each line within said particular group, wherein conductive path of said switching transistor is coupled between said first probe pad for said particular group and the corresponding fine within said group, and wherein the gate of said switching transistor is coupled to a corresponding first control probe pad.
  • 14. The apparatus of claim 8, wherein said second probe pad and hold logic for said groups of lines and said second control probe pads are removed from said substrate during normal operation if said array of pixel cells.
  • 15. The apparatus of claim 8, wherein said hold logic for a particular group of lines includes at least one switching transistor formed on said substrate for each line within said particular group, wherein conductive path of said switching transistor is coupled between said second probe pad and the corresponding line within said group, and wherein the gate of said switching transistor is coupled to a corresponding second control probe pad.
  • 16. The apparatus of claim 2, wherein said first probe pad and select logic for said groups of lines and said first control probe pads are removed from said substrate during normal operation of said array of pixel cells.
US Referenced Citations (15)
Number Name Date Kind
5136622 Plus Aug 1992 A
5148058 Stewart Sep 1992 A
5166960 DaCosta Nov 1992 A
5175446 Stewart Dec 1992 A
5179345 Jenkins et al. Jan 1993 A
5222082 Plus Jun 1993 A
5224102 Plus et al. Jun 1993 A
5410583 Weisbrod et al. Apr 1995 A
5465053 Edwards Nov 1995 A
5506516 Yamashita et al. Apr 1996 A
5539326 Takahashi et al. Jul 1996 A
5546013 Ichioka et al. Aug 1996 A
5576730 Shimada et al. Nov 1996 A
5619223 Lee et al. Apr 1997 A
5654970 DaCosta et al. Aug 1997 A
Foreign Referenced Citations (3)
Number Date Country
570115 Nov 1993 EP
570115 Nov 1993 EP
570115 Aug 1998 EP
Non-Patent Literature Citations (6)
Entry
L. C. Jenkins et al., “Functional testing of TFT/LCD arrays” IBM Journal of Research and Development vol. 36, No. 1, Jan. 1992 pp.59-68.
S. Kimura et al., “High-Speed Testing of TFT-LCD Array” Society for Information Displays International Symposium Digest of Technical Papers, vol. 23, 1992, pp. 628-631.
R. L. Wisnieff et al., “In-Process Testing of Thin-Film Transistor Arrays” Society for Information Displays International Symposium Digest of Technical Papers, vol. 21, 1990, pp. 190-193.
Arai et al., “Aluminum based gate structure for active matrix liquid crystal displays.” IBM Journal of Research and development, vol. 42, No. 3/4, May/Jul. 1998, pp.491-499.*
Fryer, et al., “A Six Mask TFT/LCD Process Using Copper Gate Metallurgy”, IBm Research Report, RC 20594, OCt. 1996.
Colgan et al., “A 10.5-in.-diagnol SXGA active-matrix display,” IBm Journal of Research and Development, vol 42, No. 3/4, May/Jul. 1998. pp. 427-444.