The present application concerns embodiments of a system for delivering a prosthetic valve to a heart via the patient's vasculature.
Endovascular delivery catheters are used to implant prosthetic devices, such as a prosthetic valve, at locations inside the body that are not readily accessible by surgery or where access without surgery is desirable. The usefulness of delivery catheters is largely limited by the ability of the catheter to successfully navigate through small vessels and around tight bends in the vasculature, such as around the aortic arch.
Known delivery apparatuses include a balloon catheter having an inflatable balloon that mounts a prosthetic valve in a crimped state and a retractable cover that extends over the valve to protect the interior walls of the vasculature as the valve is advanced to the implantation site. Various techniques have been employed to adjust the curvature of a section of the delivery apparatus to help “steer” the valve through bends in the vasculature. The balloon catheter may also include a tapered tip portion mounted distal to the balloon to facilitate tracking through the vasculature. The tip portion, however, increases the length of the relatively stiff, non-steerable section of the apparatus. Unfortunately, due to the relatively long stiff section, successful delivery of a prosthetic valve through tortuous vasculature, such as required for retrograde delivery of a prosthetic aortic heart valve, has proven to be difficult.
A known technique for adjusting the curvature of a delivery apparatus employs a pull wire having a distal end fixedly secured to the steerable section and a proximal end operatively connected to a rotatable adjustment knob located outside the body. Rotation of the adjustment applies a pulling force on the pull wire, which in turn causes the steerable section to bend. The rotation of the adjustment knob produces less than 1:1 movement of the pull wire; that is, rotation of the knob does not produce equal movement of the steerable section. To facilitate steering, it would be desirable to provide an adjustment mechanism that can produce substantially 1:1 movement of the steerable section.
It is also known to use an introducer sheath for safely introducing a delivery apparatus into the patient's vasculature (e.g., the femoral artery). An introducer sheath has an elongated sleeve that is inserted into the vasculature and a seal housing that contains one or more sealing valves that allow a delivery apparatus to be placed in fluid communication with the vasculature with minimal blood loss. A conventional introducer sheath typically requires a tubular loader to be inserted through the seals in the sheath housing to provide an unobstructed path through the seal housing for a valve mounted on a balloon catheter. A conventional loader extends from the proximal end of the introducer sheath, and therefore decreases the available working length of the delivery apparatus that can be inserted through the sheath and into the body.
Accordingly, there remains a need in the art for improved endovascular systems for implanting valves and other prosthetic devices.
Certain embodiments of the present disclosure provide a heart valve delivery apparatus for delivery of a prosthetic heart valve to a native valve site via the human vasculature. The delivery apparatus is particularly suited for advancing a prosthetic valve through the aorta (i.e., in a retrograde approach) for replacing a stenotic native aortic valve.
The delivery apparatus in particular embodiments includes a balloon catheter having an inflatable balloon which mounts a crimped valve for delivery through the patient's vasculature. The delivery apparatus can include a guide, or flex, catheter having a shaft that extends over the shaft of the balloon catheter. The guide catheter shaft has a steerable section, the curvature of which can be adjusted by the operator to facilitate navigation of the delivery apparatus around bends in the vasculature. The delivery apparatus also can include a nose catheter having a shaft that extends through the balloon catheter shaft and a nose piece located distally of the valve. The nose piece desirably has a tapered outer surface and is made of a flexible material to provide atraumatic tracking through the arteries and a stenotic native valve. The nose piece desirably has an internal bore that is dimensioned to receive at least a distal end portion of the deflated balloon during delivery of the valve.
By inserting a portion of the balloon into the nose piece, the length of the non-steerable section of the delivery apparatus can be reduced (e.g., by about 1.5 to 2.0 cm in some examples), which greatly enhances the ability of the delivery apparatus to track through the aortic arch with little or no contact between the end of the delivery apparatus and the inner walls of the aorta. Once the delivery apparatus has been advanced to the implantation site, the nose catheter can be moved distally relative to the balloon catheter to withdraw the balloon from the nose piece so as not to interfere with inflating the balloon.
The guide catheter shaft can be provided with a cover at its distal end to cover a portion of the balloon and/or the valve that is not already covered by the nose piece. In particular embodiments, the cover extends over the remaining portion of the balloon and the valve that is not covered by the nose piece. In this manner, the entire outer surface of the valve and the balloon are shielded by the nose piece and the cover. Consequently, an introducer sheath need not be used to introduce the delivery apparatus into the patient's vasculature. Unlike an introducer sheath, the cover need only be in contact with the femoral and iliac arteries for only a short period of time, and thus minimizes the possibility of trauma to these vessels. Further, by eliminating the introducer sheath, the maximum diameter of the system can be reduced, and therefore it is less occlusive to the femoral artery.
In one variation of the delivery apparatus, the nose piece has an internal bore dimensioned to receive the entire valve and substantially the entire balloon during delivery of the valve. Thus, in this embodiment, the cover attached to the end of the guide catheter need not be provided. In another variation, the cover of the guide catheter extends completely over the valve and the balloon, and the nose catheter is not provided. The cover can be an expandable mesh basket that can collapse around the valve and the balloon to provide a smooth tracking profile. The mesh basket can be expanded by the operator, such as by pulling one or more pull wires, which dilates a distal opening in the mesh basket permitting the balloon and the valve to be advanced from the basket for deployment.
As noted above, the guide catheter desirably has a steerable section that can be deflected or bent by the operator to assist in tracking the delivery apparatus around bends in the vasculature. In certain embodiments, the guide catheter can be provided with a manually operated adjustment mechanism that produces substantially 1:1 movement of the steerable section. To such ends, the adjustment mechanism can include a pivotable lever that is operatively coupled to the steerable section via a pull wire extending through a lumen in the guide catheter shaft. Pivoting the lever operates a pulley, which retracts the pull wire, producing substantially 1:1 movement of the steerable section. Pivoting the lever in the opposite direction releases tension in the pull wire, and the resiliency of the steerable section causes the steerable section to return to its normal, non-deflected shape.
