The following disclosure relates generally to fiber optic and/or conductive cable assemblies and centering brush bearings and associated components for operating a fuel injection valve.
Fuel injectors are used to inject fuel into a combustion chamber of a combustion engine. The fuel is generally pressurized and released into the combustion chamber at a specific time relative to a stroke of the engine when a valve is opened between a chamber containing the pressurized fuel and the combustion chamber. Recent advances in control technology have allowed great efficiency and power production gains from monitoring a combustion event, such as temperature, light, pressure, or movement within the combustion chamber. However, conventional fuel injection valves and combustion chambers are not equipped to monitor the combustion events, and in many existing engines can not easily be adapted for use with monitoring equipment. In many fuel injector configurations, the size of the bore through which the fuel injector enters the combustion chamber is small and limits the type of equipment that can be used to monitor the combustion event. Accordingly, there exists a need for an improved way to deliver fuel to a combustion chamber and to measure a combustion event within the chamber.
The present application incorporates by reference in their entirety the subject matter of each of the following U.S. patent applications, filed concurrently herewith on Jul. 21, 2010 and titled: INTEGRATED FUEL INJECTORS AND IGNITERS AND ASSOCIATED METHODS OF USE AND MANUFACTURE; FUEL INJECTOR ACTUATOR ASSEMBLIES AND ASSOCIATED METHODS OF USE AND MANUFACTURE; SHAPING A FUEL CHARGE IN A COMBUSTION CHAMBER WITH MULTIPLE DRIVERS AND/OR IONIZATION CONTROL; CERAMIC INSULATOR AND METHODS OF USE AND MANUFACTURE THEREOF; METHOD AND SYSTEM OF THERMOCHEMICAL REGENERATION TO PROVIDE OXYGENATED FUEL, FOR EXAMPLE, WITH FUEL-COOLED FUEL INJECTORS; and METHODS AND SYSTEMS FOR REDUCING THE FORMATION OF OXIDES OF NITROGEN DURING COMBUSTION IN ENGINES.
The present disclosure describes devices, systems, and methods for providing a fuel injector assembly including a fiber optic and/or electrically conductive cable and optical combustion measuring unit. The disclosure further describes a bearing comprising generally rigid bristles extending from the cable to maintain the cable within a channel of a fuel injector, as well as associated systems, assemblies, components, and methods. Certain details are set forth in the following description and in
Many of the details, dimensions, angles, shapes, and other features shown in the Figures are merely illustrative of particular embodiments of the disclosure. Accordingly, other embodiments can have other details, dimensions, angles, and features without departing from the spirit or scope of the present disclosure. In addition, those of ordinary skill in the art will appreciate that further embodiments of the disclosure can be practiced without several of the details described below.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Thus, the occurrences of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. The headings provided herein are for convenience only and do not interpret the scope or meaning of the claimed disclosure.
The combustion chamber 116 contains a piston (not shown) that is driven by timed bursts of combusted fuel in the combustion chamber 116. The fuel injector assembly 100 is configured to deliver precisely timed quantities of fuel into the combustion chamber to mix with oxygen in the chamber. The piston can pressurize the fuel-oxygen mixture, and a sparkplug (or equivalent) ignites the fuel in the combustion chamber 116 to move the piston, which delivers power to a crankshaft (not shown). To assist fuel delivery, the assembly 100 can create a plasma by ionizing a portion of the fuel to force the fuel into the combustion chamber 116 quickly and efficiently. To create the plasma, an electrical current can be delivered from an ionizing power source 130 to electrodes in the channel 114. In some embodiments, the valve 122 and an engine section 131 near the valve 122 can operate as the electrodes. Further details of fuel injectors, combustion chambers, and related devices, techniques, and methods are given in U.S. patent application Ser. No. 12/653,085, which is incorporated herein by reference in its entirety.
The cable 200a can have multiple stem tubes 210, as shown in
The stem tubes 210 can be an electrically conductive optical strand that can withstand a tensile load caused when the cable 200a is used to actuate a valve or other device. For example, the stem tubes 210 can be made of a material, such as an aluminum fluoride, that operates as an optical waveguide, is electrically conductive, and has sufficient tensile strength to be used to actuate a fuel injection valve or other device. The cable 200a can accordingly be used to carry an optical signal from the sensor 126, to carry a voltage to the electrodes to cause the plasma in the fuel, and to actuate the valve 122. The voltage can be a DC voltage, or an AC voltage at an appropriate frequency, including a high-frequency. In some embodiments, the stem tubes 210 can have different combinations of these characteristics. For example, the cable 200a can include a first stem tube 210a that includes optical fibers for carrying an optical signal, and a second stem tube 210b that is a tensile member. Either of the first or second stem tubes 210a, 210b can also be electrically conductive in order to carry a voltage to an electrode pair to ionize a portion of the fuel. In some embodiments, the stem tubes 210 are both made of optical fibers having sufficient strength to withstand a tensile load caused by actuating the valve 122.
