1. Field of the Invention
The present invention relates generally to the field of digital camera devices, and more particularly to a novel combined array chip and lens apparatus. The predominant current application for the inventive integrated lens and chip assembly is in the production of low cost cameras, wherein the ability to produce high quality pictures without expensive or complicated camera assemblies is an important factor.
2. Description of the Background Art
Very small digital camera modules, adapted for use in small inexpensive cameras, cell phones, hand held devices, and the like, are greatly in demand. In the prior art, such modules have included generally conventional integrated chip and/or chip on board assemblies, which are enclosed in a mechanical housing. A lens block or assembly is attached to the chip housing and mechanically aligned thereto. This arrangement requires a significant quantity of parts used in the attachment process. It also generally requires some sort of attachment apparatus or jig for holding the pieces in alignment while they are attached. It is also very labor intensive. Additionally, the attachment mechanism is generally rather delicate and can easily be jarred out of position if the resulting device is dropped, or the like.
It would be desirable to have a method for producing a small camera module which is small in size, inexpensive to manufacture, and durable and reliable in operation. However, to the inventors' knowledge, the above described arrangement of components is that being used in the production of such devices prior to the advent of the presently described invention.
Accordingly, it is an object of the present invention to provide a camera module which is easy and inexpensive to manufacture.
It is another object of the present invention to provide a camera module which can be very small in size.
It is still another object of the present invention to provide a camera module, which is rugged and reliable in operation.
It is yet another object of the present invention to provide a camera module in which the lens is accurately located, thereby providing for optimal picture quality without the need for active alignment.
Briefly, an example of the present invention has a lens assembly, which is rigidly affixed in relationship to a camera chip using a molded component. The molded component is formed in place on a printed circuit board on which the camera chip is already mounted. The lens assembly is then inserted into the molded component and held in place therein by an adhesive. According to the present inventive method and apparatus, a lens is accurately affixed in relationship to the sensor surface of the camera chip using a minimum of components and a minimum of operations steps. The size of the resulting unit can be quite small and the unit is also rugged and reliable in operation.
These and other objects and advantages of the present invention will become clear to those skilled in the art in view of the description of modes of carrying out the invention, and the industrial applicability thereof, as described herein and as illustrated in the several figures of the drawing. The objects and/or advantages listed or discussed herein are not an exhaustive list of all possible objects or advantages of the invention. Moreover, it will be possible to practice the invention even where one or more of the intended objects and/or advantages might be absent or not required in the application.
Further, those skilled in the art will recognize that various embodiments of the present invention may achieve one or more, but not necessarily all, of the above described objects and/or advantages. Accordingly, the listed objects and advantages are not essential elements of the present invention, and should not be construed as limitations.
This invention is described in the following description with reference to the Figures, in which like reference numbers represent the same or similar elements. While this invention is described in terms of modes for achieving this invention's objectives, it will be appreciated by those skilled in the art that variations may be accomplished in view of these teachings without deviating from the spirit or scope of the present invention. The embodiments and variations of the invention described herein, and/or shown in the drawings, are presented by way of example only and are not limiting as to the scope of the invention. Unless otherwise specifically stated, individual aspects and components of the invention may be omitted or modified, or may have substituted therefore known equivalents, or as yet unknown substitutes such as may be developed in the future or such as may be found to be acceptable substitutes in the future. The invention may also be modified for a variety of applications while remaining within the spirit and scope of the claimed invention, since the range of potential applications is great, and since it is intended that the present invention be adaptable to many such variations.
In the following description, details of some well known and/or commonly commercially available component parts have not been specifically discussed in detail, so as to avoid unnecessary complexity which might obscure disclosure of the true nature of the present invention. It should be noted that the diagrammatic representations in the drawings accompanying this description are not necessarily drawn in the scale and proportion which might be used in the actual practice of the invention. Rather the drawings are intended only to demonstrate the relative arrangement of certain aspects of the invention and to assist in the understanding of the important inventive aspects.