In cases where an introducer sheath is used to assist in inserting the delivery apparatus into the patient's vasculature, the introducer sheath can be provided with an integrated loader tube that extends into the seal housing of the sheath. The loader tube is connected to an end piece coupled to the distal end of the seal housing. The end piece is moveable along the length of the seal housing between a first, extended position where the loader tube is spaced from the sealing valves in the seal housing and a second, retracted position where the loader tube extends through the sealing valves to provide an unobstructed pathway for a valve mounted on a balloon catheter. Because the loader tube does not extend behind the end piece, the loader tube does not decrease the available working length of the delivery apparatus that can be inserted through the sheath and into the vasculature.
In one representative embodiment, an apparatus for delivering a prosthetic valve through the vasculature of a patient comprises a balloon catheter, a guide catheter, and a nose catheter configured to move longitudinally relative to each other. The balloon catheter comprises an elongated shaft and a balloon connected to a distal end portion of the shaft, the balloon being adapted to carry the valve in a crimped state and being inflatable to deploy the valve at an implantation site in the patient's body. The guide catheter comprises an elongated shaft extending over the balloon catheter shaft, the shaft of the guide catheter comprising a steerable section. The guide catheter further comprises an adjustment mechanism operatively coupled to the steerable section. The adjustment mechanism is configured to adjust the curvature of the steerable section and the portion of the balloon catheter shaft extending through the steerable section. The nose catheter comprises an elongated shaft extending through the balloon catheter shaft and a nose piece connected to a distal end of the nose catheter shaft. The nose piece has an internal bore adapted to receive at least a distal end portion of the balloon in a deflated state during delivery of the valve.
In another representative embodiment, a method of implanting a prosthetic valve at an implantation site in a patient's body comprises placing the valve on an inflatable balloon of a balloon catheter of a delivery apparatus and inserting at least a distal end portion of the balloon in a nose piece of a nose catheter of the delivery apparatus. The balloon catheter and the nose catheter are then inserted into the body and advanced through the patient's vasculature. At or near the implantation site, the nose catheter is moved distally relative to the balloon catheter to uncover the portion of the balloon inside the nose piece, and thereafter the valve can be deployed at the implantation site by inflating the balloon.
In another representative embodiment, a method of implanting a prosthetic valve at an implantation site in a patient's body comprises placing the valve in a crimped state on the distal end portion of an elongated delivery apparatus and advancing the delivery apparatus through the patient's vasculature. Subsequent to the act of advancing the delivery apparatus, the crimped valve is moved onto an inflatable balloon on the distal end portion of the delivery apparatus and then deployed at the implantation site by inflating the balloon.
In yet another representative embodiment, an apparatus for delivering a prosthetic valve through the vasculature of a patient comprises a balloon catheter and a nose catheter. The balloon catheter comprises an elongated shaft, a balloon connected to a distal end portion of the shaft, and a tapered wedge connected to the distal end portion adjacent the balloon. The nose catheter comprises an elongated shaft extending through the shaft of the balloon catheter, the balloon, and the wedge. The nose catheter further includes a nose piece connected to a distal end of the nose catheter shaft. The valve can be mounted in a crimped state between the nose piece and the wedge. The nose piece can be retracted proximally to push the valve over the wedge and onto the balloon, with the wedge partially expanding the valve before it is placed on the balloon.
In another representative embodiment, a guide catheter for an endovascular delivery apparatus comprises an elongated shaft having a steerable section, a handle comprising a pivotable lever, and a pull wire. The pull wire has a proximal end portion coupled to the lever and a distal end portion fixedly secured to the steerable section such that pivoting movement of the lever applies a pulling force on the pull wire to cause the steerable section to bend.
In another representative embodiment, an endovascular delivery apparatus comprises a balloon catheter comprising an elongated shaft and a balloon connected to a distal end portion of the shaft. A guide catheter comprises an elongated shaft comprising an inner polymeric tubular liner having a lumen sized to permit insertion of the balloon and the balloon catheter shaft therethrough. The shaft further comprises a braided metal layer surrounding the tubular liner, and an outer polymeric layer surrounding the braided metal layer.
In another representative embodiment, a method for making a catheter comprises forming an inner tubular layer from a polymeric material, the inner tubular layer having a lumen dimensioned to allow a balloon of a balloon catheter to pass therethrough, forming a tubular pull wire conduit from a polymeric material, placing the conduit and the inner tubular layer side-by-side in a parallel relationship relative to each other, forming a braided metal layer around the conduit and the inner tubular layer, and forming an outer polymeric layer around the braided metal layer.
In another representative embodiment, an introducer sheath comprises an elongated tubular sleeve having a lumen and adapted to be inserted into a patient's vasculature, a seal housing comprising an inner bore in communication with the lumen of the sleeve and one or more sealing valves housed in the bore, and an end piece coupled to the sealing housing opposite the sleeve. The end piece comprises a loader tube extending into the bore and is moveable along a length of the seal housing to move the loader tube from a first position spaced from the one or more sealing valves to a second position wherein the loader tube extends through the sealing valves.
The foregoing and other features and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
The guide catheter 14 includes a handle portion 20 and an elongated guide tube, or shaft, 22 extending from the handle portion 20. The balloon catheter 16 includes a proximal portion 24 adjacent the handle portion 20 and an elongated shaft 26 that extends from the proximal portion 24 and through the handle portion 20 and the guide tube 22. An inflatable balloon 28 is mounted at the distal end of the balloon catheter. The valve 12 is shown mounted on the balloon 28 in a crimped state having a reduced diameter for delivery to the heart via the patient's vasculature.