Twisting or braiding the conductive cable assembly diffuses the voltage across the cross-sectional area of the cable assembly and reduces problems associated with a phenomenon known as the “skin effect.” At high-frequency, the electrical signal in a conductor tends to be carried primarily at the outermost portion, or skin, of the conductor. This phenomenon causes increased resistance because it reduces the effective cross-sectional area of the conductor, which is inversely related to the resistance of the conductor. The skin effect can be overcome by braiding or otherwise weaving wires in a litz array such that each wire in an array of wires alternates between the outside and inside of the wire at different portions of the wire. Generally, each wire is electrically isolated from the rest to prevent the wires from shorting together into a composite wire which also experiences the skin effect.
In some embodiments, a first stem tube 210a can be an optical waveguide, a second stem tube 210b can be electrically conductive, and a third stem tube 210c can be a tensile member capable of withstanding a tensile load caused when the valve actuator 124 pulls on the cable 200b. Accordingly, the optical signal from the sensor 126 can be carried by the first stem tube 210a, the electricity for creating the plasma can be carried by the second stem tube 210b, and the tensile load can be carried by the third stem tube 210c. A fourth stem tube 210d can be an optical fiber, an electrical conductor, or a tensile member, or have any combination of these characteristics. In some embodiments, the stem tubes 210 can all have different combinations of these characteristics, as needed by a particular application, and according to design preferences. For example, a material with the optical, electrical, and mechanical properties may allow the cable 200b to have a smaller diameter, but may be more expensive than a material having only one or two of these properties but may increase the diameter of the cable 200b. Although the stem tubes 210 are shown here having a similar diameter, a given application may call for different stem tubes 210 to have different diameters.
Referring back to
The stop 320 can be fixed to the central cable section 310, and can include barbs 322 on an outer surface contacting the outer cable section 330. The barbs 322 fix the outer cable section 330 to the stop 320 so that when the actuator 302 actuates the cable assembly 300, the stop 320 abuts the shoulder 304 and stops the cable assembly 300 from moving relative to the shoulder 304. In some embodiments, the barbs 322 are directional. For example, as shown in
The central cable section 310 and the outer cable section 330 can each contain stem tubes generally as described above with respect to
The barbs 322 are shown in
It will be apparent that various changes and modifications can be made without departing from the scope of the disclosure. For example, the number, layout, and materials of the stem tubes 210 may be altered to include alternative materials and processing means. The assembly 100 may include alternative configurations than those shown and described and still be within the spirit of the disclosure.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number, respectively. When the claims use the word “or” in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.
The various embodiments described above can be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entirety. Aspects of the disclosure can be modified, if necessary, to employ fuel injectors and ignition devices with various configurations, and concepts of the various patents, applications, and publications to provide yet further embodiments of the disclosure.
These and other changes can be made to the disclosure in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the disclosure to the specific embodiments disclosed in the specification and the claims, but should be construed to include all systems and methods that operate in accordance with the claims. Accordingly, the invention is not limited by the disclosure, but instead its scope is to be determined broadly by the following claims.