A known mode for carrying out the invention is an integrated camera module. The inventive integrated camera module is depicted in a side elevational view in
The PCB 16 has thereon a plurality of passive components 18 which, in conjunction with components on the camera chip 12, constitute the internal circuitry of the integrated camera module 10. Optionally, the PCB 16 can, in some applications, have a plurality (only a few of which are shown in the view of
According to the present invention, a lens assembly 24 is positioned in relation to the PCB assembly 22 by a molding 26 and held in place therein by an adhesive 28. The molding 26 is formed by a molding material on the PCB assembly 22 as will be discussed in greater detail hereinafter. The molding 26 has dimensional tolerances sufficiently accurate such that when the lens assembly 24 is positioned within a recessed area 29 (
Note that lens assembly 24 is not intended to depict any particular lens design, but rather is shown representationally for illustrative purposes. Depending on the particular design, lens assembly 24 can be formed from a single piece of material, can include one or more lenses mounted in a carrier (e.g.,
A protective cover 33 is mounted over sensor array area 14, to protect sensor array area 14 from damage during the manufacturing and assembly process. Preferably, protective cover 33 is formed from a robust, optically inactive material. In one particular embodiment, protective cover is a glass cover sheet, which can be mounted over sensor array area 14 either before or during the formation of molding 26.
In a “die bonding” operation 118 the camera chips 12 are bonded (by an adhesive in this example) to the respective PCBs 16a. In an “oven curing” operation 120, the adhesive applied in the previous operation is cured in an oven. In a “plasma cleaning” operation 122 surfaces to which wires are to be bonded (in subsequent operations) are etched using inert gasses. In a “wire bonding” operation 124 the attachment wires 17 are bonded using thermosonic bonding. In a second “plasma cleaning” operation 126 the PCBs 16a are again cleaned.
Various modifications may be made to the invention without altering its value or scope. For example, the sizes, shapes and quantities of components shown and described in relation to the examples discussed herein could each or all be varied according the needs or convenience of a particular application.
Similarly other substrate materials, such as ceramics, could be used instead of the PCB 16 described herein.
Another modification would be to replace the air filled gap 30 described herein with an optically clear spacer made, for example, of clear plastic, glass, or some other optically acceptable material. Providing a spacer which abuts both the camera chip 12 and the lens 24 could eliminate the need to focus the lens during the lens mounting operation. Also, secondary lenses, such as zoom lens assemblies and the like, can be fit to the already mechanically centered lens assembly 24 or 24a. A spacer would also serve as a protective cover, thereby eliminating the need to provide a separate protective cover.
While the inventors presently believe that mounting the lens assemblies 24, 24a into the molding 26, or the like, by an adhesive is presently the most viable method, it is within the scope of the invention that the lens assemblies 22, 22a could be secured to the PCB 16, 16a in relation to the camera chip 12 by other mechanical means, such as a mechanical clip, or the like.
Obvious variations to the method could include mounting the lens assemblies 24a into the molding 26 before the “saw singulation” operation 134. Of course, this would require some other modifications to the method to insure that the sensor array area 14 is protected during the “saw singulation” operation 134, and the like.
Additional components and/or parts could readily be added to the present invention. One possible example would be to provide a glass cover on the molding 26. Such as cover might serve several purposes. It could protect the sensor array area 14 during storage, transport and handling, it could optionally provide a service whereby the device could be lifted by “pick-and-place” machines, and it could protect the sensor array area 14 during reflow soldering operations.
All of the above are only some of the examples of available embodiments of the present invention. Those skilled in the art will readily observe that numerous other modifications and alterations may be made without departing from the spirit and scope of the invention. Accordingly, the disclosure herein is not intended as limiting and the appended claims are to be interpreted as encompassing the entire scope of the invention.
The inventive integrated camera module 10, 10a is intended to be widely used for capturing visual images in very small devices such as small digital cameras, cellular telephones, and the like. The device and method are appropriate to a wide variety of applications, including using sensor modules ranging from VGA resolution to 1.3 Megapixel or even greater. The method and apparatus described herein are inexpensive in the molding material and process is lower in cost as compared to the attachment of a housing using conventional methods. This is mainly because the molding process will be performed on an entire panel having thereon a large number of the integrated camera modules 10 at once, rather than attaching the lenses one at a time. Also, the cost of molding compound will be lower than the cost of individual housing pieces formerly used for attaching the lenses.