The nose catheter 18 includes an elongated shaft 30 that extends through the proximal portion 24, the shaft 26, and the balloon 28 of the balloon catheter. The nose catheter 18 further includes a nose piece 32 mounted at the distal end of the shaft 30 and adapted to receive a distal end portion of the balloon when the apparatus 10 is used to advance the valve through the patient's vasculature to the implantation site.
As can be seen in
The proximal portion 24 also defines an inner lumen 40 that is in communication with a lumen 42 of the inner shaft 34. The lumens 40, 42 in the illustrated embodiment are sized to receive the shaft 30 of the nose catheter. The balloon catheter 16 also can include a coupler 44 connected to the proximal portion 24 and a tube 46 extending from the coupler. The tube 46 defines an internal passage which fluidly communicates with the lumen 40. The balloon catheter 16 also can include a slide support 48 connected to the proximal end of the coupler 44. The slide support 48 supports and cooperates with an adjustment ring 50 (
As shown in
The inner shaft 34 and the outer shaft 26 of the balloon catheter can be formed from any of various suitable materials, such as nylon, braided stainless steel wires, or a polyether block amide (commercially available as Pebax®). The shafts 26, 34 can have longitudinal sections formed from different materials in order to vary the flexibility of the shafts along their lengths. The inner shaft 34 can have an inner liner or layer formed of Teflon® to minimize sliding friction with the nose catheter shaft 30.
The guide catheter 14 is shown in greater detail in
The guide catheter desirably includes a cover, or shroud, 23 secured to the distal end of the guide tube 22. The cover 23 in particular embodiments is sized and shaped to receive the valve 12 crimped around the balloon and to abut against the proximal end surface of the nose piece 32, which is adapted to cover a distal end portion of the balloon 28 (as shown in
As further shown in
The handle portion 20 is operatively connected to the steerable section 56 and functions as an adjustment to permit operator adjustment of the curvature of the steerable section 56 via manual adjustment of the handle portion. In the illustrated embodiment, for example, the handle portion 20 includes an inner sleeve 64 that surrounds a portion of the guide tube 22 inside the handle body 58. A threaded slide nut 68 is disposed on and slidable relative to the sleeve 64. The slide nut 68 is formed with external threads that mate with internal threads of an adjustment knob 70.
As best shown in
One or more pull wires 74 connect the adjustment knob 70 to the steerable section 56 to produce movement of the steerable section upon rotation of the adjustment knob. In certain embodiments, the proximal end portion of the pull wire 74 can extend into and can be secured to a retaining pin 80 (
The pin 80, which retains the proximal end of the pull wire 74, is captured in the slot 82 in the slide nut 68. Hence, when the adjustment knob 70 is rotated to move the slide nut 68 in the proximal direction (toward the proximal portion 24 of the balloon catheter), the pull wire 74 also is moved in the proximal direction. The pull wire pulls the distal end of the steerable section 56 back toward the handle portion, thereby bending the steerable section and reducing its radius of curvature. The friction between the adjustment knob 70 and the slide nut 68 is sufficient to hold the pull wire taut, thus preserving the shape of the bend in the steerable section if the operator releases the adjustment knob 70. When the adjustment knob 70 is rotated in the opposite direction to move the slide nut 68 in the distal direction, tension in the pull wire is released. The resiliency of the steerable section 56 causes the steerable to return its normal, non-deflected shape as tension on the pull wire is decreased. Because the pull wire 74 is not fixed to the slide nut 68, movement of the slide nut in the distal direction does not push on the end of the pull wire, causing it to buckle. Instead, the pin 80 is allowed to float within slot 82 of the slide nut 68 when the knob 70 is adjusted to reduce tension in the pull wire, preventing buckling of the pull wire.
In particular embodiments, the steerable section 56 in its non-deflected shape is slightly curved and in its fully curved position, the steerable section generally conforms to the shape of the aortic arch. In other embodiments, the steerable section can be substantially straight in its non-deflected position.
The handle portion 20 can also include a locking mechanism 84 that is configured to retain the balloon catheter 16 at selected longitudinal positions relative to the guide catheter 14. The locking mechanism 84 in the illustrated configuration comprises a push button 86 having an aperture 88 through which the outer shaft 26 of the balloon catheter extends. As best shown in
The handle portion 20 can have other configurations that are adapted to adjust the curvature of the steerable section 56. One such alternative handle configuration is shown co-pending U.S. patent application Ser. No. 11/152,288 (published under Publication No. US2007/0005131), which is incorporated herein by reference. Another embodiment of the handle portion is described below and shown in
The outer layer 108 in the illustrated embodiment comprises a braided layer formed from braided metal wire 110 wound around the liner 104 and the conduit 106, and a polymeric material 112 surrounding and encapsulating the braided metal wire layer. In particular embodiments, the shaft can be formed by forming the liners 104, 106, placing the liners side-by-side in a parallel relationship relative to each other, wrapping the metal wire around the liners to form the braided layer, placing a polymeric sleeve over the braided layer, and reflowing the sleeve to form a uniform laminate layer 108 surrounding the liners. In certain embodiments, the polymeric material 112 comprises any suitable material, but desirably comprises a thermoplastic elastomer, such as Pebax®. The braided metal layer can be constructed from stainless steel wire.