The present application claims priority to and the benefit of U.S. Provisional Application No. 61/237,425, filed Aug. 27, 2009 and titled OXYGENATED FUEL PRODUCTION; U.S. Provisional Application No. 61/237,466, filed Aug. 27, 2009 and titled MULTIFUEL MULTIBURST; U.S. Provisional Application No. 61/237,479, filed Aug. 27, 2009 and titled FULL SPECTRUM ENERGY; U.S. Provisional Application No. 61/304,403, filed Feb. 13, 2010 and titled FULL SPECTRUM ENERGY AND RESOURCE INDEPENDENCE; and U.S. Provisional Application No. 61/312,100, filed Mar. 9, 2010 and titled SYSTEM AND METHOD FOR PROVIDING HIGH VOLTAGE RF SHIELDING, FOR EXAMPLE, FOR USE WITH A FUEL INJECTOR. The present application is a continuation-in-part of PCT Application No. PCT/US09/67044, filed Dec. 7, 2009 and titled INTEGRATED FUEL INJECTORS AND IGNITERS AND ASSOCIATED METHODS OF USE AND MANUFACTURE. The present application is a continuation-in-part of U.S. patent application Ser. No. 12/653,085, filed Dec. 7, 2009 and titled INTEGRATED FUEL INJECTORS AND IGNITERS AND ASSOCIATED METHODS OF USE AND MANUFACTURE; which is a continuation-in-part of U.S. patent application Ser. No. 12/006,774 (now U.S. Pat. No. 7,628,137), filed Jan. 7, 2008 and titled MULTIFUEL STORAGE, METERING, AND IGNITION SYSTEM; and which claims priority to and the benefit of U.S. Provisional Application No. 61/237,466, filed Aug. 27, 2009 and titled MULTIFUEL MULTIBURST. The present application is a continuation-in-part of U.S. patent application Ser. No. 12/581,825, filed Oct. 19, 2009 and titled MULTIFUEL STORAGE, METERING, AND IGNITION SYSTEM; which is a divisional of U.S. patent application Ser. No. 12/006,774 (now U.S. Pat. No. 7,628,137), filed Jan. 7, 2008 and titled MULTIFUEL STORAGE, METERING, AND IGNITION SYSTEM. Each of these applications is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1451384 | Whyte | Apr 1923 | A |
1765237 | King | Jul 1938 | A |
2255203 | Wiegand | Sep 1941 | A |
2441277 | Lamphere | May 1948 | A |
2721100 | Bodine, Jr. | Oct 1955 | A |
3058453 | May | Oct 1962 | A |
3060912 | May | Oct 1962 | A |
3081758 | May | Mar 1963 | A |
3243335 | Faile | Mar 1966 | A |
3286164 | De Huff | Nov 1966 | A |
3373724 | Papst | Mar 1968 | A |
3391680 | Benson | Jul 1968 | A |
3520961 | Suda et al. | Jul 1970 | A |
3542293 | Bishop et al. | Nov 1970 | A |
3594877 | Suda et al. | Jul 1971 | A |
3608050 | Carman et al. | Sep 1971 | A |
3689293 | Beall | Sep 1972 | A |
3926169 | Leshner et al. | Dec 1975 | A |
3931438 | Beall et al. | Jan 1976 | A |
3960995 | Kourkene | Jun 1976 | A |
3976039 | Henault | Aug 1976 | A |
3997352 | Beall | Dec 1976 | A |
4020803 | Thuren et al. | May 1977 | A |
4066046 | McAlister | Jan 1978 | A |
4095580 | Murray et al. | Jun 1978 | A |
4105004 | Asai et al. | Aug 1978 | A |
4116389 | Furtah et al. | Sep 1978 | A |
4122816 | Fitzgerald et al. | Oct 1978 | A |
4135481 | Resler, Jr. | Jan 1979 | A |
4172921 | Kiefer | Oct 1979 | A |
4183467 | Sheraton et al. | Jan 1980 | A |
4203393 | Giardini | May 1980 | A |
4281797 | Kimata et al. | Aug 1981 | A |
4293188 | McMahon | Oct 1981 | A |
4330732 | Lowther | May 1982 | A |
4332223 | Dalton | Jun 1982 | A |
4364342 | Asik | Dec 1982 | A |
4364363 | Miyagi et al. | Dec 1982 | A |
4368707 | Leshner et al. | Jan 1983 | A |
4377455 | Kadija et al. | Mar 1983 | A |
4381740 | Crocker | May 1983 | A |
4382189 | Wilson | May 1983 | A |
4391914 | Beall | Jul 1983 | A |
4448160 | Vosper | May 1984 | A |
4469160 | Giamei | Sep 1984 | A |
4483485 | Kamiya et al. | Nov 1984 | A |
4511612 | Huther et al. | Apr 1985 | A |
4528270 | Matsunaga | Jul 1985 | A |
4536452 | Stempin et al. | Aug 1985 | A |
4567857 | Houseman et al. | Feb 1986 | A |
4574037 | Samejima et al. | Mar 1986 | A |
4677960 | Ward | Jul 1987 | A |
4684211 | Weber et al. | Aug 1987 | A |
4688538 | Ward et al. | Aug 1987 | A |
4700891 | Hans et al. | Oct 1987 | A |
4716874 | Hilliard et al. | Jan 1988 | A |
4733646 | Iwasaki | Mar 1988 | A |