According to the present invention, the final assembly of the integrated camera modules 10 will be more robust and more accurate with respect to X and Y locations. This is accomplished by ensuring that the sensor die placement and the overmold insert locations are controlled by the same local fiducial features on the substrate. Current methods involve use of guide pins and other means for the placement of the housing. These inherently involve greater tolerance build up compared to a mold with greater dimensional accuracy and more stable dimensions.
As discussed previously herein, Z dimension accuracy will be accomplished with reference to the camera chip 12 surface itself, which is the key reference for camera focus. It is anticipated that, in the future, this will obviate the need for active alignment in most cases. Also, the fact that the alignment is done without having to rotate the lens assembly into a threaded housing will inherently make the lens placement more stable.
It is further anticipated that the reduction in the required number of components according to the present invention will, itself, result in additional cost savings.
Since the integrated camera module 10, 10a of the present invention may be readily produced and integrated with existing design configurations for camera systems and others yet to be conceived, and since the advantages as described herein are provided, it is expected that it will be readily accepted in the industry. For these and other reasons, it is expected that the utility and industrial applicability of the invention will be both significant in scope and long-lasting in duration.
Number | Name | Date | Kind |
---|---|---|---|
4894707 | Yamawaki et al. | Jan 1990 | A |
6122009 | Ueda | Sep 2000 | A |
6384397 | Takiar et al. | May 2002 | B1 |
6414299 | Churei | Jul 2002 | B1 |
6476417 | Honda et al. | Nov 2002 | B2 |
6686588 | Webster et al. | Feb 2004 | B1 |
6734419 | Glenn et al. | May 2004 | B1 |
6741405 | Chen | May 2004 | B1 |
6798031 | Honda et al. | Sep 2004 | B2 |
7009654 | Kuno et al. | Mar 2006 | B2 |
7061106 | Yang et al. | Jun 2006 | B2 |
7091571 | Park et al. | Aug 2006 | B1 |
7122787 | Nishizawa | Oct 2006 | B2 |
7199438 | Appelt et al. | Apr 2007 | B2 |
7579583 | Mok et al. | Aug 2009 | B2 |
7583309 | Aizawa et al. | Sep 2009 | B2 |
7679669 | Kwak | Mar 2010 | B2 |
20020145676 | Kuno et al. | Oct 2002 | A1 |
20020167605 | Akimoto et al. | Nov 2002 | A1 |
20020191103 | Akimoto et al. | Dec 2002 | A1 |
20030071342 | Honda et al. | Apr 2003 | A1 |
20030137595 | Takachi | Jul 2003 | A1 |
20030146998 | Doering et al. | Aug 2003 | A1 |
20040012698 | Suda et al. | Jan 2004 | A1 |
20040027687 | Bittner et al. | Feb 2004 | A1 |
20040109079 | Fujimoto et al. | Jun 2004 | A1 |
20040189853 | Takeuchi et al. | Sep 2004 | A1 |
20050046740 | Davis | Mar 2005 | A1 |
20050212947 | Sato et al. | Sep 2005 | A1 |
20050274883 | Nagano | Dec 2005 | A1 |
20050285016 | Kong et al. | Dec 2005 | A1 |
20060006486 | Seo et al. | Jan 2006 | A1 |
20060028573 | Seo et al. | Feb 2006 | A1 |
20060044450 | Wolterink et al. | Mar 2006 | A1 |
20060132644 | Shangguan et al. | Jun 2006 | A1 |
20070058069 | Chen et al. | Mar 2007 | A1 |
20070278394 | Shangguan et al. | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
0 813 236 | Dec 1997 | EP |
1429168 | Jun 2004 | EP |
2001-292365 | Oct 2001 | JP |
2002252796 | Sep 2002 | JP |
2003078077 | Mar 2003 | JP |
2003131112 | May 2003 | JP |
2003219284 | Jul 2003 | JP |
WO 2004027880 | Apr 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20050185088 A1 | Aug 2005 | US |