As best shown in
The steerable section 56 of the shaft desirably is formed from a relatively soft durometer material 112 to allow the steerable section to bend upon adjustment of the adjustment knob 70, as described above. The stiff section 114 desirably is formed from a relatively stiffer polymeric material 112 that resists bending when the pull wire is tensioned by the adjustment knob 70. The stiff section 114 desirably exhibits sufficient rigidity to allow the operator to push the apparatus 10 through a potentially constricting body vessel. In particular embodiments, the polymeric material 112 of the steerable section comprises 55D Pebax® and the polymeric material 112 of the remaining section 114 of the shaft comprises 72D Pebax®, which is stiffer than 55D Pebax®.
In alternative embodiments, the metal braided layer in the steerable section 56 can be replaced with a metal coil (e.g., a stainless steel coil) disposed on the inner liner 104 to enhance the flexibility of the steerable section. Thus, in this alternative embodiment, the braided metal layer extends along the stiff section 114 and the metal coil extends along the steerable section 56. In another embodiment, the metal braided layer in the steerable section 56 can be replaced with a stainless steel hypotube that is formed with laser-cut, circumferentially extending openings, such as disclosed in co-pending U.S. patent application Ser. No. 11/152,288.
As shown in
As mentioned above, the distal end of the pull wire 74 is secured at the distal end of the steerable section 56. As best shown in
Although not shown in
Referring to
As best shown in
The slot 128a is formed with circumferentially extending notches 132a-132d and the slot 128b is formed with similar circumferentially extending notches 134a-134d opposite the notches 132a-132d. Thus, for each notch 132a-132d, there is a corresponding, diametrically opposed notch 134a-134d extending from slot 128b. To retain the longitudinal position of the nose catheter relative to the balloon catheter, the adjustment ring 50 is moved to align the screws 126 with a pair of diametrically opposed notches and then rotated slightly to position the screws 126 in the notches. For example,
In the illustrated embodiment, each slot 128a, 128b is formed with four notches. When the screws 126 are positioned in notches 132c, 134c or in notches 132d, 134d, the nose piece 32 is retained at a position covering a distal end portion of the balloon 28 and abutting the cover 23 of the guide catheter 14 such that the balloon 28 and the valve 12 are completely enclosed by the cover 23 and the nose piece 32 (
The valve 12 can take a variety of different forms. In particular embodiments, the valve generally comprises an expandable stent portion that supports a valve structure. The stent portion desirably has sufficient radial strength to hold the valve at the treatment site and resist recoil of the stenotic native valve leaflets. Additional details regarding balloon expandable valve embodiments can be found in U.S. Pat. Nos. 6,730,118 and 6,893,460, each entitled IMPLANTABLE PROSTHETIC VALVE, which are incorporated by reference herein. It will also be appreciated that the delivery system may be used with self-expanding prosthetic valves. For example, when using a self-expanding valve, a pusher may be used to assist in ejecting the self-expanding valve from a delivery sleeve that maintains the valve in its compressed state.
When the valve 12 is used to replace the native aortic valve (or a previously implanted, failing prosthetic aortic valve), the valve 12 can be implanted in a retrograde approach where the valve, mounted on the balloon in a crimped state, is introduced into the body via the femoral artery and advanced through the aortic arch to the heart. In use, a guide wire 140 (
As noted above, and as shown in
Advantageously, because the valve 12 in the illustrated embodiment can be completely covered by the cover 23, an introducer sheath is not needed to introduce the valve into the body vessel. An introducer sheath having a diameter of about 22 to 24 French typically is used in a retrograde procedure. In contrast, the cover 23 desirably has an outer diameter that is less than the outer diameter of the introducer sheath, and in particular embodiments, the outer diameter of the cover 23 is in the range of about 0.260 inch to about 0.360 inch, with about 0.330 inch being a specific example. By reducing the overall diameter of the device, it is less occlusive to the femoral artery and the patient's leg can remain well perfused during the procedure. Further, because the cover 23, which represents the largest diameter of the delivery device, need only be in contact with the femoral and iliac arteries for only a very short period of time, trauma to these vessels can be minimized.
Although less desirable, in other embodiments the cover 23 can be shorter in length so that less of the outer surface of the valve and the balloon is covered by the cover 23 during delivery. For example, the cover 23 can be dimensioned to extend over only a proximal end portion of the balloon or a proximal end portion of the valve.
As the delivery apparatus 10 is advanced over the guide wire 140 and through the aortic arch, the guide catheter 14 is used to “steer” the apparatus away from the inner surface of the aorta. The tapered distal end portion of the nose piece 32 assists in tracking through the femoral and iliac arteries, as well as provides atraumatic tracking through over the aortic arch and smooth crossing of the native aortic valve. In prior delivery systems, it is known to fix a nose piece at the distal end of the balloon catheter, which increases the length of the portion of the device that cannot be curved by operation of a guide catheter. In contrast, the nose piece 32 in the illustrated embodiment is mounted on separate nose catheter 18 that can be moved relative to the valve 12. The nose piece 32 therefore can be mounted over the distal end portion of the balloon during delivery in order to minimize the length of the non-steerable section at the distal end of the delivery device. This allows for easier tracking through the aortic arch with little or no contact between the end of the delivery device and the inner walls of the aorta. In particular embodiments, the length L (
Using conventional fluoroscopy, the operator can track the positions of marker bands 142 (
The sleeve 154 can have a tapered section 156 that tapers from a first diameter at a proximal end 158 to a second, smaller diameter at a distal end 160. A reduced diameter distal end portion 162 extends from the tapered portion 156 to the distal end of the sleeve 154. The tapered portion 156 provides for a smoother transition between the outer surface of the sleeve 154 and the outer surface of the guide shaft 22 of the guide catheter 14. The tapered portion 156 also allows for variable placement of the sleeve 154 in the patient's vasculature to help minimize complete occlusion of the femoral artery.