4736718 | Linder | Apr 1988 | A |
4742265 | Giachino et al. | May 1988 | A |
4760818 | Brooks et al. | Aug 1988 | A |
4760820 | Tozzi | Aug 1988 | A |
4774914 | Ward | Oct 1988 | A |
4774919 | Matsuo et al. | Oct 1988 | A |
4777925 | Lasota | Oct 1988 | A |
4834033 | Larsen | May 1989 | A |
4841925 | Ward | Jun 1989 | A |
4922883 | Iwasaki | May 1990 | A |
4932263 | Wlodarczyk | Jun 1990 | A |
4967708 | Linder et al. | Nov 1990 | A |
4977873 | Cherry et al. | Dec 1990 | A |
4982708 | Stutzenberger | Jan 1991 | A |
5034852 | Rosenberg | Jul 1991 | A |
5035360 | Green et al. | Jul 1991 | A |
5036669 | Earleson et al. | Aug 1991 | A |
5055435 | Hamanaka et al. | Oct 1991 | A |
5056496 | Morino et al. | Oct 1991 | A |
5069189 | Saito | Dec 1991 | A |
5072617 | Weiss | Dec 1991 | A |
5076223 | Harden et al. | Dec 1991 | A |
5095742 | James et al. | Mar 1992 | A |
5107673 | Sato et al. | Apr 1992 | A |
5109817 | Cherry | May 1992 | A |
5131376 | Ward et al. | Jul 1992 | A |
5150682 | Magnet | Sep 1992 | A |
5193515 | Oota et al. | Mar 1993 | A |
5207208 | Ward | May 1993 | A |
5211142 | Matthews et al. | May 1993 | A |
5220901 | Morita et al. | Jun 1993 | A |
5222481 | Morikawa | Jun 1993 | A |
5267601 | Dwivedi | Dec 1993 | A |
5297518 | Cherry | Mar 1994 | A |
5305360 | Remark et al. | Apr 1994 | A |
5328094 | Goetzke et al. | Jul 1994 | A |
5329606 | Andreassen | Jul 1994 | A |
5343699 | McAlister | Sep 1994 | A |
5377633 | Wakeman | Jan 1995 | A |
5390546 | Wlodarczyk | Feb 1995 | A |
5392745 | Beck | Feb 1995 | A |
5394838 | Chandler | Mar 1995 | A |
5394852 | McAlister | Mar 1995 | A |
5421195 | Wlodarczyk | Jun 1995 | A |
5421299 | Cherry | Jun 1995 | A |
5435286 | Carroll, III et al. | Jul 1995 | A |
5439532 | Fraas | Aug 1995 | A |
5456241 | Ward | Oct 1995 | A |
5475772 | Hung et al. | Dec 1995 | A |
5497744 | Nagaosa et al. | Mar 1996 | A |
5517961 | Ward | May 1996 | A |
5531199 | Bryant et al. | Jul 1996 | A |
5549746 | Scott et al. | Aug 1996 | A |
5568801 | Paterson et al. | Oct 1996 | A |
5584490 | Inoue et al. | Dec 1996 | A |
5588299 | DeFreitas | Dec 1996 | A |
5605125 | Yaoita | Feb 1997 | A |
5607106 | Bentz et al. | Mar 1997 | A |
5608832 | Pfandl et al. | Mar 1997 | A |
5662389 | Truglio et al. | Sep 1997 | A |
5676026 | Tsuboi et al. | Oct 1997 | A |
5694761 | Griffin | Dec 1997 | A |
5699253 | Puskorius et al. | Dec 1997 | A |
5702761 | DiChiara, Jr. et al. | Dec 1997 | A |
5704321 | Suckewer et al. | Jan 1998 | A |
5704553 | Wieczorek et al. | Jan 1998 | A |
5714680 | Taylor et al. | Feb 1998 | A |
5715788 | Tarr et al. | Feb 1998 | A |
5738818 | Atmur et al. | Apr 1998 | A |
5745615 | Atkins et al. | Apr 1998 | A |
5746171 | Yaoita | May 1998 | A |
5767026 | Kondoh et al. | Jun 1998 | A |
5797427 | Buescher | Aug 1998 | A |
5806581 | Haasch et al. | Sep 1998 | A |
5816217 | Wong | Oct 1998 | A |
5853175 | Udagawa | Dec 1998 | A |
5863326 | Nause et al. | Jan 1999 | A |
5876659 | Yasutomi et al. | Mar 1999 | A |
5915272 | Foley et al. | Jun 1999 | A |
5930420 | Atkins et al. | Jul 1999 | A |
5941207 | Anderson et al. | Aug 1999 | A |
5947091 | Krohn et al. | Sep 1999 | A |
5975032 | Iwata | Nov 1999 | A |
5983855 | Benedikt et al. | Nov 1999 | A |
6000628 | Lorraine | Dec 1999 | A |
6015065 | McAlister | Jan 2000 | A |
6017390 | Charych et al. | Jan 2000 | A |
6026568 | Atmur et al. | Feb 2000 | A |
6029627 | VanDyne | Feb 2000 | A |
6042028 | Xu | Mar 2000 | A |
6062498 | Klopfer | May 2000 | A |
6081183 | Mading et al. | Jun 2000 | A |
6085990 | Augustin | Jul 2000 | A |
6092501 | Matayoshi et al. | Jul 2000 | A |
6092507 | Bauer et al. | Jul 2000 | A |
6093338 | Tani et al. | Jul 2000 | A |
6102303 | Bright et al. | Aug 2000 | A |
6131607 | Cooke | Oct 2000 | A |
6138639 | Hiraya et al. | Oct 2000 | A |
6155212 | McAlister | Dec 2000 | A |
6173913 | Shafer et al. | Jan 2001 | B1 |
6185355 | Hung | Feb 2001 | B1 |
6189522 | Moriya | Feb 2001 | B1 |
6204594 | Ingham | Mar 2001 | B1 |
6253728 | Matayoshi et al. | Jul 2001 | B1 |
6267307 | Pontoppidan | Jul 2001 | B1 |
6281976 | Taylor et al. | Aug 2001 | B1 |
6318306 | Komatsu | Nov 2001 | B1 |
6335065 | Steinlage et al. | Jan 2002 | B1 |
6338445 | Lambert et al. | Jan 2002 | B1 |
6340015 | Benedikt et al. | Jan 2002 | B1 |
6360721 | Schuricht et al. | Mar 2002 | B1 |
6378485 | Elliott | Apr 2002 | B2 |
6386178 | Rauch | May 2002 | B1 |
6446597 | McAlister | Sep 2002 | B1 |
6453660 | Johnson et al. | Sep 2002 | B1 |
6455173 | Marijnissen et al. | Sep 2002 | B1 |
6455451 | Brodkin et al. | Sep 2002 | B1 |
6478007 | Miyashita et al. | Nov 2002 | B2 |
6483311 | Ketterer | Nov 2002 | B1 |
6490391 | Zhao et al. | Dec 2002 | B1 |
6501875 | Zhao et al. | Dec 2002 | B2 |
6503584 | McAlister | Jan 2003 | B1 |
6506336 | Beall et al. | Jan 2003 | B1 |
6516114 | Zhao et al. | Feb 2003 | B2 |
6517011 | Ayanji et al. | Feb 2003 | B1 |
6517623 | Brodkin et al. | Feb 2003 | B1 |
6532315 | Hung et al. | Mar 2003 | B1 |
6536405 | Rieger et al. | Mar 2003 | B1 |
6542663 | Zhao et al. | Apr 2003 | B1 |
6543700 | Jameson et al. | Apr 2003 | B2 |
6549713 | Pi et al. | Apr 2003 | B1 |
6550458 | Yamakado et al. | Apr 2003 | B2 |
6556746 | Zhao et al. | Apr 2003 | B1 |
6561168 | Hokao et al. | May 2003 | B2 |
6567599 | Hung | May 2003 | B2 |
6571035 | Pi et al. | May 2003 | B1 |
6578775 | Hokao | Jun 2003 | B2 |
6583901 | Hung | Jun 2003 | B1 |
6584244 | Hung | Jun 2003 | B2 |
6585171 | Boecking | Jul 2003 | B1 |
6587239 | Hung | Jul 2003 | B1 |
6599028 | Shu et al. | Jul 2003 | B1 |
6615810 | Funk et al. | Sep 2003 | B2 |
6615899 | Woodward et al. | Sep 2003 | B1 |
6619269 | Stier et al. | Sep 2003 | B1 |
6621964 | Quinn et al. | Sep 2003 | B2 |
6647948 | Kyuuma et al. | Nov 2003 | B2 |
6663027 | Jameson et al. | Dec 2003 | B2 |
6668630 | Kuglin et al. | Dec 2003 | B1 |
6672277 | Yasuoka et al. | Jan 2004 | B2 |
6700306 | Nakamura et al. | Mar 2004 | B2 |
6705274 | Kubo | Mar 2004 | B2 |
6719224 | Enomoto et al. | Apr 2004 | B2 |
6722339 | Elliott | Apr 2004 | B2 |
6722340 | Sukegawa et al. | Apr 2004 | B1 |
6722840 | Fujisawa et al. | Apr 2004 | B2 |
6725826 | Esteghlal | Apr 2004 | B2 |
6745744 | Suckewer et al. | Jun 2004 | B2 |
6748918 | Rieger et al. | Jun 2004 | B2 |
6749043 | Brown et al. | Jun 2004 | B2 |
6755175 | McKay et al. | Jun 2004 | B1 |
6756140 | McAlister | Jun 2004 | B1 |
6763811 | Tamol, Sr. | Jul 2004 | B1 |
6776352 | Jameson | Aug 2004 | B2 |
6779513 | Pellizzari et al. | Aug 2004 | B2 |
6796516 | Maier et al. | Sep 2004 | B2 |
6799513 | Schafer | Oct 2004 | B2 |
6802894 | Brodkin et al. | Oct 2004 | B2 |
6811103 | Gurich et al. | Nov 2004 | B2 |
6814313 | Petrone et al. | Nov 2004 | B2 |
6832472 | Huang et al. | Dec 2004 | B2 |
6832588 | Herden et al. | Dec 2004 | B2 |
6845920 | Sato et al. | Jan 2005 | B2 |
6851413 | Tamol, Sr. | Feb 2005 | B1 |
6854438 | Hilger et al. | Feb 2005 | B2 |
6871630 | Herden et al. | Mar 2005 | B2 |
6883490 | Jayne | Apr 2005 | B2 |
6892971 | Rieger et al. | May 2005 | B2 |
6898355 | Johnson et al. | May 2005 | B2 |
6899076 | Funaki et al. | May 2005 | B2 |
6904893 | Hotta et al. | Jun 2005 | B2 |
6912998 | Rauznitz et al. | Jul 2005 | B1 |
6925983 | Herden et al. | Aug 2005 | B2 |
6940213 | Heinz et al. | Sep 2005 | B1 |
6954074 | Zhu et al. | Oct 2005 | B2 |
6955154 | Douglas | Oct 2005 | B1 |
6959693 | Oda | Nov 2005 | B2 |
6976683 | Eckert et al. | Dec 2005 | B2 |
6984305 | McAlister | Jan 2006 | B2 |
6993960 | Benson | Feb 2006 | B2 |
6994073 | Tozzi et al. | Feb 2006 | B2 |
7007658 | Cherry et al. | Mar 2006 | B1 |
7007661 | Warlick | Mar 2006 | B2 |
7013863 | Shiraishi et al. | Mar 2006 | B2 |
7025358 | Ueta et al. | Apr 2006 | B2 |
7032845 | Dantes et al. | Apr 2006 | B2 |
7070126 | Shinogle | Jul 2006 | B2 |
7073480 | Shiraishi et al. | Jul 2006 | B2 |
7077100 | Vogel et al. | Jul 2006 | B2 |
7077108 | Fujita et al. | Jul 2006 | B2 |
7077379 | Taylor | Jul 2006 | B1 |
7086376 | McKay | Aug 2006 | B2 |
7104246 | Gagliano et al. | Sep 2006 | B1 |
7104250 | Yi et al. | Sep 2006 | B1 |
7121253 | Shiraishi et al. | Oct 2006 | B2 |
7131426 | Ichinose et al. | Nov 2006 | B2 |
7137382 | Zhu et al. | Nov 2006 | B2 |
7138046 | Roychowdhury | Nov 2006 | B2 |