As best shown in
As shown in
Upper and lower cross-bars 248, 250, respectively, are connected to and extend between respective upper and lower ears of the first and second lever portions 230, 232. Screws 252 extending through the ears of the lever portions 230, 232 and tightened into the cross-bars 248, 250 can be used to secure the components of the lever 204 to the main body 202. A screw 254 can extend through the lever portion 230, the housing portion 208, and into a threaded opening in the shaft 244. An adjustment knob 266 can be fixedly secured to a screw 268, which can extend through the lever portion 232, the housing portion 210, and into a threaded opening in the opposite end of the shaft 244. The screw 268 can be fixedly secured to the adjustment knob, for example, by adhesively securing the head of the screw within a recess (not shown) on the inner surface of the adjustment knob. Consequently, the adjustment knob 266 can be manually rotated to loosen or tighten the screw into the shaft 244 to adjust the rotational friction of the pulley 236.
Referring again to
Explaining the operation of the handle portion 200,
The rotational friction of the pulley 236 is sufficient to hold the pull wire taut, thus preserving the shape of the bend in the steerable section if the operator releases the adjustment lever 204. When the lever 204 is pivoted back toward the forward-most position (
Advantageously, the adjustment lever 204 in the illustrated embodiment provides a substantially 1:1 deflection of the steerable section in response to movement of the lever; that is, rotation of the lever 204 causes a substantially 1:1 movement of the pull wire and therefore the steerable section 56. In this manner, the adjustment lever 204 provides the operator tactile feedback of the curvature of the steerable section to facilitate tracking through the vasculature. In addition, the lever is ergonomically positioned for maintaining the proper orientation of the guide catheter during use. Another advantage of the illustrated handle portion 200 is that the proximal portion 24 of the balloon catheter 16 (
As best shown in
The cover 302 desirably is made from a flexible material, such as nylon, Pebax®, or PET and can have a wall thickness in the range of about 0.0015 inch to about 0.015 inch. By making the cover 302 sufficiently flexible, the only relatively stiff, non-flexible section along the portion of the delivery apparatus advanced through the patient's vasculature is the section of the balloon covered by the valve. This greatly enhances the ability of the delivery apparatus to follow the path of the guide wire 140 as it is advanced through tortuous body vessels.
In use, the delivery apparatus is advanced over the guide wire 140 until the valve is positioned at or near the deployment location. The nose catheter 300 is then advanced distally relative to the balloon catheter 16 to uncover the balloon and the valve 12, as illustrated in
One or more ribbon wires 402 are connected to the distal end 404 of the cover 400 and extend through respective lumens in the guide catheter shaft 22 along the length thereof (
In use, the cover 400 is placed in a collapsed state covering the valve and the balloon for delivery through the patient's vasculature to the deployment site. The wires 402 are then pulled in the proximal direction (as indicted by arrow 408) to expand the cover 400. The guide catheter can then be pulled in the proximal direction to advance the balloon and the valve from the distal end of the cover. Alternatively, the balloon catheter 16 can be advanced distally relative to the guide catheter 14 to advance the balloon and the valve from the cover 400.
The delivery apparatus includes a nose catheter comprising a shaft 506 and a nose piece 508 connected to the distal end of the shaft 506. The nose catheter shaft 506 can have a guide wire lumen to receive a guide wire 140 so that the apparatus can be advanced over the guide wire with the guide wire passing through the lumen. The delivery apparatus 500 can further include a guide catheter comprising a guide catheter shaft 22 and an elongated cover 510 extending from the distal end of the shaft 22. The nose catheter, balloon catheter, and guide catheter are moveable longitudinally relative to each other and can have locking mechanisms at the proximal end of the apparatus for retaining the catheters at selected longitudinal positions relative to each other, as described in detail above.
As shown in
The nose piece 508, when moved proximally relative to the balloon catheter (in the direction indicated by arrow 518), pushes the valve 12 over the wedge 502 and onto the balloon 28. As the valve passes over the wedge, the valve expands slightly to facilitate positioning the same on the balloon. The balloon catheter shaft 26 can have radiopaque markers 520 (
The section of the delivery apparatus mounting the valve typically defines the maximum outer diameter of the apparatus inserted into the body. By mounting the valve 12 on the nose catheter shaft rather than on the balloon prior to insertion into the body, the valve 12 can be crimped to a smaller diameter than if the valve is mounted on the balloon. Accordingly, the maximum outer diameter of the delivery apparatus can be reduced for insertion into and through the vasculature. As noted above, by reducing the maximum diameter of the delivery apparatus, it is less occlusive to the femoral artery and therefore the patient's leg can remain well perfused during the procedure. In certain embodiments, the maximum outer diameter of the cover 510 and the nose piece 508 (at its proximal end) is about 0.223 inch, which is the maximum diameter of the portion of the delivery apparatus that is inserted into the body. The wedge 502 can have a diameter at its proximal end of about 0.120 inch and the guide catheter shaft 22 can have an outer diameter of about 0.184 inch.
Explaining now the operation of the delivery apparatus 500, according to one embodiment, the valve 12 is initially mounted on the nose catheter shaft and inserted into the nose piece 508 and the cover 510. After a guide wire 140 is inserted into the body, the proximal end of the wire extending from the body can be inserted into the distal end of the guide wire lumen and the delivery apparatus 500 can be inserted into a body vessel (e.g., the femoral artery) and advanced through the body (as depicted in
When the distal end of the delivery apparatus is advanced to a location that is convenient to slide the valve 12 onto the balloon, the guide catheter is retracted proximally relative to the balloon catheter to advance the valve and the balloon from the cover 510. For example, if implanting a prosthetic valve within the native aortic valve, the valve and the balloon can be advanced into the ascending aorta or into the left ventricle where the valve can then be moved onto the balloon. In any case, as shown in
A conventional introducer sheath typically requires a tubular loader to be inserted through the seals in the sheath housing to provide an unobstructed path for a valve mounted on a balloon catheter. The loader extends from the proximal end of the introducer sheath, thereby increasing its working length, and decreasing the available working length of a delivery apparatus that can be inserted into the body. The introducer sheath 600 includes a integrated loader tube housed in the sheath housing to reduce the working length of the sheath, and therefore increase the available working length of a delivery apparatus that can be inserted into the body.