7140347 | Suzuki et al. | Nov 2006 | B2 |
7140353 | Rauznitz et al. | Nov 2006 | B1 |
7140562 | Holzgrefe et al. | Nov 2006 | B2 |
7198208 | Dye et al. | Apr 2007 | B2 |
7201136 | McKay et al. | Apr 2007 | B2 |
7204133 | Benson et al. | Apr 2007 | B2 |
7228840 | Sukegawa et al. | Jun 2007 | B2 |
7249578 | Fricke et al. | Jul 2007 | B2 |
7255290 | Bright et al. | Aug 2007 | B2 |
7272487 | Christen et al. | Sep 2007 | B2 |
7278392 | Zillmer et al. | Oct 2007 | B2 |
7305971 | Fujii | Dec 2007 | B2 |
7309029 | Boecking | Dec 2007 | B2 |
7340118 | Wlodarczyk et al. | Mar 2008 | B2 |
7367319 | Kuo et al. | May 2008 | B2 |
7386982 | Runkle et al. | Jun 2008 | B2 |
7404395 | Yoshimoto | Jul 2008 | B2 |
7409929 | Miyahara et al. | Aug 2008 | B2 |
7418940 | Yi et al. | Sep 2008 | B1 |
7481043 | Hirata et al. | Jan 2009 | B2 |
7484369 | Myhre | Feb 2009 | B2 |
7513222 | Orlosky | Apr 2009 | B2 |
7527041 | Wing et al. | May 2009 | B2 |
7540271 | Stewart et al. | Jun 2009 | B2 |
7554250 | Kadotani et al. | Jun 2009 | B2 |
7588012 | Gibson et al. | Sep 2009 | B2 |
7625531 | Coates et al. | Dec 2009 | B1 |
7626315 | Nagase | Dec 2009 | B2 |
7628137 | McAlister | Dec 2009 | B1 |
7650873 | Hofbauer et al. | Jan 2010 | B2 |
7703775 | Matsushita et al. | Apr 2010 | B2 |
7707832 | Commaret et al. | May 2010 | B2 |
7714483 | Hess et al. | May 2010 | B2 |
7728489 | Heinz et al. | Jun 2010 | B2 |
7849833 | Toyoda | Dec 2010 | B2 |
7880193 | Lam | Feb 2011 | B2 |
7886993 | Bachmaier et al. | Feb 2011 | B2 |
7898258 | Neuberth et al. | Mar 2011 | B2 |
7918212 | Verdejo et al. | Apr 2011 | B2 |
7938102 | Sherry | May 2011 | B2 |
7942136 | Lepsch et al. | May 2011 | B2 |
8069836 | Ehresman | Dec 2011 | B2 |
20020017573 | Sturman | Feb 2002 | A1 |
20020070287 | Jameson et al. | Jun 2002 | A1 |
20020084793 | Hung et al. | Jul 2002 | A1 |
20020131171 | Hung | Sep 2002 | A1 |
20020131666 | Hung et al. | Sep 2002 | A1 |
20020131673 | Hung | Sep 2002 | A1 |
20020131674 | Hung | Sep 2002 | A1 |
20020131686 | Hung | Sep 2002 | A1 |
20020131706 | Hung | Sep 2002 | A1 |
20020131756 | Hung | Sep 2002 | A1 |
20020141692 | Hung | Oct 2002 | A1 |
20020150375 | Hung et al. | Oct 2002 | A1 |
20020151113 | Hung et al. | Oct 2002 | A1 |
20020166536 | Hitomi et al. | Nov 2002 | A1 |
20030012985 | McAlister | Jan 2003 | A1 |
20030042325 | D'Arrigo | Mar 2003 | A1 |
20030111042 | Rieger et al. | Jun 2003 | A1 |
20030127531 | Hohl | Jul 2003 | A1 |
20040008989 | Hung | Jan 2004 | A1 |
20040256495 | Baker | Dec 2004 | A1 |
20050045146 | McKay et al. | Mar 2005 | A1 |
20050098663 | Ishii | May 2005 | A1 |
20050255011 | Greathouse et al. | Nov 2005 | A1 |
20050257776 | Bonutti | Nov 2005 | A1 |
20060005738 | Kumar | Jan 2006 | A1 |
20060005739 | Kumar | Jan 2006 | A1 |
20060016916 | Petrone et al. | Jan 2006 | A1 |
20060037563 | Raab et al. | Feb 2006 | A1 |
20060102140 | Sukegawa et al. | May 2006 | A1 |
20060108452 | Anzinger et al. | May 2006 | A1 |
20060169244 | Allen | Aug 2006 | A1 |
20060237220 | Leyendecker | Oct 2006 | A1 |
20070142204 | Park et al. | Jun 2007 | A1 |
20070189114 | Reiner et al. | Aug 2007 | A1 |
20070283927 | Fukumoto et al. | Dec 2007 | A1 |
20080072871 | Vogel et al. | Mar 2008 | A1 |
20080081120 | Van Ooij et al. | Apr 2008 | A1 |
20080098984 | Sakamaki | May 2008 | A1 |
20080103672 | Ueda et al. | May 2008 | A1 |
20090078798 | Gruendl et al. | Mar 2009 | A1 |
20090093951 | McKay et al. | Apr 2009 | A1 |
20090204306 | Goeke et al. | Aug 2009 | A1 |
20090264574 | Van Ooij et al. | Oct 2009 | A1 |
20100020518 | Bustamante | Jan 2010 | A1 |
20100043758 | Caley | Feb 2010 | A1 |
20100077986 | Chen | Apr 2010 | A1 |
20100108023 | McAlister | May 2010 | A1 |
20100183993 | McAlister | Jul 2010 | A1 |
20110036309 | McAlister | Feb 2011 | A1 |
20110042476 | McAlister | Feb 2011 | A1 |
20110048371 | McAlister | Mar 2011 | A1 |
20110048374 | McAlister | Mar 2011 | A1 |
20110048381 | McAlister | Mar 2011 | A1 |
20110056458 | McAlister | Mar 2011 | A1 |
20110132319 | McAlister | Jun 2011 | A1 |
20110134049 | Lin et al. | Jun 2011 | A1 |