For example, the illustrated sheath 600 includes a seal housing 602 and a tubular sleeve 604 extending distally from the housing. The seal housing 602 houses one or more sealing valves, such as a cross-slit valve 606, a disc valve 608, and a hemostatic valve 610 as shown in the illustrated embodiment. The valves desirably are fabricated from a resilient biocompatible material, such as polyisoprene, although similar biocompatible materials also can be used. The valves 606, 608, 610 are further shown and described in U.S. Pat. No. 6,379,372, which is incorporated herein by reference. A spacer 612 can be interposed between the disc valve 608 and the cross-slit valve 606.
Coupled to the proximal end of the seal housing is an end piece 614 adapted to move longitudinally along the length of the seal housing. In the illustrated embodiment, the end piece has a tubular body formed with internal threads 616 that engage external threads 618 formed on the outer surface of the seal housing 602. Thus, rotation of the end piece 614 moves the same inwardly and outwardly relative to the seal housing. The end piece 614 has a central opening 620 and an elongated loader tube 622 fixedly secured to the proximal end portion of the end piece and extending distally therefrom. The opening 620 and the loader tube 622 are dimensioned to permit passage of the valve 12 (or other prosthesis) mounted on the delivery apparatus. The end piece 614 also houses a seal 624 having a central opening aligned with the opening 620. The seal 624 sealingly engages the outer surface of the delivery apparatus when it is inserted into the introducer sheath 600.
As noted above, the end piece 614 can be adjusted inwardly and outwardly relative to the seal housing 602. Adjusting the end piece 614 from the extended position shown in
In use, the introducer sheath 600 in the extended position shown in
In an alternative embodiment of the introducer sheath 600, the seal housing 602 can have internal threads that engage external threads on the end piece 614. The end piece can be rotated to adjust the position of the loader tube 622 as previously described. In addition, the pitch of the threads on the seal housing and the end piece can be varied to vary the amount of rotational movement required to extend the loader through the sealing valves. In another embodiment, the end piece 614 can be slidingly positionable along the length of the seal housing by pushing and pulling the end piece without rotating the same.
The nose catheter shaft 704 is slidable relative to the balloon catheter shaft 26, although the proximal end of the nose piece 702 is connected to the balloon catheter shaft. Hence, as the nose catheter shaft 704 is moved proximally relative to the balloon catheter shaft 26 (in the direction of arrow 710) from a first, extended position (
In use, the nose piece 702 is initially placed in the inverted position shown in
As shown in
As further shown in
The cover 818 in the illustrated example has four fingers 822, each of which is connected to a pull wire 826 that extends through a respective lumen 828. As shown in
When the valve is advanced to the implantation site inside the body, the cover 818 is retracted by operation of the adjustment mechanism to uncover the valve. As the cover 818 is retracted (relative to the shaft 22 and the outer cover 838), the distal end of the shaft end portion 816 abuts against the valve to prevent inadvertent movement of valve's position on the balloon 800. Thereafter, the balloon catheter can be advanced distally relative to the guide catheter to advance the balloon 800 a sufficient distance from the cover 838 and the shaft end portion 816 to permit full inflation of the balloon for deploying the valve 12. The valve 12 can be a balloon-expandable valve that is deployed by the balloon, or alternatively, the valve 12 can be a self-expanding valve that radially expands when advanced from the cover 818. In the latter case, the balloon 800 can be used to further expand the valve to ensure tight engagement with the orifice of the native valve.
In an alternative embodiment, the shaft distal end portion 816 can be configured to provide a releasable attachment to the valve 12, such as described in detail in the '657 application. In this manner, the guide catheter can be moved fore and aft to adjust the position of the valve in the body vessel as the valve is being deployed. Prior to deployment (or after partial deployment, or expansion, of the valve), control of valve positioning can be achieved by the operator pushing, pulling, or twisting the guide catheter. Once the operator is satisfied with the position of the valve, the valve can be fully deployed and the valve is detached from the distal end of the guide catheter shaft.
As shown in
The adjustment mechanism 916 is configured to permit manual adjustment of the diameter of the sleeve 902 between a first diameter (
In use, the sleeve 902 can be inserted into a blood vessel as previously described. As a delivery apparatus (e.g., delivery apparatus 10) is inserted through the sleeve 902, the sleeve 902 can be radially expanded to allow a prosthetic valve (e.g., valve 12) or other prosthetic device mounted on the delivery apparatus to easily pass through the sleeve 902. Once the prosthetic valve is inserted into the blood vessel, the sleeve 902 can be reduced in diameter to minimize occlusion of the vessel.
In an alternative embodiment, as depicted in
The various embodiments of the delivery apparatus disclosed herein can be used for implanting prosthetic devices other than prosthetic heart valves into the body. For example, the delivery apparatus can be used to deliver and deploy various types of intraluminal devices (e.g., stents, stented grafts, etc.) into many types of vascular and non-vascular body lumens (e.g., veins, arteries, esophagus, ducts of the biliary tree, intestine, urethra, fallopian tube, other endocrine or exocrine ducts, etc.). In one specific example, the delivery apparatus can be used to implant a balloon-expandable stent into a coronary artery (or other blood vessels) to maintain the patency of the vessel lumen.
In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims. We therefore claim as our invention all that comes within the scope and spirit of these claims.
This application is a continuation of U.S. patent application Ser. No. 14/066,259, filed Oct. 29, 2013, which is a continuation of U.S. patent application Ser. No. 11/852,977, filed Sep. 10, 2007, now U.S. Pat. No. 8,568,472, which claims the benefit of U.S. Patent Application No. 60/843,870, filed Sep. 8, 2006, the entire disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3409013 | Berry | Nov 1968 | A |
3587115 | Shiley | Jun 1971 | A |
3671979 | Moulopoulos | Jun 1972 | A |
4035849 | Angell et al. | Jul 1977 | A |
4056854 | Boretos et al. | Nov 1977 | A |
4592340 | Boyles | Jun 1986 | A |
4733665 | Palmaz | Mar 1988 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4787899 | Lazarus | Nov 1988 | A |
4796629 | Grayzel | Jan 1989 | A |
4994077 | Dobben | Feb 1991 | A |
5059177 | Towne et al. | Oct 1991 | A |
5085635 | Cragg | Feb 1992 | A |
5089015 | Ross | Feb 1992 | A |
5167628 | Boyles | Dec 1992 | A |
5190050 | Nitzsche | Mar 1993 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5397351 | Pavcnik et al. | Mar 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5415664 | Pinchuk | May 1995 | A |
5429144 | Wilk | Jul 1995 | A |
5545209 | Roberts et al. | Aug 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5591195 | Taheri et al. | Jan 1997 | A |
5599305 | Hermann et al. | Feb 1997 | A |
5618300 | Marin et al. | Apr 1997 | A |
5639274 | Fischell et al. | Jun 1997 | A |
5662703 | Yurek | Sep 1997 | A |
5702368 | Stevens et al. | Dec 1997 | A |
5728068 | Leone et al. | Mar 1998 | A |
5749890 | Shaknovich | May 1998 | A |
5772669 | Vrba | Jun 1998 | A |
5782809 | Umeno et al. | Jul 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5855597 | Jayaraman | Jan 1999 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5911710 | Barry et al. | Jun 1999 | A |
5925063 | Khosravi | Jul 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5968068 | Dehdashtian et al. | Oct 1999 | A |
6139572 | Campbell et al. | Oct 2000 | A |
6162208 | Hipps | Dec 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6217585 | Houser et al. | Apr 2001 | B1 |
6245102 | Jayaraman | Jun 2001 | B1 |
6299637 | Shaolian | Oct 2001 | B1 |
6302906 | Goecoechea et al. | Oct 2001 | B1 |
6379372 | Dehdashtian et al. | Apr 2002 | B1 |
6425916 | Garrison et al. | Jul 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6461382 | Cao | Oct 2002 | B1 |
6527979 | Constantz | Mar 2003 | B2 |
6569196 | Vesely et al. | May 2003 | B1 |
6582462 | Andersen et al. | Jun 2003 | B1 |
6605112 | Moll | Aug 2003 | B1 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6697667 | Lee et al. | Feb 2004 | B1 |
6730118 | Spenser et al. | May 2004 | B2 |
6733525 | Yang et al. | May 2004 | B2 |
6767362 | Schreck | Jul 2004 | B2 |
6769434 | Liddicoat et al. | Aug 2004 | B2 |
6786925 | Schoon et al. | Sep 2004 | B1 |
6790229 | Berreklouw | Sep 2004 | B1 |
6797002 | Spence et al. | Sep 2004 | B2 |
6821297 | Snyders | Nov 2004 | B2 |
6830584 | Seguin | Dec 2004 | B1 |
6830585 | Artof et al. | Dec 2004 | B1 |
6866650 | Stevens et al. | Mar 2005 | B2 |
6872223 | Roberts et al. | Mar 2005 | B2 |
6893460 | Spenser et al. | May 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
6951571 | Srivastava | Oct 2005 | B1 |
6989028 | Lashinski et al. | Jan 2006 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7018408 | Bailey et al. | Mar 2006 | B2 |
7186265 | Sharkawy et al. | Mar 2007 | B2 |
7276084 | Yang et al. | Oct 2007 | B2 |
7318278 | Zhang et al. | Jan 2008 | B2 |
7374571 | Pease et al. | May 2008 | B2 |
7381220 | Macoviak et al. | Jun 2008 | B2 |
7393360 | Spenser et al. | Jul 2008 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7524330 | Berreklouw | Apr 2009 | B2 |
7585321 | Cribier | Sep 2009 | B2 |
7618446 | Andersen et al. | Nov 2009 | B2 |
7780723 | Taylor | Aug 2010 | B2 |
7780725 | Haug et al. | Aug 2010 | B2 |
7785366 | Maurer et al. | Aug 2010 | B2 |
7959661 | Hijlkema et al. | Jun 2011 | B2 |
8029556 | Rowe | Oct 2011 | B2 |
8167932 | Bourang | May 2012 | B2 |
8449606 | Eliasen et al. | May 2013 | B2 |
20010002445 | Vesely | May 2001 | A1 |
20010007956 | Letac et al. | Jul 2001 | A1 |
20010021825 | Becker et al. | Sep 2001 | A1 |
20010044595 | Reydel | Nov 2001 | A1 |