20110146619 | McAlister | Jun 2011 | A1 |
20110210182 | McAlister | Sep 2011 | A1 |
20110233308 | McAlister | Sep 2011 | A1 |
20110253104 | McAlister | Oct 2011 | A1 |
20110297753 | McAlister et al. | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
3443022 | May 1986 | DE |
102005060139 | Jun 2007 | DE |
392594 | Oct 1990 | EP |
671555 | Sep 1995 | EP |
1972606 | Sep 2008 | EP |
1038490 | Aug 1966 | GB |
61-023862 | Feb 1986 | JP |
02-259268 | Oct 1990 | JP |
08-049623 | Feb 1996 | JP |
2008-334077 | Dec 1996 | JP |
2004-324613 | Nov 2004 | JP |
2007-0026296 | Mar 2007 | KR |
2008-0073635 | Aug 2008 | KR |
WO-2008-017576 | Feb 2008 | WO |
Entry |
---|
“Ford DIS/EDIS “Waste Spark” Ignition System.” Accessed: Jul. 15, 2010, Printed: Jun. 8, 2011. <http://rockledge.home.comcast.net/˜rockledge/RangerPictureGallery/DIS—EDIS.htm>. pp. 1-4. |
“P dV's Custom Data Acquisition Systems Capabilities.” PdV Consulting. Accessed: Jun. 28, 2010. Printed: May 16, 2011. <http://www.pdvconsult.com/capabilities%20-%20daqsys.html>. pp. 1-10. |
“Piston motion equations.” Wikipedia, the Free Encyclopedia. Published: Jul. 4, 2010. Accessed: Aug. 7, 2010. Printed: Aug. 7, 2010. <http://en.wikipedia.org/wiki/Dopant>. pp. 1-6. |
“Piston Velocity and Acceleration.” EPI, Inc. Accessed: Jun. 28, 2010. Printed: May 16, 2011. <http://www.epi-eng.com/piston—engine—technology/piston—velocity—and—acceleration.htm>. pp. 1-3. |
“SmartPlugs—Aviation.” SmartPlugs.com. Published: Sep. 2000. Accessed: May 31, 2011. <http://www.smartplugs.com/news/aeronews0900.htm>. pp. 1-3. |
Bell et al. “A Super Solar Flare.” NASA Science. Published: May 6, 2008. Accessed: May 17, 2011. <http://science.nasa.gov/science-news/science-at-nasa/2008/06may—carringtonflare/>. pp. 1-5. |
Birchenough, Arthur G. “A Sustained-arc Ignition System for Internal Combustion Engines.” Nasa Technical Memorandum (NASA TM-73833). Lewis Research Center. Nov. 1977. pp. 1-15. |
Britt, Robert Roy. “Powerful Solar Storm Could Shut Down U.S. for Months—Science News | Science & Technology | Technology News—FOXNews.com.” FoxNews.com, Published: Jan. 9, 2009. Accessed: May 17, 2011. <http://www.foxnews.com/story/0,2933,478024,00.html>. pp. 1-2. |
Brooks, Michael. “Space Storm Alert: 90 Seconds from Catastrophe.” NewScientist. Mar. 23, 2009. pp. 1-7. |
Doggett, William. “Measuring Internal Combustion Engine In-Cylinder Pressure with LabVIEW.” National Instruments. Accessed: Jun. 28, 2010. Printed: May 16, 2011. <http://sine.ni.com/cs/app/doc/p/id/cs-217>. pp. 1-2. |
Hodgin, Rick. “NASA Studies Solar Flare Dangers to Earth-based Technology.” TG Daily. Published: Jan. 6, 2009. Accessed: May 17, 2011. <http://www.tgdaily.com/trendwatch/40830-nasa-studies-solar-flare-dangers-to-earth-based-technology>. pp. 1-2. |
InfraTec GmbH. “Evaluation Kit for FPI Detectors | Datasheet—Detector Accessory.” 2009. pp. 1-2. |
International Search Report and Written Opinion for Application No. PCT/US2009/067044; Applicant: McAlister Technologies, LLC.; Date of Mailing: Apr. 14, 2010 (11 pages). |
International Search Report and Written Opinion for Application No. PCT/US2010/002076; Applicant: McAlister Technologies, LLC.; Date of Mailing: Apr. 29, 2011 (8 pages). |
International Search Report and Written Opinion for Application No. PCT/US2010/002077; Applicant: McAlister Technologies, LLC.; Date of Mailing: Apr. 29, 2011 (8 pages). |
International Search Report and Written Opinion for Application No. PCT/US2010/002078; Applicant: McAlister Technologies, LLC.; Date of Mailing: Dec. 17, 2010 (9 pages). |
International Search Report and Written Opinion for Application No. PCT/US2010/042812; Applicant: McAlister Technologies, LLC.; Date of Mailing: May 13, 2011 (9 pages). |
International Search Report and Written Opinion for Application No. PCT/US2010/042815; Applicant: McAlister Technologies, LLC.; Date of Mailing: Apr. 29, 2011 (10 pages). |
International Search Report and Written Opinion for Application No. PCT/US2010/042817; Applicant: McAlister Technologies, LLC.; Date of Mailing: Apr. 29, 2011 (8 pages). |