20020029014 | Jayaraman | Mar 2002 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20020138138 | Yang | Sep 2002 | A1 |
20030050694 | Yang et al. | Mar 2003 | A1 |
20030069492 | Abrams et al. | Apr 2003 | A1 |
20030109924 | Cribier | Jun 2003 | A1 |
20030199963 | Tower et al. | Oct 2003 | A1 |
20040039436 | Spenser et al. | Feb 2004 | A1 |
20040068248 | Mooney et al. | Apr 2004 | A1 |
20040093060 | Seguin et al. | May 2004 | A1 |
20040097788 | Mourlas et al. | May 2004 | A1 |
20040111096 | Tu et al. | Jun 2004 | A1 |
20040122516 | Fogarty et al. | Jun 2004 | A1 |
20040133263 | Dusbabek et al. | Jul 2004 | A1 |
20040167573 | Williamson et al. | Aug 2004 | A1 |
20040167620 | Ortiz et al. | Aug 2004 | A1 |
20040186563 | Lobbi | Sep 2004 | A1 |
20040186565 | Schreck | Sep 2004 | A1 |
20040210304 | Seguin et al. | Oct 2004 | A1 |
20040210307 | Khairkhahan | Oct 2004 | A1 |
20040215333 | Duran et al. | Oct 2004 | A1 |
20040225353 | McGuckin et al. | Nov 2004 | A1 |
20040225354 | Allen et al. | Nov 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20040260394 | Douk et al. | Dec 2004 | A1 |
20050033398 | Seguin | Feb 2005 | A1 |
20050043790 | Seguin | Feb 2005 | A1 |
20050049692 | Numamoto et al. | Mar 2005 | A1 |
20050049696 | Siess et al. | Mar 2005 | A1 |
20050060029 | Le et al. | Mar 2005 | A1 |
20050075584 | Cali | Apr 2005 | A1 |
20050075712 | Biancucci et al. | Apr 2005 | A1 |
20050075717 | Nguyen et al. | Apr 2005 | A1 |
20050075719 | Bergheim | Apr 2005 | A1 |
20050075724 | Svanidze et al. | Apr 2005 | A1 |
20050075730 | Myers et al. | Apr 2005 | A1 |
20050075731 | Artof et al. | Apr 2005 | A1 |
20050080474 | Andreas et al. | Apr 2005 | A1 |
20050096736 | Osse et al. | May 2005 | A1 |
20050096738 | Cali et al. | May 2005 | A1 |
20050113910 | Paniagua et al. | May 2005 | A1 |
20050131438 | Cohn | Jun 2005 | A1 |
20050137686 | Salahieh et al. | Jun 2005 | A1 |
20050137692 | Haug et al. | Jun 2005 | A1 |
20050137695 | Salahieh et al. | Jun 2005 | A1 |
20050137701 | Salahieh et al. | Jun 2005 | A1 |
20050143809 | Salahieh et al. | Jun 2005 | A1 |
20050203549 | Realyvasquez | Sep 2005 | A1 |
20050203614 | Forster et al. | Sep 2005 | A1 |
20050203617 | Forster et al. | Sep 2005 | A1 |
20050228495 | Macoviak | Oct 2005 | A1 |
20050234546 | Nugent et al. | Oct 2005 | A1 |
20050240200 | Bergheim | Oct 2005 | A1 |
20060004439 | Spenser et al. | Jan 2006 | A1 |
20060025857 | Bergheim et al. | Feb 2006 | A1 |
20060155366 | LaDuca | Jul 2006 | A1 |
20070005131 | Taylor | Jan 2007 | A1 |
20070088431 | Bourang et al. | Apr 2007 | A1 |
20070203575 | Forster et al. | Aug 2007 | A1 |
20070265700 | Eliasen et al. | Nov 2007 | A1 |
20080125853 | Bailey et al. | May 2008 | A1 |
20080125861 | Webler et al. | May 2008 | A1 |
20080294230 | Parker | Nov 2008 | A1 |
20090157175 | Benichou | Jun 2009 | A1 |
20090276040 | Rowe et al. | Nov 2009 | A1 |
20090281619 | Le et al. | Nov 2009 | A1 |
20090319037 | Rowe et al. | Dec 2009 | A1 |
20100049313 | Alon et al. | Feb 2010 | A1 |
20100198347 | Lakay et al. | Aug 2010 | A1 |
20110015729 | Jimenez et al. | Jan 2011 | A1 |
20120123529 | Levi et al. | May 2012 | A1 |
20130317598 | Rowe et al. | Nov 2013 | A1 |
20140364939 | Deshmukh et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
2595233 | Jul 2006 | CA |
19532846 | Mar 1997 | DE |
19907646 | Aug 2000 | DE |
0592410 | Apr 1994 | EP |
0850607 | Jul 1998 | EP |
1796597 | Jun 2007 | EP |
2815844 | May 2002 | FR |
9117720 | Nov 1991 | WO |
1998029057 | Jul 1998 | WO |
9912483 | Mar 1999 | WO |
0149213 | Jul 2001 | WO |
0154625 | Aug 2001 | WO |
0176510 | Oct 2001 | WO |
0222054 | Mar 2002 | WO |
0236048 | May 2002 | WO |
0247575 | Jun 2002 | WO |
02060352 | Aug 2002 | WO |
03030776 | Apr 2003 | WO |
03047468 | Jun 2003 | WO |
2004019825 | Mar 2004 | WO |
2005084595 | Sep 2005 | WO |
2005102015 | Nov 2005 | WO |
2005104957 | Nov 2005 | WO |
2006091597 | Aug 2006 | WO |
2006111391 | Oct 2006 | WO |
2006138173 | Dec 2006 | WO |
2007047488 | Apr 2007 | WO |
2007067942 | Jun 2007 | WO |
2010121076 | Oct 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20160158009 A1 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
60843470 | Sep 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14066259 | Oct 2013 | US |
Child | 15042049 | US | |
Parent | 11852977 | Sep 2007 | US |
Child | 14066259 | US |