Lewis Research Center. “Fabry-Perot Fiber-Optic Temperature Sensor.” NASA Tech Briefs. Published: Jan. 1, 2009. Accessed: May 16, 2011. <http://www.techbriefs.com/content/view/2114/32/>. |
Non-Final Office Action for U.S. Appl. No. 12/006,774; Applicant: McAlister Technologies, LLC; Date of Mailing: Jan. 30, 2009, 18 pages. |
Non-Final Office Action for U.S. Appl. No. 12/581,825; Applicant: McAlister Technologies, LLC; Date of Mailing: Mar. 25, 2011 (15 pages). |
Non-Final Office Action for U.S. Appl. No. 12/804,510; Applicant: McAlister Technologies, LLC; Date of Mailing: Mar. 1, 2011 (10 pages). |
Non-Final Office Action for U.S. Appl. No. 12/961,453; Applicant: McAlister Technologies, LLC; Date of Mailing: Jun. 9, 2011 (4 pages). |
Notice of Allowance for U.S. Appl. No. 12/006,774; Applicant: McAlister Technologies, LLC; Date of Mailing: Jul. 27, 2009, 20 pages. |
Pall Corporation, Pall Industrial Hydraulics. Increase Power Output and Reduce Fugitive Emissions by Upgrading Hydrogen Seal Oil System Filtration. 2000. pp. 1-4. |
Riza et al. “All-Silicon Carbide Hybrid Wireless-Wired Optics Temperature Sensor Network Basic Design Engineering for Power Plant Gas Turbines.” International Journal of Optomechatronics, vol. 4, Issue 1. Jan 2010. pp. 83-91. |
Riza et al. “Hybrid Wireless-Wired Optical Sensor for Extreme Temperature Measurement in Next Generation Energy Efficient Gas Turbines.” Journal of Engineering for Gas Turbines and Power, vol. 132, Issue 5. May 2010. pp. 051601-1-51601-11. |
Salib et al. “Role of Parallel Reformable Bonds in the Self-Healing of Cross-Linked Nanogel Particles.” Langmuir, vol. 27, Issue 7. 2011. pp. 3991-4003. |
Erjavec, Jack. “Automotive Technology: a Systems Approach, vol. 2.” Thomson Delmar Learning. Clifton Park, NY. 2005. p. 845. |
Hollembeak, Barry. “Automotive Fuels & Emissions.” Thomson Delmar Learning. Clifton Park, NY. 2005. p. 298. |
International Search Report and Written Opinion for Application No. PCT/US2010/002080; Applicant: McAlister Technologies, LLC.; Date of Mailing: Jul. 7, 2011 (8 pages). |
International Search Report and Written Opinion for Application No. PCT/US2010/054361; Applicant: McAlister Technologies, LLC.; Date of Mailing: Jun. 30, 2011, 9 pages. |
International Search Report and Written Opinion for Application No. PCT/US2010/054364; Applicant: McAlister Technologies, LLC.; Date of Mailing: Aug. 22, 2011, 8 pages. |
International Search Report and Written Opinion for Application No. PCT/US2010/059146; Applicant: McAlister Technologies, LLC.; Date of Mailing: Aug. 31, 2011, 11 pages. |
International Search Report and Written Opinion for Application No. PCT/US2010/059147; Applicant: McAlister Technologies, LLC.; Date of Mailing: Aug. 31, 2011, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 13/027,051; Applicant: McAlister Technologies, LLC; Date of Mailing: Sep. 1, 2011, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/141,062; Applicant: McAlister Technologies, LLC; Date of Mailing: Aug. 11, 2011, 12 pages. |
Non-Final Office Action for U.S. Appl. No. 12/961,461; Applicant: McAlister et al.; Date of Mailing: Jan. 17, 2012, 39 pages. |
International Search Report and Written Opinion for Application No. PCT/US2011/024778 Applicant: McAlister Technologies, LLC.; Date of Mailing: Sep. 27, 2011 (10 pages). |
Final Office Action for U.S. Appl. No. 13/027,051; Applicant: McAlister Technologies, LLC; Date of Mailing: Oct. 20, 2011, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20110057058 A1 | Mar 2011 | US |
Number | Date | Country | |
---|---|---|---|
61237466 | Aug 2009 | US | |
61237425 | Aug 2009 | US | |
61237479 | Aug 2009 | US | |
61304403 | Feb 2010 | US | |
61312100 | Mar 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12006774 | US | |
Child | 12581825 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12653085 | Dec 2009 | US |
Child | 12841146 | US | |
Parent | 12006774 | Jan 2008 | US |
Child | 12653085 | US | |
Parent | 12581825 | Oct 2009 | US |
Child | 12006774 | US | |
Parent | PCT/US2009/067044 | Dec 2009 | US |
Child | 12006774 | US |